JP2004348573A - クロック生成回路およびそれを含むシステム - Google Patents
クロック生成回路およびそれを含むシステム Download PDFInfo
- Publication number
- JP2004348573A JP2004348573A JP2003146507A JP2003146507A JP2004348573A JP 2004348573 A JP2004348573 A JP 2004348573A JP 2003146507 A JP2003146507 A JP 2003146507A JP 2003146507 A JP2003146507 A JP 2003146507A JP 2004348573 A JP2004348573 A JP 2004348573A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- clock signal
- signal
- duty ratio
- clock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000872 buffer Substances 0.000 claims abstract description 182
- 238000012545 processing Methods 0.000 claims description 26
- 230000008859 change Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 6
- 230000000630 rising effect Effects 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 4
- 238000009529 body temperature measurement Methods 0.000 claims description 3
- 230000003139 buffering effect Effects 0.000 claims 5
- 230000003247 decreasing effect Effects 0.000 claims 2
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 abstract description 67
- 230000002093 peripheral effect Effects 0.000 abstract description 32
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 abstract description 12
- 102100040856 Dual specificity protein kinase CLK3 Human genes 0.000 abstract description 10
- 101000749304 Homo sapiens Dual specificity protein kinase CLK3 Proteins 0.000 abstract description 10
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 abstract description 8
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 56
- 241001125929 Trisopterus luscus Species 0.000 description 45
- 101001117010 Homo sapiens Pericentrin Proteins 0.000 description 15
- 102100024315 Pericentrin Human genes 0.000 description 15
- 101000622137 Homo sapiens P-selectin Proteins 0.000 description 14
- 102100023472 P-selectin Human genes 0.000 description 14
- PSHHYQWGIGYWHP-UHFFFAOYSA-N 2-[8-[bis(dimethylamino)methylideneamino]naphthalen-1-yl]-1,1,3,3-tetramethylguanidine Chemical compound C1=CC(N=C(N(C)C)N(C)C)=C2C(N=C(N(C)C)N(C)C)=CC=CC2=C1 PSHHYQWGIGYWHP-UHFFFAOYSA-N 0.000 description 13
- URBVNGPRVHSYCK-OVHBTUCOSA-N [(2s,3r,4r,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-methyloxan-2-yl]sulfanyl dihydrogen phosphate Chemical compound C[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1SOP(O)(O)=O URBVNGPRVHSYCK-OVHBTUCOSA-N 0.000 description 13
- 230000003111 delayed effect Effects 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 230000004913 activation Effects 0.000 description 4
- 230000001934 delay Effects 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
- G06F1/08—Clock generators with changeable or programmable clock frequency
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/156—Arrangements in which a continuous pulse train is transformed into a train having a desired pattern
- H03K5/1565—Arrangements in which a continuous pulse train is transformed into a train having a desired pattern the output pulses having a constant duty cycle
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K7/00—Modulating pulses with a continuously-variable modulating signal
- H03K7/08—Duration or width modulation ; Duty cycle modulation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Pulse Circuits (AREA)
- Logic Circuits (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Manipulation Of Pulses (AREA)
Abstract
【解決手段】クロック生成回路1Aは、基準クロック信号CLK0を受けて、周辺回路1000,2000,3000にクロック信号CLK1,CLK2,CLK3をそれぞれ出力する。クロック生成回路1Aに含まれるバッファ回路10−0A,10−1A,10−2A,10−3Aの各々から出力される出力バッファ信号の少なくとも一つのデューティ比を変化させることによって、クロック信号CLK1,CLK2,CLK3の少なくとも一つのデューティ比を変化させることができる。
【選択図】 図1
Description
【発明の属する技術分野】
この発明は、クロック生成回路およびそれを含むシステムに関し、より特定的には、デューティ比を設定または制御できるクロック信号を生成するクロック生成回路およびそれを含むシステムに関する。
【0002】
【従来の技術】
LSI(Large Scale Integration)またはLSIを使用したシステムにおいて、クロック信号は、内部素子、内部モジュール、または外部デバイスとの同期を取るために必要とされる重要な信号である。内部素子、内部モジュール、または外部デバイスは、クロック信号の立上がりエッジまたは立下りエッジに同期して演算や通信を行なう。
【0003】
クロック信号を生成する従来のクロック生成回路は、クロック信号のデューティ比がたとえば50%に固定されていた。
【0004】
そのため、クロック信号を受ける回路の仕事量がHレベル(論理ハイ)の期間とLレベル(論理ロー)の期間とで異なる場合、当該回路の動作周波数は仕事量の多い期間に合わせて決定されるため、動作効率が落ちる。また、この場合、クロック信号の周波数が一定以上の時に消費電力が急激に増えるという問題があった。
【0005】
さらに、クロック信号を受ける回路が複数ある場合には、電流ピークが同時期に起こり、EMI(Electromagnetic Interference)などによるノイズが増大するという問題があった。
【0006】
上記の諸問題を解決する手段としては、たとえば、クロック信号のデューティ比を変化させることが考えられる。特許文献1,2には、クロック信号のデューティ比を変化させる手段について記載されている。
【0007】
特許文献1に記載された従来のクロック生成回路は、位相比較器と、その位相比較器の出力が印加される周波数制御電圧発生部とを備え、容量充放電電流によって任意に周波数のデューティ比を設定することができる。
【0008】
特許文献2に記載された従来のクロック生成回路は、遅延回路と論理回路とにより入力クロックに対してデューティ比を増加または減少させることができ、遅延時間を変化させることによってそのデューティ比を可変微調整することができる。
【0009】
【特許文献1】
特開平6−164379号公報
【0010】
【特許文献2】
特開昭62−42613号公報
【0011】
【発明が解決しようとする課題】
しかしながら、クロック信号のデューティ比を変化させる手段は、特許文献1,2に記載された手段だけには限られない。また、クロック信号のデューティ比は、クロック信号を受ける回路の規模や特性に応じて柔軟に設定できることが望ましい。
【0012】
それゆえに、この発明の目的は、クロック信号を受ける回路の規模や特性に応じてクロック信号のデューティ比を柔軟に設定または制御できるクロック生成回路およびそれを含むシステムを提供することである。
【0013】
【課題を解決するための手段】
この発明によるクロック生成回路は、基準クロック信号の入力を受けて、基準クロック信号と同一または逓倍のクロック信号を出力する逓倍回路と、クロック信号をバッファ処理するバッファ処理部とを備える。バッファ処理部は、クロック信号の論理ハイの期間と論理ローの期間とが互いに異なるようにクロック信号をバッファ処理する少なくとも一つのバッファ回路を含む。
【0014】
この発明によるシステムは、クロック信号を出力するクロック生成回路と、クロック信号のデューティ比を制御信号を用いて制御するクロック制御用回路と、クロック制御用回路を制御する中央処理装置とを備える。クロック生成回路は、基準クロック信号の入力を受けて、基準クロック信号と同一または逓倍のクロック信号を出力する逓倍回路と、クロック信号をバッファ処理するバッファ処理部とを備え、バッファ処理部は、クロック信号のデューティ比を変更することができる少なくとも一つのバッファ回路を含む。
【0015】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
【0016】
[実施の形態1]
図1は、この発明の実施の形態1によるクロック生成回路1Aおよびその周辺回路を示したブロック図である。
【0017】
図1に示した実施の形態1のクロック生成回路1Aは、基準クロック信号CLK0を受けて、周辺回路1000,2000,3000にクロック信号CLK1,CLK2,CLK3をそれぞれ出力する。ここで、周辺回路1000,2000,3000としては、たとえば、ランダムロジック回路,演算器回路,レジスタ回路,メモリ回路,アナログ回路のような回路が想定される。
【0018】
クロック生成回路1Aは、PLL(Phase Locked Loop)回路2と、バッファ回路10−0A,10−1A,10−2A,10−3Aとを含む。PLL回路2は、基準クロック信号CLK0を受ける。バッファ回路10−0Aは、PLL回路2からの出力を受ける。バッファ回路10−1A,10−2A,10−3Aは、バッファ回路10−0Aからの出力を受けて、クロック信号CLK1,CLK2,CLK3をそれぞれ出力する。
【0019】
実施の形態1のクロック生成回路1Aは、バッファ回路10−0A,10−1A,10−2A,10−3Aから各々出力される出力バッファ信号の少なくとも一つのデューティ比を変化させることによって、クロック生成回路1Aから出力されるクロック信号のデューティ比を柔軟に変化させる構成となっている。
【0020】
以下、バッファ回路10−0A,10−1A,10−2A,10−3Aの少なくとも一つを構成する実施の形態1のバッファ回路の各具体的な構成例について説明する。
【0021】
図2は、この発明の実施の形態1によるバッファ回路10aの回路構成を示した回路図である。
【0022】
図2に示した実施の形態1のバッファ回路10aは、インバータ11,14が2段直列接続された構成となっている。インバータ11は、入力バッファ信号BINを受ける。インバータ14は、インバータ11からの出力を受けて、出力バッファ信号BOUTを出力する。
【0023】
インバータ11は、電源ノードと接地ノードとの間に直列接続されたPチャネルMOSトランジスタ12およびNチャネルMOSトランジスタ13を含む。PチャネルMOSトランジスタ12およびNチャネルMOSトランジスタ13のゲートには入力バッファ信号BINが入力される。PチャネルMOSトランジスタ12およびNチャネルMOSトランジスタ13のドレインは、インバータ14の入力端子に接続される。
【0024】
図2に示した実施の形態1のバッファ回路10aは、PチャネルMOSトランジスタ12の入力信号に対するゲート遅延速度よりもNチャネルMOSトランジスタ13の入力信号に対するゲート遅延速度の方が大きい。ゲート遅延速度の大小は、MOSトランジスタのソース−ドレイン電流の違いに大きく起因する。
【0025】
図3は、この発明の実施の形態1によるバッファ回路10aの回路動作を説明するための動作波形図である。
【0026】
PチャネルMOSトランジスタ12の入力信号に対するゲート遅延速度よりもNチャネルMOSトランジスタ13の入力信号に対するゲート遅延速度の方が大きいため、インバータ11における入力バッファ信号BINの遅延量は、LレベルからHレベルに遷移する時よりもHレベルからLレベルに遷移する時の方が大きくなる。
【0027】
それゆえに、入力バッファ信号BINのデューティ比が50%の場合、出力バッファ信号BOUTは、図3に示すように、Hレベルの期間THの方がLレベルの期間TLよりも長くなる。なお、以下特にことわらない限り、入力バッファ信号BINのデューティ比は50%であるとする。また、以下では、トランジスタの入力信号に対するゲート遅延速度が大きい/小さいことを、トランジスタのドライブ能力が大きい/小さいとも表現する。
【0028】
なお、実施の形態1のバッファ回路10aでは、NチャネルMOSトランジスタ13の入力信号に対するゲート遅延速度の方が大きくなっているが、反対にPチャネルMOSトランジスタ12の入力信号に対するゲート遅延速度の方を大きくすることも可能である。この場合、出力バッファ信号BOUTはLレベルの期間が長くなるため、Lレベルの期間での演算量が多い回路またはシステムに有効である。
【0029】
また、実施の形態1のバッファ回路10aでは、前段のインバータ11に含まれるPチャネルMOSトランジスタ12およびNチャネルMOSトランジスタ13の入力信号に対するゲート遅延速度を互いに異なるように変えてあるが、これを後段のインバータ14に対して適応することも可能である。この場合にも同様の効果が得られる。
【0030】
上記のように、実施の形態1のバッファ回路10aは、ドライブ能力の互いに異なるトランジスタを用いることによって出力バッファ信号のデューティ比を変化させている。そのため、いったん製造されると、出力バッファ信号のデューティ比を変化させることは困難になる。そこで、このような問題を解消することができるバッファ回路を次に説明する。なお、以下では、特にことわらない限り、回路に含まれるトランジスタのドライブ能力はすべて互いに等しいものとする。
【0031】
図4は、この発明の実施の形態1によるバッファ回路10bの回路構成を示した回路図である。
【0032】
図4に示した実施の形態1のバッファ回路10bは、インバータ21,29が2段直列接続された構成となっている。インバータ21は、電源ノードと接地ノードとの間に直列接続されたPチャネルMOSトランジスタ22およびNチャネルMOSトランジスタ23と、ドライブ能力制御回路24とを含む。
【0033】
PチャネルMOSトランジスタ22およびNチャネルMOSトランジスタ23の両ゲートは、入力バッファ信号BINを受ける。インバータ29は、出力ノードNbからの入力を受けて、出力バッファ信号BOUTを出力する。
【0034】
ドライブ能力制御回路24は、一方の入力が反転されたORゲート25と、ANDゲート26と、電源ノードと接地ノードとの間に直列接続されたPチャネルMOSトランジスタ27およびNチャネルMOSトランジスタ28とを含む。PチャネルMOSトランジスタ22,27は、電源ノードと出力ノードNbとの間に並列接続される。NチャネルMOSトランジスタ23,28は、出力ノードNbと接地ノードとの間に並列接続される。
【0035】
ORゲート25は、入力バッファ信号BINおよび反転されたドライブ能力制御信号DRVPが入力され、出力がPチャネルMOSトランジスタ27のゲートに接続される。ANDゲート26は、入力バッファ信号BINおよびドライブ能力制御信号DRVNが入力され、出力がNチャネルMOSトランジスタ28のゲートに接続される。
【0036】
図5は、この発明の実施の形態1によるバッファ回路10bの回路動作を説明するための動作波形図である。
【0037】
ドライブ能力制御信号DRVP,DRVNが共にLレベル(時刻t1以前)のとき、ドライブ能力制御回路24内の論理ゲート25,ANDゲート26はそれぞれHレベル,Lレベルを出力する。その結果、PチャネルMOSトランジスタ27およびNチャネルMOSトランジスタ28は、共にオフとなる。
【0038】
これにより、バッファ回路10bは、時刻t1以前において、インバータ21においてPチャネルMOSトランジスタ22,27側とNチャネルMOSトランジスタ23,28側とのドライブ能力が互いに等しくなる。したがって、入力バッファ信号BINは、図5に示すように、時刻t1以前において、そのまま一定時間遅延したのち出力バッファ信号BOUTとして出力される。
【0039】
ドライブ能力制御信号DRVP,DRVNがそれぞれHレベル,Lレベル(時刻t1〜t2)のとき、論理ゲート25の出力は入力バッファ信号BINの変化と連動するのに対し、ANDゲート26の出力は常にLレベルとなる。その結果、入力バッファ信号BINがLレベルのときにはPチャネルMOSトランジスタ22,27が共にオンとなるのに対し、入力バッファ信号BINがHレベルのときにはNチャネルMOSトランジスタ23のみがオンとなりNチャネルMOSトランジスタ28はオフのままである。
【0040】
そのため、バッファ回路10bは、時刻t1〜t2において、インバータ21内のPチャネルMOSトランジスタ22,27側のドライブ能力がNチャネルMOSトランジスタ23,28側のドライブ能力より大きくなる。すなわち、インバータ21における入力バッファ信号BINの遅延量は、HレベルからLレベルに遷移する時よりもLレベルからHレベルに遷移する時の方が大きくなる。したがって、出力バッファ信号BOUTは、図5に示すように、時刻t1〜t2において、Lレベルの期間TL1の方がHレベルの期間TH1より長くなる。
【0041】
ドライブ能力制御信号DRVP,DRVNがそれぞれLレベル,Hレベル(時刻t2以降)のとき、論理ゲート25の出力は常にHレベルとなるのに対し、ANDゲート26の出力は入力バッファ信号BINの変化と連動する。その結果、入力バッファ信号BINがLレベルのときにはPチャネルMOSトランジスタ22のみがオンとなりPチャネルMOSトランジスタ27はオフのままであるのに対し、入力バッファ信号BINがHレベルのときにはNチャネルMOSトランジスタ23,28が共にオンとなる
そのため、バッファ回路10bは、時刻t2以降において、インバータ21内のNチャネルMOSトランジスタ23,28側のドライブ能力がPチャネルMOSトランジスタ22,27側のドライブ能力より大きくなる。すなわち、インバータ21における入力バッファ信号BINの遅延量は、LレベルからHレベルに遷移する時よりもHレベルからLレベルに遷移する時の方が大きくなる。したがって、出力バッファ信号BOUTは、図5に示すように、時刻t2以降において、Hレベルの期間TH2の方がLレベルの期間TL2より長くなる。
【0042】
このように、実施の形態1のバッファ回路10bでは、インバータ21の中にドライブ能力制御回路25を設け、ドライブ能力制御信号DRVP,DRVNを用いてPチャネルMOSトランジスタ側のドライブ能力とNチャネルMOSトランジスタ側のドライブ能力とを制御することにより、出力バッファ信号BOUTのデューティ比を調節することができる。
【0043】
図6は、この発明の実施の形態1によるバッファ回路10cの回路構成を示した回路図である。
【0044】
図6に示したバッファ回路10cは、図4に示したバッファ回路10bのインバータ21がインバータ31に置き換えられた構成となっている。インバータ31は、ドライブ能力制御回路24がドライブ能力制御回路24.1,24.2,…のように複数段に分けて設けられた点においてインバータ21と異なる。このように、ドライブ能力制御回路24を複数段設けることによって、出力バッファ信号BOUTのデューティ比をさらに細かく調節することが可能となる。
【0045】
図2〜6において説明したバッファ回路10a〜10cではトランジスタのドライブ能力の差を利用することによってデューティ比を制御したが、インバータ間の信号遅延を利用することによってもデューティ比を制御することは可能である。そのような実施の形態を次に説明する。
【0046】
図7は、この発明の実施の形態1によるバッファ回路10dの回路構成を示した回路図である。
【0047】
図7に示した実施の形態1のバッファ回路10dは、インバータ41と、タイミング制御回路44と、インバータ49とを含む。
【0048】
インバータ41は、電源ノードと接地ノードとの間に直列接続されたPチャネルMOSトランジスタ42およびNチャネルMOSトランジスタ43を有する。PチャネルMOSトランジスタ42およびNチャネルMOSトランジスタ43のゲートには、入力バッファ信号BINが入力される。
【0049】
タイミング制御回路44は、NANDゲート45と、ANDゲート46と、電源ノードと接地ノードとの間に直列接続されたPチャネルMOSトランジスタ47およびNチャネルMOSトランジスタ48とを有する。NANDゲート45は、タイミング制御信号TMGPおよび入力バッファ信号BINが入力され、出力がPチャネルMOSトランジスタ47のゲートに接続される。ANDゲート46は、タイミング制御信号TMGNおよび入力バッファ信号BINが入力され、出力がNチャネルMOSトランジスタ48のゲートに接続される。
【0050】
インバータ49は、PチャネルMOSトランジスタ42,47およびNチャネルMOSトランジスタ43,48のドレインからの入力を受けて、出力バッファ信号BOUTを出力する。
【0051】
図8は、この発明の実施の形態1によるバッファ回路10dの回路動作を説明するための動作波形図である。
【0052】
タイミング制御信号TMGP,TMGNが共にLレベル(時刻t1以前)のとき、タイミング制御回路44内のNANDゲート45,ANDゲート46はそれぞれHレベル,Lレベルを出力する。その結果、PチャネルMOSトランジスタ47,NチャネルMOSトランジスタ48は共にオフとなる。
【0053】
これにより、バッファ回路10dは、インバータ41とインバータ49とが直接接続されたのと等価になる。したがって、入力バッファ信号BINは、図8に示すように、時刻t1以前において、そのまま一定時間遅延したのち出力バッファ信号BOUTとして出力される。
【0054】
タイミング制御信号TMGP,TMGNがそれぞれHレベル,Lレベル(時刻t1〜t2)のとき、タイミング制御回路44内において、NANDゲート45は入力バッファ信号BINがHレベル,Lレベルの時それぞれLレベル,Hレベルを出力し、ANDゲート46は常にLレベルを出力する。
【0055】
そのため、入力バッファ信号BINがHレベルになると、インバータ41からインバータ49へLレベルの信号が出力され、出力バッファ信号BOUTは最初Hレベルとなるが、その後タイミング制御回路44内のPチャネルMOSトランジスタ47がオンしてインバータ49の入力に電源電位VCC(Hレベル)が与えられるため、やがて出力バッファ信号BOUTはLレベルとなる。
【0056】
したがって、タイミング制御信号TMGP,TMGNがそれぞれHレベル,Lレベル(時刻t1〜t2)のとき、出力バッファ信号BOUTは、図8に示すように、Hレベルの期間TH1よりLレベルの期間TL1の方が長くなる。
【0057】
タイミング制御信号TMGP,TMGNがそれぞれLレベル,Hレベル(時刻t2以降)のとき、タイミング制御回路44内において、NANDゲート45は常にHレベルを出力し、ANDゲート46は入力バッファ信号BINがHレベル,LレベルのときそれぞれHレベル,Lレベルを出力する。
【0058】
そのため、入力バッファ信号BINがHレベルになると、インバータ41からインバータ49へLレベルの信号が出力され、出力バッファ信号BOUTがHレベルになるとともに、タイミング制御回路44内のNチャネルMOSトランジスタ48がオンしてインバータ49の入力に接地電位GND(Lレベル)が与えられる。その後入力バッファ信号BINがLレベルになると、インバータ41からインバータ49へHレベルの信号が出力されるが、NチャネルMOSトランジスタ48はしばらくオンしたままなので、インバータ49の入力には接地電位GND(Lレベル)がしばらく与えられ続け、出力バッファ信号BOUTはしばらくHレベルのままとなる。
【0059】
したがって、タイミング制御信号TMGP,TMGNがそれぞれLレベル,Hレベル(時刻t2以降)のとき、出力バッファ信号BOUTは、図8に示すように、Lレベルの期間TL2よりHレベルの期間TH2の方が長くなる。
【0060】
このように、実施の形態1のバッファ回路10dでは、インバータ41とインバータ49との間にタイミング制御回路44を挿入し、タイミング制御信号TMGP,TMGNを用いてインバータ間の信号遅延を制御することによって、出力バッファ信号BOUTのデューティ比を調節することができる。
【0061】
図9は、この発明の実施の形態1によるバッファ回路10eの回路構成を示した回路図である。
【0062】
図9に示した実施の形態1のバッファ回路10eは、図7に示したバッファ回路10dにおけるタイミング制御回路44をタイミング制御回路44.1,44.2,…のように複数段に分けた構成となっている。このように、タイミング制御回路44を複数段設けることによって、出力バッファ信号BOUTのデューティ比をさらに細かく調節することができる。
【0063】
図10は、この発明の実施の形態1によるバッファ回路10fの回路構成を示した回路図である。
【0064】
図10に示した実施の形態1のバッファ回路10fは、遅延回路51とANDゲート52とを備える。遅延回路51は、遅延制御信号DLYに応じて遅延時間を制御することができる。ANDゲート52は、遅延回路51によって遅延される入力バッファ信号BINおよび遅延回路51によって遅延されない入力バッファ信号BINを受けて、出力バッファ信号BOUTを出力する。
【0065】
図11は、この発明の実施の形態1によるバッファ回路10fの回路動作を説明するための動作波形図である。ここでは、簡単のため、遅延制御信号DLYがHレベルおよびLレベルの2値に変化する場合について説明する。しかしながら、これは一例に過ぎず、遅延制御信号DLYは、一般に、多値あるいは連続的に変化させることが可能である。
【0066】
遅延制御信号DLYがLレベル(時刻t1以前)のとき、遅延回路51は、ある所定の遅延時間DLY1だけ入力信号を遅延させる。入力バッファ信号BINがHレベルからLレベルに遷移するとき、ANDゲート52は、遅延回路51によって遅延されない入力バッファ信号BINを受けて即座に出力がHレベルからLレベルへと遷移する。一方、入力バッファ信号BINがLレベルからHレベルに遷移するとき、ANDゲート52は、遅延回路51によって遅延時間DLY1だけ遅延される入力バッファ信号BINが到達するまでは出力がLレベルからHレベルへと遷移しない。したがって、出力バッファ信号BOUTは、図11に示すように、時刻t1以前において、Hレベルの期間THよりLレベルの期間TL1の方が長くなる。
【0067】
遅延制御信号DLYがHレベル(時刻t1以降)のとき、遅延回路51は、ある所定の遅延時間DLY2だけ入力信号を遅延させる。したがって、出力バッファ信号BOUTは、図11に示すように、時刻t1以降において、Hレベルの期間THよりLレベルの期間TL2の方が長くなる。また、遅延時間DLY2は、遅延時間DLY1より長いと仮定しているため、時刻t1以前におけるLレベルの期間TL1より時刻t1以降におけるLレベルの期間TL2の方が長くなる。
【0068】
このように、実施の形態1のバッファ回路10fでは、ANDゲートの一方の入力の前に、遅延制御信号によって遅延時間の長さを制御できる遅延回路を設けることによって、出力バッファ信号BOUTのデューティ比を遅延制御信号に応じて変化させることができる。
【0069】
図12は、この発明の実施の形態1によるバッファ回路10gの回路構成を示した回路図である。
【0070】
図12に示した実施の形態1のバッファ回路10gは、遅延回路51とORゲート53とを備える。遅延回路51は、遅延制御信号DLYに応じて遅延時間を制御することができる。ORゲート53は、遅延回路51によって遅延される入力バッファ信号BINおよび遅延回路51によって遅延されない入力バッファ信号BINを受けて、出力バッファ信号BOUTを出力する。
【0071】
図13は、この発明の実施の形態1によるバッファ回路10gの回路動作を説明するための動作波形図である。ここでは、簡単のため、遅延制御信号DLYがHレベルおよびLレベルの2値に変化する場合について説明する。しかしながら、これは一例に過ぎず、遅延制御信号DLYは、一般に、多値あるいは連続的に変化させることが可能である。
【0072】
遅延制御信号DLYがLレベル(時刻t1以前)のとき、遅延回路51は、ある所定の遅延時間DLY1だけ入力信号を遅延させる。入力バッファ信号BINがLレベルからHレベルに遷移するとき、ORゲート53は、遅延回路51によって遅延されない入力バッファ信号BINを受けて即座に出力がLレベルからHレベルへと遷移する。一方、入力バッファ信号BINがHレベルからLレベルに遷移するとき、ORゲート53は、遅延回路51によって遅延時間DLY1だけ遅延される入力バッファ信号BINが到達するまでは出力がHレベルからLレベルへと遷移しない。したがって、出力バッファ信号BOUTは、図13に示すように、時刻t1以前において、Lレベルの期間TLよりHレベルの期間TH1の方が長くなる。
【0073】
遅延制御信号DLYがHレベル(時刻t1以降)のとき、遅延回路51は、ある所定の遅延時間DLY2だけ入力信号を遅延させる。したがって、出力バッファ信号BOUTは、図13に示すように、時刻t1以降において、Lレベルの期間TLよりHレベルの期間TH2の方が長くなる。また、遅延時間DLY2は、遅延時間DLY1より長いと仮定しているため、時刻t1以前におけるHレベルの期間TH1より時刻t1以降におけるHレベルの期間TH2の方が長くなる。
【0074】
このように、実施の形態1のバッファ回路10gでは、ORゲートの一方の入力の前に、遅延制御信号によって遅延時間の長さを制御できる遅延回路を設けることによって、出力バッファ信号BOUTのデューティ比を遅延制御信号に応じて変化させることができる。
【0075】
以下、これまで説明してきた実施の形態1によるバッファ回路10a〜10gを、図1のクロック生成回路1Aにおけるバッファ回路10−0A,10−1A,10−2A,10−3Aにどのように適応するかについて、具体例を元に説明する。
【0076】
たとえばクロック信号CLK1〜CLK3がそれぞれ入力される周辺回路1000〜3000の全てにおいてHレベルの期間での演算量が多い場合、実施の形態1のバッファ回路10a〜10gをバッファ10−0Aに適応すれば、クロック信号CLK1〜CLK3の全てにおいてHレベルの期間が長くすることができ、周辺回路1000〜3000の高速化および低電力化が実現できる。
【0077】
また、たとえばクロック信号CLK1が入力される周辺回路1000においてのみHレベルの期間での演算量が多い場合、実施の形態1のバッファ回路10a〜10gをバッファ10−1Aに適応すれば、Hレベルの期間での演算量が多い周辺回路1000のみでクロック信号CLK1のHレベルの期間が長くすることができ、結果として周辺回路1000〜3000全体を効率的に高速化および低電力化できる。
【0078】
この場合、クロック信号CLK1とCLK2,CLK3との立下りエッジがずれるので、立下りエッジで動作する周辺回路1000と周辺回路2000,3000との動作タイミングもずれる。これにより、周辺回路1000〜3000における電流ピークのタイミングがずれるため、たとえばクロック生成回路1AをLSIに組み込んだ場合、過電流によるLSIの誤動作を引き起こす可能性も低くなり、EMIなどによるノイズも低減できる。
【0079】
このように、クロック信号CLK1,CLK2,CLK3のデューティ比の設定は、周辺回路1000〜3000の全てに対して行なう場合も考えられるし、周辺回路1000〜3000の中のある特定の回路に対してのみ行なう場合も考えられる。このように、システムに応じてクロック信号のデューティ比を柔軟に設定することにより、各モジュールごとに最高の性能を発揮できるシステムを構築することが可能となる。
【0080】
また、この発明の実施の形態1によるクロック生成回路1Aの一例として、図1を参照して、バッファ回路10−0A,10−1A,10−2A,10−3Aの少なくとも一つにおいてのみ、電源電位VCCまたは接地電位GNDを変化させる構成も考えられる。この場合、当該バッファ回路の論理しきい値がシフトするため、出力バッファ信号のデューティ比を変化させることができる。なお、この電源電位VCCまたは接地電位GNDの変化量を制御信号によって制御することにより、出力バッファ信号のデューティ比を制御信号によって調節することも可能である。
【0081】
また、この発明の実施の形態1によるクロック生成回路1Aの他の一例として、図1を参照して、バッファ回路10−0A,10−1A,10−2A,10−3Aの少なくとも一つにおいてのみ、当該バッファ回路に含まれるトランジスタの基板電位を変化させる構成も考えられる。この場合、当該バッファ回路の論理しきい値がシフトするため、出力バッファ信号のデューティ比を変化させることができる。なお、このトランジスタの基板電位の変化量を制御信号によって制御することにより、出力バッファ信号のデューティ比を制御信号によって調節することも可能である。
【0082】
以上のように、実施の形態1によれば、クロック生成回路1Aの構成要素であるバッファ回路10−0A,10−1A,10−2A,10−3Aから各々出力される出力バッファ信号の少なくとも一つのデューティ比を変化させることによって、クロック生成回路1Aを含むシステムの高速化および低電力化が実現できる。
【0083】
[実施の形態2]
図14は、この発明の実施の形態2によるクロック生成回路1Bおよびその周辺回路を示したブロック図である。
【0084】
図14に示した実施の形態2のクロック生成回路1Bは、基準クロック信号CLK0を受けて、周辺回路1000,2000,3000にクロック信号CLK1,CLK2,CLK3をそれぞれ出力する。ここで、周辺回路1000,2000,3000としては、たとえば、ランダムロジック回路,演算器回路,レジスタ回路,メモリ回路,アナログ回路のような回路が想定される。
【0085】
クロック生成回路1Bは、PLL回路2Bと、バッファ回路10−0,10−1,10−2,10−3とを含む。PLL回路2Bは、基準クロック信号CLK0を受ける。バッファ回路10−0は、PLL回路2Bからの出力を受ける。バッファ回路10−1,10−2,10−3は、バッファ回路10−0からの出力を受け、クロック信号CLK1,CLK2,CLK3をそれぞれ出力する。
【0086】
実施の形態2のクロック生成回路1Bは、PLL回路2Bから出力される出力PLL信号のデューティ比を変化させることによって、クロック生成回路1Bから出力されるクロック信号のデューティ比を変化させる構成となっている。
【0087】
以下、PLL回路2Bを構成する実施の形態2のPLL回路の各具体的な構成例について説明する。
【0088】
図15は、この発明の実施の形態2によるPLL回路2aの回路構成を示した回路図である。
【0089】
図15に示した実施の形態2のPLL回路2aは、デジタルPLL回路であって、コンパレータ61と、制御回路62と、カウンタ63と、ディレイライン64と、ANDゲート65とを含む。なお、ディレイライン64からの出力信号は、ANDゲート65の一方の入力端子に反転入力される。
【0090】
ディレイライン64およびANDゲート65は、リングオシレータ66を構成する。リングオシレータ66が発振することにより、ANDゲート65から出力PLL信号POUTが出力される。出力PLL信号POUTは、ディレイライン64にフィードバックされるとともに、コンパレータ61および制御回路62に入力される。
【0091】
コンパレータ61は、出力PLL信号POUTと基準クロック信号CLK0との位相を比較し、その位相比較結果をカウンタ63に出力する。
【0092】
制御回路62は、カウント値制御信号PCNTが活性化されたとき、カウンタ63から出力されるデジタルカウント値CNTを増減させる。また、制御回路62は、リングオシレータ66の発振を制御するイネーブル信号ENを、ANDゲート65の他方の入力端子に出力する。
【0093】
カウンタ63は、コンパレータ61から出力された位相比較結果に基づいて、デジタルカウント値CNTを決定する。このデジタルカウント値CNTは、カウント値制御信号PCNTが活性化されたときに制御回路62から出力されるデジタルカウント値CNTの増減指示に応じて増減する。
【0094】
ディレイライン64は、カウンタ63から出力されたデジタルカウント値CNTを受けて遅延時間を調整する。ディレイライン64の遅延時間が変化することで、ANDゲート65から出力される出力PLL信号POUTのデューティ比が変化する。出力PLL信号POUTは、基準クロック信号CKL0と同周期またはその逓倍周期となる。
【0095】
図16は、この発明の実施の形態2によるPLL回路2aの回路動作を説明するための動作波形図である。
【0096】
カウント値制御信号PCNTがLレベル(時刻t1以前)のとき、制御回路62からデジタルカウント値CNTの増減指示は出力されないため、リングオシレータ66の発振状態が安定し、デジタルカウント値CNTは一定値nを取る。このとき、出力PLL信号POUTのデューティ比は50%となる。
【0097】
カウント値制御信号PCNTがHレベル(時刻t1以降)のとき、制御回路62からデジタルカウント値CNTの増減指示が出力され、デジタルカウント値CNTは、出力PLL信号POUTの立上がり時にn+1,立下り時にn+1と切り替わる。その結果、ディレイライン64の遅延時間は、出力PLL信号POUTがHレベルのときは長く,Lレベルのときは短くなる。
【0098】
したがって、カウント値制御信号PCNTがHレベルのとき、図16に示すように、出力PLL信号POUTは、Hレベルの期間の方がLレベルの期間より長くなり、デューティ比が50%から変化する。このように、実施の形態2のPLL回路2aでは、カウント値制御信号PCNTの活性/非活性を操作することによって、出力PLL信号POUTのデューティ比を調整することができる。
【0099】
なお、実施の形態2のPLL回路2aでは、出力PLL信号POUTの立上がり/立下りに応じてデジタルカウント値CNTをn+1/n−1と切替えたが、これは一例にすぎず、一般に、n+p/n−p(pは自然数)と切替えることが可能である。
【0100】
また、上記の説明では出力PLL信号POUTのデューティ比をカウント値制御信号PCNTの活性/非活性によって制御する場合について説明したが、出力PLL信号POUTのデューティ比は必ずしも制御可能である必要はない。たとえば、カウント値制御信号PCNTをHレベルに固定することにより、出力PLL信号POUTのHレベルの期間とLレベルの期間との比率に常に一定以上の差を持たせることができる。このとき、出力PLL信号POUTのHレベルの期間とLレベルの期間との比率は、カウント値制御信号PCNTの活性/非活性が伴わない分だけ安定的となる。
【0101】
図17は、この発明の実施の形態2によるPLL回路2bの回路構成を示した回路図である。
【0102】
図17に示した実施の形態2のPLL回路2bは、デジタルPLL回路であって、コンパレータ71と、制御回路72と、カウンタ73と、ディレイライン74,75と、NANDゲート76と、セレクタ77と、ANDゲート78とを含む。なお、セレクタ77の出力信号は、ANDゲート78の一方の入力端子に反転入力される。
【0103】
ディレイライン74,75、セレクタ77、およびANDゲート78は、リングオシレータ79を構成する。リングオシレータ79が発振することにより、ANDゲート78から出力PLL信号POUTが出力される。出力PLL信号POUTは、ディレイライン74にフィードバックされるとともに、NANDゲート76の一方の入力端子およびコンパレータ71に対して出力される。
【0104】
コンパレータ71は、出力PLL信号POUTと基準クロック信号CLK0との位相を比較し、その位相比較結果をカウンタ73に出力する。制御回路72は、リングオシレータ79の発振を制御するイネーブル信号ENを、ANDゲート78の他方の入力端子に出力する。カウンタ73は、コンパレータ71から出力された位相比較結果に基づいて、デジタルカウント値CNTを決定する。
【0105】
ディレイライン74,75は、カウンタ73から出力されたデジタルカウント値CNTを受けて遅延時間を決定する。ディレイライン74から出力される出力信号は、ディレイライン75に入力されるとともに、セレクタ77の入力端子Bに入力される。ディレイライン75から出力される出力信号は、セレクタ77の入力端子Aに入力される。
【0106】
NANDゲート76は、セレクタ制御信号PSELおよび出力PLL信号POUTを受けて、セレクタ77に選択信号SELを出力する。セレクタ77は、選択信号SELがLレベルのときには入力端子Aから、選択信号SELがHレベルのときには入力端子Bから各々入力される信号を受けて、ANDゲート78の一方の入力端子に反転出力する。
【0107】
図18は、この発明の実施の形態2によるPLL回路2bの回路動作を説明するための動作波形図である。
【0108】
セレクタ制御信号PSELがLレベル(時刻t1以前)のとき、選択信号SELは、出力PLL信号POUTの状態にかかわらず常にHレベルとなる。そのため、セレクタ77は、ディレイライン75を経由しない入力端子Bを常に選択する。したがって、このときリングオシレータ79は安定し、出力PLL信号POUTのデューティ比は50%となる。
【0109】
セレクタ制御信号PSELがHレベル(時刻t1以降)のとき、選択信号SELは、出力PLL信号POUTの反転信号となる。時刻t1において出力PLL信号POUTはHレベルであるため、選択信号SELはLレベルに切り替わり、セレクタ77は入力端子Aを選択する。その結果、リングオシレータ79は、ディレイライン75を経由する分だけ遅延時間が長くなる。
【0110】
その後、出力PLL信号がLレベルになると、選択信号SELはHレベルに切り替わり、セレクタ77は入力端子Bを選択する。その結果、リングオシレータ79は、ディレイライン75を経由しない分だけ遅延時間が短くなる。したがって、セレクタ制御信号PSELがHレベルのとき、図18に示すように、出力PLL信号POUTは、Hレベルの期間の方がLレベルの期間より長くなり、デューティ比が50%から変化する。
【0111】
このように、実施の形態2のPLL回路2bでは、セレクタ制御信号PSELを操作することによって、出力PLL信号POUTのデューティ比を調整することができる。
【0112】
上記の説明では出力PLL信号POUTのデューティ比をセレクタ制御信号PSELの活性/非活性によって制御する場合について説明したが、出力PLL信号POUTのデューティ比は必ずしも制御可能である必要はない。たとえば、セレクタ制御信号PSELをHレベルに固定することにより、出力PLL信号POUTのHレベルの期間とLレベルの期間との比率に常に一定以上の差を持たせることができる。このとき、出力PLL信号POUTのHレベルの期間とLレベルの期間との比率は、セレクタ制御信号PSELの活性/非活性が伴わない分だけ安定的となる。
【0113】
これまで説明してきた実施の形態2のPLL回路2a,2bのようなデジタルPLL回路の場合、カウンタから出力されるデジタルカウント値は、基本的には、その時の出力PLL信号の周期と当該デジタルPLL回路に含まれるトランジスタのゲート遅延との比、すなわち「出力PLL信号の周期/ゲート遅延」によって決まる。ゲート遅延はトランジスタの特性に影響され、トランジスタの特性は、トランジスタの製造プロセスのばらつきの他、温度,電圧などによっても影響を受ける。
【0114】
いま、デジタルPLL回路からの出力PLL信号で動作する回路が当該デジタルPLL回路と同一の基板上に設けられている場合について考える。「出力PLL信号の周期/ゲート遅延」が小さい場合、デジタルPLL回路からの出力PLL信号で動作する回路は、出力PLL信号に対して動作マージンの少ない状態なので、出力PLL信号のデューティ比を必要に応じて変えると効果がある。「出力PLL信号の周期/ゲート遅延」が大きい場合、デジタルPLL回路からの出力PLL信号で動作する回路は、出力PLL信号に対して動作マージンが十分にある状態なので、出力PLL信号のデューティ比を変えても効果はほとんどなく、出力PLL信号のデューティ比は50%でよい。
【0115】
また、デジタルPLL回路から出力される出力PLL信号の周波数がソフトウェアによって変えられる場合について考える。出力PLL信号の周波数が高い場合、デジタルPLL回路からの出力PLL信号で動作する回路は、出力PLL信号に対して動作マージンの少ない状態なので、出力PLL信号のデューティ比を必要に応じて変えると効果がある。出力PLL信号の周波数が低い場合、デジタルPLL回路からの出力PLL信号で動作する回路は、出力PLL信号に対して動作マージンが十分にある状態なので、出力PLL信号のデューティ比を変えても効果はほとんどなく、出力PLL信号のデューティ比は50%でよい。
【0116】
以上のように、実施の形態2によれば、クロック生成回路1Bの構成要素であるPLL回路2Bから出力される出力PLL信号POUTのデューティ比を変化させることによって、クロック生成回路1Bを含むシステムの高速化および低電力化が実現できる。
【0117】
[実施の形態3]
図19は、この発明の実施の形態3によるクロック生成回路1Cの回路構成を示した回路図である。
【0118】
図19に示した実施の形態3のクロック生成回路1Cは、PLL回路2と、波形生成回路81aと、ANDゲート82とを含む。
【0119】
PLL回路2は、基準クロック信号CLK0の入力を受けて、基準クロック信号CLK0の3逓倍となる出力PLL信号POUTを出力する。なお、PLL回路2は、アナログPLL回路でもデジタルPLL回路でもその他どのようなPLL回路であっても構わない。また、3逓倍は一例であって、基本的には何逓倍であってもよい。波形生成回路81aは、デューティ比制御信号DTYaを出力する。ANDゲート82は、出力PLL信号POUTおよびデューティ比制御信号DTYaの入力を受けて、クロック信号CLKaを出力する。
【0120】
デューティ比制御信号DTYaは、出力PLL信号POUTおよびデューティ比制御信号DTYaがともにHレベルの期間とそれ以外の期間との比率が異なるように波形生成回路81aによって波形生成された周期信号である。
【0121】
図20は、この発明の実施の形態3によるクロック生成回路1Cの回路動作を説明するための動作波形図である。
【0122】
時刻t1において、出力PLL信号POUTおよびデューティ比制御信号DTYaがともに立上がったのを受けて、クロック信号CLKaが立上がる。時刻t2において、出力PLL信号POUTおよびデューティ比制御信号DTYaが立下がったのを受けて、クロック信号CLKaが立下がる。以後、時刻t3に出力PLL信号POUTおよびデューティ比制御信号DTYaが再びともに立上がるまで、クロック信号CLKaは立下がったままとなる。
【0123】
したがって、図20に示すように、クロック信号CLKaは、Hレベルの期間よりLレベルの期間の方が長くなり、デューティ比が50%から変化する。また、デューティ比制御信号DTYaが基準クロック信号CLK0と同一の周波数の時、クロック信号CLKaは基準クロック信号CLK0と同一の周波数となる。さらに、基準クロック信号CLK0と出力PLL信号POUTとの逓倍比を3逓倍から変化させることによって、クロック信号CLKaのデューティ比を調整することができる。
【0124】
図21は、この発明の実施の形態3によるクロック生成回路1Dの回路構成を示した回路図である。
【0125】
図21に示した実施の形態3のクロック生成回路1Dは、PLL回路2と、波形生成回路81bと、ORゲート83とを含む。
【0126】
PLL回路2は、基準クロック信号CLK0の入力を受けて、基準クロック信号CLK0の3逓倍となる出力PLL信号POUTを出力する。なお、PLL回路2は、アナログPLL回路でもデジタルPLL回路でもその他どのようなPLL回路であっても構わない。また、3逓倍は一例であって、基本的には何逓倍であってもよい。波形生成回路81bは、デューティ比制御信号DTYbを出力する。ORゲート83は、出力PLL信号POUTおよびデューティ比制御信号DTYbの入力を受けて、クロック信号CLKbを出力する。
【0127】
デューティ比制御信号DTYbは、出力PLL信号POUTおよびデューティ比制御信号DTYbがともにLレベルの期間とそれ以外の期間との比率が異なるように波形生成回路81bによって波形生成された周期信号である。
【0128】
図22は、この発明の実施の形態3によるクロック生成回路1Dの回路動作を説明するための動作波形図である。
【0129】
時刻t1において、出力PLL信号POUTおよびデューティ比制御信号DTYbがともに立下がったのを受けて、クロック信号CLKbが立下がる。時刻t2において、出力PLL信号POUTが立上がったのを受けて、クロック信号CLKbが立上がる。以後、時刻t3に出力PLL信号POUTおよびデューティ比制御信号DTYbが再びともに立下がるまで、クロック信号CLKbは立上がったままとなる。
【0130】
したがって、図22に示すように、クロック信号CLKBは、Hレベルの期間の方がLレベルの期間より長くなり、デューティ比が50%から変化する。また、デューティ比制御信号DTYbが基準クロック信号CLK0と同一の周波数の時、クロック信号CLKbは基準クロック信号CLK0と同一の周波数となる。さらに、基準クロック信号CLK0と出力PLL信号POUTとの逓倍比を3逓倍から変化させることによって、クロック信号CLKbのデューティ比を調整することができる。
【0131】
以上のように、実施の形態3によれば、クロック生成回路から出力されるクロック信号のデューティ比を波形生成回路を利用して変化させることにより、クロック生成回路を含むシステムの高速化および低電力化が実現できる。
【0132】
[実施の形態4]
次に、この発明の実施の形態1〜3によるクロック生成回路1A〜1Dのいずれかを含むシステムの各具体的な構成例について説明する。
【0133】
図23は、この発明の実施の形態4によるシステム100の構成を示したブロック図である。
【0134】
図23に示した実施の形態4のシステム100は、クロック生成回路1と、クロック制御レジスタ101と、周辺回路102と、CPU(Central Processing
Unit)103と、CPUバス104とを備える。
【0135】
クロック生成回路1は、この発明の実施の形態1〜3によるクロック生成回路1A〜1Dのいずれかであり、基準クロック信号CLK0を受けて、周辺回路102およびCPU103にクロック信号CLKを出力する。クロック生成回路1は、CPU103からの指令によって制御される。クロック信号CLKのデューティ比率の制御またはデューティ比制御のオンオフは、クロック制御レジスタ101から出力される単一または複数の制御信号によって制御することができる。
【0136】
ここで制御信号とは、たとえば、実施の形態1のバッファ回路10bにおけるドライブ能力制御信号DRVP,DRVN、実施の形態1のバッファ回路10dにおけるタイミング制御信号TMGP,TMGN、実施の形態1のバッファ回路10f,10gにおける遅延制御信号DLY、実施の形態2のPLL回路2Aにおけるカウント値制御信号PCNT、実施の形態2のPLL回路2Aにおけるセレクタ制御信号PSEL、実施の形態3のクロック生成回路1C,1Dにおけるデューティ比制御信号DTYa,DTYbなどを指す。
【0137】
クロック制御レジスタ101は、CPU103からCPUバス104を通してレジスタ値の読出し/書込みを行なうことができる。したがって、クロック制御レジスタ101に保持されたレジスタ値は、CPU103のアドレス空間上にマッピングされる。
【0138】
周辺回路102は、CPU103からCPUバス104を通して制御され、クロック生成回路1およびクロック制御レジスタ101との間で信号をやり取りすることができる。周辺回路102としては、システム100の動作を支援する回路やクロック信号CLKを受けて動作する回路のほかに、たとえば、電流計測回路,温度計測回路のような回路が考えられる。
【0139】
周辺回路102が電流計測回路であった場合には、クロック信号CLKのデューティ比を徐々に変化させてクロック信号CLKにより動作する回路の消費電流を計測し、最も消費電流の少なかったデューティ比をクロック信号CLKのデューティ比とすることにより、クロック信号CLKのデューティ比を最適に設定することができる。
【0140】
周辺回路102が温度計測回路であった場合には、クロック信号CLKのデューティ比を徐々に変化させてクロック信号CLKにより動作する回路の温度を計測し、最も温度の低かったデューティ比をクロック信号CLKのデューティ比とすることにより、クロック信号CLKのデューティ比を最適に設定することができる。
【0141】
CPU103は、直接あるいはCPUバス104を介してクロック生成回路1,クロック制御レジスタ101,および周辺回路102を制御することにより、システム100全体の制御を行なう。このように、実施の形態4のシステム100は、クロック信号CLKのデューティ比をソフトウェアによって制御することができる。
【0142】
図24は、この発明の実施の形態4によるシステム200の構成を示したブロック図である。
【0143】
図24に示した実施の形態4のシステム200は、クロック制御レジスタ101がクロック制御回路201に置き換えられた点においてのみシステム100と異なる。したがって、システム100と重複する部分の説明はここでは繰り返さない。
【0144】
クロック制御回路201は、クロック生成回路1を制御する専用の制御回路であって、CPU103からCPUバス104を通して制御される。クロック信号CLKのデューティ比率の制御またはデューティ比制御のオンオフは、クロック制御回路201から出力される単一または複数の制御信号によって行なわれる。
【0145】
ここで制御信号とは、システム100の場合と同様に、たとえば、ドライブ能力制御信号DRVP,DRVN、タイミング制御信号TMGP,TMGN、遅延制御信号DLY、カウント値制御信号PCNT、セレクタ制御信号PSEL、デューティ比制御信号DTYa,DTYbなどを指す。このように、実施の形態4のシステム200は、クロック信号CLKのデューティ比をソフトウェアによって制御することができる。
【0146】
なお、実施の形態4のシステム100,200では、CPU103は、CPU103によって間接的に制御されるクロック生成回路1からのクロック信号CLKによって動作する。しかしながら、このようなシステム構成は一例であり、CPU103は、別のクロック生成回路からのクロック信号によって動作するCPUであってもよい。
【0147】
図25は、この発明の実施の形態4によるシステム300の構成を示したブロック図である。
【0148】
図25に示した実施の形態4のシステム300は、クロック生成回路1と、外部端子301とを備える。
【0149】
クロック生成回路1は、この発明の実施の形態1〜3によるクロック生成回路1A〜1Dのいずれかであり、基準クロック信号CLK0を受けて、クロック信号CLKを出力する。システム300は、外部端子301から直接入力される単一または複数の制御信号、または外部端子301からの入力を元に演算して生成される単一または複数の制御信号によって、クロック信号CLKのデューティ比率の制御またはデューティ比制御のオンオフを制御することができる。
【0150】
ここで制御信号とは、システム100の場合と同様に、たとえば、ドライブ能力制御信号DRVP,DRVN、タイミング制御信号TMGP,TMGN、遅延制御信号DLY、カウント値制御信号PCNT、セレクタ制御信号PSEL、デューティ比制御信号DTYa,DTYbなどを指す。
【0151】
また、外部の電流計を外部端子301に接続することで、クロック信号CLKのデューティ比を徐々に変化させてクロック信号CLKにより動作する回路の消費電流を計測し、最も消費電流の少なかったデューティ比をクロック信号CLKのデューティ比とすることで、クロック信号CLKのデューティ比を最適に設定することができる。
【0152】
あるいは、外部の温度計を外部端子301に接続することで、クロック信号CLKのデューティ比を徐々に変化させてクロック信号CLKにより動作する回路の温度を計測し、最も温度の低かったデューティ比をクロック信号CLKのデューティ比とすることで、クロック信号CLKのデューティ比を最適に設定することができる。
【0153】
このように、クロック生成回路1を外部端子301からの入力によって制御することにより、実施の形態4のシステム300では、たとえば使用するシステムに応じてクロック信号CLKのデューティ比を決めることができ、また外部の別のシステムまたは制御回路からクロック信号CLKのデューティ比を制御することが可能となる。
【0154】
図26は、この発明の実施の形態4によるシステム400の構成を示したブロック図である。
【0155】
図26に示した実施の形態4のシステム400は、クロック生成回路1と、ヒューズ回路401とを備える。
【0156】
クロック生成回路1は、この発明の実施の形態1〜3によるクロック生成回路1A〜1Dのいずれかであり、基準クロック信号CLK0を受けて、クロック信号CLKを出力する。システム300は、ヒューズ回路401からの単一または複数の制御信号によって、クロック信号CLKのデューティ比率の制御またはデューティ比制御のオンオフを制御することができる。ヒューズ回路401は、たとえばレーザートリミングのような技術を用いて制御信号を設定する。
【0157】
ここで制御信号とは、システム100の場合と同様に、たとえば、ドライブ能力制御信号DRVP,DRVN、タイミング制御信号TMGP,TMGN、遅延制御信号DLY、カウント値制御信号PCNT、セレクタ制御信号PSEL、デューティ比制御信号DTYa,DTYbなどを指す。
【0158】
このように、クロック生成回路1をヒューズ回路401によって制御することにより、システム400をたとえばLSIに組み込んだ場合、製造テストでそのLSIの特性を評価し、その結果に基づいてクロック信号CLKの最適なデューティ比を決定することが可能となる。
【0159】
図27は、この発明の実施の形態4によるシステム500の構成を示したブロック図である。
【0160】
図27に示した実施の形態4のシステム500は、クロック生成回路1と、ROM(Read Only Memory)回路501とを備える。
【0161】
クロック生成回路1は、この発明の実施の形態1〜3によるクロック生成回路1A〜1Dのいずれかであり、基準クロック信号CLK0を受けて、クロック信号CLKを出力する。システム500は、ROM回路501からの単一または複数の制御信号によって、クロック信号CLKのデューティ比率の制御またはデューティ比制御のオンオフを制御することができる。
【0162】
ここで制御信号とは、システム100の場合と同様に、たとえば、ドライブ能力制御信号DRVP,DRVN、タイミング制御信号TMGP,TMGN、遅延制御信号DLY、カウント値制御信号PCNT、セレクタ制御信号PSEL、デューティ比制御信号DTYa,DTYbなどを指す。
【0163】
ROM回路401は、たとえば、マスクROMであっても、PROM(Programmable ROM)であっても、EPROM(Electrically Programmable ROM)であっても、フラッシュメモリに代表されるようなEEPROM(Electrically Erasable and Programmable ROM)であってもよい。このように、クロック生成回路1をROM回路501によって制御することにより、使用するシステムに応じてクロック信号CLKの最適なデューティ比を決定することが可能となる。
【0164】
図28は、この発明の実施の形態4によるシステム600の構成を示したブロック図である。
【0165】
図28に示した実施の形態4のシステム600は、クロック生成回路1と、タイマー回路601とを備える。
【0166】
クロック生成回路1は、この発明の実施の形態1〜3によるクロック生成回路1A〜1Dのいずれかであり、基準クロック信号CLK0を受けて、クロック信号CLKを出力する。システム600は、タイマー回路601からの単一または複数の制御信号によって、クロック信号CLKのデューティ比率の制御またはデューティ比制御のオンオフを制御することができる。
【0167】
ここで制御信号とは、システム100の場合と同様に、たとえば、ドライブ能力制御信号DRVP,DRVN、タイミング制御信号TMGP,TMGN、遅延制御信号DLY、カウント値制御信号PCNT、セレクタ制御信号PSEL、デューティ比制御信号DTYa,DTYbなどを指す。
【0168】
タイマー回路601は、クロック生成回路1専用であってもよいし、システム600がシステムLSIに組み込まれる場合には、その周辺回路内にあるタイマーを兼用してもよいし、そのシステムLSIのCPUでサイクル数を計測するのでもよい。
【0169】
このように、クロック生成回路1をタイマー回路601によって制御することにより、一定時間または一定サイクルおきにクロック信号CLKのデューティ比を変化させることが可能となり、クロック信号CLKのデューティ比を制御することができる。
【0170】
また、この発明の実施の形態4によるシステムの一例として、図23〜28に示したシステム100〜600を組み合わせて使用する構成も考えられる。図23を参照して、周辺回路102が、システム300の外部端子301と、システム400のヒューズ回路401と、システム500のROM回路501と、システム600のタイマー回路601と、クロック信号CLKを受けて動作する回路とを備えた複合回路であった場合について考える。
【0171】
この場合、クロック制御レジスタ101,外部端子301,ヒューズ回路401,ROM回路501,およびタイマー回路601の各々に対してクロック信号CLKのデューティ比を個別に設定することが可能となる。また、クロック信号CLKを受けて動作する回路の動作中に、クロック制御レジスタ101,外部端子301,ヒューズ回路401,ROM回路501,およびタイマー回路601のクロック信号CLKのデューティ比をCPU103から各々微調整するといったことが可能になる。なお、クロック制御レジスタ101は、システム200のクロック制御回路201に置き換えられてもよい。
【0172】
また、この発明の実施の形態4によるシステムの他の一例として、LSIに含まれる各モジュールに応じて図23〜28に示したシステム100〜600を使い分ける構成も考えられる。図23を参照して、周辺回路102が、システム300の外部端子301と、システム400のヒューズ回路401と、システム500のROM回路501と、システム600のタイマー回路601と、クロック信号CLKを受けて動作する複数のモジュールに分かれた回路とを備えた複合回路であった場合について考える。
【0173】
この場合、クロック信号CLKを受けて動作する回路の各モジュールに応じて、クロック制御レジスタ101,外部端子301,ヒューズ回路401,ROM回路501,およびタイマー回路601を適宜選択することにより、クロック信号CLKの各モジュールにおけるデューティ比を各々最適に設定することができる。その結果、全体として、より最適なシステムを実現することが可能となる。なお、クロック制御レジスタ101は、システム200のクロック制御回路201に置き換えられてもよい。
【0174】
図23を参照して、周辺回路102が、クロック信号CLKを受けて動作する複数のモジュールに分かれた回路を含む場合、クロック信号CLKの最適なデューティ比は、複数のモジュール全体で測定・変更することもできるし、モジュール単位で測定・変更することもできる。
【0175】
モジュール全体でクロック信号CLKの最適なデューティ比を測定・変更した場合、測定回路,デューティ比変更回路のような回路が単一で済むため回路構造が簡単になる。モジュール単位でクロック信号CLKの最適なデューティ比を測定・変更した場合、測定回路,デューティ比変更回路のような回路が各々必要になるため回路構造が複雑になるが、クロック信号CLKの最適なデューティ比をより柔軟に測定・変更することができる。
【0176】
次に、図23を参照して、周辺回路102が、クロック信号CLKを受けて動作する複数のモジュールに分かれた回路を含み、さらに、クロック生成回路1から出力されるクロック信号CLKをシステム100の内部だけでなく外部にも供給する場合について考える。
【0177】
この場合、たとえば、システム100の外部に供給するクロック信号CLKのデューティ比は50%で、システム100内部の各モジュールに供給するクロック信号CLKのデューティ比だけ個々に設定することが可能である。このようなデューティ比設定より、クロック信号CLKのデューティ比の違いによってシステム100内部のある特定のモジュールが誤動作する危険性を回避することができる。また、クロック信号CLKのデューティ比の違いによってシステム100内部のある特定のモジュールの性能を低下させてしまう危険性を回避することも可能である。
【0178】
また、上記のデューティ比設定により、システム100とシステム上の別のLSIとのクロック信号CLKのデューティ比が適度にずれ、その結果、両者の動作タイミングがずれる。これにより、両者の電流ピークのタイミングがずれるため、過電流によってシステム100の誤動作を引き起こす可能性も低くなり、EMIなどによるノイズも低減できる。
【0179】
以上のように、実施の形態4によれば、この発明の実施の形態1〜3によるクロック生成回路1A〜1Dを含むシステムを構築することによって、システムを高性能化することができる。
【0180】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0181】
【発明の効果】
以上のように、この発明によれば、クロック信号を受ける回路の規模や特性に応じて、クロック信号のデューティ比を柔軟に設定または制御できる。
【図面の簡単な説明】
【図1】この発明の実施の形態1によるクロック生成回路1Aおよびその周辺回路を示したブロック図である。
【図2】この発明の実施の形態1によるバッファ回路10aの回路構成を示した回路図である。
【図3】この発明の実施の形態1によるバッファ回路10aの回路動作を説明するための動作波形図である。
【図4】この発明の実施の形態1によるバッファ回路10bの回路構成を示した回路図である。
【図5】この発明の実施の形態1によるバッファ回路10bの回路動作を説明するための動作波形図である。
【図6】この発明の実施の形態1によるバッファ回路10cの回路構成を示した回路図である。
【図7】この発明の実施の形態1によるバッファ回路10dの回路構成を示した回路図である。
【図8】この発明の実施の形態1によるバッファ回路10dの回路動作を説明するための動作波形図である。
【図9】この発明の実施の形態1によるバッファ回路10eの回路構成を示した回路図である。
【図10】この発明の実施の形態1によるバッファ回路10fの回路構成を示した回路図である。
【図11】この発明の実施の形態1によるバッファ回路10fの回路動作を説明するための動作波形図である。
【図12】この発明の実施の形態1によるバッファ回路10gの回路構成を示した回路図である。
【図13】この発明の実施の形態1によるバッファ回路10gの回路動作を説明するための動作波形図である。
【図14】この発明の実施の形態1によるクロック生成回路1Bおよびその周辺回路を示したブロック図である。
【図15】この発明の実施の形態2によるPLL回路2aの回路構成を示した回路図である。
【図16】この発明の実施の形態2によるPLL回路2aの回路動作を説明するための動作波形図である。
【図17】この発明の実施の形態2によるPLL回路2bの回路構成を示した回路図である。
【図18】この発明の実施の形態2によるPLL回路2bの回路動作を説明するための動作波形図である。
【図19】この発明の実施の形態3によるクロック生成回路1Cの回路構成を示した回路図である。
【図20】この発明の実施の形態3によるクロック生成回路1Cの回路動作を説明するための動作波形図である。
【図21】この発明の実施の形態3によるクロック生成回路1Dの回路構成を示した回路図である。
【図22】この発明の実施の形態3によるクロック生成回路1Dの回路動作を説明するための動作波形図である。
【図23】この発明の実施の形態4によるシステム100の構成を示したブロック図である。
【図24】この発明の実施の形態4によるシステム200の構成を示したブロック図である。
【図25】この発明の実施の形態4によるシステム300の構成を示したブロック図である。
【図26】この発明の実施の形態4によるシステム400の構成を示したブロック図である。
【図27】この発明の実施の形態4によるシステム500の構成を示したブロック図である。
【図28】この発明の実施の形態4によるシステム600の構成を示したブロック図である。
【符号の説明】
1,1A,1B,1C,1D クロック生成回路、2,2a,2b PLL回路、10,10a,10b,10c,10d,10e,10f,10g バッファ回路、11,14,21,29,41,49 インバータ、12,22,2743,48 PチャネルMOSトランジスタ、13,23,28,42,47 NチャネルMOSトランジスタ、24 ドライブ能力制御回路、25,53,82 ORゲート、26,52,65,78,81 ANDゲート、44 タイミング制御回路、51 遅延回路、61,71 コンパレータ、62,72 制御回路、63,73 カウンタ、64,74,75 ディレイライン、66,79リングオシレータ、76 NANDゲート、77 セレクタ、100,200,300,400,500,600 システム、101 クロック制御レジスタ、102,1000,2000,3000 周辺回路、103 CPU、201クロック制御回路、301 外部端子、401 ヒューズ回路、501 ROM回路、601 タイマー回路。
Claims (42)
- 基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍のクロック信号を出力する逓倍回路と、
前記クロック信号をバッファ処理するバッファ処理部とを備え、
前記バッファ処理部は、前記クロック信号の論理ハイの期間と論理ローの期間とが互いに異なるように前記クロック信号をバッファ処理する少なくとも一つのバッファ回路を含む、クロック生成回路。 - 前記バッファ回路は、
前記クロック信号を受ける第1のインバータ回路と、
前記第1のインバータ回路の出力を受ける第2のインバータ回路とを備え、
前記第1および第2のインバータ回路のいずれか一方は、
電源ノードと出力ノードとの間に接続された、一方の極性を有する第1のトランジスタと、
前記出力ノードと接地ノードとの間に接続された、他方の極性を有する第2のトランジスタとを含み、
前記第1のトランジスタの入力信号に対するゲート遅延速度と前記第2のトランジスタの入力信号に対するゲート遅延速度とは互いに異なる、請求項1に記載のクロック生成回路。 - 前記バッファ回路は、電源電位および接地電位の少なくとも一方が前記バッファ処理部の他の電源電圧または接地電圧と異なる、請求項1に記載のクロック生成回路。
- 前記バッファ回路は、該バッファ回路に含まれるトランジスタの基板電位が前記バッファ処理部に含まれる他のトランジスタの基板電位と異なる、請求項1に記載のクロック生成回路。
- 基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍であって論理ハイの期間と論理ローの期間とが互いに異なるクロック信号を出力する逓倍回路と、
前記クロック信号をバッファ処理するバッファ処理部とを備える、クロック生成回路。 - 前記逓倍回路は、
リングオシレータと、
前記リングオシレータから出力される前記クロック信号と前記基準クロック信号との位相を比較するコンパレータと、
前記コンパレータから出力される位相比較結果に基づいてデジタルカウント値を決定するカウンタと、
前記クロック信号の立上がり/立下がりに応じて前記デジタルカウント値を増減させる制御回路とを備え、
前記リングオシレータは、
前記デジタルカウント値に応じて遅延時間を変化させるディレイラインを含む、請求項5に記載のクロック生成回路。 - 前記逓倍回路は、
リングオシレータと、
前記リングオシレータから出力される前記クロック信号と前記基準クロック信号との位相を比較するコンパレータと、
前記コンパレータから出力される位相比較結果に基づいてデジタルカウント値を決定するカウンタとを備え、
前記リングオシレータは、
前記デジタルカウント値を受けて遅延時間を決定する、直列接続された第1および第2のディレイラインと、
前記クロック信号に応じて、前記第1および第2のディレイラインのいずれか一方からの入力を選択して出力するセレクタとを含む、請求項5に記載のクロック生成回路。 - 基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍のクロック信号を出力する逓倍回路と、
デューティ比制御信号を出力する波形生成回路と、
前記クロック信号および前記デューティ比制御信号を受けるANDゲートとを備え、
前記デューティ比制御信号は、前記クロック信号および前記デューティ比制御信号がともに論理ハイの期間とそれ以外の期間との比率が異なる、クロック生成回路。 - 基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍のクロック信号を出力する逓倍回路と、
デューティ比制御信号を出力する波形生成回路と、
前記クロック信号および前記デューティ比制御信号を受けるORゲートとを備え、
前記デューティ比制御信号は、前記クロック信号および前記デューティ比制御信号がともに論理ローの期間とそれ以外の期間との比率が異なる、クロック生成回路。 - 基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍のクロック信号を出力する逓倍回路と、
前記クロック信号をバッファ処理するバッファ処理部とを備え、
前記バッファ処理部は、前記クロック信号のデューティ比を変更することができる少なくとも一つのバッファ回路を含む、クロック生成回路。 - 前記バッファ回路は、
前記クロック信号を受ける第1のインバータ回路と、
前記第1のインバータ回路の出力を受ける第2のインバータ回路とを備え、
前記第1および第2のインバータ回路のいずれか一方は、
電源ノードと出力ノードとの間に並列接続された、一方の極性を有する複数の第1のトランジスタと、
前記出力ノードと接地ノードとの間に並列接続された、他方の極性を有する複数の第2のトランジスタと、
前記複数の第1および第2のトランジスタのオンオフを複数のドライブ能力制御信号によってそれぞれ制御するドライブ能力制御部とを含む、請求項10に記載のクロック生成回路。 - 前記バッファ回路は、
前記クロック信号を受ける第1のインバータ回路と、
前記第1のインバータ回路の出力を受ける第2のインバータ回路と、
前記第1のインバータ回路から前記第2のインバータ回路に出力される信号レベルの立上がりまたは立下がりタイミングを複数のタイミング制御信号によって制御するタイミング制御部とを備える、請求項10に記載のクロック生成回路。 - 前記バッファ回路の電源電位および接地電位の少なくとも一方を制御信号を用いて変化させることができる、請求項10に記載のクロック生成回路。
- 前記バッファ回路に含まれるトランジスタの基板電位を制御信号を用いて変化させることができる、請求項10に記載のクロック生成回路。
- 遅延時間を遅延制御信号によって制御できる遅延回路と、
前記遅延回路からの出力信号および基準クロック信号を受けてクロック信号を出力する論理素子とを備える、請求項10に記載のクロック生成回路。 - 前記論理素子は、ANDゲートである、請求項15に記載のクロック生成回路。
- 前記論理素子は、ORゲートである、請求項15に記載のクロック生成回路。
- 基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍のクロック信号を出力する逓倍回路と、
前記クロック信号をバッファ処理するバッファ処理部とを備え、
前記逓倍回路は、前記クロック信号のデューティ比を変更することができる、クロック生成回路。 - 前記逓倍回路は、
リングオシレータと、
前記リングオシレータから出力される前記クロック信号と前記基準クロック信号との位相を比較するコンパレータと、
前記コンパレータから出力される位相比較結果に基づいてデジタルカウント値を決定するカウンタと、
カウント値制御信号が所定値のとき、前記クロック信号の立上がり/立下がりに応じて前記デジタルカウント値を増減させる制御回路とを備え、
前記リングオシレータは、
前記デジタルカウント値に応じて遅延時間を変化させるディレイラインを含む、請求項18に記載のクロック生成回路。 - 前記カウント値制御信号は、前記デジタルカウント値に応じて前記所定値を取るかどうかが決定される、請求項19に記載のクロック生成回路。
- 前記カウント値制御信号は、前記クロック信号の周波数に応じて前記所定値を取るかどうかが決定される、請求項19に記載のクロック生成回路。
- 前記逓倍回路は、
リングオシレータと、
前記リングオシレータから出力される前記クロック信号と前記基準クロック信号との位相を比較するコンパレータと、
前記コンパレータから出力される位相比較結果に基づいてデジタルカウント値を決定するカウンタと、
セレクタ制御信号および前記クロック信号を受けて選択信号を出力する論理素子とを備え、
前記リングオシレータは、
前記デジタルカウント値を受けて遅延時間を決定する、直列接続された第1および第2のディレイラインと、
前記選択信号に応じて、前記第1および第2のディレイラインのいずれか一方からの入力を選択して出力するセレクタとを含む、請求項18に記載のクロック生成回路。 - 前記セレクタ制御信号は、前記デジタルカウント値に応じて前記所定値を取るかどうかが決定される、請求項22に記載のクロック生成回路。
- 前記セレクタ制御信号は、前記クロック信号の周波数に応じて前記所定値を取るかどうかが決定される、請求項22に記載のクロック生成回路。
- 基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍のクロック信号を出力する逓倍回路と、
デューティ比制御信号を生成する波形生成回路と、
前記クロック信号および前記デューティ比制御信号を受けるANDゲートとを備え、
前記デューティ比制御信号は、前記クロック信号および前記デューティ比制御信号がともに論理ハイの期間とそれ以外の期間との比率を変化させることができる、クロック生成回路。 - 基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍のクロック信号を出力する逓倍回路と、
デューティ比制御信号を生成する波形生成回路と、
前記クロック信号および前記デューティ比制御信号を受けるORゲートとを備え、
前記デューティ比制御信号は、前記クロック信号および前記デューティ比制御信号がともに論理ローの期間とそれ以外の期間との比率を変化させることができる、クロック生成回路。 - 外部端子をさらに備え、
前記クロック信号のデューティ比率の制御またはデューティ比制御のオンオフは、前記外部端子からの信号によって制御される、請求項10〜26に記載のクロック生成回路。 - 前記クロック信号のデューティ比率の制御またはデューティ比制御のオンオフは、前記クロック信号の動作電流計測結果に基づいて制御される、請求項10〜26に記載のクロック生成回路。
- 前記クロック信号のデューティ比率の制御またはデューティ比制御のオンオフは、前記クロック信号の動作温度計測結果に基づいて制御される、請求項10〜26に記載のクロック生成回路。
- ヒューズ回路をさらに備え、
前記クロック信号のデューティ比率の制御またはデューティ比制御のオンオフは、前記ヒューズ回路から制御される、請求項10〜26に記載のクロック生成回路。 - 読出専用回路をさらに備え、
前記クロック信号のデューティ比率の制御またはデューティ比制御のオンオフは、前記読出専用回路から制御される、請求項10〜26に記載のクロック生成回路。 - タイマー回路をさらに備え、
前記クロック信号のデューティ比率の制御またはデューティ比制御のオンオフは、前記タイマー回路から制御される、請求項10〜26に記載のクロック生成回路。 - クロック信号を出力するクロック生成回路と、
前記クロック信号のデューティ比を制御信号を用いて制御するクロック制御用回路と、
前記クロック制御用回路を制御する中央処理装置とを備え、
前記クロック生成回路は、
基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍の前記クロック信号を出力する逓倍回路と、
前記クロック信号をバッファ処理するバッファ処理部とを備え、
前記バッファ処理部は、前記クロック信号のデューティ比を変更することができる少なくとも一つのバッファ回路を含む、システム。 - クロック信号を出力するクロック生成回路と、
前記クロック信号のデューティ比を制御信号を用いて制御するクロック制御用回路と、
前記クロック制御用回路を制御する中央処理装置とを備え、
前記クロック生成回路は、
基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍の前記クロック信号を出力する逓倍回路と、
前記クロック信号をバッファ処理するバッファ処理部とを備え、
前記逓倍回路は、前記クロック信号のデューティ比を変更することができる、システム。 - クロック信号を出力するクロック生成回路と、
前記クロック信号のデューティ比を制御信号を用いて制御するクロック制御用回路と、
前記クロック制御用回路を制御する中央処理装置とを備え、
前記クロック生成回路は、
基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍の前記クロック信号を出力する逓倍回路と、
デューティ比制御信号を生成する波形生成回路と、
前記クロック信号および前記デューティ比制御信号を受けるANDゲートとを備え、
前記デューティ比制御信号は、前記クロック信号および前記デューティ比制御信号がともに論理ハイの期間とそれ以外の期間との比率を変化させることができる、システム。 - クロック信号を出力するクロック生成回路と、
前記クロック信号のデューティ比を制御信号を用いて制御するクロック制御用回路と、
前記クロック制御用回路を制御する中央処理装置とを備え、
前記クロック生成回路は、
基準クロック信号の入力を受けて、前記基準クロック信号と同一または逓倍の前記クロック信号を出力する逓倍回路と、
デューティ比制御信号を生成する波形生成回路と、
前記クロック信号および前記デューティ比制御信号を受けるORゲートとを備え、
前記デューティ比制御信号は、前記クロック信号および前記デューティ比制御信号がともに論理ローの期間とそれ以外の期間との比率を変化させることができる、システム。 - 前記クロック信号の動作電流を計測する電流計測回路をさらに備え、
前記中央処理装置は、前記動作電流の計測結果に基づいて前記クロック信号のデューティ比率の制御またはデューティ比制御のオンオフを制御する、請求項33〜36に記載のシステム。 - 前記クロック信号の動作温度を計測する温度計測回路をさらに備え、
前記中央処理装置は、前記動作温度の計測結果に基づいて前記クロック信号のデューティ比率の制御またはデューティ比制御のオンオフを制御する、請求項33〜36に記載のシステム。 - 外部端子、ヒューズ回路、読出専用回路、およびタイマー回路のうち2つ以上をさらに備え、
前記2つ以上の回路は、前記中央処理装置からの指令により、前記クロック信号のデューティ比率の制御またはデューティ比制御のオンオフを個別に制御できる、請求項33〜36に記載のシステム。 - 前記クロック信号を受けて動作する複数のモジュール回路と、
外部端子、ヒューズ回路、読出専用回路、およびタイマー回路のうち2つ以上をさらに備え、
前記2つ以上の回路は、前記中央処理装置からの指令により、前記クロック信号のデューティ比率の制御またはデューティ比制御のオンオフを、前記複数のモジュール回路ごとに制御できる、請求項33〜36に記載のシステム。 - 前記クロック信号を受けて動作する複数のモジュール回路をさらに備え、
前記中央処理装置からの指令により、前記複数のモジュール回路のそれぞれに対して前記クロック信号のデューティ比を個別に制御することができる、請求項33〜36に記載のシステム。 - 前記クロック信号を受けて動作するモジュール回路をさらに備え、
前記中央処理装置からの指令により、前記モジュール回路に前記クロック信号を供給する場合と外部の所定の回路に前記クロック信号を供給する場合とで、前記クロック信号のデューティ比を個別に設定することができる、請求項33〜36に記載のシステム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003146507A JP2004348573A (ja) | 2003-05-23 | 2003-05-23 | クロック生成回路およびそれを含むシステム |
US10/682,166 US7233186B2 (en) | 2003-05-23 | 2003-10-10 | Clock generation circuit capable of setting or controlling duty ratio of clock signal and system including clock generation circuit |
CNA2006100818909A CN1897462A (zh) | 2003-05-23 | 2004-01-29 | 可设定或控制时钟信号的占空比的时钟生成电路及其系统 |
CNB2004100033783A CN1297069C (zh) | 2003-05-23 | 2004-01-29 | 可设定或控制时钟信号的占空比的时钟生成电路及其系统 |
US11/798,535 US7405607B2 (en) | 2003-05-23 | 2007-05-15 | Clock generation circuit capable of setting or controlling duty ratio of clock signal and system including clock generation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003146507A JP2004348573A (ja) | 2003-05-23 | 2003-05-23 | クロック生成回路およびそれを含むシステム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004348573A true JP2004348573A (ja) | 2004-12-09 |
JP2004348573A5 JP2004348573A5 (ja) | 2006-06-22 |
Family
ID=33447589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003146507A Pending JP2004348573A (ja) | 2003-05-23 | 2003-05-23 | クロック生成回路およびそれを含むシステム |
Country Status (3)
Country | Link |
---|---|
US (2) | US7233186B2 (ja) |
JP (1) | JP2004348573A (ja) |
CN (2) | CN1897462A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008035071A (ja) * | 2006-07-27 | 2008-02-14 | Fujifilm Corp | 出力ドライブ回路及びこれを備えたデジタルカメラ |
US7532052B2 (en) | 2006-12-26 | 2009-05-12 | Nec Electronics Corporation | Clock duty changing apparatus |
US7716516B2 (en) | 2006-06-21 | 2010-05-11 | Sony Computer Entertainment Inc. | Method for controlling operation of microprocessor which performs duty cycle correction process |
US8108813B2 (en) | 2007-11-20 | 2012-01-31 | International Business Machines Corporation | Structure for a circuit obtaining desired phase locked loop duty cycle without pre-scaler |
US8381143B2 (en) | 2008-05-29 | 2013-02-19 | International Business Machines Corporation | Structure for a duty cycle correction circuit |
US8422613B2 (en) | 2008-09-30 | 2013-04-16 | Denso Corporation | Clock-synchronous communication apparatus and communication system |
US9312839B2 (en) | 2013-04-26 | 2016-04-12 | Socionext Inc. | Buffer circuit and semiconductor integrated circuit |
US9484895B2 (en) | 2012-07-09 | 2016-11-01 | International Business Machines Corporation | Self-adjusting duty cycle tuner |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004348573A (ja) * | 2003-05-23 | 2004-12-09 | Renesas Technology Corp | クロック生成回路およびそれを含むシステム |
US7336115B2 (en) * | 2005-02-09 | 2008-02-26 | International Business Machines Corporation | Redundancy in signal distribution trees |
US7612598B2 (en) | 2007-04-27 | 2009-11-03 | Semiconductor Energy Laboratory Co., Ltd. | Clock signal generation circuit and semiconductor device |
US7973565B2 (en) * | 2007-05-23 | 2011-07-05 | Cyclos Semiconductor, Inc. | Resonant clock and interconnect architecture for digital devices with multiple clock networks |
GB2450564B (en) * | 2007-06-29 | 2011-03-02 | Imagination Tech Ltd | Clock frequency adjustment for semi-conductor devices |
JP4385234B2 (ja) * | 2007-09-11 | 2009-12-16 | 日本電気株式会社 | 半導体集積回路装置、同装置用クロックパルス最適化方法、及びそのプログラム |
US20090102529A1 (en) * | 2007-10-23 | 2009-04-23 | International Business Machines Corporation | Shifting inactive clock edge for noise reduction |
EP2220208A4 (en) * | 2007-11-23 | 2010-12-29 | Rappaport Family Inst For Res | USE OF HAPTOGLOBIN ENTYPIZATION FOR THE DIAGNOSIS AND TREATMENT OF CARDIOVASCULAR DISEASES |
US8041874B2 (en) * | 2008-08-08 | 2011-10-18 | Standard Microsystems Corporation | USB and ethernet controller combination device |
DE102008045027B4 (de) * | 2008-08-29 | 2011-03-24 | Austriamicrosystems Ag | Signalverarbeitungsschaltung, Anzeigevorrichtung und Verfahren zur Signalverarbeitung |
KR101467417B1 (ko) * | 2008-12-30 | 2014-12-11 | 주식회사 동부하이텍 | 디지털 동기 회로 |
CN101582685B (zh) * | 2009-05-08 | 2012-02-01 | 东南大学 | 一种应用于超高速模数转换器的高速双向时钟树电路 |
US8324882B2 (en) * | 2009-06-08 | 2012-12-04 | Freescale Semiconductor, Inc. | Phase locked loop device and method thereof |
US8509370B2 (en) * | 2009-06-08 | 2013-08-13 | Freescale Semiconductor, Inc. | Phase locked loop device and method thereof |
US8400192B2 (en) | 2009-10-12 | 2013-03-19 | Cyclos Semiconductor, Inc. | Architecture for frequency-scaled operation in resonant clock distribution networks |
US20140244548A1 (en) * | 2013-02-22 | 2014-08-28 | Nvidia Corporation | System, method, and computer program product for classification of silicon wafers using radial support vector machines to process ring oscillator parametric data |
US8860479B2 (en) * | 2013-03-15 | 2014-10-14 | Intel Corporation | Integrated clock differential buffering |
CN103269215A (zh) * | 2013-06-03 | 2013-08-28 | 上海宏力半导体制造有限公司 | 倍频电路 |
JP6319551B2 (ja) * | 2013-10-31 | 2018-05-09 | セイコーエプソン株式会社 | クロック生成装置、電子機器、移動体及びクロック生成方法 |
CN107408945B (zh) * | 2015-03-30 | 2021-01-01 | 索尼公司 | 功率门控控制电路以及半导体器件 |
CN108123705B (zh) * | 2016-11-29 | 2021-01-19 | 比亚迪股份有限公司 | 信号的同步控制方法和装置 |
CN107356937A (zh) * | 2017-08-25 | 2017-11-17 | 长春德信光电技术有限公司 | 一种基于激光探测技术的行走机器人碰撞预警装置 |
CN107979359B (zh) * | 2018-01-11 | 2023-12-22 | 苏州锴威特半导体股份有限公司 | 一种维持固定脉冲的时钟同步电路 |
EP3514956B1 (en) * | 2018-01-19 | 2023-04-19 | Socionext Inc. | Clock distribution |
JP7223387B2 (ja) * | 2018-05-24 | 2023-02-16 | ザインエレクトロニクス株式会社 | デューティ補償装置 |
CN109410881B (zh) * | 2018-12-20 | 2020-06-02 | 深圳市华星光电技术有限公司 | 信号传输系统及信号传输方法 |
CN110047419A (zh) * | 2019-04-30 | 2019-07-23 | 深圳市华星光电半导体显示技术有限公司 | 改善goa电路电磁辐射的驱动装置及其方法 |
CN110459161B (zh) * | 2019-08-23 | 2023-04-07 | 北京集创北方科技股份有限公司 | 接收装置、驱动芯片、显示装置及电子设备 |
US10892759B1 (en) * | 2020-02-19 | 2021-01-12 | Amazing Microelectronic Corp. | Bus driver module with controlled circuit and transition controlled circuit thereof |
CN114499508B (zh) * | 2020-11-13 | 2025-07-08 | 瑞昱半导体股份有限公司 | 操作时钟产生装置与参考时钟栅控电路 |
CN113596274B (zh) * | 2021-07-27 | 2025-07-08 | 深圳市联洲国际技术有限公司 | 一种数字信号线路的供电电路及其变频供电信号生成方法 |
CN114978114A (zh) * | 2022-05-23 | 2022-08-30 | 北京源启先进微电子有限公司 | 时钟电路、数据运算单元、芯片 |
CN114884488A (zh) * | 2022-05-23 | 2022-08-09 | 北京源启先进微电子有限公司 | 时钟电路、数据运算单元 |
CN118137270B (zh) * | 2024-01-29 | 2024-09-03 | 武汉光至科技有限公司 | 一种高速高精度固体紫外激光器温控系统及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04335714A (ja) * | 1991-05-13 | 1992-11-24 | Seiko Epson Corp | デューティー調整可能な発振回路 |
JPH0540538A (ja) * | 1991-08-06 | 1993-02-19 | Nec Corp | クロツクドライバ |
JPH09214306A (ja) * | 1996-02-05 | 1997-08-15 | Oki Electric Ind Co Ltd | 遅延回路およびパルス発生回路 |
JPH10242831A (ja) * | 1997-02-26 | 1998-09-11 | Toshiba Corp | 半導体集積回路装置 |
JPH11110067A (ja) * | 1997-10-07 | 1999-04-23 | Mitsubishi Electric Corp | 半導体集積回路 |
JPH11161378A (ja) * | 1997-12-01 | 1999-06-18 | Nec Niigata Ltd | Cpu温度制御回路 |
JP2000039937A (ja) * | 1998-07-22 | 2000-02-08 | Toshiba Corp | コンピュータシステムおよびそのパワーセーブ制御方法 |
JP2002073199A (ja) * | 2000-08-31 | 2002-03-12 | Oki Data Corp | クロック発生装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1985002275A1 (en) | 1983-11-07 | 1985-05-23 | Motorola, Inc. | Synthesized clock microcomputer with power saving |
JPS6242613A (ja) | 1985-08-20 | 1987-02-24 | Matsushita Electric Ind Co Ltd | 周波数デユ−テイ調整装置 |
JPH0688371B2 (ja) | 1990-05-02 | 1994-11-09 | 株式会社淀川製鋼所 | 耐久性塗装金属板 |
JPH06164379A (ja) | 1992-06-29 | 1994-06-10 | Pentel Kk | デューティ比固定pll発振回路 |
US5406590A (en) | 1992-10-23 | 1995-04-11 | Compaq Computer Corporation | Method of and apparatus for correcting edge placement errors in multiplying phase locked loop circuits |
US5519344A (en) * | 1994-06-30 | 1996-05-21 | Proebsting; Robert J. | Fast propagation technique in CMOS integrated circuits |
CA2159762C (en) * | 1995-10-03 | 2000-02-08 | Hugh Chow | Duty cycled control implemented within a frequency synthesizer |
JP2994272B2 (ja) * | 1996-08-23 | 1999-12-27 | 九州日本電気株式会社 | 多相クロック発生回路 |
US5771264A (en) * | 1996-08-29 | 1998-06-23 | Altera Corporation | Digital delay lock loop for clock signal frequency multiplication |
JP2908398B1 (ja) * | 1998-01-14 | 1999-06-21 | 日本電気アイシーマイコンシステム株式会社 | ディジタルpll回路および発振器の遅延素子 |
JP2001267890A (ja) * | 2000-03-22 | 2001-09-28 | Hitachi Ltd | クロック発生装置、バスインタフェース制御装置及び情報処理装置 |
DE10297345T5 (de) * | 2001-10-19 | 2004-11-18 | Advantest Corp. | Phasenregelkreisschaltung, Delay-Locked-Loop-Schaltung, Taktgenerator, Halbleitertestgerät und integrierter Halbleiterschaltkreis |
US6501307B1 (en) * | 2001-11-12 | 2002-12-31 | Pericom Semiconductor Corp. | Spread-spectrum clock buffer/driver that modulates clock period by switching loads |
US6727740B2 (en) * | 2002-08-29 | 2004-04-27 | Micron Technology, Inc. | Synchronous mirror delay (SMD) circuit and method including a ring oscillator for timing coarse and fine delay intervals |
JP4277979B2 (ja) * | 2003-01-31 | 2009-06-10 | 株式会社ルネサステクノロジ | 半導体集積回路装置 |
JP2004348573A (ja) * | 2003-05-23 | 2004-12-09 | Renesas Technology Corp | クロック生成回路およびそれを含むシステム |
-
2003
- 2003-05-23 JP JP2003146507A patent/JP2004348573A/ja active Pending
- 2003-10-10 US US10/682,166 patent/US7233186B2/en not_active Expired - Fee Related
-
2004
- 2004-01-29 CN CNA2006100818909A patent/CN1897462A/zh active Pending
- 2004-01-29 CN CNB2004100033783A patent/CN1297069C/zh not_active Expired - Fee Related
-
2007
- 2007-05-15 US US11/798,535 patent/US7405607B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04335714A (ja) * | 1991-05-13 | 1992-11-24 | Seiko Epson Corp | デューティー調整可能な発振回路 |
JPH0540538A (ja) * | 1991-08-06 | 1993-02-19 | Nec Corp | クロツクドライバ |
JPH09214306A (ja) * | 1996-02-05 | 1997-08-15 | Oki Electric Ind Co Ltd | 遅延回路およびパルス発生回路 |
JPH10242831A (ja) * | 1997-02-26 | 1998-09-11 | Toshiba Corp | 半導体集積回路装置 |
JPH11110067A (ja) * | 1997-10-07 | 1999-04-23 | Mitsubishi Electric Corp | 半導体集積回路 |
JPH11161378A (ja) * | 1997-12-01 | 1999-06-18 | Nec Niigata Ltd | Cpu温度制御回路 |
JP2000039937A (ja) * | 1998-07-22 | 2000-02-08 | Toshiba Corp | コンピュータシステムおよびそのパワーセーブ制御方法 |
JP2002073199A (ja) * | 2000-08-31 | 2002-03-12 | Oki Data Corp | クロック発生装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7716516B2 (en) | 2006-06-21 | 2010-05-11 | Sony Computer Entertainment Inc. | Method for controlling operation of microprocessor which performs duty cycle correction process |
JP2008035071A (ja) * | 2006-07-27 | 2008-02-14 | Fujifilm Corp | 出力ドライブ回路及びこれを備えたデジタルカメラ |
US7532052B2 (en) | 2006-12-26 | 2009-05-12 | Nec Electronics Corporation | Clock duty changing apparatus |
US8108813B2 (en) | 2007-11-20 | 2012-01-31 | International Business Machines Corporation | Structure for a circuit obtaining desired phase locked loop duty cycle without pre-scaler |
US8381143B2 (en) | 2008-05-29 | 2013-02-19 | International Business Machines Corporation | Structure for a duty cycle correction circuit |
US8422613B2 (en) | 2008-09-30 | 2013-04-16 | Denso Corporation | Clock-synchronous communication apparatus and communication system |
US9484895B2 (en) | 2012-07-09 | 2016-11-01 | International Business Machines Corporation | Self-adjusting duty cycle tuner |
US9484894B2 (en) | 2012-07-09 | 2016-11-01 | International Business Machines Corporation | Self-adjusting duty cycle tuner |
US9312839B2 (en) | 2013-04-26 | 2016-04-12 | Socionext Inc. | Buffer circuit and semiconductor integrated circuit |
Also Published As
Publication number | Publication date |
---|---|
CN1297069C (zh) | 2007-01-24 |
US20040232967A1 (en) | 2004-11-25 |
US7233186B2 (en) | 2007-06-19 |
CN1897462A (zh) | 2007-01-17 |
US7405607B2 (en) | 2008-07-29 |
US20070216462A1 (en) | 2007-09-20 |
CN1574639A (zh) | 2005-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004348573A (ja) | クロック生成回路およびそれを含むシステム | |
JP3644827B2 (ja) | 外部負荷を考慮したdll回路 | |
US5336939A (en) | Stable internal clock generation for an integrated circuit | |
US5359232A (en) | Clock multiplication circuit and method | |
US6594770B1 (en) | Semiconductor integrated circuit device | |
US7486126B2 (en) | Semiconductor integrated circuit with pulse generation sections | |
KR102161083B1 (ko) | 반도체 메모리 장치 | |
US6882196B2 (en) | Duty cycle corrector | |
JPH10320074A (ja) | スキュー低減回路及び半導体装置 | |
JP2001084763A5 (ja) | ||
KR20060067976A (ko) | 위상 혼합 회로, 지연 고정 루프 회로, dram 장치,위상 신호 발생 방법 | |
KR20040103207A (ko) | 전력 소모를 줄인 레지스터 제어 지연고정루프 | |
US6064244A (en) | Phase-locked loop circuit permitting reduction of circuit size | |
JP2004135333A (ja) | プログラム可能な平衡型遅延素子 | |
KR20040103494A (ko) | 지연고정 시간을 줄인 레지스터 제어 지연고정루프 | |
JP2007259435A (ja) | スプレッドスペクトラムクロッキングに使われる遅延された高周波クロック信号を発生させる方法、回路、及びシステム | |
US20130207709A1 (en) | Variable unit delay circuit and clock generation circuit for semiconductor apparatus using the same | |
JP2001217694A (ja) | 遅延調整回路及びこれを用いたクロック生成回路 | |
JPH06202756A (ja) | クロック逓倍回路を備えた安定クロック発生回路 | |
US20110025381A1 (en) | Multi-phase clock divider circuit | |
JP3830656B2 (ja) | 電源電圧調整回路及び半導体装置 | |
KR100967103B1 (ko) | 클럭생성회로 및 클럭생성방법 | |
JP2004147458A (ja) | 昇圧回路 | |
US10826467B1 (en) | High-accuracy dual-mode free running oscillator | |
KR100896461B1 (ko) | 반도체 소자 및 그 동작방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060502 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060502 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090216 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090317 |