[go: up one dir, main page]

JP2004347394A - Fluorescence measurement device - Google Patents

Fluorescence measurement device Download PDF

Info

Publication number
JP2004347394A
JP2004347394A JP2003143145A JP2003143145A JP2004347394A JP 2004347394 A JP2004347394 A JP 2004347394A JP 2003143145 A JP2003143145 A JP 2003143145A JP 2003143145 A JP2003143145 A JP 2003143145A JP 2004347394 A JP2004347394 A JP 2004347394A
Authority
JP
Japan
Prior art keywords
mirror
fluorescence
light
spectroscopic
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003143145A
Other languages
Japanese (ja)
Other versions
JP4146761B2 (en
Inventor
Masayuki Watanabe
昌之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2003143145A priority Critical patent/JP4146761B2/en
Publication of JP2004347394A publication Critical patent/JP2004347394A/en
Application granted granted Critical
Publication of JP4146761B2 publication Critical patent/JP4146761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】反射型分光用ミラーを用いた蛍光測定装置であって、迷光を低減させ、より正確な測定を行うことが可能な装置を提供する。
【解決手段】励起光源12からの励起光を分光用ミラー16a〜16dの表面で反射させるとともに、反射させた励起光を試料ガスに照射し、そのときに発生する蛍光25の強度を蛍光検出器22で検出する蛍光測定装置において、分光用ミラーのミラー基材に、蛍光検出器で検出する波長域の光を吸収する材質のものを用いる。例えば、励起光源にキセノンフラッシュランプを用いたSO測定装置では、分光用ミラーの表面で波長220nmの光が反射し、分光用ミラーのミラー基材が波長400nm以下の光を吸収するようにする。
【選択図】 図1
An object of the present invention is to provide a fluorescence measuring apparatus using a reflection-type spectroscopic mirror, which can reduce stray light and perform more accurate measurement.
An excitation light from an excitation light source (12) is reflected by the surfaces of spectroscopic mirrors (16a to 16d), and the reflected excitation light is applied to a sample gas, and the intensity of fluorescence (25) generated at that time is measured by a fluorescence detector. In the fluorescence measuring device for detecting light at 22, a material that absorbs light in the wavelength range detected by the fluorescence detector is used for the mirror base of the spectroscopic mirror. For example, in an SO 2 measuring apparatus using a xenon flash lamp as an excitation light source, light having a wavelength of 220 nm is reflected on the surface of the spectroscopic mirror, and the mirror base material of the spectroscopic mirror absorbs light having a wavelength of 400 nm or less. .
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、励起光源からの励起光を分光用ミラーに反射させるとともに、反射させた励起光を試料ガスに照射し、そのときに発生する蛍光の強度を蛍光検出器で検出する蛍光測定装置に関する。本発明の蛍光測定装置は、例えば、紫外線蛍光方式によるSO(二酸化硫黄)測定装置として好適に使用することができる。
【0002】
【従来の技術】
試薬を用いずに大気中や工場排ガス中に含まれるSO濃度を測定する乾式測定装置として、紫外線蛍光方式による測定装置がある。このSO測定装置は、試料ガス中のSOに波長220nm付近の紫外線を照射すると、SOが励起されて波長300〜400nmの蛍光を発することを利用するもので、上記蛍光の強度を光電子増倍管等の蛍光検出器で検出し、その値から試料ガス中のSO濃度を求めるものである。
【0003】
紫外線蛍光方式によるSO測定装置において、励起光源としてはキセノンフラッシュランプを用いるのが一般的である。しかし、キセノンフラッシュランプは、紫外から赤外域まで連続したスペクトルを持つ光源であるため、目的の励起波長の光を得るためには分光が必要である。現在では、波長220nm付近の光は100%に近い反射率、その他の波長の光は反射率10%以下という特性を有する誘電体多層膜ミラーを分光用ミラーとして使用し、光源からの光を上記分光用ミラーに複数回反射させることで、分光を行って波長220nm付近の光のみを試料ガスに照射するのが一般的である(例えば、特許文献1参照)。
【0004】
図1は従来の紫外線蛍光方式によるSO測定装置の一例を示す概略図である。図1の装置において、2は光源セル、4は分光セル、6は測定セル、8は制御部を示す。光源セル2は、箱体10の内部にキセノンフラッシュランプ12が設置されたものである。分光セル4は、箱体14の内部に4枚の平板状の反射型分光用ミラー16a〜16dが配設されたもので、該セル4のセル入口19及びセル出口21には、光源12からの光を平行光線にする入口部レンズ18及び分光セル4内を通った平行光線を測定セル6内で収束させる出口部レンズ20(いずれも凸レンズ)がそれぞれ装着されている。なお、図中17は各反射型分光用ミラー16をセル4内に固定するための固定用具を示す。
【0005】
反射型分光用ミラー16a〜16dは、隣接するフィルタ同士の角度が約90度となるように略四角枠状に配置されている。そして、入口部レンズ18を通ってほぼ平行光線となった光源12からの光が1番目の反射型分光用ミラー16aに45度の入射角度で入射し、その中の220nm付近の波長の紫外線が45度の反射角度で反射する。さらに、この紫外線が2、3、4番目の反射型分光用ミラー16b、16c、16dに順次反射した後、出口部レンズ20を通って測定セル6内に入るものである。この場合、フィルタ16b、16c、16dにおける光の入射角度、反射角度は、いずれも45度である。
【0006】
測定セル6は、内部に導入した試料ガスに分光セル4から出た紫外線を照射するもので、そのときに発生する蛍光25の強度を蛍光検出器22で検出するものである。測定セル6において、23は検出器セル、24は蛍光を集光するために検出器22の前に設けられた集光レンズ、26は波長300〜400nmの紫外線を選択的に透過させる光学フィルタ、36は試料ガス入口、38は試料ガス出口を示す。制御部8は、蛍光検出器22で検出した蛍光強度に基づいて試料ガス中のSO濃度を求めるものである。
【0007】
【特許文献1】
特開平10−115584号公報
【0008】
【発明が解決しようとする課題】
前述した誘電体多層膜ミラーからなる反射型分光用ミラーにおいて、波長220nm付近の光はミラー表面で反射されるが、それ以外の波長の光はミラー基材を透過し、ミラー基材の裏面で反射・散乱される。ミラー基材には合成石英や一般の光学ガラスが使用されるが、これらは波長300〜400nmの光の透過性が良いものが多い。このため、非常に微弱ではあるが、ミラー基材の裏面で反射・散乱された波長300〜400nmの光が試料ガスに照射され、測定に対し妨害となる光(迷光)が生じる原因となっていた。
【0009】
本発明は、上記事情に鑑みてなされたもので、反射型分光用ミラーを用いた蛍光測定装置であって、迷光を低減させ、より正確な測定を行うことが可能な蛍光測定装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、前記目的を達成するため、励起光源からの励起光を分光用ミラーの表面で反射させるとともに、反射させた励起光を試料ガスに照射し、そのときに発生する蛍光の強度を蛍光検出器で検出する蛍光測定装置において、前記分光用ミラーのミラー基材が、前記蛍光検出器で検出する波長域の光を吸収することを特徴とする蛍光測定装置を提供する。
【0011】
本発明では、反射型分光用ミラーを用いた蛍光測定装置において、分光用ミラーのミラー基材に、蛍光検出器で検出する波長域の光を吸収する材質のものを用いる。これにより、ミラー基材の裏面での反射・散乱による迷光の発生を抑制することができる。
【0012】
この場合、本発明では、分光用ミラーのミラー基材として、例えば、UVカットガラス、ロングパスフィルタ(色ガラスフィルタ)等の光学ガラスや、樹脂からなるものを用いることができる。
【0013】
【発明の実施の形態】
以下、本発明につきさらに詳しく説明する。本発明では、例えば、蛍光測定装置が紫外線蛍光方式によるSO測定装置であり、励起光源がキセノンフラッシュランプであるときには、分光用ミラーとして表面で波長220nmの光が反射するものを用い、かつ、分光用ミラーの基材に波長400nm以下の光を吸収する材質のもの、より好ましくは波長300〜400nmの光を吸収する材質のものを用いる。これにより、SO測定装置の蛍光検出器が感度を持つ波長300〜400nmの光がミラー基材に吸収され、ミラー基材の裏面での反射・散乱による迷光の発生が抑えられる。
【0014】
より具体的には、本発明では、蛍光測定装置が紫外線蛍光方式によるSO測定装置であり、励起光源がキセノンフラッシュランプである場合、分光用ミラーとして、Schott社から販売されている光学ガラスSF11(ガラス分類名)をミラー基材に用いた誘電体多層膜ミラー(表面に誘電体タイプ高反射コーティングを施した反射型分光用ミラー)を好適に使用することができる。この誘電体多層膜ミラーは、ミラー表面で波長220nmの光が確実に反射し、かつ、ミラー基材(SF11)が波長400nm以下の光、特に波長300〜400nmの光を確実に吸収するものである。
【0015】
ここで、本発明の効果を示す実験結果について述べる。紫外線蛍光方式によるSO測定装置において、反射型分光用ミラーとして、ミラー基材が合成石英である誘電体多層膜ミラーを用いた場合と、ミラー基材がSF11である誘電体多層膜ミラーを用いた場合とを比較した。前者ではミラー基材の裏面で波長300〜400nmの光が反射・散乱されるが、後者ではミラー基材に波長300〜400nmの光が吸収されるため、ミラー基材の裏面では上記光は反射・散乱されない。
【0016】
本実験では、SO測定装置の迷光量をSO濃度換算で比較した。その結果、迷光量は、ミラー基材に合成石英を使用した場合では11μg/L(ppb)、SF11を使用した場合では3μg/Lであり、本発明により迷光による妨害が大幅に改善されることが確認された。また、従来、迷光低減のため8枚の反射型分光用ミラーを使うことも提案されているが、SF11を基材とする分光用ミラーを使用することにより、4枚の分光用ミラーで高感度タイプのSO測定装置としての十分な性能が得られることが確認された。さらに、SF11は合成石英に比べ安価であることなどから、コストダウンにも貢献するものであった。
【0017】
【発明の効果】
以上のように、本発明の蛍光測定装置によれば、迷光を低減させ、より正確な測定を行うことが可能である。
【図面の簡単な説明】
【図1】従来の紫外線蛍光方式によるSO測定装置の一例を示す概略図である。
【符号の説明】
2 光源セル
4 分光セル
6 測定セル
12 キセノンフラッシュランプ
16a〜16d 反射型分光用ミラー
22 蛍光検出器
25 蛍光
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluorescence measurement device that reflects excitation light from an excitation light source to a spectroscopic mirror, irradiates the sample gas with the reflected excitation light, and detects the intensity of fluorescence generated at that time with a fluorescence detector. . The fluorescence measurement device of the present invention can be suitably used, for example, as an ultraviolet fluorescence type SO 2 (sulfur dioxide) measurement device.
[0002]
[Prior art]
As a dry measuring device for measuring the concentration of SO 2 contained in the atmosphere or in the exhaust gas of a factory without using a reagent, there is a measuring device using an ultraviolet fluorescent method. This SO 2 measuring apparatus utilizes the fact that when SO 2 in a sample gas is irradiated with ultraviolet light having a wavelength of about 220 nm, the SO 2 is excited to emit fluorescence having a wavelength of 300 to 400 nm. This is detected by a fluorescence detector such as a multiplier, and the SO 2 concentration in the sample gas is determined from the detected value.
[0003]
In SO 2 measuring apparatus using ultraviolet fluorescence method, as the excitation light source is generally used xenon flash lamp. However, since a xenon flash lamp is a light source having a continuous spectrum from the ultraviolet to the infrared region, it requires spectroscopy to obtain light of a desired excitation wavelength. At present, a dielectric multilayer mirror having a reflectance of near 100% for light having a wavelength around 220 nm and a reflectance of 10% or less for other wavelengths is used as a spectroscopic mirror, and light from a light source is used as the light for the above. In general, the light is reflected by the spectroscopic mirror a plurality of times to perform spectroscopy and irradiate only light having a wavelength of about 220 nm to the sample gas (for example, see Patent Document 1).
[0004]
FIG. 1 is a schematic view showing an example of a conventional SO 2 measuring apparatus using an ultraviolet fluorescent method. In the apparatus shown in FIG. 1, reference numeral 2 denotes a light source cell, 4 denotes a spectral cell, 6 denotes a measurement cell, and 8 denotes a control unit. The light source cell 2 has a xenon flash lamp 12 installed inside a box 10. The spectroscopy cell 4 has four flat-plate-type reflection spectroscopy mirrors 16 a to 16 d disposed inside a box 14, and a cell entrance 19 and a cell exit 21 of the cell 4 are connected to the light source 12. And an exit lens 20 (both convex lenses) for converging the parallel light passing through the spectroscopic cell 4 in the measurement cell 6. In the drawing, reference numeral 17 denotes a fixing tool for fixing each reflection-type spectral mirror 16 in the cell 4.
[0005]
The reflection type spectroscopic mirrors 16a to 16d are arranged in a substantially rectangular frame shape such that the angle between adjacent filters is about 90 degrees. Then, the light from the light source 12 which has become substantially parallel rays through the entrance lens 18 is incident on the first reflection type spectroscopic mirror 16a at an incident angle of 45 degrees, and ultraviolet rays having a wavelength of about 220 nm in the mirror 16a. It reflects at a reflection angle of 45 degrees. Further, the ultraviolet rays are sequentially reflected on the second, third and fourth reflection type spectroscopic mirrors 16b, 16c and 16d, and then enter the measurement cell 6 through the exit lens 20. In this case, the angles of incidence and reflection of light on the filters 16b, 16c and 16d are all 45 degrees.
[0006]
The measurement cell 6 irradiates the sample gas introduced therein with ultraviolet rays emitted from the spectroscopic cell 4, and detects the intensity of the fluorescence 25 generated at that time by the fluorescence detector 22. In the measurement cell 6, 23 is a detector cell, 24 is a condenser lens provided in front of the detector 22 to collect fluorescence, 26 is an optical filter that selectively transmits ultraviolet light having a wavelength of 300 to 400 nm, 36 denotes a sample gas inlet, and 38 denotes a sample gas outlet. The control unit 8 obtains the SO 2 concentration in the sample gas based on the fluorescence intensity detected by the fluorescence detector 22.
[0007]
[Patent Document 1]
JP-A-10-115584 [0008]
[Problems to be solved by the invention]
In the reflection type spectroscopic mirror composed of the dielectric multilayer mirror described above, light having a wavelength of about 220 nm is reflected on the mirror surface, but light of other wavelengths is transmitted through the mirror base material and is reflected on the back surface of the mirror base material. Reflected and scattered. Synthetic quartz or general optical glass is used for the mirror base material, and most of them have good transmittance of light having a wavelength of 300 to 400 nm. For this reason, although very weak, light having a wavelength of 300 to 400 nm reflected and scattered on the back surface of the mirror substrate is irradiated on the sample gas, which causes light (stray light) that interferes with the measurement. Was.
[0009]
The present invention has been made in view of the above circumstances, and provides a fluorescence measurement device using a reflection-type spectroscopic mirror, which is capable of reducing stray light and performing more accurate measurement. The purpose is to:
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention reflects excitation light from an excitation light source on the surface of a spectroscopic mirror, irradiates the reflected excitation light to a sample gas, and reduces the intensity of fluorescence generated at that time. In a fluorescence measurement device that detects light with a detector, a mirror base material of the spectroscopic mirror absorbs light in a wavelength range that is detected by the fluorescence detector.
[0011]
According to the present invention, in a fluorescence measuring device using a reflection type spectroscopic mirror, a mirror base material of the spectroscopic mirror is made of a material that absorbs light in a wavelength range detected by a fluorescence detector. Thereby, generation of stray light due to reflection and scattering on the back surface of the mirror base material can be suppressed.
[0012]
In this case, in the present invention, as the mirror base material of the spectroscopic mirror, for example, an optical glass such as a UV cut glass, a long-pass filter (color glass filter), or a resin can be used.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail. In the present invention, for example, a SO 2 measurement apparatus fluorescence measuring device by ultraviolet fluorescence method, when the excitation light source is a xenon flash lamp, using those reflected wavelength 220nm light at the surface as a spectroscopic mirror, and, The base material of the spectroscopic mirror is made of a material that absorbs light having a wavelength of 400 nm or less, more preferably a material that absorbs light having a wavelength of 300 to 400 nm. Thereby, light of a wavelength 300~400nm with fluorescence detector sensitivity of SO 2 measurement device is absorbed in the mirror base, the occurrence of stray light is suppressed by reflection and scattering at the rear surface of the mirror substrate.
[0014]
More specifically, in the present invention, the fluorescence measurement device is a SO 2 measurement apparatus using ultraviolet fluorescence method, when the excitation light source is a xenon flash lamp, a spectral mirror, an optical glass available from Schott Corporation SF11 A dielectric multilayer mirror (reflection spectral mirror having a dielectric type high reflection coating on the surface) using (glass classification name) as a mirror substrate can be suitably used. In this dielectric multilayer mirror, light having a wavelength of 220 nm is reliably reflected on the mirror surface, and the mirror substrate (SF11) reliably absorbs light having a wavelength of 400 nm or less, particularly light having a wavelength of 300 to 400 nm. is there.
[0015]
Here, experimental results showing the effects of the present invention will be described. Use in SO 2 measuring apparatus using ultraviolet fluorescence method, as a reflection-type spectral mirror, and if the mirror base material using a dielectric multilayer film mirror is synthetic quartz, the dielectric multilayer film mirror mirror substrate is SF11 Was compared. In the former, light having a wavelength of 300 to 400 nm is reflected and scattered on the back surface of the mirror base material. In the latter, light having a wavelength of 300 to 400 nm is absorbed by the mirror base material.・ No scattering.
[0016]
In this experiment, the amount of stray light of the SO 2 measuring device was compared in terms of SO 2 concentration. As a result, the amount of stray light is 11 μg / L (ppb) when synthetic quartz is used for the mirror base material and 3 μg / L when SF11 is used, and the present invention significantly reduces the disturbance due to stray light. Was confirmed. Conventionally, it has been proposed to use eight reflection-type spectroscopic mirrors to reduce stray light. However, by using a spectroscopic mirror based on SF11, four spectroscopic mirrors can be used with high sensitivity. It was confirmed that sufficient performance as a type of SO 2 measuring device was obtained. Furthermore, SF11 is inexpensive as compared with synthetic quartz, and has also contributed to cost reduction.
[0017]
【The invention's effect】
As described above, according to the fluorescence measurement device of the present invention, it is possible to reduce stray light and perform more accurate measurement.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a conventional SO 2 measuring apparatus using an ultraviolet fluorescent method.
[Explanation of symbols]
2 light source cell 4 spectral cell 6 measuring cell 12 xenon flash lamps 16a to 16d reflective spectroscopic mirror 22 fluorescence detector 25 fluorescence

Claims (4)

励起光源からの励起光を分光用ミラーの表面で反射させるとともに、反射させた励起光を試料ガスに照射し、そのときに発生する蛍光の強度を蛍光検出器で検出する蛍光測定装置において、前記分光用ミラーのミラー基材が、前記蛍光検出器で検出する波長域の光を吸収することを特徴とする蛍光測定装置。In a fluorescence measuring device, which reflects the excitation light from the excitation light source on the surface of the spectroscopic mirror, irradiates the sample gas with the reflected excitation light, and detects the intensity of fluorescence generated at that time with a fluorescence detector, A fluorescence measuring device, wherein a mirror substrate of the spectroscopic mirror absorbs light in a wavelength range detected by the fluorescence detector. 分光用ミラーのミラー基材が光学ガラスまたは樹脂からなることを特徴とする請求項1に記載の蛍光測定装置。The fluorescence measuring device according to claim 1, wherein the mirror base material of the spectroscopic mirror is made of optical glass or resin. 蛍光測定装置が紫外線蛍光方式によるSO測定装置であり、励起光源がキセノンフラッシュランプであり、分光用ミラーの表面で波長220nmの光が反射し、分光用ミラーのミラー基材が波長400nm以下の光を吸収することを特徴とする請求項1または2に記載の蛍光測定装置。Fluorescence measuring apparatus is SO 2 measurement apparatus using ultraviolet fluorescence method, the excitation light source is a xenon flash lamp, wavelength 220nm at the surface of the spectroscopic mirror light is reflected, the mirror substrate of spectroscopic mirror wavelengths below 400nm The fluorescence measurement device according to claim 1, wherein the fluorescence measurement device absorbs light. 分光用ミラーは、光学ガラスからなるミラー基材の表面に誘電体タイプ高反射コーティングを施したものであることを特徴とする請求項3に記載の蛍光測定装置。4. The fluorescence measuring apparatus according to claim 3, wherein the spectroscopic mirror has a mirror type base material made of optical glass and a dielectric type high reflection coating applied to a surface thereof.
JP2003143145A 2003-05-21 2003-05-21 Fluorescence measuring device Expired - Fee Related JP4146761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143145A JP4146761B2 (en) 2003-05-21 2003-05-21 Fluorescence measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143145A JP4146761B2 (en) 2003-05-21 2003-05-21 Fluorescence measuring device

Publications (2)

Publication Number Publication Date
JP2004347394A true JP2004347394A (en) 2004-12-09
JP4146761B2 JP4146761B2 (en) 2008-09-10

Family

ID=33531009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143145A Expired - Fee Related JP4146761B2 (en) 2003-05-21 2003-05-21 Fluorescence measuring device

Country Status (1)

Country Link
JP (1) JP4146761B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069822A (en) * 2003-08-22 2005-03-17 Horiba Ltd Excitation light selecting unit for sulfur dioxide analysis device
JP2012247244A (en) * 2011-05-26 2012-12-13 Fujifilm Corp Fluorescence analysis device and fluorescence analysis method
CN103674915A (en) * 2013-12-10 2014-03-26 河北先河环保科技股份有限公司 Fluorescence reaction detector and sulfur dioxide automatic monitoring device using same
CN106124687A (en) * 2016-08-03 2016-11-16 海安县石油科研仪器有限公司 Harmful substance determinator in the fuel oil that oil prepares
CN106124692A (en) * 2016-08-18 2016-11-16 宁波天邦股份有限公司 A kind of method of crude protein total content in quick mensuration feedstuff
CN108375562A (en) * 2018-03-14 2018-08-07 北京普立泰科仪器有限公司 A kind of mercury detector of high measurement accuracy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069822A (en) * 2003-08-22 2005-03-17 Horiba Ltd Excitation light selecting unit for sulfur dioxide analysis device
JP2012247244A (en) * 2011-05-26 2012-12-13 Fujifilm Corp Fluorescence analysis device and fluorescence analysis method
US8658989B2 (en) 2011-05-26 2014-02-25 Fujifilm Corporation Fluorometric assay apparatus and fluorometric assay method
CN103674915A (en) * 2013-12-10 2014-03-26 河北先河环保科技股份有限公司 Fluorescence reaction detector and sulfur dioxide automatic monitoring device using same
CN106124687A (en) * 2016-08-03 2016-11-16 海安县石油科研仪器有限公司 Harmful substance determinator in the fuel oil that oil prepares
CN106124692A (en) * 2016-08-18 2016-11-16 宁波天邦股份有限公司 A kind of method of crude protein total content in quick mensuration feedstuff
CN108375562A (en) * 2018-03-14 2018-08-07 北京普立泰科仪器有限公司 A kind of mercury detector of high measurement accuracy

Also Published As

Publication number Publication date
JP4146761B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US7304735B2 (en) Broadband wavelength selective filter
WO2021063003A1 (en) Gas spectrum analyzer
JP3287775B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
JP7008792B2 (en) Multilayer film measurement using effective medium approximation
CN109632753B (en) A portable absorbance measuring device and method thereof
KR20070001051A (en) Vacuum ultraviolet reference reflectometer
JPH08178751A (en) Tunable spectrophotometer having acoustic/optical tunable filter
JP2022532324A (en) Strontium tetraborate as an optical coating material
JP2011013167A (en) Spectrofluorometer and sample cell
CN201689050U (en) Fluophotometer capable of detecting light absorption or light transmission
JPH03503454A (en) Optical reader for immunoassays
JP4146761B2 (en) Fluorescence measuring device
CN212111146U (en) Portable Raman Blood Identification System Based on Echelle Gratings
CN210294062U (en) Be applied to atomic fluorescence's background light filter equipment
CN102753949B (en) Spectrophotometer and method for measuring performance thereof
CN111103247A (en) Ultraviolet-visible spectrophotometer
KR100970244B1 (en) Integrating sphere mounted spectrophotometer
CN207946357U (en) Fluorescence excitation device for a fluorescence detector
CN110793954A (en) Portable Raman Blood Identification System Based on Echelle Gratings
JP2022038377A (en) Spectroscopic analyzer, optical system, and method
WO2012142549A1 (en) Laser multi-pass system with cell inside for spectroscopic measurements
JP2001242083A (en) Light intensifying method, light intensifying device, fluorometry using it, and fluorometer
CN114660037B (en) Oil film measurement device and method based on differential Raman composite fluorescence spectroscopy
JPH1019779A (en) Weak fluorescence measuring apparatus
JPH1019763A (en) Spectral cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R150 Certificate of patent or registration of utility model

Ref document number: 4146761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees