[go: up one dir, main page]

JP2004342885A - Light emitting element and light emitting device - Google Patents

Light emitting element and light emitting device Download PDF

Info

Publication number
JP2004342885A
JP2004342885A JP2003138646A JP2003138646A JP2004342885A JP 2004342885 A JP2004342885 A JP 2004342885A JP 2003138646 A JP2003138646 A JP 2003138646A JP 2003138646 A JP2003138646 A JP 2003138646A JP 2004342885 A JP2004342885 A JP 2004342885A
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
light
film
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003138646A
Other languages
Japanese (ja)
Other versions
JP4299580B2 (en
Inventor
Kenji Kasahara
健司 笠原
Yoshinobu Ono
善伸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003138646A priority Critical patent/JP4299580B2/en
Publication of JP2004342885A publication Critical patent/JP2004342885A/en
Application granted granted Critical
Publication of JP4299580B2 publication Critical patent/JP4299580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make preventable breakdown of elements by the static electricity without increase in occupation space and mounting processes. <P>SOLUTION: The light emitting device 1 includes, on a substrate 2, a semiconductor light emitting element K comprising an n-type semiconductor layer 3, an active layer 4, a p-type semiconductor layer 5, and an anode electrode film. A thin film capacitor 8 formed by laminating an insulation film 9 and an electrode film 10 is formed on the anode electrode 6, and the electrode film 10 is connected with the n-type semiconductor layer 3. Consequently, electrostatic breakdown of the semiconductor light emitting device 1 can be prevented through electrically parallel connection of the thin film capacitor 8 and semiconductor light emitting element K. Since the thin film capacitor 8 is formed on the same substrate together closely with the semiconductor light emitting device 1, reduction in size and lower cost may be realized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【特許文献1】
特開2000−216442号公報
【特許文献2】
特開2001−230448号公報
【特許文献3】
特開2002−94121号公報
【0002】
【発明の属する技術分野】
本発明は、基板上に形成された半導体膜を用いた発光素子、およびその発光素子を用いた発光装置に関するものである。
【0003】
【従来の技術】
近年、窒化ガリウム系材料を用いた発光素子は、青色、緑色、または白色発光装置の光源として組み込まれ、製品化されている。この種の発光素子は、窒化ガリウム系化合物半導体を用いた半導体膜、アノード電極及びカソード電極から構成される発光機能部分(以下、本明細書においては「半導体発光素子」と称する)をサファイア基板等の絶縁性の基板上に形成したもので、絶縁基板上に半導体発光素子を形成したLEDチップ(以下、本明細書においては「発光素子」と称する)を適宜のケースに組み込んで発光装置を製作している。
【0004】
以上のように構成されている発光装置を実際に使用する場合、従来より、アノード電極とカソード電極との間の高絶縁性のため、静電気により両電極間に高電圧が印加された場合内部の発光素子が破壊(静電破壊、ESD)されるという問題が生じている。
【0005】
この問題を解決するため、従来においては、発光装置(LEDランプ)の外部の電気回路基板上に、抵抗、コンデンサ、バリスタ等の電子部品を組み込み、発光装置内部の半導体発光素子の静電破壊を防止するようにした構成、又は、発光装置内部において半導体発光素子と並列にダイオードを接続した構成(例えば、特許文献1、特許文献2参照)、あるいは発光装置内部において抵抗を接続した構成(例えば、特許文献3参照)等が提案されている。
【0006】
【発明が解決しようとする課題】
しかし、発光装置の外部に電子部品を実装する構成によると、回路基板上に実装すべき部品点数が増加し、その占有スペースのために回路基板の寸法が大きくなり、また、部品の実装のための工程数が増加するので、装置のコストの増大と寸法の大型化を招くという問題点を有している。また、発光装置内に静電破壊を防止するための部品を組み込む構成によると、極小寸法の抵抗やコンデンサ等を装置内部に実装することとなるので工程が複雑となり、コストの増大を招くという問題点を有している。なお、いずれの場合にも、発光素子に対して個別電子部品を取り付ける構成であるから、製造コストがこの取り付けのために上昇せざるを得ないものである。
【0007】
本発明の目的は、従来技術における上述の問題点を解決することができる静電破壊耐性の大きな発光素子および発光装置を提供することにある。
【0008】
本発明の目的は、付加的な部品を付けることによる占有スペースの増加や実装工程を増加させることがなく、静電気による素子の破壊を防止することができるようにした発光素子およびその発光素子を使用した発光装置を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明では、化合物半導体膜を用いて構成される半導体発光素子が基板上に形成されて成る発光素子において、該半導体発光素子上にその膜状アノード電極又は膜状カソード電極を利用した薄膜コンデンサを設け、薄膜コンデンサと半導体発光素子とが電気的に並列に接続されるように構成したものである。薄膜コンデンサが半導体発光素子と電気的に並列に接続されているため、静電気を原因とする異常な高電圧パルスが半導体発光素子に印加されても、半導体発光素子の静電破壊を防止するとが可能となる。この薄膜コンデンサは半導体発光素子と密着するようにして同一基板上に形成されるので、小型化、低コスト化を図ることができる。
【0010】
請求項1の発明によれば、単結晶性の基板上に半導体発光素子を形成して成る発光素子において、前記基板上に形成された絶縁膜を誘電体とする薄膜コンデンサを具え、前記半導体発光素子と前記薄膜コンデンサとが電気的に並列に設けられていることを特徴とする発光素子が提案される。
【0011】
請求項2の発明によれば、単結晶性の基板上に半導体発光素子が形成されて成る発光素子において、前記半導体発光素子の薄膜電極上に絶縁膜と電極膜とが積層されて成る薄膜コンデンサを具え、該薄膜コンデンサが前記半導体発光素子と電気的に並列接続されていることを特徴とする発光素子が提案される。
【0012】
請求項3の発明によれば、単結晶性の基板上に、N型半導体層と、前記N型半導体層上に形成された活性層と、前記活性層上に形成されたP型半導体層と、前記P型半導体層上に形成された膜状のアノード電極とを備えて成る半導体発光素子が形成されて成る発光素子において、
前記アノード電極上に絶縁膜と透明電極膜とが積層されて成る薄膜コンデンサを具え、前記透明電極膜が前記N型半導体層と接続されていることを特徴とする発光素子および発光装置が提案される。
【0013】
請求項4の発明によれば、請求項1、2又は3の発明において、前記絶縁膜が、チタン酸バリウム、チタン酸ストロンチウム、SBT、BST、PZT、Ta、Hf、Al、SiO、Si、Y、Gd、TiO、ZrO、Laから選ばれた単層膜または積層膜である発光素子が提案される。
【0014】
請求項5の発明によれば、請求項1、2又は3の発明において、前記絶縁膜の比誘電率が20以上である発光素子が提案される。
【0015】
請求項6の発明によれば、請求項1、2又は3の発明において、前記絶縁膜が、立方晶ペロブスカイト構造をもつ誘電体材料である発光素子が提案される。
【0016】
請求項7の発明によれば、請求項3の発明において、前記透明導電膜が、ITO、ATO、FTO、AZO、In、SnO、ZnO、CdO、TiO、TiN、ZrN、HfN、Au、Ag、Pt,Cu、Pd、Al、Crから選ばれた単層膜または積層膜である発光素子が提案される。
【0017】
請求項8の発明によれば、請求項3の発明において、前記アノード電極が、Au、Ni、Pt、Ru、Ti、Pd、Mo、Rhのいずれか一つの元素を主成分とする合金材料若しくは化合物材料である発光素子が提案される。
【0018】
請求項9の発明によれば、請求項1、2又は3の発明において、前記半導体発光素子が、前記基板の基板面に対して側壁テーパー角度が60°以下のメサ形状となっている発光素子が提案される。
【0019】
請求項10の発明によれば、請求項1、2又は3の発明において、前記薄膜コンデンサの静電容量が50pF以上であり、かつ、前記薄膜コンデンサの直流印加電圧4Vにおけるリーク電流が1×10−5A以下である発光素子が提案される。
【0020】
請求項11の発明によれば、請求項1、2又は3の発明において、前記基板が、サファイア基板であり、前記半導体発光素子が3族窒化物半導体から構成されている発光素子が提案される。
【0021】
請求項12の発明によれば、請求項1乃至11のうちのいずれか1つの発光素子を光源として組み込んだ発光装置が提案される。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態の一例について図面を参照して説明する。
【0023】
図1は本発明による発光素子の実施の形態の一例を示す断面図である。発光素子1は、単結晶性の基板2上に半導体発光素子を形成したもので、半導体発光素子は、例えば有機金属熱分解法(MOCVD法)の如き適宜の気相成長法を用いて所要の化合物半導体単結晶薄膜層を積層形成することにより製作でき、その他の必要な絶縁膜、電極膜等は公知の適宜の手段を用いて形成することができる。
【0024】
基板2上には、N型半導体層3、活性層4、P型半導体層5の各層がこの順序で形成されている。これら3つの層を含んで成る半導体発光素子Kはメサ形状にエッチング加工されている。ここでは、N型半導体層3の一部がより薄い厚みの電極形成用部分3Aとなっており、電極形成用部分3Aに隣接する側壁部分は側壁テーパー角度θを有するテーパー面3Bとなっている。ここで、側壁テーパー角度θは、基板2の基板面2Aに対する図示の角度である。テーパー面3BはN型半導体層3のみならず、その上に形成されている活性層4、P型半導体層5にも及んでいる。
【0025】
P型半導体層5の上にはP型半導体層5を外部回路と電気的に接続するためのアノード電極6が形成されている。アノード電極6はP型半導体層5上に薄膜状に形成されている。一方、N型半導体層3の電極形成用部分3A上には、N型半導体層3を外部回路と電気的に接続するためのカソード電極7が形成されている。カソード電極7もまた電極形成用部分3A上に薄膜状に形成されている。
【0026】
基板2上に以上のように構成された半導体発光素子Kは、アノード電極6とカソード電極7との間に電圧を所要の極性にて印加することにより、N型半導体層3から活性層4に電子が注入され、P型半導体層5から活性層4には正孔が注入され、活性層4においてこれらの電子と正孔とが再結合することで発光する。
【0027】
アノード電極6の上には、アノード電極6を一方の電極とする薄膜コンデンサ8が形成されている。この薄膜コンデンサ8は、アノード電極6上に形成されて、絶縁膜9の上にさらに透明な導電膜10を形成し、導電膜10とアノード電極6とによって絶縁膜9を挟んだ形態の極く薄いコンデンサとしたもので、導電膜10が薄膜コンデンサ8の他方の電極となっている。
【0028】
薄膜コンデンサ8は、静電気の作用でアノード電極6とカソード電極7との間に高電圧が印加されても、これにより半導体発光素子が静電破壊されることを有効に防止する目的で設けられたものである。
【0029】
この薄膜コンデンサ8を半導体発光素子と電気的に並列に接続するため、導電膜10がテーパー面3B上に沿ってカソード電極7まで延設されており、導電膜10の端部10Aがカソード電極7と電気的に接続された状態となっている。なお、本実施の形態では、絶縁膜9はテーパー面3Bにまで延びるように形成されており、アノード電極6の端部6Aとテーパー面3Bとを覆っている。これにより導電膜10は、活性層4、P型半導体層5及びアノード電極6と電気的に所要の絶縁状態に保たれている。
【0030】
このように、アノード電極6、絶縁膜9及び導電膜10を積層形成することにより形成された薄膜コンデンサ8がアノード電極6とカソード電極7とに電気的に接続され、薄膜コンデンサ8と半導体発光素子Kとが並列に接続されているので、静電気によりアノード電極とカソード電極との間に高電圧が発生するのを有効に抑えることができ、半導体発光素子Kの静電破壊を有効に防止することができる。
【0031】
薄膜コンデンサ8は半導体製造プロセスを利用して半導体発光素子Kと密着して一体になるよう基板2上に上述の如く形成されるので、薄膜コンデンサ8のための占有スペースは極めて僅かであり、個別部品等の実装工程は不要である。このため、小型化が可能で付加部品の実装工程が不要となり、小型で低コストの発光素子を実現できる。
【0032】
基板2上に形成する半導体発光素子Kは3族窒化物半導体による結晶性半導体膜を用いて構成することができる。この場合には、基板2としてはサファイア基板、SiC基板、Si基板が好適である。また、N型半導体層3はSiをドーピングしたGaN、活性層4はGaNとInGaNの量子井戸構造、P型導電層5はMgをドーピングしたGaNを用いて構成することができる。勿論、本発明はこの構成に限定されるものではなく、例えば基板2をGaAs基板またはInP基板とし、結晶性半導体膜がInAlGaPAs系の半導体発光素子をこの基板上に形成した場合にも適用することができる。
【0033】
また、本発明においては、P型導電層をP型クラッド層/低濃度ドープP型層/高濃度ドープP型層(コンタクト層)の構成(例えば、特開2001−148507号公報に示されている構成)とすることもできる。この場合、低濃度ドープP型層がLED素子の直列抵抗を増加させるため、LEDの作動電圧は若干高くなるが静電気による破壊防止対策を2重に施すことになりより静電気耐性に優れたLED素子となり得る。
【0034】
アノード電極6とカソード電極7の各材料は、各導電型の半導体膜とオーミック性接合となるものを選択すればよい。半導体膜が3族窒化物半導体の場合、アノード電極をAuNiとし、カソード電極をTiAlとすることで良好なオーミック接合が得られる。アノード電極は、このほか、Au、Ni、Pt、Ru、Ti、Pd、Mo、Rhのいずれか一つの元素を主成分とする合金材料若しくは化合物材料を用いて形成することができる。
【0035】
絶縁膜9の材料としては、発光波長における吸収が少ないこと、静電容量を極力大きくとれるように誘電率が高いこと、半導体発光素子動作時のリーク電流が極力少ないこと、という条件の両立可能なものを選択する。例えば、チタン酸バリウム、チタン酸ストロンチウム、SBT、BST、PZT、Ta、Hf、Al、SiO、Si、Y、Gd、TiO、ZrO、Laなどが絶縁膜9の材料として好適である。ここで、絶縁膜9をこれらの材料から選ばれた単層膜または積層膜とすることができる。さらに、絶縁膜9は、立方晶ペロブスカイト構造をもつ誘電体材料とするのが好ましい。
【0036】
透明な導電膜10の材料としては、ITO、ATO、FTO、AZO、In、SnO、ZnO、CdO、TiO、TiN、ZrN、HfN、Au、Ag、Pt, Cu、Pd、Al、Crなどが好適である。ここで、透明な導電膜10をこれらの材料から選ばれた単層膜または積層膜とすることができる。
【0037】
図2は、図1に示した本発明の実施の形態の変形例を示す断面図である。図2の各部のうち図1の各部に対応する部分にはそれらと同一の符号が付されている。図2に示した発光素子20は、薄膜コンデンサ8の他方の電極を構成する透明の導電膜10’がテーパー面3Bに沿って電極形成用部分3Aにまで延設されており、その端部10’AがN型半導体層3を外部回路と接続するために使用されるカソード電極を兼ねている点でのみ図1に示した発光素子1と異なっている。
【0038】
この構成によれば、図1におけるカソード電極7と透明な導電膜10とを別々に形成する必要がなく、透明な導電膜10’の形成のみで済むので、製造工程をより簡単化することができる。
【0039】
図3は、本発明の別の実施の形態を示す断面図である。図3の各部のうち図1の各部に対応する部分にはそれらと同一の符号が付されている。図3に示す発光素子30は、図1の薄膜コンデンサ8の場合と同様にしてカソード電極7の上に薄膜コンデンサ31が形成されている。すなわち、薄膜コンデンサ31は、カソード電極7上に形成された絶縁膜32の上にさらに透明な導電膜33を形成し、導電膜33とカソード電極7とによって絶縁膜32を挟んだ形態の極く薄い薄膜コンデンサとされたもので、カソード電極7がその一方の電極となっており、導電膜33がその他方の電極となっている。
【0040】
絶縁膜32はテーパー面3Bに沿ってN型半導体層3の上方の上端部3Baにまで延設されている。一方、透明な導電膜33も、テーパー面3Bに沿うようにして絶縁膜32上をテーパー面3Bに沿って延設され、上端部3BaからさらにP型半導体層5上にまで延びている。そして、P型半導体層5上に形成された導電膜33の端部33Aが、P型半導体層5を外部回路と電気的に接続するためのアノード電極として働く構成となっている。
【0041】
発光素子30によれば、P型半導体層5の上に透明な導電膜33のみが形成されるので、図1及び図2に示す構成の場合に比べて外部発光効率を改善することができる。また、アノード電極を別工程で形成する必要がないので、工程数の簡素化を図ることができ、コストの低減に役立つ。さらに、薄膜コンデンサ31をテーパー面3Bの麓部に設けるので、発光素子30全体の厚みを薄くすることができる。
【0042】
なお、上記いずれの実施の形態の場合にも、テーパー面3Bの麓部と頂上部との高低差は1μm以上の高さになる場合もある。このような高低差がある段差部に、蒸着法、スパッタ法、CVD法などで絶縁膜または透明導電膜を形成する場合、それらが薄膜であると、側壁テーパー角度θが60°以上では段差を被覆しきれない場合がありうる。その場合には、麓部において透明の導電膜の断線や、透明な導電膜と半導体層との間の短絡などの不具合が起こり得る。したがって、テーパー面3Bのテーパー角度θは60°以下にすることが望ましい。
【0043】
さらに、薄膜コンデンサ8、31のコンデンサ容量が小さすぎると、静電破壊防止という効果を充分に発揮することができない。一方、薄膜コンデンサ8、31の漏洩(リーク)電流が大きすぎると発光素子の消費電力が大きくなるため望ましくない。そのため、静電容量は50pF以上であり、かつ、直流印加電圧4Vにおける漏洩電流が1×10−5A以下であることが望ましい。
【0044】
次に、上述の如くして構成される薄膜コンデンサの容量の確保と絶縁膜の絶縁破壊との関係について説明する。よく知られているように誘電体コンデンサの静電容量Cは、
C=ε’ε(S/t)
ε’:比誘電率
ε:真空の誘電率(8.85E−12F/m)
S:コンデンサ面積
t:誘電体膜厚(電極間距離)
と表される。例えば、GaN系青色LEDの1チップあたりの発光部分面積(アノード電極面積とほぼ等しい)は、200μm×200μm程度である。今、面積200μm×200μmのコンデンサで、コンデンサの設計容量600pFを形成したいとする。コンデンサ面積を増加させれば単純に静電容量は増加するが、コンデンサ占有面積も増加するため望ましくないのでその面積は上記条件とする。
【0045】
図4は誘電体の比誘電率とコンデンサが600pFとなる膜厚との間の関係を示すグラフである。図5は誘電体膜厚と電界強度との間の関係を示すグラフで、直流電圧4V時の電界強度が示されている。図4に示すグラフは、コンデンサの容量を600pF以上にするためには、比誘電率が高い程誘電体膜厚を厚くでき、比誘電率が低い程誘電体膜厚を薄くする必要があることを示している。また、図5に示すグラフは、LEDの動作電圧4Vがコンデンサの電極間に印加された場合、誘電体膜が厚い程電界強度が弱く、誘電体膜が薄い程電界強度が強くなることを示している。これらのグラフにより、誘電率が高ければ高いほど、設計容量とするための誘電体膜厚を厚くすることができ、LED動作時の膜厚にかかる電界強度を小さくすることができることが判る。
【0046】
一方、比誘電率は20以下の場合、600pFにするためには膜厚を118Å以下にする必要がある。このような薄膜では電界強度が3.4MV/cm以上となる。このような電界強度を長時間かけるとほとんどの絶縁膜は、絶縁破壊をおこす。また、膜厚の制御性も薄膜になればなるほど困難になる。したがって、この場合には、絶縁層の比誘電率を20より大きくすることが好ましい。
【0047】
図6は、図1に示した発光素子1を用いて構成された発光装置の実施の形態の一例を示す断面図である。発光装置40は第1リードフレーム41の内端に一体形成された台座部42上に図1に示した発光素子1が固定されている。第1リードフレーム41に対して第2リードフレーム43が略平行となるように設けられており、発光素子1のカソード電極7が第1接続導体44によって台座部42に電気的に接続され、そのアノード電極6が第2接続導体45になって第2リードフレーム43に電気的に接続されている。そして、第1リードフレーム41及び第2リードフレーム43の内端部は透明な熱硬化性樹脂46によって封されている。
【0048】
したがって、第1リードフレーム41と第2リードフレーム43との間に電圧を印加することにより発光素子1において発光が得られ、発光素子1からの光は透明な熱硬化性樹脂46を通って外部に放出される。静電破壊防止用のコンデンサは発光素子1内に薄膜コンデンサとして予め上述の如くして組み込まれているので、外付部品を付加する必要がなく組立工程が複雑化することはない。また、発光素子1は薄膜コンデンサを半導体発光素子と並列に接続した構成であるから、第1リードフレーム41と第2リードフレーム43との間に印加する駆動電圧を高くする必要はなく、低電圧駆動が可能であり、消費電力も少なくて済む。
【0049】
【実施例】
以下に本発明の一実施例を説明するが、本発明はこれによって限定されるものではない。
【0050】
図1に示す構造の発光素子を次のように作製した。基板2としてサファイア基板を用い、サファイア基板上に、MOCVD法によりSiドープGaNをN型半導体層3として、GaN\InGaN多重量子井戸を活性層4として、MgドープGaNをP型半導体層5として形成し、青色発光ダイオード素子を形成した。この青色発光ダイオード素子の上にスピンコート法で成膜したチタン酸バリウム膜を誘電体とする薄膜コンデンサを形成し、青色発光ダイオード素子と薄膜コンデンサとが電気的に並列接続されるようにした。薄膜コンデンサの容量は260pFであった。
【0051】
図7は、発光素子の静電気放電に対する耐性を試験するための回路図である。ここでVoは可変直流電源、Rp、Rは抵抗器、Cはコンデンサ、Swは切替スイッチである。試験は次のようにして行った。静電気帯電した装置または治具などから、発光素子1に静電気放電するマシンモデル(R=0Ω、C=200pF)条件とした。図7中の可変直流電源Voの電圧をある値に設定し、切替スイッチSwを実線で示されるように切り替えて抵抗器Rpを介してコンデンサCに充電した後、切替スイッチSwを点線で示されるように切り替えて、発光素子1に対して放電する。これを3回繰り返した後、青色発光ダイオード素子の電圧−電流特性を評価した。青色発光ダイオード素子の電圧−電流特性が変化することで素子が破壊されたか否かの判別が可能である。
【0052】
従来構造の青色発光ダイオード素子では、60Vで試験した素子の50%が破壊した。一方、260pFの薄膜コンデンサが青色発光ダイオード素子に並列に接続された実施例の場合、50%の素子が破壊したのは150Vであった。つまり、静電破壊に至る耐圧が90V改善されていることが確認された。
【0053】
【発明の効果】
本発明によれば、静電気による半導体発光素子の破壊防止が可能であり、かつ、付加的な部品を付けることによる占有スペースの増加や実装工程を増加させることなく、発光素子およびその発光素子を光源として組み込んだ発光装置を提供することができる。
【図面の簡単な説明】
【図1】本発明による発光素子の実施の形態の一例を示す断面図。
【図2】図1に示した実施の形態の変形例を示す断面図。
【図3】本発明による発光素子の他の実施の形態を示す断面図。
【図4】誘電体の比誘電率とコンデンサが600pFとなる膜厚との間の関係を示すグラフ。
【図5】誘電体膜厚と電界強度との間の関係を示すグラフ。
【図6】本発明による発光装置の実施の形態の一例を示す断面図。
【図7】発光素子の静電気放電に対する耐性を試験するための回路図。
【符号の説明】
1、20、30 発光素子
2 基板
3 N型半導体層
3A 電極形成用部分
3B テーパー面
4 活性層
5 P型半導体層
6 アノード電極
7 カソード電極
8 薄膜コンデンサ
9、32 絶縁膜
10、33 導電膜
θ 側壁テーパー角度
K 半導体発光素子
[0001]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-216442 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-230448 [Patent Document 3]
JP-A-2002-94121
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting element using a semiconductor film formed on a substrate and a light emitting device using the light emitting element.
[0003]
[Prior art]
In recent years, light-emitting elements using gallium nitride-based materials have been incorporated as light sources for blue, green, or white light-emitting devices, and have been commercialized. This type of light emitting device includes a sapphire substrate or the like having a light emitting function portion (hereinafter, referred to as “semiconductor light emitting device” in the present specification) including a semiconductor film using a gallium nitride-based compound semiconductor, an anode electrode, and a cathode electrode. A light emitting device is manufactured by incorporating an LED chip (hereinafter, referred to as "light emitting element" in the present specification) having a semiconductor light emitting element formed on an insulating substrate into an appropriate case. are doing.
[0004]
When the light emitting device configured as described above is actually used, conventionally, when a high voltage is applied between both electrodes due to static electricity due to high insulation between the anode electrode and the cathode electrode, the internal There is a problem that the light emitting element is destroyed (electrostatic breakdown, ESD).
[0005]
Conventionally, in order to solve this problem, electronic components such as resistors, capacitors, and varistors are mounted on an electric circuit board outside a light emitting device (LED lamp) to prevent electrostatic breakdown of a semiconductor light emitting element inside the light emitting device. A configuration in which a diode is connected in parallel with the semiconductor light emitting element inside the light emitting device (for example, see Patent Documents 1 and 2), or a configuration in which a resistor is connected inside the light emitting device (for example, Patent Document 3) has been proposed.
[0006]
[Problems to be solved by the invention]
However, according to the configuration in which the electronic components are mounted outside the light emitting device, the number of components to be mounted on the circuit board increases, and the size of the circuit board increases due to the occupied space. However, since the number of steps increases, there is a problem that the cost of the apparatus is increased and the size is increased. In addition, according to the configuration in which components for preventing electrostatic breakdown are incorporated in the light emitting device, since a resistor or a capacitor having an extremely small dimension is mounted inside the device, the process becomes complicated, and the cost is increased. Have a point. In any case, since the individual electronic components are attached to the light emitting element, the manufacturing cost must be increased due to the attachment.
[0007]
An object of the present invention is to provide a light-emitting element and a light-emitting device with high electrostatic breakdown resistance, which can solve the above-described problems in the related art.
[0008]
An object of the present invention is to use a light emitting element and a light emitting element capable of preventing the destruction of the element due to static electricity without increasing the occupied space and the mounting process by adding additional components. To provide a light emitting device.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a light-emitting element in which a semiconductor light-emitting element formed using a compound semiconductor film is formed on a substrate, wherein the film-shaped anode electrode or the film-shaped cathode is provided on the semiconductor light-emitting element. A thin-film capacitor using electrodes is provided so that the thin-film capacitor and the semiconductor light-emitting element are electrically connected in parallel. Since the thin-film capacitor is electrically connected in parallel with the semiconductor light-emitting element, it is possible to prevent electrostatic breakdown of the semiconductor light-emitting element even if an abnormal high-voltage pulse caused by static electricity is applied to the semiconductor light-emitting element It becomes. Since this thin film capacitor is formed on the same substrate so as to be in close contact with the semiconductor light emitting element, it is possible to reduce the size and cost.
[0010]
According to the first aspect of the present invention, there is provided a light emitting device comprising a semiconductor light emitting device formed on a single crystal substrate, comprising a thin film capacitor having an insulating film formed on the substrate as a dielectric, There is proposed a light emitting device, wherein the device and the thin film capacitor are provided electrically in parallel.
[0011]
According to the invention of claim 2, in a light emitting device in which a semiconductor light emitting device is formed on a single crystal substrate, a thin film capacitor in which an insulating film and an electrode film are laminated on a thin film electrode of the semiconductor light emitting device A light emitting device is proposed, wherein the thin film capacitor is electrically connected in parallel with the semiconductor light emitting device.
[0012]
According to the invention of claim 3, an N-type semiconductor layer, an active layer formed on the N-type semiconductor layer, and a P-type semiconductor layer formed on the active layer are formed on a single-crystal substrate. And a film-shaped anode electrode formed on the P-type semiconductor layer.
A light-emitting element and a light-emitting device are provided, comprising a thin-film capacitor in which an insulating film and a transparent electrode film are laminated on the anode electrode, wherein the transparent electrode film is connected to the N-type semiconductor layer. You.
[0013]
According to the invention of claim 4, in the invention of claim 1, 2 or 3, wherein the insulating film, barium titanate, strontium titanate, SBT, BST, PZT, Ta 2 O 5, Hf 2 O 5, Al There is proposed a light-emitting element that is a single-layer film or a stacked film selected from 2 O 3 , SiO 2 , Si 3 N 4 , Y 2 O 3 , Gd 2 O 3 , TiO 2 , ZrO 2 , and La 2 O 3. .
[0014]
According to a fifth aspect of the present invention, there is provided a light emitting device according to the first, second or third aspect, wherein the relative permittivity of the insulating film is 20 or more.
[0015]
According to a sixth aspect of the present invention, there is provided the light emitting device according to the first, second or third aspect, wherein the insulating film is a dielectric material having a cubic perovskite structure.
[0016]
According to the invention of claim 7, in the invention of claim 3, wherein the transparent conductive film, ITO, ATO, FTO, AZO , In 2 O 3, SnO 2, ZnO, CdO, TiO 2, TiN, ZrN, HfN , Au, Ag, Pt, Cu, Pd, Al, and Cr are proposed.
[0017]
According to an eighth aspect of the present invention, in the third aspect, the anode electrode is made of an alloy material containing any one of Au, Ni, Pt, Ru, Ti, Pd, Mo, and Rh as a main component or A light emitting device that is a compound material is proposed.
[0018]
According to a ninth aspect of the present invention, in the invention of the first, second or third aspect, the semiconductor light emitting element has a mesa shape in which a sidewall taper angle with respect to a substrate surface of the substrate is 60 ° or less. Is proposed.
[0019]
According to the tenth aspect, in the first, second, or third aspect, the capacitance of the thin film capacitor is 50 pF or more, and the leakage current at a DC applied voltage of 4 V of the thin film capacitor is 1 × 10 A light emitting element having a current of -5 A or less is proposed.
[0020]
According to an eleventh aspect of the present invention, there is provided a light emitting device according to the first, second or third aspect, wherein the substrate is a sapphire substrate, and the semiconductor light emitting device is made of a group III nitride semiconductor. .
[0021]
According to a twelfth aspect of the present invention, there is provided a light emitting device incorporating any one of the first to eleventh light emitting elements as a light source.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a sectional view showing an example of an embodiment of a light emitting device according to the present invention. The light-emitting device 1 is a device in which a semiconductor light-emitting device is formed on a single-crystal substrate 2. The semiconductor light-emitting device is formed by a required vapor phase growth method such as an organic metal thermal decomposition method (MOCVD method). It can be manufactured by laminating a compound semiconductor single crystal thin film layer, and other necessary insulating films, electrode films, and the like can be formed using known appropriate means.
[0024]
On the substrate 2, respective layers of an N-type semiconductor layer 3, an active layer 4, and a P-type semiconductor layer 5 are formed in this order. The semiconductor light emitting device K including these three layers is etched in a mesa shape. Here, a part of the N-type semiconductor layer 3 is a thinner electrode forming portion 3A, and a side wall portion adjacent to the electrode forming portion 3A is a tapered surface 3B having a side wall taper angle θ. . Here, the sidewall taper angle θ is the illustrated angle of the substrate 2 with respect to the substrate surface 2A. The tapered surface 3B extends not only to the N-type semiconductor layer 3 but also to the active layer 4 and the P-type semiconductor layer 5 formed thereon.
[0025]
On the P-type semiconductor layer 5, an anode electrode 6 for electrically connecting the P-type semiconductor layer 5 to an external circuit is formed. The anode electrode 6 is formed on the P-type semiconductor layer 5 in a thin film shape. On the other hand, on the electrode forming portion 3A of the N-type semiconductor layer 3, a cathode electrode 7 for electrically connecting the N-type semiconductor layer 3 to an external circuit is formed. The cathode electrode 7 is also formed as a thin film on the electrode forming portion 3A.
[0026]
The semiconductor light emitting device K configured as described above on the substrate 2 is applied from the N-type semiconductor layer 3 to the active layer 4 by applying a voltage between the anode electrode 6 and the cathode electrode 7 with a required polarity. Electrons are injected, holes are injected from the P-type semiconductor layer 5 into the active layer 4, and the electrons and holes are recombined in the active layer 4 to emit light.
[0027]
On the anode electrode 6, a thin film capacitor 8 having the anode electrode 6 as one electrode is formed. The thin film capacitor 8 is formed on the anode electrode 6, further forms a transparent conductive film 10 on the insulating film 9, and has an extremely small form in which the insulating film 9 is sandwiched between the conductive film 10 and the anode electrode 6. This is a thin capacitor, and the conductive film 10 is the other electrode of the thin film capacitor 8.
[0028]
The thin film capacitor 8 is provided for the purpose of effectively preventing the semiconductor light emitting element from being electrostatically damaged even when a high voltage is applied between the anode electrode 6 and the cathode electrode 7 by the action of static electricity. Things.
[0029]
In order to electrically connect the thin film capacitor 8 to the semiconductor light emitting device in parallel, the conductive film 10 extends along the tapered surface 3B to the cathode electrode 7, and the end 10A of the conductive film 10 is connected to the cathode electrode 7. And it is in a state of being electrically connected to. In the present embodiment, the insulating film 9 is formed so as to extend to the tapered surface 3B, and covers the end 6A of the anode electrode 6 and the tapered surface 3B. As a result, the conductive film 10 is kept in a required insulating state electrically with the active layer 4, the P-type semiconductor layer 5, and the anode electrode 6.
[0030]
Thus, the thin film capacitor 8 formed by laminating the anode electrode 6, the insulating film 9, and the conductive film 10 is electrically connected to the anode electrode 6 and the cathode electrode 7, and the thin film capacitor 8 and the semiconductor light emitting device Since K is connected in parallel, it is possible to effectively suppress the generation of a high voltage between the anode electrode and the cathode electrode due to static electricity, and to effectively prevent electrostatic breakdown of the semiconductor light emitting device K. Can be.
[0031]
Since the thin film capacitor 8 is formed on the substrate 2 as described above so as to be tightly integrated with the semiconductor light emitting element K by utilizing a semiconductor manufacturing process, the space occupied by the thin film capacitor 8 is extremely small. No component mounting process is required. For this reason, miniaturization is possible, and a mounting process of additional components is not required, so that a small-sized and low-cost light emitting element can be realized.
[0032]
The semiconductor light emitting device K formed on the substrate 2 can be configured using a crystalline semiconductor film made of a group III nitride semiconductor. In this case, the substrate 2 is preferably a sapphire substrate, a SiC substrate, or a Si substrate. Further, the N-type semiconductor layer 3 can be formed using GaN doped with Si, the active layer 4 can be formed using a quantum well structure of GaN and InGaN, and the P-type conductive layer 5 can be formed using GaN doped with Mg. Of course, the present invention is not limited to this configuration. For example, the present invention can be applied to a case where the substrate 2 is a GaAs substrate or an InP substrate, and a crystalline semiconductor film is formed of an InAlGaPAs-based semiconductor light emitting element on this substrate. Can be.
[0033]
Further, in the present invention, the P-type conductive layer is constituted by a P-type cladding layer / a lightly doped P-type layer / a highly-doped P-type layer (contact layer) (for example, disclosed in JP-A-2001-148507). Configuration). In this case, since the lightly doped P-type layer increases the series resistance of the LED element, the operating voltage of the LED is slightly increased, but the measures for preventing destruction due to static electricity are doubled, so that the LED element which is more resistant to static electricity. Can be
[0034]
The material of the anode electrode 6 and the material of the cathode electrode 7 may be selected so as to form an ohmic junction with the semiconductor film of each conductivity type. When the semiconductor film is a group III nitride semiconductor, a good ohmic junction can be obtained by using AuNi for the anode electrode and TiAl for the cathode electrode. In addition, the anode electrode can be formed using an alloy material or a compound material containing any one of Au, Ni, Pt, Ru, Ti, Pd, Mo, and Rh as a main component.
[0035]
The material of the insulating film 9 is compatible with the conditions that absorption at the emission wavelength is small, dielectric constant is high so that the capacitance can be as large as possible, and leak current during operation of the semiconductor light emitting element is as small as possible. Choose one. For example, barium titanate, strontium titanate, SBT, BST, PZT, Ta 2 O 5, Hf 2 O 5, Al 2 O 3, SiO 2, Si 3 N 4, Y 2 O 3, Gd 2 O 3, TiO 2 , ZrO 2 , La 2 O 3 and the like are suitable as the material of the insulating film 9. Here, the insulating film 9 can be a single-layer film or a laminated film selected from these materials. Further, the insulating film 9 is preferably made of a dielectric material having a cubic perovskite structure.
[0036]
Examples of the material of the transparent conductive film 10 include ITO, ATO, FTO, AZO, In 2 O 3 , SnO 2 , ZnO, CdO, TiO 2 , TiN, ZrN, HfN, Au, Ag, Pt, Cu, Pd, and Al. , Cr and the like are preferred. Here, the transparent conductive film 10 can be a single-layer film or a laminated film selected from these materials.
[0037]
FIG. 2 is a sectional view showing a modification of the embodiment of the present invention shown in FIG. 2 corresponding to those in FIG. 1 are denoted by the same reference numerals. In the light emitting element 20 shown in FIG. 2, a transparent conductive film 10 'constituting the other electrode of the thin film capacitor 8 is extended along the tapered surface 3B to the electrode forming portion 3A, and the end 10 A differs from the light emitting device 1 shown in FIG. 1 only in that 'A also serves as a cathode electrode used to connect the N-type semiconductor layer 3 to an external circuit.
[0038]
According to this configuration, it is not necessary to separately form the cathode electrode 7 and the transparent conductive film 10 in FIG. 1, and only the formation of the transparent conductive film 10 'is sufficient, so that the manufacturing process can be further simplified. it can.
[0039]
FIG. 3 is a cross-sectional view showing another embodiment of the present invention. 3 that are the same as those in FIG. 1 are denoted by the same reference numerals. The light emitting element 30 shown in FIG. 3 has a thin film capacitor 31 formed on the cathode electrode 7 in the same manner as the thin film capacitor 8 of FIG. That is, in the thin film capacitor 31, a transparent conductive film 33 is further formed on the insulating film 32 formed on the cathode electrode 7, and the insulating film 32 is sandwiched between the conductive film 33 and the cathode electrode 7. It is a thin film capacitor, in which the cathode electrode 7 is one electrode and the conductive film 33 is the other electrode.
[0040]
The insulating film 32 extends to the upper end 3Ba above the N-type semiconductor layer 3 along the tapered surface 3B. On the other hand, the transparent conductive film 33 also extends on the insulating film 32 along the tapered surface 3B along the tapered surface 3B, and further extends from the upper end 3Ba to the P-type semiconductor layer 5. Then, the end 33A of the conductive film 33 formed on the P-type semiconductor layer 5 functions as an anode electrode for electrically connecting the P-type semiconductor layer 5 to an external circuit.
[0041]
According to the light emitting element 30, since only the transparent conductive film 33 is formed on the P-type semiconductor layer 5, external luminous efficiency can be improved as compared with the configuration shown in FIGS. Further, since it is not necessary to form the anode electrode in a separate step, the number of steps can be simplified, which contributes to cost reduction. Further, since the thin film capacitor 31 is provided at the foot of the tapered surface 3B, the thickness of the entire light emitting element 30 can be reduced.
[0042]
In any of the above embodiments, the height difference between the foot and the top of the tapered surface 3B may be as high as 1 μm or more. In the case where an insulating film or a transparent conductive film is formed on a step portion having such a height difference by a vapor deposition method, a sputtering method, a CVD method, or the like, when the insulating film or the transparent conductive film is a thin film, the step is formed when the side wall taper angle θ is 60 ° or more. It may not be possible to completely cover. In that case, problems such as disconnection of the transparent conductive film at the foot or short-circuiting between the transparent conductive film and the semiconductor layer may occur. Therefore, it is desirable that the taper angle θ of the tapered surface 3B be 60 ° or less.
[0043]
Further, if the capacitances of the thin film capacitors 8 and 31 are too small, the effect of preventing electrostatic breakdown cannot be sufficiently exhibited. On the other hand, if the leakage current of the thin film capacitors 8 and 31 is too large, the power consumption of the light emitting element increases, which is not desirable. Therefore, it is desirable that the capacitance is 50 pF or more and the leakage current at a DC applied voltage of 4 V is 1 × 10 −5 A or less.
[0044]
Next, the relationship between securing the capacity of the thin film capacitor configured as described above and dielectric breakdown of the insulating film will be described. As is well known, the capacitance C of a dielectric capacitor is
C = ε′ε 0 (S / t)
ε ′: relative dielectric constant ε 0 : dielectric constant in vacuum (8.85E-12F / m)
S: capacitor area t: dielectric film thickness (distance between electrodes)
It is expressed as For example, the light emitting portion area per chip of the GaN-based blue LED (substantially equal to the anode electrode area) is about 200 μm × 200 μm. Now, it is assumed that a capacitor having an area of 200 μm × 200 μm is required to have a design capacitance of 600 pF. If the area of the capacitor is increased, the capacitance simply increases, but the area occupied by the capacitor also increases, which is not desirable.
[0045]
FIG. 4 is a graph showing the relationship between the relative permittivity of the dielectric and the film thickness at which the capacitor becomes 600 pF. FIG. 5 is a graph showing the relationship between the dielectric film thickness and the electric field strength, showing the electric field strength at a DC voltage of 4V. The graph shown in FIG. 4 indicates that in order to increase the capacitance of the capacitor to 600 pF or more, the dielectric film thickness can be increased as the relative dielectric constant increases, and the dielectric film thickness needs to be decreased as the relative dielectric constant decreases. Is shown. Also, the graph shown in FIG. 5 shows that when the operating voltage of the LED of 4 V is applied between the electrodes of the capacitor, the electric field intensity is weaker as the dielectric film is thicker, and the electric field intensity is stronger as the dielectric film is thinner. ing. From these graphs, it can be seen that the higher the dielectric constant, the thicker the dielectric film thickness for achieving the design capacity, and the smaller the electric field intensity on the film thickness during LED operation.
[0046]
On the other hand, when the relative dielectric constant is 20 or less, the film thickness needs to be 118 ° or less to achieve 600 pF. Such a thin film has an electric field strength of 3.4 MV / cm or more. When such an electric field strength is applied for a long time, most of the insulating films cause dielectric breakdown. Also, the controllability of the film thickness becomes more difficult as the film becomes thinner. Therefore, in this case, it is preferable that the relative permittivity of the insulating layer be larger than 20.
[0047]
FIG. 6 is a cross-sectional view illustrating an example of an embodiment of a light emitting device configured using the light emitting element 1 illustrated in FIG. In the light emitting device 40, the light emitting element 1 shown in FIG. 1 is fixed on a pedestal portion 42 integrally formed on the inner end of the first lead frame 41. The second lead frame 43 is provided so as to be substantially parallel to the first lead frame 41, and the cathode electrode 7 of the light emitting element 1 is electrically connected to the pedestal part 42 by the first connection conductor 44. The anode electrode 6 serves as a second connection conductor 45 and is electrically connected to the second lead frame 43. The inner ends of the first lead frame 41 and the second lead frame 43 are sealed with a transparent thermosetting resin 46.
[0048]
Therefore, light emission is obtained in the light emitting element 1 by applying a voltage between the first lead frame 41 and the second lead frame 43, and light from the light emitting element 1 passes through the transparent thermosetting resin 46 to the outside. Will be released. Since the capacitor for preventing electrostatic destruction is incorporated in the light emitting element 1 in advance as a thin film capacitor as described above, there is no need to add external parts, and the assembling process is not complicated. Further, since the light emitting element 1 has a configuration in which a thin film capacitor is connected in parallel with the semiconductor light emitting element, it is not necessary to increase the driving voltage applied between the first lead frame 41 and the second lead frame 43, Driving is possible and power consumption is low.
[0049]
【Example】
Hereinafter, an example of the present invention will be described, but the present invention is not limited thereto.
[0050]
A light emitting device having the structure shown in FIG. 1 was manufactured as follows. A sapphire substrate is used as the substrate 2. On the sapphire substrate, Si-doped GaN is formed as an N-type semiconductor layer 3, a GaN\InGaN multiple quantum well is formed as an active layer 4, and Mg-doped GaN is formed as a P-type semiconductor layer 5 by MOCVD. Then, a blue light emitting diode element was formed. On this blue light emitting diode element, a thin film capacitor using a barium titanate film formed by spin coating as a dielectric was formed, and the blue light emitting diode element and the thin film capacitor were electrically connected in parallel. The capacitance of the thin film capacitor was 260 pF.
[0051]
FIG. 7 is a circuit diagram for testing the resistance of the light emitting element to electrostatic discharge. Here, Vo is a variable DC power supply, Rp and R are resistors, C is a capacitor, and Sw is a changeover switch. The test was performed as follows. A machine model (R = 0Ω, C = 200 pF) condition for electrostatic discharge to the light emitting element 1 from an electrostatically charged device or jig was used. After setting the voltage of the variable DC power supply Vo in FIG. 7 to a certain value and switching the changeover switch Sw as shown by a solid line to charge the capacitor C via the resistor Rp, the changeover switch Sw is shown by a dotted line. And the light emitting element 1 is discharged. After repeating this three times, the voltage-current characteristics of the blue light emitting diode device were evaluated. A change in the voltage-current characteristics of the blue light emitting diode element makes it possible to determine whether the element has been destroyed.
[0052]
In the conventional blue light emitting diode device, 50% of the devices tested at 60 V failed. On the other hand, in the case of the embodiment in which the 260 pF thin film capacitor was connected in parallel with the blue light emitting diode element, 50% of the elements were destroyed at 150 V. That is, it was confirmed that the withstand voltage to electrostatic breakdown was improved by 90V.
[0053]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the destruction of the semiconductor light emitting element by static electricity is possible, and the light emitting element and the light emitting element can be used as a light source without increasing the occupied space and the mounting process by attaching additional components. A light emitting device incorporated as a light emitting device can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of an embodiment of a light-emitting element according to the present invention.
FIG. 2 is a sectional view showing a modification of the embodiment shown in FIG. 1;
FIG. 3 is a sectional view showing another embodiment of the light emitting device according to the present invention.
FIG. 4 is a graph showing the relationship between the relative dielectric constant of a dielectric and the film thickness at which the capacitor becomes 600 pF.
FIG. 5 is a graph showing a relationship between a dielectric film thickness and an electric field intensity.
FIG. 6 is a cross-sectional view illustrating an example of an embodiment of a light emitting device according to the present invention.
FIG. 7 is a circuit diagram for testing resistance of a light emitting element to electrostatic discharge.
[Explanation of symbols]
1, 20, 30 Light-emitting element 2 Substrate 3 N-type semiconductor layer 3A Electrode forming portion 3B Tapered surface 4 Active layer 5 P-type semiconductor layer 6 Anode electrode 7 Cathode electrode 8 Thin film capacitor 9, 32 Insulating film 10, 33 Conducting film θ Side wall taper angle K Semiconductor light emitting device

Claims (12)

単結晶性の基板上に半導体発光素子を形成して成る発光素子において、前記基板上に形成された絶縁膜を誘電体とする薄膜コンデンサを具え、前記半導体発光素子と前記薄膜コンデンサとが電気的に並列に設けられていることを特徴とする発光素子。A light-emitting element formed by forming a semiconductor light-emitting element on a single-crystal substrate, comprising a thin-film capacitor having an insulating film formed on the substrate as a dielectric, wherein the semiconductor light-emitting element and the thin-film capacitor are electrically connected. A light-emitting element, which is provided in parallel to the light-emitting element. 単結晶性の基板上に半導体発光素子が形成されて成る発光素子において、前記半導体発光素子の薄膜電極上に絶縁膜と電極膜とが積層されて成る薄膜コンデンサを具え、該薄膜コンデンサが前記半導体発光素子と電気的に並列接続されていることを特徴とする発光素子。A light emitting device comprising a semiconductor light emitting device formed on a single crystal substrate, comprising a thin film capacitor comprising an insulating film and an electrode film laminated on a thin film electrode of the semiconductor light emitting device, wherein the thin film capacitor is A light-emitting element which is electrically connected in parallel with the light-emitting element. 単結晶性の基板上に、N型半導体層と、前記N型半導体層上に形成された活性層と、前記活性層上に形成されたP型半導体層と、前記P型半導体層上に形成された膜状のアノード電極とを備えて成る半導体発光素子が形成されて成る発光素子において、
前記アノード電極上に絶縁膜と透明電極膜とが積層されて成る薄膜コンデンサを具え、前記透明電極膜が前記N型半導体層と接続されていることを特徴とする発光素子および発光装置。
An N-type semiconductor layer, an active layer formed on the N-type semiconductor layer, a P-type semiconductor layer formed on the active layer, and a P-type semiconductor layer formed on the single-crystal substrate A light-emitting element formed by forming a semiconductor light-emitting element comprising a film-shaped anode electrode,
A light-emitting element and a light-emitting device, comprising: a thin-film capacitor having an insulating film and a transparent electrode film laminated on the anode electrode, wherein the transparent electrode film is connected to the N-type semiconductor layer.
前記絶縁膜が、チタン酸バリウム、チタン酸ストロンチウム、SBT、BST、PZT、Ta、Hf、Al、SiO、Si、Y、Gd、TiO、ZrO、Laから選ばれた単層膜または積層膜である請求項1、2又は3記載の発光素子。Wherein the insulating film is, barium titanate, strontium titanate, SBT, BST, PZT, Ta 2 O 5, Hf 2 O 5, Al 2 O 3, SiO 2, Si 3 N 4, Y 2 O 3, Gd 2 O 3, TiO 2, ZrO 2, La 2 light emitting device according to claim 1, 2 or 3, wherein O 3 is a single layer film or a laminated film selected from. 前記絶縁膜の比誘電率が20以上である請求項1、2又は3記載の発光素子。The light emitting device according to claim 1, 2 or 3, wherein a relative dielectric constant of the insulating film is 20 or more. 前記絶縁膜が、立方晶ペロブスカイト構造をもつ誘電体材料である請求項1、2又は3記載の発光素子。4. The light emitting device according to claim 1, wherein the insulating film is a dielectric material having a cubic perovskite structure. 前記透明導電膜が、ITO、ATO、FTO、AZO、In、SnO、ZnO、CdO、TiO、TiN、ZrN、HfN、Au、Ag、Pt,Cu、Pd、Al、Crから選ばれた単層膜または積層膜である請求項3記載の発光素子。The transparent conductive film is selected from ITO, ATO, FTO, AZO, In 2 O 3 , SnO 2 , ZnO, CdO, TiO 2 , TiN, ZrN, HfN, Au, Ag, Pt, Cu, Pd, Al, and Cr. The light emitting device according to claim 3, wherein the light emitting device is a single layer film or a laminated film. 前記アノード電極が、Au、Ni、Pt、Ru、Ti、Pd、Mo、Rhのいずれか一つの元素を主成分とする合金材料若しくは化合物材料である請求項3記載の発光素子。The light emitting device according to claim 3, wherein the anode electrode is an alloy material or a compound material containing any one of Au, Ni, Pt, Ru, Ti, Pd, Mo, and Rh as a main component. 前記半導体発光素子が、前記基板の基板面に対して側壁テーパー角度が60°以下のメサ形状となっている請求項1、2又は3記載の発光素子。4. The light emitting device according to claim 1, wherein the semiconductor light emitting device has a mesa shape having a side wall taper angle of 60 ° or less with respect to a substrate surface of the substrate. 前記薄膜コンデンサの静電容量が50pF以上であり、かつ、前記薄膜コンデンサの直流印加電圧4Vにおけるリーク電流が1×10−5A以下である請求項1、2又は3記載の発光素子。4. The light emitting device according to claim 1, wherein the capacitance of the thin film capacitor is 50 pF or more, and the leak current at a DC applied voltage of 4 V of the thin film capacitor is 1 × 10 −5 A or less. 前記基板が、サファイア基板であり、前記半導体発光素子が3族窒化物半導体から構成されている請求項1、2又は3記載の発光素子。4. The light emitting device according to claim 1, wherein the substrate is a sapphire substrate, and the semiconductor light emitting device is made of a group III nitride semiconductor. 請求項1乃至11のうちのいずれか1つの発光素子を光源として組み込んだ発光装置。A light-emitting device incorporating the light-emitting element according to any one of claims 1 to 11 as a light source.
JP2003138646A 2003-05-16 2003-05-16 Light emitting element and light emitting device Expired - Fee Related JP4299580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138646A JP4299580B2 (en) 2003-05-16 2003-05-16 Light emitting element and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138646A JP4299580B2 (en) 2003-05-16 2003-05-16 Light emitting element and light emitting device

Publications (2)

Publication Number Publication Date
JP2004342885A true JP2004342885A (en) 2004-12-02
JP4299580B2 JP4299580B2 (en) 2009-07-22

Family

ID=33527954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138646A Expired - Fee Related JP4299580B2 (en) 2003-05-16 2003-05-16 Light emitting element and light emitting device

Country Status (1)

Country Link
JP (1) JP4299580B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122292A1 (en) * 2004-06-10 2005-12-22 Epivalley Co., Ltd. Iii-nitride semiconductor light emitting device
KR100649642B1 (en) 2005-05-31 2006-11-27 삼성전기주식회사 Compound semiconductor light emitting device having an ESD protection device and method of manufacturing the same
JP2007294981A (en) * 2006-04-21 2007-11-08 Philips Lumileds Lightng Co Llc Semiconductor light emitting device with integrated electronic component
WO2008064587A1 (en) * 2006-12-01 2008-06-05 Hong Kong Applied Science And Technology Research Instituite Co. Ltd Light emitting diode device
JP2009060148A (en) * 2008-12-15 2009-03-19 Oki Data Corp Display device
JP2009071333A (en) * 2008-12-15 2009-04-02 Oki Data Corp Display device
WO2009075551A3 (en) * 2007-12-13 2009-09-11 Lg Innotek Co., Ltd Semiconductor light emitting device and method of fabricating the same
US7645689B2 (en) 2005-01-19 2010-01-12 Samsung Electro-Mechanics Co., Ltd. Gallium nitride-based light emitting device having ESD protection capacity and method for manufacturing the same
KR100946758B1 (en) * 2007-11-09 2010-03-11 (주)더리즈 Light emitting diode device and manufacturing method thereof
US7999282B2 (en) 2008-10-27 2011-08-16 Lg Innotek Co., Ltd. Semiconductor light emitting device
KR20110093480A (en) * 2010-02-12 2011-08-18 엘지이노텍 주식회사 Light emitting device, manufacturing method and light emitting device package
CN102201517A (en) * 2010-03-23 2011-09-28 Lg伊诺特有限公司 Light emitting device, light emitting device package and lighting system
CN102201509A (en) * 2010-03-25 2011-09-28 Lg伊诺特有限公司 Light emitting device, light emitting device package and lighting system
KR101096751B1 (en) 2009-12-03 2011-12-21 우리엘에스티 주식회사 Semiconductor light emitting device
KR101109688B1 (en) 2005-04-18 2012-06-05 엘지전자 주식회사 Light-emitting diode union capacitor for preventing electrostatic discharge
KR101166923B1 (en) 2005-05-24 2012-07-19 엘지이노텍 주식회사 Light emitting device equipped with dielectric layer
WO2013018938A1 (en) * 2011-07-29 2013-02-07 삼성전자주식회사 Semiconductor light-emitting element
KR101239857B1 (en) 2007-03-07 2013-03-06 서울옵토디바이스주식회사 Semiconductor light emitting device and method for manufacturing thereof
WO2013114244A1 (en) * 2012-02-02 2013-08-08 Koninklijke Philips N.V. Light apparatus for generating light
JP2013239586A (en) * 2012-05-15 2013-11-28 Stanley Electric Co Ltd Semiconductor light-emitting device and lighting appliance
JP2013247247A (en) * 2012-05-25 2013-12-09 Toshiba Corp Semiconductor light-emitting device
KR20140028232A (en) * 2012-08-28 2014-03-10 엘지이노텍 주식회사 Light emitting device
KR101381986B1 (en) * 2012-12-17 2014-04-07 서울바이오시스 주식회사 Light emitting diode having capacitor
KR20160069592A (en) * 2014-12-08 2016-06-17 엘지디스플레이 주식회사 Light emitting diode, light emitting diode package and backlight unit
CN109216518A (en) * 2017-06-30 2019-01-15 苏州新纳晶光电有限公司 Antistatic LED chip preparation method and applications
WO2020147863A1 (en) * 2019-01-14 2020-07-23 深圳Tcl新技术有限公司 Backlight bar, display screen and television set
CN112457004A (en) * 2020-12-05 2021-03-09 四川亚美电陶科技有限公司 SBT-based piezoelectric ceramic capable of being used for vibration measurement below 500 ℃ and preparation method and application thereof

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122292A1 (en) * 2004-06-10 2005-12-22 Epivalley Co., Ltd. Iii-nitride semiconductor light emitting device
US7645689B2 (en) 2005-01-19 2010-01-12 Samsung Electro-Mechanics Co., Ltd. Gallium nitride-based light emitting device having ESD protection capacity and method for manufacturing the same
KR101109688B1 (en) 2005-04-18 2012-06-05 엘지전자 주식회사 Light-emitting diode union capacitor for preventing electrostatic discharge
KR101166923B1 (en) 2005-05-24 2012-07-19 엘지이노텍 주식회사 Light emitting device equipped with dielectric layer
KR100649642B1 (en) 2005-05-31 2006-11-27 삼성전기주식회사 Compound semiconductor light emitting device having an ESD protection device and method of manufacturing the same
JP2007294981A (en) * 2006-04-21 2007-11-08 Philips Lumileds Lightng Co Llc Semiconductor light emitting device with integrated electronic component
WO2008064587A1 (en) * 2006-12-01 2008-06-05 Hong Kong Applied Science And Technology Research Instituite Co. Ltd Light emitting diode device
KR101239857B1 (en) 2007-03-07 2013-03-06 서울옵토디바이스주식회사 Semiconductor light emitting device and method for manufacturing thereof
KR100946758B1 (en) * 2007-11-09 2010-03-11 (주)더리즈 Light emitting diode device and manufacturing method thereof
US8384093B2 (en) 2007-12-13 2013-02-26 Lg Innotek Co., Ltd. Semiconductor light emitting device and method of fabricating the same
WO2009075551A3 (en) * 2007-12-13 2009-09-11 Lg Innotek Co., Ltd Semiconductor light emitting device and method of fabricating the same
US8198640B2 (en) 2007-12-13 2012-06-12 Lg Innotek Co., Ltd. Semiconductor light emitting device and method of fabricating the same
US7999282B2 (en) 2008-10-27 2011-08-16 Lg Innotek Co., Ltd. Semiconductor light emitting device
JP2009071333A (en) * 2008-12-15 2009-04-02 Oki Data Corp Display device
JP2009060148A (en) * 2008-12-15 2009-03-19 Oki Data Corp Display device
KR101096751B1 (en) 2009-12-03 2011-12-21 우리엘에스티 주식회사 Semiconductor light emitting device
KR20110093480A (en) * 2010-02-12 2011-08-18 엘지이노텍 주식회사 Light emitting device, manufacturing method and light emitting device package
KR101704022B1 (en) * 2010-02-12 2017-02-07 엘지이노텍 주식회사 Light emitting device, method for fabricating the same and light emitting device package
US8878197B2 (en) 2010-03-23 2014-11-04 Lg Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system
CN102201517A (en) * 2010-03-23 2011-09-28 Lg伊诺特有限公司 Light emitting device, light emitting device package and lighting system
EP2369646A1 (en) * 2010-03-25 2011-09-28 LG Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system
CN102201509A (en) * 2010-03-25 2011-09-28 Lg伊诺特有限公司 Light emitting device, light emitting device package and lighting system
US8441019B2 (en) 2010-03-25 2013-05-14 Lg Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system
JP2011205099A (en) * 2010-03-25 2011-10-13 Lg Innotek Co Ltd Light-emitting element, light-emitting element package, and lighting system
WO2013018938A1 (en) * 2011-07-29 2013-02-07 삼성전자주식회사 Semiconductor light-emitting element
WO2013114244A1 (en) * 2012-02-02 2013-08-08 Koninklijke Philips N.V. Light apparatus for generating light
US9312314B2 (en) 2012-02-02 2016-04-12 Koninklijke Philips N.V. Light apparatus for generating light
JP2013239586A (en) * 2012-05-15 2013-11-28 Stanley Electric Co Ltd Semiconductor light-emitting device and lighting appliance
US9136439B2 (en) 2012-05-25 2015-09-15 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US9496471B2 (en) 2012-05-25 2016-11-15 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JP2013247247A (en) * 2012-05-25 2013-12-09 Toshiba Corp Semiconductor light-emitting device
KR20140028232A (en) * 2012-08-28 2014-03-10 엘지이노텍 주식회사 Light emitting device
KR101954204B1 (en) * 2012-08-28 2019-06-12 엘지이노텍 주식회사 Light emitting device
KR101381986B1 (en) * 2012-12-17 2014-04-07 서울바이오시스 주식회사 Light emitting diode having capacitor
KR20160069592A (en) * 2014-12-08 2016-06-17 엘지디스플레이 주식회사 Light emitting diode, light emitting diode package and backlight unit
KR102224901B1 (en) 2014-12-08 2021-03-09 엘지디스플레이 주식회사 Light emitting diode, light emitting diode package and backlight unit
CN109216518A (en) * 2017-06-30 2019-01-15 苏州新纳晶光电有限公司 Antistatic LED chip preparation method and applications
CN109216518B (en) * 2017-06-30 2020-06-12 苏州新纳晶光电有限公司 Antistatic LED chip preparation method and application thereof
WO2020147863A1 (en) * 2019-01-14 2020-07-23 深圳Tcl新技术有限公司 Backlight bar, display screen and television set
CN112457004A (en) * 2020-12-05 2021-03-09 四川亚美电陶科技有限公司 SBT-based piezoelectric ceramic capable of being used for vibration measurement below 500 ℃ and preparation method and application thereof
CN112457004B (en) * 2020-12-05 2022-02-08 四川亚美电陶科技有限公司 SBT-based piezoelectric ceramic capable of being used for vibration measurement below 500 ℃ and preparation method and application thereof

Also Published As

Publication number Publication date
JP4299580B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP4299580B2 (en) Light emitting element and light emitting device
US5977565A (en) Semiconductor light emitting diode having a capacitor
CN100524790C (en) Light-emitting semiconductor element and composite semiconductor device of protection element
US7884377B2 (en) Light emitting device, method of manufacturing the same and monolithic light emitting diode array
KR100819971B1 (en) Semiconductor light emitting device with overvoltage protection device
US8575643B2 (en) Light-emitting device
US8450765B2 (en) Light emitting diode chip and method for manufacturing the same
US20050167680A1 (en) Light-emitting diode structure with electrostatic discharge protection
US20070228401A1 (en) Semiconductor device
EP3852153B1 (en) Light-emitting element
KR20080082101A (en) Semiconductor light emitting device and method for manufacturing same
US8071991B2 (en) Light-emitting diode and light-emitting diode lamp
KR20080087251A (en) Light Emitting Diodes With Capacitors
KR100946758B1 (en) Light emitting diode device and manufacturing method thereof
CN104241459B (en) Luminescent device and light emitting device packaging piece
KR101047739B1 (en) Light emitting device, manufacturing method of light emitting device, light emitting device package and lighting system
KR100649642B1 (en) Compound semiconductor light emitting device having an ESD protection device and method of manufacturing the same
US20120003762A1 (en) Method to Protect Compound Semiconductor from Electrostatic Discharge Damage
JP3935175B2 (en) Light emitting device and manufacturing method thereof
TWI405277B (en) Protection of compound semiconductors from electrostatic discharge damage
CN100384040C (en) Surface-emitting device and manufacturing method thereof
JP2010205891A (en) Semiconductor device
KR101704022B1 (en) Light emitting device, method for fabricating the same and light emitting device package
US20230170439A1 (en) Light-emitting device
CN220324473U (en) Flip-chip light-emitting element and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Ref document number: 4299580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees