JP2004340680A - 表面形状および/または膜厚測定方法及びその装置 - Google Patents
表面形状および/または膜厚測定方法及びその装置 Download PDFInfo
- Publication number
- JP2004340680A JP2004340680A JP2003136136A JP2003136136A JP2004340680A JP 2004340680 A JP2004340680 A JP 2004340680A JP 2003136136 A JP2003136136 A JP 2003136136A JP 2003136136 A JP2003136136 A JP 2003136136A JP 2004340680 A JP2004340680 A JP 2004340680A
- Authority
- JP
- Japan
- Prior art keywords
- function
- measurement target
- value group
- surface shape
- film thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 113
- 230000003287 optical effect Effects 0.000 claims abstract description 39
- 238000005259 measurement Methods 0.000 claims description 183
- 238000003384 imaging method Methods 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 20
- 238000005070 sampling Methods 0.000 claims description 19
- 238000005315 distribution function Methods 0.000 claims description 4
- 238000000691 measurement method Methods 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 109
- 238000010586 diagram Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 11
- 239000000758 substrate Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
【解決手段】白色光源からの白色光を測定対象面または透明膜で覆われた測定対象面と参照面とに照射しながら、測定対象面の距離を変動させることにより測定対象面と参照面とを反射する反射光の光路差を生じさせて、このときの干渉光の強度値を所定間隔でサンプリングする。得られ強度値群に基づいて物理モデルの関数を作成し、この関数を強度値群に合せ込んでゆき、略一致したときの関数のピーク位置情報を求め、この求まったピーク位置情報から特定箇所の透明膜の表面高さ、測定対象物の表面高さ、および透明膜の膜厚の少なくともいずれか一つを求める。
【選択図】 図2
Description
【発明の属する技術分野】
本発明は、測定対象物の表面または測定対象物の表面が透明膜で覆われた表面の凹凸形状および透明膜の厚みを測定する表面形状および/または膜厚測定方法およびその装置に係り、特に、白色光を用いて非接触で測定対象表面形状および/または膜厚を測定する技術に関する。
【0002】
【従来の技術】
従来のこの種の装置として、半導体ウエハや液晶表示器用ガラス基板などの精密加工品の凹凸形状を白色光の干渉を用いて測定する方法を利用した表面形状測定装置が広く知られている。
【0003】
すなわち、白色光源からの白色光を測定対象物の測定対象面と参照面とに照射しながら、測定対象面の距離を変動させることにより測定対象面と参照面とを反射する反射光の光路差を生じさせて、このときの干渉光の強度値を所定間隔でサンプリングする。このサンプリングにより得られ強度値群に基づいて干渉縞波形ピークの特性値郡を求め、この特性値をローパスフィルタにより平滑化処理して求まる包絡線からそれぞれのピーク位置情報を求める。この求まったピーク位置情報から測定対象物の表面高さを求める。(特許文献1参照)
【0004】
【特許文献1】
米国特許公報USP5,133,601
【0005】
【発明が解決しようとする課題】
しかしながら、これら従来例の場合には、測定対象物の表面高さなどを精度よく求めることができないといった問題がある。
【0006】
すなわち、物体の表面が透明膜で覆われている場合、白色光は、透明膜の表面と、透明膜を透過して透明膜の裏面と接合している測定対象物の表面とで反射する2つの反射光が発生する。この反射光が重畳した状態で取得した複数枚の画像における所定画素の強度値を輝度波形で表すと、表面が透明膜で覆われていない物体を測定したときのように、単純な単峰性ピークとならず、透明膜の表面と測定対象物の表面に対応した2個のピークが発生する。
【0007】
これら2個のピークは、透明膜の厚みよって、その現れ方が異なる。例えば、透明膜が薄い場合には、透明膜の表面と測定対象物の表面からの反射光の波形が略重畳した状態となり、それぞれのピークが波形上に重なった状態で現れる。このような場合には、従来の1個のピークの位置情報を求める方法では、2個のピークを分離することもできず、単純にローパスフィルタにより2個のピークを1個のピークとしてみなして平滑化処理をしてピーク位置情報を求めることとなる。したがって、測定対象物の正確な表面高さのピーク位置情報を得ることもできないし、透明膜の下にある測定対象物の表面高さのピーク位置情報をも正確に得ることができないといった問題がある。
【0008】
また、透明膜が厚い場合には、2個のピークのそれぞれが個別に現れるものの、単純なローパスフィルタによる処理で、2個のピーク位置を単峰性のピークとしてとらえて処理するので、互いのピーク値情報が干渉しあって正確なピーク位置情報が得られないといった問題がある。
【0009】
本発明は、このような事情に鑑みてなされたものであって、表面が透明膜で覆われていない測定対象物の特定箇所の表面高さと、透明膜に覆われた測定対象物の特定箇所の透明膜の表面高さ、測定対象物の表面高さ、および透明膜の膜厚を精度よく求めることのできる表面形状および/または膜厚測定方法およびその装置を提供することを主たる目的とする。
【0010】
【課題を解決するための手段】
本発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明は、白色光源からの白色光を測定対象面と参照面とに照射しながら、前記測定対象面と参照面との距離を変動させることにより、測定対象面と参照面から反射して同一光路を戻る反射光によって干渉縞の変化を生じさせ、このときの干渉光の強度値に基づいて測定対象物面の特定箇所の表面高さを求める前記測定対象面の表面形状測定方法において、
前記特定周波数帯域の白色光が照射された前記測定対象面と参照面との距離を変動させる第1の過程と、
前記測定対象面と参照面との距離を変動させる過程で、測定対象面の画像を所定間隔で連続して取得する第2の過程と、
前記所定間隔で連続して取得した複数枚の画像の各画素における干渉光の強度値群の変化を求める第3の過程と、
前記求めた強度値群から包絡線に相当する特性値群を取得する第4の過程と、
前記特性値群の変化を示す波形データに対応する物理モデルの関数を作成する第5の過程と、
前記特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差を補正しながら特性値群の示す波形データに物理モデルの関数を合せ込む第6の過程と、
前記特性値群の示す波形データを合せ込んだ物理モデルの関数から測定対象面と参照面に関連するピーク位置情報を求め、このピーク位置情報に基づいて、測定対対象面の特定箇所の表面高さを求める第7の過程と
を備えることを特徴とするものである。
【0011】
(作用・効果) 請求項1に記載の発明によれば、白色光源から発生した白色光を測定対象面と参照面とに照射する。測定対象面と参照面とでそれぞれ反射した白色光の光路差に応じて干渉した干渉縞が発生する。ここで、測定対象面と参照面との距離を変動させることにより、それぞれの光路差を変化させて干渉縞を変化させながら所定間隔で連続して複数枚の測定対象面の画像を取得し、画像ごとの各画素における干渉光の強度値群の変化を求める。この求めた強度値郡から包絡線に相当する特性値群を取得する。この特性値群の変化を示す波形データに対応する物理モデルの関数を作成し、特性値群の示す波形データと作成した物理モデルの関数の所定の値とを比較し、求まる誤差を補正しながら特性値群の示す波形データに物理モデルの関数を合せ込んでゆく。この合せ込んだ物理モデルの関数から測定対象物と参照面に関するピーク位置情報を求め、このピーク位置情報に基づいて特定箇所の表面高さを求める。すなわち、干渉縞波形の高周波信号による雑音を除去した状態で物理モデル関数を強度値群の波形データに合せ込むことができるので、演算処理を短時間で行えるとともに、求まるピーク位置情報から測定対象面の表面高さを精度よく求めることができる。
【0012】
請求項9に記載の測定対象面の表面が透明膜で覆われている場合には、請求項1に記載の発明と同様に第11から第17の過程が実施され、第17の過程の演算処理において、求まるピーク位置情報に基づいて測定対象面の特定箇所の表面高さ、透明膜の表面高さ、および透明膜の膜厚の少なくともいずれかをもとめることができる。
【0013】
また、請求項2に記載の発明は、請求項1に記載の表面形状測定方法において、前記第4の過程における干渉光の特性値群は、前記強度値群に基づいて求める包絡線に近似する値であることを特徴とするものである。
【0014】
(作用・効果)請求項2に記載の発明によれば、干渉光の強度値群が、強度値群に基づいて求める包絡線に近似する値である。つまり、包絡線は干渉縞波形を2乗したプラス側に強調した値に相当するものである。したがって、干渉縞波形に振幅成分を近似的に表したデータとなり、ピーク位置情報を得やすくなる。その結果、測定対象物の表面高さもより精度よく求めることができる。なお、請求項10に記載の発明によれば、測定対象物の表面高さ、透明膜の表面高さ、および透明膜の膜厚を精度よく求めることができる。
【0015】
また、請求項3に記載の発明は、請求項1に記載の表面形状測定方法において、前記第4の過程における干渉光の特性値群は、前記取得した複数枚の画像ごとの各画素における干渉光の強度値群の平均値を算出し、その平均値を各画像の所定画素の強度値から減算して算出した値を、さらに2乗した値であることを特徴とするものである。
【0016】
(作用・効果)請求項3に記載の発明によれば、複数枚の画像における特定画素ごとの強度値群から強度値の平均値を算出する。その平均値を各強度値から減算した値を求め、さらに2乗することにより平均値からプラス側に強調した強度値を得ることができる。したがって、干渉縞波形に振幅成分を近似的に表したデータとなり、ピーク位置情報を得やすくなる。すなわち、請求項1に記載の方法を好適に実施することができる。
【0017】
なお、請求項11に記載の発明も、請求項3と同様の作用・効果を奏する。すなわち、請求項9に記載の方法を好適に実施することができる。
【0018】
また、請求項4に記載の発明は、請求項1ないし請求項3のいずれかに記載の表面形状測定方法において、前記第5の過程における物理モデルの関数は、特性値群の示す波形データに基づいて包絡線として求めた関数であることを特徴とするものである。
【0019】
また、請求項5に記載の発明は、請求項1ないし請求項3のいずれかに記載の表面形状測定方法において、前記第5の過程における物理モデルの関数は、特性値群の示す波形データをガウス分布関数とみなして求めた関数であることを特徴とする。
【0020】
(作用・効果)特性値群の示す波形データに基づいて求めた包絡線の関数(請求項4)、または、特性値群の示す波形データをガウス分布関数とみなして求めた物理モデルの関数(請求項5)を特性値群の波形データに合せ込む。つまり、特性値群の波形データに物理モデルの関数が略一致する状態まで合せ込むことができる。したがって、合せ込まれた物理モデルの関数からより正確にピーク位置情報を求めることができ、このピーク位置情報から測定対象物の表面高さを精度よく求めることができる。
【0021】
なお、請求項12に記載の発明は請求項4と、請求項13に記載の発明は請求項5と同様の作用・効果を奏する。
【0022】
また、請求項6に記載の発明は、請求項4または請求項5に記載の表面形状測定方法において、前記第6の過程における誤差の補正は、特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差の2乗値が最小となるときの、物理モデルの関数のピーク位置、ピークの振幅、および所定箇所の帯域幅のパラメータ、あるいは、ピーク位置およびピークの振幅のパラメータのいずれかを求めることを特徴とするものである。
【0023】
また、請求項7に記載の発明は、請求項6に記載の表面形状測定方法において、前記パラメータは、その初期値として強度値群の最大値とその位置の情報を用いることを特徴とするものである。
【0024】
また、請求項8に記載の発明は、請求項1ないし請求項8のいずれかに記載の表面形状測定方法において、請求項1ないし請求項7のいずれかに記載の表面形状測定方法において、前記第6の過程における特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差を補正する際に物理モデルの関数を規定するためのパラメータとして、反射率が既知の測定対象物の試料を用いて装置パラメータを予め求めておくことを特徴とするものである。
【0025】
(作用・効果)特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差の2乗値が最小となるときの、物理モデルの関数のピーク位置、ピークの振幅、および所定箇所の帯域幅のパラメータ、あるいは、ピーク位置およびピークの振幅のパラメータのいずれかを求める。つまり、最小2乗法を利用してパラメータの最適値を求め、この求まるパラメータからピーク位置を知ることができ、このピーク位置を読み取ることにより測定対象面の高さを求めることができる(請求項6)。また、この最小2乗法を利用する場合に、パラメータの初期値として強度値群のうちの最大値とその位置の情報を用いることにより、より精度よくピーク位置情報を得ることができる(請求項7)。さらに、反射率が既知の測定対象物の試料を用いて装置パラメータを求めおくことによって、より一層精度よくピーク位置情報を得ることができる。
【0026】
なお、請求項14に記載の発明は請求項6と、請求項15に記載の発明は請求項7と同様の作用・効果を奏する。また、請求項16および請求項17に記載の発明によれば、測定対象物の表面が透明膜で覆われているので、反射率が既知の透明膜および測定対象物のそれぞれの試料を用いて(請求項16)、さらに膜厚が既知の透明膜の試料を用いて(請求項17)装置パラメータを求めておくことにより、より一層精度高くピーク位置情報を求めることができる。
【0027】
また、請求項18に記載の発明は、測定対象面と参照面とに照射する白色光を発生させる白色光源と、前記測定対象面と参照面との距離を変動させる変動手段と、前記白色光が照射された測定対象面と参照面との距離の変動に伴って測定対象面と参照面とから反射して同一光路を戻る反射光によって干渉縞の変化を生じさせるとともに前記測定対象面を撮像する撮像手段と、前記撮像された測定対象面上の複数の特定箇所における干渉光の強度値を取り込むサンプリング手段と、前記サンプリング手段によって取り込まれた特定箇所ごとの複数個の強度値である各干渉光強度値群を記憶する記憶手段と、前記記憶手段に記憶された各干渉光強度値群に基づいて特定箇所の透明膜の表面高さ、測定対象面の表面高さ、および透明膜の膜厚の少なくともいずれか一つを求める演算手段とを備えた表面形状および/または膜厚測定装置において、
前記演算手段は、測定対象面の特定箇所の透明膜の表面高さ、測定対象面の表面高さ、および/または透明膜の膜厚の少なくともいずれか一つを以下の処理にしたがって求める
(1)前記記憶手段に記憶された各画素における干渉光から干渉光強度値群の変化を求め、
(2)前記求めた強度値群から包絡線に相当する特性値群を取得し、
(3)前記特性値群の示す波形データに対応する物理モデルの関数を作成し、
(4)前記特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差を補正しながら特性値群の示す波形データに関数を合せ込み、
(5)前記特性値群の示す波形データとを合せ込んだ関数から測定対象面と参照面に関連するピーク位置情報を求め、このピーク位置情報に基づいて、測定対対象面の特定箇所の透明膜の表面高さ、測定対象面の表面高さ、および膜厚の少なくともいずれか一つを求めることを特徴とするものである。
【0028】
(作用・効果)白色光源は、透明膜で覆われた測定対象面と参照面とに白色光を照射する。変動手段は、測定対象面と参照面との距離とを変動させる。撮像手段は、白色光が照射された測定対象面と参照面との相対的距離の変動に伴って発生する干渉縞の変化とともに前記測定対象面を撮像する。サンプリング手段は、撮像された測定対象面上の複数の特定箇所における干渉光の強度値を取り込む。記憶手段は、サンプリング手段によって取り込まれた特定箇所ごとの複数個の強度値である各干渉光強度値群を記憶する。演算手段は、記憶手段に記憶された各画素における干渉光強度値群から求まる干渉光の強度値の変化を求め、この求めた干渉光の強度値群から包絡線に相当する特性値群を取得し、この特性値群の変化を示す波形データに対応する物理モデルの関数を作成する。この作成した物理モデルの関数と特性値群の示すの波形データとを比較して求まる誤差を補正しながら特性値群の示す波形データに物理モデルの関数が略一致するように合せ込んでゆく。物理モデルの関数が特性値群の示す波形データに略一致するときのピーク位置情報を求めることにより、測定対象面の特定箇所の表面高さ、透明膜の表面高さを求めることができ、これら測定対象面と透明膜の両表面高さを利用することにより、透明膜の膜厚を求めることができる。すなわち、請求項1または請求項9に記載の方法を好適に実現することができる。
【0029】
また、請求項19に記載の発明は、請求項18に記載の表面形状および/または膜厚測定装置において、前記白色光源から前記撮像手段までの光路に、特定周波数帯域の白色光だけを通過させる前記周波数帯域制限手段を備えたことを特徴とするものである。
【0030】
(作用・効果)請求項19に記載の発明によれば、白色光源から撮像手段までの光路に取り付けられたバンドパスフィルタは、特定周波数帯域の白色光のみを通過させる。これにより、撮像手段では、特定周波数帯域の白色光による干渉縞および測定対象面が撮像される。したがって、任意の周波数帯域を通過させるバンドパスフィルタを利用することによって、特定周波数帯域を任意の周波数帯域にすることもできる。また、離散的な強度値データを利用した方法を用いた場合に、サンプリング間隔を広くすることができる、結果、測定に要する時間を短縮することができる。
【0031】
また、請求項20に記載の発明は、請求項19に記載の表面形状および膜厚測定装置において、前記周波数帯域制限手段は、前記白色光源から発せられた白色光の周波数帯域を特定周波数帯域にまで狭める、前記白色光源から前記撮像手段までの光学系であることを特徴とするものである。
【0032】
(作用・効果)請求項20に記載の発明によれば、白色光源から撮像手段までの光学系は、白色光源から発生した白色光が撮像手段に届くまでの間に、その白色光の周波数帯域を特定周波数帯域にまで狭める。これにより、撮像手段では、特定周波数帯域の白色光による干渉縞および測定対象面が撮像される。したがって、離散的な強度値データを利用した方法を用いた場合に、サンプリング間隔を広くすることができる、結果、測定に要する時間を短縮することができる。
【0033】
また、請求項21に記載の発明は、請求項19に記載の表面形状および/または膜厚測定装置において、前記周波数帯域制限手段は、特定周波数帯域の白色光を感知する前記撮像手段の周波数感度であることを特徴とするものである。
【0034】
(作用・効果)請求項21に記載の発明によれば、撮像手段は、その周波数特性によって、特定周波数帯域の白色光による干渉縞および測定対象面を撮像する。したがって、離散的な強度値データを利用した方法を用いた場合に、サンプリング間隔を広くすることができる、結果、測定に要する時間を短縮することができる。
【0035】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について具体的に説明をする。
図1は、本発明の実施例に係る表面形状測定装置の概略構成を示す図である。
【0036】
この表面形状測定装置は、半導体ウエハ、ガラス基板や金属基板などの測定対象物30の表面に形成された微細なパターンに、特定周波数帯域の白色光を照射する光学系ユニット1と、光学系ユニット1を制御する制御系ユニット2とを備えて構成されている。
【0037】
光学系ユニット1は、測定対象面30Aおよび参照面15に照射する白色光を発生させる白色光源10と、白色光源10から白色光を平行光にするコリメートレンズ11と、コリメートレンズ11からの白色光を測定対象物30の方向に反射する一方、測定対象物30の方向からの白色光を通過させるハーフミラー13と、ハーフミラー13で反射されてきた白色光を集光する対物レンズ14と、対物レンズ14を通過してきた白色光を、参照面15へ反射させる参照光と、測定対象面30へ通過させる測定光とに分けるとともに、参照面15で反射してきた参照光と測定対象面30で反射してきた測定光とを再びまとめて、干渉縞を発生させるビームスプリッタ17と、参照面15で参照光を反射させるために設けられたミラー16と、参照光と測定光とがまとめられた白色光を結像する結像レンズ18と、干渉縞とともに測定対象面30を撮像するCCDカメラ19とを備えて構成されている。
【0038】
白色光源10は、例えば白色光ランプなどであり、比較的広い周波数帯域の白色光を発生させる。この白色光源10から発生された白色光は、コリメートレンズ11によって平行光とされ、ハーフミラー13に到達する。
【0039】
ハーフミラー13は、コリメータレンズ13からの平行光となった白色光を測定対象物30の方向に向けて反射する一方、測定対象物30の方向から戻ってきた白色光を通過させるものである。このハーフミラー13で反射された特定周波数帯域の白色光は、対物レンズ14に入射する。
【0040】
対物レンズ14は、入射してきた白色光を焦点Pに向けて集光するレンズである。この対物レンズ14によって集光される白色光は、参照面15を通過し、ビームスプリッタ17に到達する。
【0041】
ビームスプリッタ17は、対物レンズ14で集光される白色光を、参照面15で反射させるために、ビームスプリッタ17の例えば上面で反射させる参照光と、測定対象面30Aで反射させるために、ビームスプリッタ17を通過させる測定光とに分けるとともに、それら参照光と測定光とを再びまとめることによって、干渉縞を発生させるものである。ビームスプリッタ17に達した白色光は、ビームスプリッタ17の上面で反射された参照光と、ビームスプリッタ17を通過する測定光とに分けられ、その参照光は参照面15に達し、その測定光は測定対象物30の表面である測定対象面30Aに達する。
【0042】
参照面15には、参照光をビームスプリッタ17の方向に反射させるためのミラー16が取り付けられており、このミラー16によって反射された参照光は、ビームスプリッタ17に達し、さらに、この参照光はビームスプリッタ17によって反射される。
【0043】
ビームスプリッタ17を通過した測定光は、焦点Pに向けて集光され、測定対象面30A上で反射する。この反射した2つの測定光は、ビームスプリッタ17に達して、そのビームスプリッタ17を通過する。
【0044】
ビームスプリッタ17は、参照光と測定光とを再びまとめる。このとき、参照面15とビームスプリッタ17との間の距離L1と、ビームスプリッタ17と測定対象面30Aとの間の距離L2との、距離の違いによって光路差が生じる。この光路差に応じて、参照光と測定光とは干渉し合うことで、干渉縞が生じる。この干渉縞が生じた状態の白色光は、ハーフミラー13を通過し、結像レンズ18によって結像されて、CCDカメラ19に入射する。
【0045】
CCDカメラ19は、干渉縞が生じた状態の白色光とともに、測定光によって映し出される測定対象面30Aの焦点P付近の画像を撮像する。この撮像した画像データは、制御系ユニット2によって収集される。また、後述で明らかになるが、本願発明の変動手段に相当する制御系ユニット2の駆動部24によって、例えば光学系ユニット1が上下左右に変動される。特に、光学系ユニット1が上下方向に駆動されることによって、距離L1と距離L2との距離が変動される。これにより、距離L1と距離L2との距離の差に応じて、干渉縞が徐々に変化する。CCDカメラ19によって、後述する所定のサンプリング間隔ごとに、干渉縞の変化とともに測定対象面30Aの画像が撮像され、その画像データが制御系ユニット2によって収集される。CCDカメラ19は、本発明における撮像手段に相当する。
【0046】
制御系ユニット2は、表面形状測定装置の全体を統括的に制御や、所定の演算処理を行うためのCPU20と、CPU20によって逐次収集された画像データやCPU20での演算結果などの各種のデータを記憶するメモリ21と、サンプリング間隔やその他の設定情報を入力するマウスやキーボードなどの入力部22と、測定対象面30Aの画像などを表示するモニタ23と、CPU20の指示に応じて光学系ユニット1を上下左右に駆動する例えば3軸駆動型のサーボモータなどの駆動機構で構成される駆動部24とを備えるコンピュータシステムで構成されている。なお、CPU20は、本発明におけるサンプリング手段および演算手段に、メモリ21は本発明における記憶手段に、駆動部25は本発明における変動手段にそれぞれ相当する。
【0047】
CPU20は、いわゆる中央処理装置であって、CCDカメラ19、メモリ21及び駆動部24を制御するとともに、CCDカメラ19で撮像した干渉縞を含む測定対象面30Aの画像データに基づいて、測定対象物30の特定箇所の表面高さを求める演算処理を行う。この処理については後で詳細に説明する。さらに、CPU20には、モニタ23と、キーボードやマウスなどの入力部22とが接続されており、操作者は、モニタ23に表示される操作画面を観察しながら、入力部22から各種の設定情報の入力を行う。また、モニタ23には、測定対象面30Aの測定終了後に、測定対象面30Aおよび測定対象面の凹凸形状などを数値や画像として表示される。
【0048】
駆動部24は、光学系ユニット1内の参照面15とビームスプリッタ17との間の固定された距離L1と、ビームスプリッタ17と測定対象面30Aとの間の可変の距離L2との距離の差を変化させるために、光学系ユニット1を直交3軸方向に変動させる装置であり、CPU20からの指示によって光学系ユニット1をX,Y,Z軸方向に駆動する例えば3軸駆動型のサーボモータを備える駆動機構で構成されている。なお、駆動部24は、本発明における変動手段に相当し、本発明における相対的距離とは、参照面15から測定対象面30Aまでの距離すなわち距離L1および距離L2を示す。本実施例では、光学系ユニット1を動作させるが、例えば測定対象物30が載置される図示していないテーブルを直交3軸方向に変動させるようにしてもよい。
【0049】
以下、本実施例の表面形状測定装置全体を用いて測定対象面30Aの表面が透明膜で覆われていない場合の表面高さを測定する処理を図2のフローチャートを参照しながら具体的に説明する。
【0050】
[第1実施例]
<ステップS1> 条件設定
光学系ユニットをz軸方向に移動させるための走査速度や走査レンジなどの種々の条件を設定する。
【0051】
<ステップS2> 測定データ取得
光学系ユニット1は、白色光源10から発生される白色光を測定対象面30Aおよび参照面15に照射する。
【0052】
また、CPU20は、予め所定の測定場所に移動された光学系ユニット1をz軸方向に移動を開始させるための変動開始の指示を駆動部24に与える。駆動部24は、図示しないステッピングモータなどの駆動系を駆動して、光学系ユニット1をz軸方向に予め決められた距離だけ移動させる。これにより、参照面15と測定対象面30Aとの距離が変動される。なお、本実施例のステップS2のこの過程までが、本発明における第1の過程に相当する。
【0053】
CPU20は、光学系ユニット1がサンプリング間隔だけ移動するたびに、CCD19で撮像される干渉縞を含む測定対象面30Aの画像データを収集して、メモリ21に順次記憶する。光学系ユニット1が予め決められた距離だけ移動することで、メモリ21には光学系ユニット1の移動距離およびサンプリング間隔によって決まる複数枚の画像データが記憶される。なお、本実施例のステップS2のこの過程までが、本発明における第2の過程に相当する。
【0054】
<ステップS3> 特定箇所の干渉光強度値群を取得
測定対象面30Aの高さを測定したい複数の特定箇所を入力部22から指定する。CPU20は、指定された複数の特定箇所を把握して、測定対象面30Aを撮像した画像上の前記複数の特定箇所に相当する画素の濃度値、すなわち特定箇所における干渉光の強度値を、複数枚の画像データからそれぞれ取込む。これにより、各特定箇所における複数個の強度値(干渉光強度値群)が得られる。なお本実施例のステップS3は、本発明の第3の過程に相当する。
【0055】
<ステップS4> 強度値の平均値から特性関数を求める
CPU20は、図3に示すように、離散的に取得した特定箇所における干渉光強度値群に基づいて、干渉光の強度値の平均値を求める。さらに、干渉光強度値群の各強度値から平均値を減算した各値(調整値群)を求める。つまり、図4に示すように、干渉縞波形から直流成分を除去し、交流成分のみを残す。
【0056】
調整値をさらに2乗し、図5に示すように、強度値をプラス側に強調した特性値を求める。なお、本実施例のステップS4は、本発明における第4の過程に相当する。
【0057】
<ステップS5> 物理モデル関数の作成
CPU20は、ステップS3で求めた特性値から明らかなように、測定対象面30Aの特定箇所の特性値についは、図5に示すように、1個のピークを含む干渉縞波形が現れる。ここで、図5に示す特性値の波形データを利用して物理モデルの関数として包絡線の関数を作成する。本実施例では、特性値の波形データを正規分布(ガウス分布)とみなした関数を作成する。この関数は、図6に示すように、測定対象面の表面高さのピーク位置x0(初期値)、ピーク振幅a、および所定箇所の帯域幅の3個のパラメータを有している。したがって、この関数は次式(1)により求めることができる。
【0058】
g(x,x0,a,w)=a×exp(−π・((x−x0)/w)2) … (1)
【0059】
なお、ステップS5は、本発明における第5の過程に相当する。
【0060】
<ステップS6> 物理モデル関数の合せ込み
CPU20は、ステップS5で求めた関数を、図6に示すように、特性値の波形データと略一致するように合せ込んでゆくための演算処理を行う。具体的には、次の処理を行う。
【0061】
先ず、CPU20は、初期パラメータを決定する。本実施例では、各パラメータの初期値として、(ピーク位置)=(特性値の2乗の最大値)、(ピーク振幅の特性値の2乗の最大値)=((特性値の2乗の最大値)/2)の関係となるように決定する。なお、帯域幅は光源などの光学ユニットで略決まる装置パラメータであるので、理論値や実験により近似値を求めて初期値として設定してよい。
【0062】
したがって、本実施例の場合、図6に示すように、初期パラメータとしてピーク位置x0=122、ピーク振幅a=3761/2=1880に設定する。このときの帯域幅wは20と設定する。
【0063】
次に、波形データの各特性値に対応する関数の値を読み取って比較して求めた誤差が最小値となる場合のこの関数のピーク位置x0、ピーク振幅aおよび帯域幅wの3つのパラメータの最適値を求めるために最小2乗法を利用する。最小2乗法は、求まる2乗誤差の総和を評価関数として、次の関係式で表すことができる。
【0064】
f(x0,w,a) = Σ[qi− g(xi,x0,a,w)] 2 … (2)
【0065】
なお、qiは、図5に示すI枚目の画像における特定箇所の特性値であり、xiは、図6に示すi枚目の関数の位置座標である。
【0066】
本実施例の場合に上記式(2)を利用して関数の合せ込みを行い、各パラメータの最適値(収束値)を求めた結果、図7に示すようになった。つまり、各パラメータは、以下の表1に示す結果となった。
【0067】
【表1】
【0068】
なお、本実施例のステップS6は、本発明における第6の過程に相当する。
【0069】
<ステップS7> 表面形状の測定
CPU20は、ステップS7で求めた関数の最適値から測定対象面30Aの表面高さを算出する。例えば、測定対象面30Aの表面高さのピーク位置は、取得画像の121.95枚目にあるので、この位置の値と既知の標本点間隔の積をとることによって表面高さを求めることができる。なお、本実施例のステップS7は、本発明における第7の過程に相当する。
【0070】
<ステップS8> 全特定箇所が終了?
CPU20は、全ての特定箇所が終了するまで、ステップS3〜S7の処理を繰り返し行い、全ての特定箇所の高さを求める。
【0071】
<ステップS9> 表示
CPU20は、モニタ23に測定対象物30の表面高さの情報を表示したり、それら各特定箇所の高さの情報に基づいた3次元または2次元の画像を表示したりする。操作者は、これらの表示を観察することで、測定対象物30の測定対象面30Aや透明膜31の表面31Aの凹凸形状を把握することができる。
【0072】
上記実施例によれば、取得した強度値(特性値)の波形データから物理モデルの関数を作成し、作成した関数を特性値の波形データに合せ込む。つまり、最小2乗法により各特性値に対応する関数の値を読み取って比較して求めた誤差が最小値となる場合のこの関数のピーク位置x0、ピーク振幅aおよび帯域幅wの3つのパラメータの最適値を求める。その結果、これらパラメータから精度よくピーク位置情報を取得でき、取得したピーク位置情報から測定対象面30Aの表面高さを求めることができる。
【0073】
[第2実施例]
本実施例では図8に示すように、測定対象面30Aが厚い透明膜31で覆われている場合について説明する。なお、装置構成は第1実施例と同じであり、測定する反射光の処理が異なるので、異なる点について具体的に説明する。
【0074】
第1実施例と異なる点は以下の通りである。
すなわち、図8に示すように、測定対象面30Aの表面を覆うように形成された透明膜31により、ビームスプリッタ17で分けられた測定光が透明膜31の表面31Aと、透明膜31を透過して測定対象面30Aで反射する2つの反射光が発生する。この2つの反射光をビームスプリッタ17で参照光と再びまとめられるようになっている。このときの、参照面15とビームスプリッタ17との間の距離L1と、ビームスプリッタ17と測定対象面30Aとの間の距離L2との距離の違いによって光路差を生じさせている。
【0075】
次に、本実施例の表面形状測定装置全体を用いて測定対象面30Aの表面が厚い透明膜31で覆われている場合の表面高さを測定する処理を図2のフローチャートを参照しながら具体的に説明する。なお、本実施例では、第1実施例と共通する処理(ステップS1およびステップS2)につていの説明は省略し、処理の異なる箇所について具体的に説明する。
【0076】
また、本実施例では、測定対象物30としてSi基板を使用し、その測定対象物30の表面に厚さ1μmの酸化膜(SiO2)を形成したものを用いている。
【0077】
以下、ステップS3の処理からについて説明する。
<ステップS3> 特定箇所の干渉光強度値群を取得
測定対象面30Aの高さを測定したい複数の特定箇所を入力部22から指定する。CPU20は、指定された複数の特定箇所を把握して、測定対象面30Aを撮像した画像上の前記複数の特定箇所に相当する画素の濃度値、すなわち特定箇所における干渉光の強度値を、複数枚の画像データからそれぞれ取込む。これにより、各特定箇所における複数個の強度値(干渉光強度値群)が得られる。
【0078】
つまり、図8に示すように、白色光は、透明膜31の表面31Aと測定対象面30Aとで反射するために、図9に示すように、2個のピークを有する離散的な強度値が取得される。
【0079】
なお、本実施例のステップS3は、本発明における第13の過程に相当する。
【0080】
<ステップS4> 強度値の平均値から特性値を求める
CPU20は、図9に示す離散的に取得した特定箇所における干渉光強度値群に基づいて、干渉光の強度値の平均値を求める。さらに、干渉光強度値群の各強度値から平均値を減算した各値(調整値群)を求める。つまり、図10に示すように、干渉縞波形から直流成分を除去し、交流成分のみを残す。
【0081】
調整値をさらに2乗し、図11に示すように、強度値をプラス側に強調した特性値を求める。なお、本実施例のステップS4は、本発明における第14の過程に相当する。
【0082】
<ステップS5> 物理モデル関数の作成
CPU20は、ステップS3で求めた特性値から明らかなように、測定対象面30Aと透明膜31の表面31Aとの2個のピークを含む干渉縞波形が現われる。ここで、図11に示す特性値の波形データを利用して物理モデル関数として2つの包絡線からなる関数を作成する。つまり、次式で表すように2つの関数の和により求めることができる。
【0083】
包絡線関数:g(x,x0,a,w)+g(x,x0’,a’,w’) … (3)
【0084】
なお、関数:g(x,x0,a,w)は、透明膜表面31Aの表面高さのピーク1(図12では左側)であり、関数:g(x,x0’,a’,w’) は測定対象面30Aのピーク2(図12では右側)である。それぞれの関数は、ピーク位置x0,x0’、ピーク振幅a,a’、および所定箇所の帯域幅w,w’からなる3個のパラメータをそれぞれ有している。なお、本実施例のステップS5は、本発明における第15の過程に相当する。
【0085】
<ステップS6> 物理モデル関数の合せ込み
CPU20は、ステップS5で求めた関数を、図12に示すように、特性値の波形データと略一致するように合せ込んでゆくための演算処理を行う。すなわち、第1実施例同様に上記式(2)に示す最小2乗法によって、特性値の2乗誤差が最小となるときの各パラメータの値を、2つの関数ごとに求める。
【0086】
本実施例の場合に、各パラメータの最適値(収束値)を求めて関数の合せ込みを行った結果、図13に示すようになる。つまり、各パラメータは、以下の表2に示す結果となる。
【0087】
【表2】
【0088】
すなわち、透明膜31側のピーク1においては、ピーク位置x0が初期値20から21.14に、ピーク振幅aが初期値200から147.35に、帯域幅wが初期値20から9.69に収束した値になる。また、測定対象物30側のピーク2においては、ピーク位置x0’が初期値50から39.84に、ピーク振幅a’が初期値200から116.98に、帯域幅w’が初期値20から10.09に収束した値になる。なお、本実施例のステップS6は、本発明における第16の過程に相当する。
【0089】
<ステップS7> 表面形状の測定
CPU20は、ステップS7で求めた関数の最適値(収束値)から測定対象面30Aの表面高さ、透明膜表面31Aの表面高さ、および透明膜31の膜厚Dの少なくともいずれか一つを算出する。例えば、特定箇所の透明膜31の表面高さのピーク位置x0は21.14である。このピーク位置x0の値と既知の標本点間隔の積をとることによって透明膜31の表面高さZp1を求めることができる。同様に測定対象面30Aについてもピーク位置x0の値と既知の標本点間隔の積をとることによって得られた透明膜31の表面高さzp1と、測定対象面30Aの光学的高さzp’とから屈折率nとした場合に、透明膜31の膜厚DはD=(zp1−zp’)/nの式から求めることができ、さらに測定対象面30の高さzpはzp=zp1−Dの式から求まる。なお、本実施例のステップS7は、本発明における第17の過程に相当する。
【0090】
<ステップS8> 全特定箇所が終了?
CPU20は、全ての特定箇所が終了するまで、ステップS3〜S7の処理を繰り返し行い、全ての特定箇所の高さを求める。
【0091】
<ステップS9> 表示
CPU20は、モニタ23に測定対象物30の表面高さの情報を表示したり、それら各特定箇所の測定対象物30、透明膜31の高さの情報や透明膜31の膜厚Dの情報に基づいた3次元または2次元の画像を表示したりする。操作者は、これらの表示を観察することで、測定対象物30の測定対象面30Aや透明膜31の表面31Aの凹凸形状を把握することができる。
【0092】
上述した実施例によれば、発生する2個のピークについて、それぞれ個別に作成した物理モデル関数の和をとり、これら各関数と特性値について最小2乗法を利用してそれぞれのピーク位置x0,x0’、帯域幅w,w’、ピーク振幅a,a’のパラメータの最適値を求めることによって、測定対象物30の表面高さ、透明膜31の表面高さ、および透明膜31の膜厚Dを精度よく求めることができる。
【0093】
[第3実施例]
本実施例では、図8に示すように、測定対象面30Aが薄い透明膜31で覆われている場合について説明する。なお、本実施例では、第2実施例と共通する処理(ステップS1およびステップS2)につていの説明は省略し、異なる処理の箇所について具体的に説明する。
【0094】
また、本実施例では、測定対象物30としてSi基板を使用し、その測定対象面30Aの表面に厚さ0.5μm以下の酸化膜(SiO2)を形成したものを用いている。
【0095】
以下、ステップS3の処理からについて説明する。
<ステップS3> 特定箇所の干渉光強度値群を取得
本実施例の場合、透明膜31の膜厚Dが薄いために、透明膜31の表面31Aと測定対象面30Aの表面からの反射光が略同時にCCDに受光される。したがって、図14に示すように、各表面に応じた干渉縞波形が略重なり合った状態で現われ、本来2個存在するピークが、1つの干渉縞波形上に点在することとなり、図14からはピークが1個しか存在しないような離散的な干渉光の強度値が取得される。なお、本実施例のステップS3は、本発明における第13の過程に相当する。
【0096】
<ステップS4> 強度値の平均値から特性関数を求める
CPU20は、離散的に取得した特定箇所における干渉光強度値群に基づいて、干渉光の強度値がプラス側に強調した特性値を求める。つまり、物理モデル関数を作成するために必要な特性値(2乗包絡線関数値ri)を求める。具体的には、次式(4)、(5)から求められる。
【0097】
干渉計から得られる強度値ym(m=1からM)とし、表面高さhがサンプリング点にないとき:
ri(h)=1/( 4ωa’ 2) {[1−cos2ωa’h][Σ’ (y2m−1/(h−h2m−1))]2 +[1+cos2ωa’h][Σ’’(y2m/(h−h2m))]2 } …(4)
Σ’ :(m=1)から(M/2以上の最小の整数)までの総和
Σ’’:(m=1)から(M/2以下の最大の整数)までの総和
【0098】
表面高さhがサンプリング点のとき、すなわちh=hJ (Jは1≦J≦Mの整数)のとき:
ri (h)=1/( 2ωa’ 2) {( ωa’yJ )2 +[Σ’’’ (yJ+2m+1/(hJ −hJ+2m+1))]2 } …(5)
Σ’’’ :−(m=J/2以下の最大の整数)から(〔[M−J]/2以上の最小の整数〕−1)までの総和である。なお、Jは1≦J≦Mの整数である。
【0099】
なお、本実施例のステップS4は、本発明における第14の過程に相当する。
【0100】
<ステップS5> 物理モデル関数の作成
CPU20は、物理モデル関数として、図16の左側の一点鎖線で示すピークが1個である包絡線の関数を作成する。この包絡線の関数は、以下の演算処理により求まる。
【0101】
先ず簡素化するために、膜内の多重反射を無視し、膜内で1回反射する場合を仮定すると、干渉縞波形の観測輝度g(強度値)は、次式で表される。
【0102】
【数1】
【0103】
ここで、zpは測定対象物30Aの表面高さ、Dは透明膜の膜厚、α=2k(空気の屈折率=1と仮定する)、kは角波数、nsは膜屈折率、klは照射される光の波数の下限値、kuは照射される光の波数の上限値、P,Q,R,Sは装置と対象膜物性により決まるパラメータである。
【0104】
この強度値gの交流成分をfとすると、次式で表される。
【0105】
【数2】
【0106】
上式(7)をcos関数と振幅成分の積として変形する。
【0107】
f(z;zp,D)=m(z;zi,D)cos{β(z−zp)+A(z)} …(8)
【0108】
上記(6)〜(8)により、包絡線関数rの2乗を次式(9)により定義することができる。
r(z;zp,D)= [m(z;zp,D)]2 … (9)
【0109】
なお、本実施例のステップS5は、本発明における第15の過程に相当する。
【0110】
<ステップS6> 物理モデル関数の合せ込み
CPU20は、図16に示すように、ステップS5で求めた物理モデルの包絡線の関数(図16ではM)と、図15に示すように、特性値である実データにより予め作成した関数を(図16ではD)、図17に示すように、物理モデルの包絡線の関数が実データの関数に略一致するように合せ込んでゆくための演算処理を行う。すなわち、次式に示す評価関数が最小となる、測定対象面30Aの表面高さzp、と透明膜31の膜厚Dの2個のパラメータを求める。
【0111】
f(zp,D)= Σ[ri−r(zi;zp,D)]2 … (10)
【0112】
ここで、riはi番目の2乗包絡線関数値、ziはi番目の位置座標である。
なお、本実施例のステップS6は、本発明における第16の過程に相当する。
【0113】
<ステップS7> 表面形状の測定
CPU20は、ステップS6で演算処理を行った結果から測定対象面30Aの表面高さと、透明膜31の膜厚Dが求める。さらに、これら2つの値の和とることによって透明膜31の表面高さを求めることできる。なお、本実施例のステップS7は、本発明における第17の過程に相当する。
【0114】
以下、ステップS8およびステップS9の処理については、第2実施例と同じであるので、ここでの説明を省略する。
【0115】
上述した実施例によれば、取得した強度値に基づいてプラス側に強調した特性値、つまり、物理モデル関数を作成するのに必要な特性値(関数値)として上記式(4)、(5)により求めることができる。この関数値から物理モデル関数としての包絡線の関数を作成し、この関数を強度値である実データに基づいて作成した関数に合せ込む。このとき、上記式(10)が最小となる2つのパラメータの値を求めることによって、測定対象面30Aの表面高さと膜厚Dとを求めることができる。また、測定対象面30Aの表面高さの値と膜厚Dの和をとることによって透明膜31の表面高さをもとめることができる。
【0116】
本発明は上述した実施例のものに限らず、次のように変形実施することもできる。
(1)上記各実施例では、測定対象面31の画像データを撮像した後で、特定箇所の干渉光の強度値を取得するように構成したが、本発明はこれに限定されるものではなく、例えば、撮像した画像上の特定箇所に相当する画素における強度値をリアルタイムに取得して、それら干渉光の強度値を順次メモリ21に記憶するように構成することもできる。
【0117】
(2)上記実施例では、白色光源からの白色光が撮像手段であるCCDカメラ19までの光学系(光源,レンズ,各ミラーを含む)によって、白色光源からの白色光の周波数帯域が帯域制限されることを利用して、その周波数帯域を予め把握しておき、その帯域制限された周波数帯域を本発明における特定周波数帯域とすることもできる。
【0118】
(3)上記実施例では、撮像手段であるCCDカメラ19の周波数特性によって制限される周波数帯域を特定周波数帯域として、その特定周波数帯域を予め把握しておき、その帯域制限された周波数帯域を本発明における特定周波数帯域とすることもできる。
【0119】
(4)上記実施例では、撮像手段としてCCDカメラ19を用いたが、例えば、特定箇所の干渉光の強度値のみを撮像(検出)することに鑑みれば、一列または平面状に構成された受光素子など撮像手段を構成することもできる。
【0120】
(5)上記実施例では、白色光源10から白色光をコリメートレンズ11で平行光にした後に、ハーフミラー13に向けて照射していたが、コリメートレンズ11とハーフミラー13との間に、特定周波数帯域の白色光を通過させるバンドパスフィルタを設けてもよい。
【0121】
【発明の効果】
以上の説明から明らかなように、本発明によれは、白色光を透明膜で覆われた測定対象面と参照面との距離を変動させながら照射し、取得した特定箇所における干渉光の強度値群を取得する。この強度値群から干渉縞波形の包絡線を表す特性値を求め、この特性値に対応する、あるいは、包絡線に対応する物理モデルの関数を作成し、この関数を特性値に合せ込んでゆく過程で互いの誤差が最小となるときのピーク位置情報を取得することによって、精度よく測定対象物の表面高さなどを求めることができる。すなわち、測定対象物の表面に透明膜がない場合は、測定対象物の表面高さを、測定対象物の表面が透明膜で覆われている場合は、測定対象物の表面高さ、透明膜の表面高さ、および透明膜の膜厚の少なくともいずれか一つを精度よく求めることができる。
【図面の簡単な説明】
【図1】第1実施例に係る表面形状測定装置の概略構成を示す図である。
【図2】第1〜第3実施例装置における処理を示すフローチャートである。
【図3】第1実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図4】第1実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図5】第1実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図6】第1実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図7】第1実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図8】第2および第3実施例に係る表面形状測定装置の概略構成を示す図である。
【図9】第2実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図10】第2実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図11】第2実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図12】第2実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図13】第2実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図14】第3実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図15】第3実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図16】第3実施例の関数のピーク位置を求める処理を説明するための説明図である。
【図17】第3実施例の関数のピーク位置を求める処理を説明するための説明図である。
【符号の説明】
1 … 光学系ユニット
2 … 制御系ユニット
10 … 白色光源
11 … コリメートレンズ
12 … バンドパスフィルタ
13 … ハーフミラー
14 … 対物レンズ
15 … 参照面
16 … ミラー
17 … ビームスプリッタ
18 … 結像レンズ
19 … CCDカメラ
20 … CPU
21 … メモリ
22 … 入力部
23 … モニタ
24 … 駆動部
30 … 測定対象物
30A… 測定対象面(測定対象物)
31 … 透明膜
31A… 測定対象面(透明膜)
D … 膜厚(透明膜)
Claims (21)
- 白色光源からの白色光を測定対象面と参照面とに照射しながら、前記測定対象面と参照面との距離を変動させることにより、測定対象面と参照面から反射して同一光路を戻る反射光によって干渉縞の変化を生じさせ、このときの干渉光の強度値に基づいて測定対象面の特定箇所の表面高さを求める前記測定対象面の表面形状測定方法において、
前記特定周波数帯域の白色光が照射された前記測定対象面と参照面との距離を変動させる第1の過程と、
前記測定対象面と参照面との距離を変動させる過程で、測定対象面の画像を所定間隔で連続して取得する第2の過程と、
前記所定間隔で連続して取得した複数枚の画像の各画素における干渉光の強度値群の変化を求める第3の過程と、
前記求めた強度値群から包絡線に相当する特性値群を取得する第4の過程と、
前記特性値群の変化を示す波形データに対応する物理モデルの関数を作成する第5の過程と、
前記特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差を補正しながら特性値群の示す波形データに物理モデルの関数を合せ込む第6の過程と、
前記特性値群の示す波形データに合せ込んだ物理モデルの関数から測定対象面と参照面に関連するピーク位置情報を求め、このピーク位置情報に基づいて、測定対対象面の特定箇所の表面高さを求める第7の過程と
を備えることを特徴とする表面形状測定方法。 - 請求項1に記載の表面形状測定方法において、
前記第4の過程における干渉光の特性値群は、前記強度値群に基づいて求める包絡線に近似する値であることを特徴とする表面形状測定方法。 - 請求項1に記載の表面形状測定方法において、
前記第4の過程における干渉光の特性値群は、前記取得した複数枚の画像ごとの各画素における干渉光の強度値群の平均値を算出し、その平均値を各画像の所定画素の強度値から減算して算出した値を、さらに2乗した値であることを特徴する表面形状測定方法。 - 請求項1ないし請求項3のいずれかに記載の表面形状測定方法において、
前記第5の過程における物理モデルの関数は、特性値群の示す波形データに基づいて包絡線として求めた関数であることを特徴とする表面形状測定方法。 - 請求項1ないし請求項3のいずれかに記載の表面形状測定方法において、
前記第5の過程における物理モデルの関数は、特性値群の示す波形データをガウス分布関数とみなして求めた関数であることを特徴とする表面形状測定方法。 - 請求項4または請求項5に記載の表面形状測定方法において、
前記第6の過程における誤差の補正は、特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差の2乗値が最小となるときの、物理モデルの関数のピーク位置、ピークの振幅、および所定箇所の帯域幅のパラメータ、あるいは、ピーク位置およびピークの振幅のパラメータのいずれかを求めることを特徴とする表面形状測定方法。 - 請求項6に記載の表面形状測定方法において、
前記パラメータは、その初期値として強度値群の最大値とその位置の情報を用いることを特徴とする表面形状測定方法。 - 請求項1ないし請求項7のいずれかに記載の表面形状測定方法において、
前記第6の過程における特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差を補正する際に物理モデルの関数を規定するためのパラメータとして、反射率が既知の測定対象物の試料を用いて装置パラメータを予め求めておくことを特徴とする表面形状測定方法。 - 白色光源からの白色光を透明膜で覆われた測定対象面と参照面とに照射しながら、前記測定対象面と参照面との距離を変動させることにより、測定対象面と参照面から反射して同一光路を戻る反射光によって干渉縞の変化を生じさせ、このときの干渉光の強度値に基づいて測定対象物面の特定箇所の透明膜の表面高さ、測定対象面の表面高さ、および透明膜の膜厚の少なくともいずれか一つを求める前記測定対象面の表面形状および/または膜厚測定方法において、
前記特定周波数帯域の白色光が照射された前記測定対象面と参照面との距離を変動させる第11の過程と、
前記測定対象面と参照面との距離を変動させる過程で、測定対象面の画像を所定間隔で連続して取得する第12の過程と、
前記所定間隔で連続して取得した複数枚の画像の各画素における干渉光の強度値群の変化を求める第13の過程と、
前記求めた強度値群から包絡線に相当する特性値群を取得する第14の過程と、
前記求めた特性値群の変化を示す波形データに対応する物理モデルの関数を作成する第15の過程と、
前記特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差を補正しながら特性値群の示す波形データに物理モデルの関数を合せ込む第16の過程と、
前記特性値群の示す波形データとを合せ込んだ物理モデルの関数から測定対象面と参照面に関連するピーク位置情報を求め、このピーク位置情報に基づいて、測定対対象面と特定箇所の透明膜の表面高さ、測定対象面の表面高さ、および膜厚の少なくともいずれか一つを求める第17の過程と
を備えることを特徴とする表面形状および/または膜厚測定方法。 - 請求項9に記載の表面形状および/または膜厚測定方法において、
前記第14の過程における干渉光の特性値群は、前記強度値群を用いて求めた包絡線に近似する値であることを特徴とする表面形状および/または膜厚測定方法。 - 請求項9に記載の表面形状および/または膜厚測定方法において、
前記第14の過程における干渉光の特性値群は、前記取得した複数枚の画像ごとの各画素における干渉光の強度値群の平均値を算出し、その平均値を各画像の所定画素の強度値から減算して算出した値を、さらに2乗した値であることを特徴する表面形状および/または膜厚測定方法。 - 請求項9ないし請求項11のいずれかに記載の表面形状および/または膜厚測定方法において、
前記第15の過程における物理モデルの関数は、特性値群の示す波形データに基づいて包絡線として求めた関数であることを特徴とする表面形状および/または膜厚測定方法。 - 請求項9ないし請求項11のいずれかに記載の表面形状および/または膜厚測定方法において、
前記第15の過程における物理モデルの関数は、特性値群の示す波形データをガウス分布関数とみなして求めた関数であることを特徴とする表面形状および/または膜厚測定方法。 - 請求項12または請求項13に記載の表面形状および/または膜厚測定方法において、
前記第16の過程における誤差の補正は、特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差の2乗値が最小となるときの、物理モデルの関数のピーク位置、ピークの振幅、および所定箇所の帯域幅のパラメータ、あるいは、ピーク位置およびピーク振幅のパラメータのいずれかを求めることを特徴とする表面形状および/または膜厚測定方法。 - 請求項14に記載の表面形状および/または膜厚測定方法において、
前記パラメータは、その初期値として強度値群のうちの最大値とその位置の情報を用いることを特徴とする表面形状および/または膜厚測定方法。 - 請求項9ないし請求項15のいずれかに記載の表面形状および/または膜厚測定方法において、
前記第16の過程における特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差を補正する際に物理モデルの関数を規定するためのパラメータとして、反射率が既知の透明膜および測定対象物のそれぞれの試料を用いて装置パラメータを求めておくことを特徴とする表面形状および/または膜厚測定方法。 - 請求項16に記載の表面形状および/または膜厚測定方法において、
前記第16の過程における波形データと物理モデルの関数とを比較し、求まる誤差を補正する際に物理モデルの関数を規定するためのパラメータとして、さらに、透膜厚が既知の透明膜の試料を用いて装置パラメータを求めておくことを特徴とする表面形状および/または膜厚測定方法。 - 測定対象面と参照面とに照射する白色光を発生させる白色光源と、前記測定対象面と参照面との距離を変動させる変動手段と、前記白色光が照射された測定対象面と参照面との距離の変動に伴って測定対象面と参照面とから反射して同一光路を戻る反射光によって干渉縞の変化を生じさせるとともに前記測定対象面を撮像する撮像手段と、前記撮像された測定対象面上の複数の特定箇所における干渉光の強度値を取り込むサンプリング手段と、前記サンプリング手段によって取り込まれた特定箇所ごとの複数個の強度値である各干渉光強度値群を記憶する記憶手段と、前記記憶手段に記憶された各干渉光強度値群に基づいて特定箇所の透明膜の表面高さ、測定対象面の表面高さ、および透明膜の膜厚の少なくともいずれか一つを求める演算手段とを備えた表面形状および/または膜厚測定装置において、
前記演算手段は、測定対象面の特定箇所の透明膜の表面高さ、測定対象面の表面高さ、および/または透明膜の膜厚の少なくともいずれか一つを以下の処理にしたがって求める
(1)前記記憶手段に記憶された各画素における干渉光から干渉光強度値群の変化を求め、
(2)前記求めた強度値群から包絡線に相当する特性値群を取得し、
(3)前記特性値群の示す波形データに対応する物理モデルの関数を作成し、
(4)前記特性値群の示す波形データと物理モデルの関数とを比較し、求まる誤差を補正しながら特性値群の示す波形データに関数を合せ込み、
(5)前記特性値群の示す波形データとを合せ込んだ関数から測定対象面と参照面に関連するピーク位置情報を求め、このピーク位置情報に基づいて、測定対対象面の特定箇所の透明膜の表面高さ、測定対象面の表面高さ、および膜厚の少なくともいずれか一つを求めることを特徴とする表面形状および/または膜厚測定装置。 - 請求項18に記載の表面形状および/または膜厚測定装置において、
前記白色光源から前記撮像手段までの光路に、特定周波数帯域の白色光だけを通過させる前記周波数帯域制限手段を備えたことを特徴とする表面形状および膜厚測定装置。 - 請求項19に記載の表面形状および膜厚測定装置において、
前記周波数帯域制限手段は、前記白色光源から発せられた白色光の周波数帯域を特定周波数帯域にまで狭める、前記白色光源から前記撮像手段までの光学系であることを特徴とする表面形状および/または膜厚測定装置。 - 請求項19に記載の表面形状および/または膜厚測定装置において、
前記周波数帯域制限手段は、特定周波数帯域の白色光を感知する前記撮像手段の周波数感度であることを特徴とする表面形状および/または膜厚測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003136136A JP2004340680A (ja) | 2003-05-14 | 2003-05-14 | 表面形状および/または膜厚測定方法及びその装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003136136A JP2004340680A (ja) | 2003-05-14 | 2003-05-14 | 表面形状および/または膜厚測定方法及びその装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004340680A true JP2004340680A (ja) | 2004-12-02 |
Family
ID=33526199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003136136A Pending JP2004340680A (ja) | 2003-05-14 | 2003-05-14 | 表面形状および/または膜厚測定方法及びその装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004340680A (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006220461A (ja) * | 2005-02-08 | 2006-08-24 | Tokyo Electron Ltd | 温度/厚さ測定装置,温度/厚さ測定方法,温度/厚さ測定システム,制御システム,制御方法 |
JP2007506071A (ja) * | 2003-09-15 | 2007-03-15 | ザイゴ コーポレーション | 表面の干渉分析のための方法およびシステムならびに関連する応用例 |
JP2009526978A (ja) * | 2006-02-18 | 2009-07-23 | カール マール ホールディング ゲーエムベーハー | 光学表面センサー |
JP2010014536A (ja) * | 2008-07-03 | 2010-01-21 | Yamagata Prefecture | 加工装置に搭載される被測定物の計測方法および計測装置 |
JP2011506972A (ja) * | 2007-12-14 | 2011-03-03 | ザイゴ コーポレーション | 走査干渉法を使用した表面構造の解析 |
JP2011526692A (ja) * | 2008-06-30 | 2011-10-13 | エスエヌユー プレシジョン カンパニー,リミテッド | 厚さまたは表面形状の測定方法 |
CN102494606A (zh) * | 2011-12-02 | 2012-06-13 | 中国科学院上海微系统与信息技术研究所 | 一种十纳米量级尺寸及误差光学检测方法 |
JP2014006242A (ja) * | 2012-05-31 | 2014-01-16 | Toray Eng Co Ltd | 薄膜の膜形状測定方法 |
WO2016021359A1 (ja) * | 2014-08-07 | 2016-02-11 | Ntn株式会社 | 形状測定装置、塗布装置および形状測定方法 |
CN110178019A (zh) * | 2016-12-07 | 2019-08-27 | 奥博泰克有限公司 | 用于判断缺陷质量的方法和设备 |
US20210299783A1 (en) * | 2018-08-22 | 2021-09-30 | Autoliv Development Ab | Device and method for inspecting laser welding protective glass |
-
2003
- 2003-05-14 JP JP2003136136A patent/JP2004340680A/ja active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007506071A (ja) * | 2003-09-15 | 2007-03-15 | ザイゴ コーポレーション | 表面の干渉分析のための方法およびシステムならびに関連する応用例 |
JP2011221027A (ja) * | 2003-09-15 | 2011-11-04 | Zygo Corp | 表面の干渉分析のための方法およびシステムならびに関連する応用例 |
US8107085B2 (en) | 2003-09-15 | 2012-01-31 | Zygo Corporation | Methods and systems for interferometric analysis of surfaces and related applications |
JP2006220461A (ja) * | 2005-02-08 | 2006-08-24 | Tokyo Electron Ltd | 温度/厚さ測定装置,温度/厚さ測定方法,温度/厚さ測定システム,制御システム,制御方法 |
JP2009526978A (ja) * | 2006-02-18 | 2009-07-23 | カール マール ホールディング ゲーエムベーハー | 光学表面センサー |
JP2011506972A (ja) * | 2007-12-14 | 2011-03-03 | ザイゴ コーポレーション | 走査干渉法を使用した表面構造の解析 |
US8947673B2 (en) | 2008-06-30 | 2015-02-03 | Snu Precision Co., Ltd. | Estimating thickness based on number of peaks between two peaks in scanning white light interferometry |
JP2011526692A (ja) * | 2008-06-30 | 2011-10-13 | エスエヌユー プレシジョン カンパニー,リミテッド | 厚さまたは表面形状の測定方法 |
JP2010014536A (ja) * | 2008-07-03 | 2010-01-21 | Yamagata Prefecture | 加工装置に搭載される被測定物の計測方法および計測装置 |
CN102494606A (zh) * | 2011-12-02 | 2012-06-13 | 中国科学院上海微系统与信息技术研究所 | 一种十纳米量级尺寸及误差光学检测方法 |
JP2014006242A (ja) * | 2012-05-31 | 2014-01-16 | Toray Eng Co Ltd | 薄膜の膜形状測定方法 |
WO2016021359A1 (ja) * | 2014-08-07 | 2016-02-11 | Ntn株式会社 | 形状測定装置、塗布装置および形状測定方法 |
JP2016038284A (ja) * | 2014-08-07 | 2016-03-22 | Ntn株式会社 | 形状測定装置、塗布装置および形状測定方法 |
CN106662431A (zh) * | 2014-08-07 | 2017-05-10 | Ntn株式会社 | 形状测定装置、涂敷装置及形状测定方法 |
CN106662431B (zh) * | 2014-08-07 | 2019-10-25 | Ntn株式会社 | 形状测定装置、涂敷装置及形状测定方法 |
CN110178019A (zh) * | 2016-12-07 | 2019-08-27 | 奥博泰克有限公司 | 用于判断缺陷质量的方法和设备 |
US20210299783A1 (en) * | 2018-08-22 | 2021-09-30 | Autoliv Development Ab | Device and method for inspecting laser welding protective glass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4246326B2 (ja) | 表面形状測定方法及びその装置 | |
JP5685013B2 (ja) | 光断層撮像装置及びその制御方法、プログラム | |
CN102599882B (zh) | 光学相干断层图像摄像方法和设备 | |
JP4710078B2 (ja) | 表面形状の測定方法およびこれを用いた装置 | |
JP4939304B2 (ja) | 透明膜の膜厚測定方法およびその装置 | |
JP6937482B2 (ja) | 表面形状測定装置及びそのスティッチング測定方法 | |
US9131219B2 (en) | Method and apparatus for triangulation-based 3D optical profilometry | |
JP5385703B2 (ja) | 検査装置、検査方法および検査プログラム | |
JP2004340680A (ja) | 表面形状および/または膜厚測定方法及びその装置 | |
JP3511097B2 (ja) | 光干渉を用いた形状測定方法および形状測定装置 | |
JPWO2003036229A1 (ja) | 表面形状測定方法およびその装置 | |
JP5057848B2 (ja) | 透明膜の屈折率測定方法およびその装置並びに透明膜の膜厚測定方法およびその装置 | |
JP4192038B2 (ja) | 表面形状および/または膜厚測定方法及びその装置 | |
JP6047427B2 (ja) | 薄膜の膜形状測定方法 | |
JP4183089B2 (ja) | 表面形状および/または膜厚測定方法およびその装置 | |
JP2010060420A (ja) | 表面形状および/または膜厚測定方法およびその装置 | |
JP2018146391A (ja) | 表面形状測定装置及び表面形状測定方法 | |
JP3835505B2 (ja) | 非接触表面形状測定装置 | |
JP4012798B2 (ja) | レーザ反射光による表面粗さ測定方法及びその装置 | |
JP2014190800A (ja) | 3次元計測方法および3次元計測装置 | |
TW513552B (en) | Surface shape detection method and device | |
JP4638077B2 (ja) | 走査型広域被検面形状解析装置 | |
JP4081538B2 (ja) | 透明平行平板の干渉縞解析方法 | |
JP3929412B2 (ja) | 表面形状および/または膜厚測定方法及びその装置 | |
JP2006329807A (ja) | 画像処理方法およびこれを用いた装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080403 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090303 |