JP2004336079A - Manufacturing method for compound single crystal - Google Patents
Manufacturing method for compound single crystal Download PDFInfo
- Publication number
- JP2004336079A JP2004336079A JP2004236642A JP2004236642A JP2004336079A JP 2004336079 A JP2004336079 A JP 2004336079A JP 2004236642 A JP2004236642 A JP 2004236642A JP 2004236642 A JP2004236642 A JP 2004236642A JP 2004336079 A JP2004336079 A JP 2004336079A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- substrate
- crystal layer
- plane
- undulations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 176
- 150000001875 compounds Chemical class 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 153
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 95
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 55
- 230000012010 growth Effects 0.000 claims abstract description 51
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 24
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 24
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 5
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 3
- 229910003465 moissanite Inorganic materials 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 61
- 239000004065 semiconductor Substances 0.000 abstract description 9
- 239000012071 phase Substances 0.000 description 18
- 238000005498 polishing Methods 0.000 description 17
- 238000012545 processing Methods 0.000 description 17
- 238000002441 X-ray diffraction Methods 0.000 description 16
- 239000010408 film Substances 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 239000010703 silicon Substances 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 239000004744 fabric Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 6
- 239000010432 diamond Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000001902 propagating effect Effects 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000006061 abrasive grain Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 238000005092 sublimation method Methods 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、電子材料として有用な炭化珪素単結晶を含む化合物単結晶の製造方法に関する。特に本発明は、半導体装置を作製する上で好ましい低欠陥密度、または結晶格子歪みの少ない炭化珪素単結晶を含む化合物単結晶(例えば、半導体)の製造方法に関する。 The present invention relates to a method for producing a compound single crystal including a silicon carbide single crystal useful as an electronic material. In particular, the present invention relates to a method for manufacturing a compound single crystal (for example, a semiconductor) including a silicon carbide single crystal having a low defect density or a small crystal lattice distortion, which is preferable for manufacturing a semiconductor device.
従来、炭化珪素の成長は、昇華法によるバルク成長と、基板上へのエピタキシャル成長による薄膜形成とに分類されてきた。昇華法によるバルク成長では、高温相の結晶多形である六方晶(6H、4H等)炭化珪素の成長が可能であり、かつ、炭化珪素自体の基板作製が実現されてきた。しかしながら、結晶内に導入される欠陥(特にマイクロパイプ)が極めて多く、かつ、基板面積の拡大が困難であった。これに対し、単結晶基板上へのエピタキシャル成長法を用いると、不純物添加の制御性向上や基板面積の拡大、そして昇華法で問題となっていたマイクロパイプの低減が実現される。しかしながら、エピタキシャル成長法では、しばしば基板材料と炭化珪素の格子常数の違いによる積層欠陥密度の増大が問題となっていた。特に、被成長基板として一般に用いられている珪素は、炭化珪素との格子不整合が大きいことから、炭化珪素成長層内における双晶(Twin)や反位相領域境界面(APB:anti phase boundary)の発生が著しく、これらがリーク電流などの原因のひとつとなり炭化珪素の電子素子としての特性を損なわせてきた。 Conventionally, silicon carbide growth has been classified into bulk growth by sublimation and thin film formation by epitaxial growth on a substrate. In bulk growth by the sublimation method, hexagonal (6H, 4H, etc.) silicon carbide which is a polymorph of a high-temperature phase can be grown, and a substrate of silicon carbide itself has been realized. However, defects (especially micropipes) introduced into the crystal are extremely large, and it is difficult to increase the substrate area. On the other hand, when the epitaxial growth method on a single crystal substrate is used, the controllability of impurity addition is improved, the substrate area is increased, and the micropipes, which are problems in the sublimation method, are reduced. However, in the epitaxial growth method, an increase in stacking fault density due to a difference in lattice constant between the substrate material and silicon carbide has often been a problem. In particular, silicon, which is generally used as a substrate to be grown, has a large lattice mismatch with silicon carbide. Therefore, twins (Twin) and anti-phase boundary (APB) in the silicon carbide growth layer. This is one of the causes of leakage current and the like, and has impaired the characteristics of silicon carbide as an electronic element.
効果的に反位相領域境界面を低減する方法として、K.Shibaharaらにより、表面法線軸を<001>方向から<110>方向に僅かに傾けた(オフ角を導入した)珪素(001)表面基板(図3参照)上への成長法が提案された。(アプライド フィジクス レター50巻、1987年、1888頁)。この方法では、基板に微傾斜をつけることで、原子レベルのステップが一方向に等間隔で導入されるため、気相成長法ではステップフローによるエピタキシャル成長がもたらされ、導入されたステップに垂直な方向(ステップを横切る方向)への面欠陥の伝搬を抑制する効果がある。このため、炭化珪素の膜厚増加に対して、膜中に含まれる二種類の反位相領域の内、導入されたステップに平行な方向へ拡大する反位相領域が、直交する方向へ拡大する反位相領域に比べて優先的に拡大するため、反位相領域境界面を効果的に低減することができる。しかしながら、図4に示すように、この方法は炭化珪素/珪素基板界面のステップ密度の増加により、不本意な反位相領域境界面1および双晶の生成を引き起こしてしまい、反位相領域境界面の完全解消には至らないという問題がある。なお、図4において、1は珪素基板の単原子ステップにて発生した反位相領域境界面、2は反位相領域境界面会合点、3は珪素基板表面テラスにて発生した反位相領域境界面、θはオフ角度、φはSi(001)面と反位相領域境界面のなす角(54.7°)を示している。珪素基板表面テラスにて発生した反位相領域境界面3は反位相領域境界面会合点2で消滅するが、珪素基板の単原子ステップにて発生した反位相領域境界面1は会合相手がなく、消滅しない。
このような炭化珪素内の面欠陥(Twin、APB)を低減する方法として、本出願人は、珪素基板表面に一方向に平行に延在する起伏を具備し、起伏加工を施された基板上に炭化珪素のエピタキシャル成長を実施することで、炭化珪素内に伝搬する面欠陥を解消する技術を提案した(特願2000-365443、特願平11-288844)。起伏形状を珪素基板上に具備した効果とは、図5のようにオフ斜面が互いに対向して珪素基板上に配置しているため、向かい合う面欠陥同士が図6のように互いに会合し、消滅し合うものである。 As a method for reducing such a plane defect (Twin, APB) in silicon carbide, the present applicant has provided an undulation extending in one direction parallel to the surface of a silicon substrate, and the surface of the silicon substrate has been subjected to undulation processing. A technique for eliminating surface defects propagating in silicon carbide by epitaxial growth of silicon carbide was proposed (Japanese Patent Application Nos. 2000-365443 and 11-288844). The effect of providing the undulating shape on the silicon substrate is that the off slopes are arranged on the silicon substrate so as to face each other as shown in FIG. 5, so that the facing surface defects associate with each other as shown in FIG. It is something that works.
この方法により、面欠陥は大幅に解消された炭化珪素が得られるようになった。しかしながら、対向する面欠陥が会合し、消滅する際、会合するどちらか一方の面欠陥は残留し、伝搬を続けることになる。現実的な珪素基板上の起伏形状と炭化珪素の板厚、例えば起伏間隔2μmで炭化珪素の板厚が200μmでは、残留する面欠陥密度は単純計算(ひとつの起伏からひとつの面欠陥が残留し伝搬すると仮定した場合)で最小約30本/cmということになる。これらが完全解消するためには、炭化珪素の口径を1.41倍した板厚が必要となり(一番端の面欠陥が伝搬し終える箇所が成長表面ではなくなるまでの厚さ)、気相成長法などを用いる場合には成長時間がかかりすぎ、非現実的な厚さとなってしまう。 According to this method, silicon carbide in which surface defects have been largely eliminated can be obtained. However, when opposing surface defects meet and disappear, one of the associated surface defects remains and continues to propagate. In the case of a realistic undulation shape on a silicon substrate and the thickness of silicon carbide, for example, the undulation interval is 2 μm and the thickness of silicon carbide is 200 μm, the residual surface defect density is simply calculated (one surface defect remains from one undulation). (Assuming propagation) at least about 30 lines / cm. In order to completely eliminate these problems, a plate thickness that is 1.41 times the diameter of silicon carbide is required (thickness until the point where the end of the surface defect has completely propagated is no longer the growth surface). When the method is used, the growth time is too long, and the thickness becomes unrealistic.
また、炭化珪素以外に窒化ガリウムなどの化合物半導体は、青色LEDやパワーデバイス用材料として期待されている。近年、窒化ガリウムを炭化珪素基板上に成長させる報告事例が多い。それは、炭化珪素を窒化ガリウム成長用下地基板として用いることで、電極を形成しやすい、放熱が行いやすい、結晶の劈開方向が同じであるためハンドリングや加工が行いやすいなどの利点があるからである。しかし、大面積で高品質な炭化珪素基板を得る事が難しく、また、比較的格子定数の差が小さい炭化珪素と言えども界面の格子不整合により窒化ガリウム成長層に面欠陥が伝搬してしまうことが課題となっている。珪素基板上の炭化珪素成長と同様に、欠陥を解消する対策を検討しなくてはならない。 Also, compound semiconductors such as gallium nitride other than silicon carbide are expected as materials for blue LEDs and power devices. In recent years, there have been many reports of growing gallium nitride on silicon carbide substrates. This is because the use of silicon carbide as a base substrate for growing gallium nitride has advantages such as easy formation of electrodes, easy heat dissipation, and easy handling and processing because the cleavage direction of the crystal is the same. . However, it is difficult to obtain a large-area, high-quality silicon carbide substrate, and even if silicon carbide has a relatively small difference in lattice constant, plane defects propagate to the gallium nitride growth layer due to lattice mismatch at the interface. That is a challenge. As with the growth of silicon carbide on a silicon substrate, measures must be taken to eliminate defects.
そこで本発明の目的は、炭化珪素や窒化ガリウムなどの化合物半導体単結晶を、エピタキシャル成長法を利用して製造する方法であって、面欠陥密度がより低い化合物単結晶を得ることができる方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing a compound semiconductor single crystal such as silicon carbide or gallium nitride by using an epitaxial growth method, which method can obtain a compound single crystal having a lower plane defect density. Is to do.
上記課題を解決するための本発明は以下の通りである。
(1)単結晶基板の表面にこの基板と同一または異なる化合物単結晶層の2層以上を順次エピタキシャル成長させる化合物単結晶の製造方法であって、
前記基板表面の少なくとも一部が一方向に延在する複数の起伏を有し、かつ2回目以降のエピタキシャル成長は、直前に形成された化合物単結晶層の表面の少なくとも一部に一方向に延在する複数の起伏を形成した後に行うことを特徴とする方法。
(2)化合物単結晶層が単結晶基板と異なる化合物単結晶であり、化合物単結晶層を構成する化合物単結晶と単結晶基板を構成する単結晶とは、相似形の空間格子を有する(1)に記載の製造方法。
(3)単結晶基板表面に延在する複数の起伏の方向と、該基板表面に形成された化合物単結晶層の表面に設けられる複数の起伏の延在方向は同一または直交する(1)または(2)に記載の製造方法。
(4)成長方向に隣接して設けられる化合物単結晶層の表面に設けられる複数の起伏の延在方向は同一または直交する(1)〜(3)のいずれかに記載の製造方法。
(5)単結晶基板が単結晶SiCである(1)〜(4)のいずれかに記載の製造方法。
(6)化合物単結晶層が単結晶SiCであるか、または窒化ガリウム、窒化アルミニウム、窒化アルミガリウムである(1)〜(5)のいずれかに記載の製造方法。
(7)単結晶SiC基板が、基底面が(001)面である立方晶SiCであまか、または基底面が(11−20)面若しくは(1−100)面である六方晶SiCである(1)〜(6)のいずれかに記載の製造方法。
The present invention for solving the above problems is as follows.
(1) A method for producing a compound single crystal in which two or more layers of the same or different compound single crystal layers are sequentially epitaxially grown on the surface of a single crystal substrate,
At least a portion of the substrate surface has a plurality of undulations extending in one direction, and the second and subsequent epitaxial growths extend in one direction on at least a portion of the surface of the compound single crystal layer formed immediately before. Performing the method after forming a plurality of undulations.
(2) The compound single crystal layer is a compound single crystal different from the single crystal substrate, and the compound single crystal forming the compound single crystal layer and the single crystal forming the single crystal substrate have a similar spatial lattice (1). )).
(3) The direction of the plurality of undulations extending on the surface of the single crystal substrate and the direction of extension of the undulations provided on the surface of the compound single crystal layer formed on the surface of the substrate are the same or orthogonal (1) or The production method according to (2).
(4) The manufacturing method according to any one of (1) to (3), wherein the extending directions of the plurality of undulations provided on the surface of the compound single crystal layer provided adjacent to the growth direction are the same or orthogonal.
(5) The method according to any one of (1) to (4), wherein the single crystal substrate is single crystal SiC.
(6) The method according to any one of (1) to (5), wherein the compound single crystal layer is single crystal SiC, or gallium nitride, aluminum nitride, or aluminum gallium nitride.
(7) The single crystal SiC substrate is cubic SiC whose basal plane is (001) plane or hexagonal SiC whose basal plane is (11-20) plane or (1-100) plane ( The production method according to any one of 1) to (6).
本発明によれば、炭化珪素や窒化ガリウムなどの化合物半導体単結晶を、エピタキシャル成長法を利用して製造する方法であって、面欠陥密度がより低い化合物単結晶を得ることができる方法を提供することができる。 According to the present invention, there is provided a method for producing a compound semiconductor single crystal such as silicon carbide or gallium nitride by using an epitaxial growth method, which method can obtain a compound single crystal having a lower plane defect density. be able to.
本発明の化合物単結晶の製造方法では、単結晶基板の表面にこの基板と同一または異なる化合物単結晶層の2層以上を順次エピタキシャル成長させる。
そして、単結晶基板としては、基板表面の少なくとも一部に一方向に延在する複数の起伏を設けたもの(以下、起伏加工単結晶基板ということがある)を使用すること、2回目以降のエピタキシャル成長は、直前に形成された化合物単結晶層の表面の少なくとも一部に一方向に延在する複数の起伏を形成した後に行うことを特徴とする。
In the method for producing a compound single crystal of the present invention, two or more layers of the same or different compound single crystal layers are sequentially epitaxially grown on the surface of a single crystal substrate.
And, as the single crystal substrate, a substrate provided with a plurality of undulations extending in one direction on at least a part of the substrate surface (hereinafter, sometimes referred to as undulating single crystal substrate), using the second and subsequent times The epitaxial growth is performed after forming a plurality of undulations extending in one direction on at least a part of the surface of the compound single crystal layer formed immediately before.
起伏加工単結晶基板の表面に単結晶を積層していくと、徐々に起伏の高低差が淘汰され、単結晶層の厚さ数十μm程度で平滑な鏡面が得られる。したがって、膜厚がそれ以上になると、ステップ密度が低いために二次元核発生による成長がもたらされる。もしも界面から伝搬する伝搬性面欠陥が残留していた場合は、そのまま対向する面欠陥と会合するまで成長表面へ伝搬し続ける。 When a single crystal is stacked on the surface of the undulating single crystal substrate, the difference in height of the undulation is gradually eliminated, and a smooth mirror surface with a thickness of the single crystal layer of about several tens μm is obtained. Therefore, when the film thickness is more than that, the growth is caused by the two-dimensional nucleation due to the low step density. If the propagating surface defect propagating from the interface remains, it continues to propagate to the growth surface until it associates with the opposing surface defect.
本発明の製造方法では、起伏加工単結晶基板の表面に単結晶層をエピタキシャル成長により形成し、さらにこの単結晶層表面に再度起伏加工を施す。これにより、単結晶層の基底面上に現れていた極性面が一旦排除され、新たに形成された起伏のオフ斜面効果によるステップフロー成長がもたらされる。そして、ステップからテラス幅方向への成長が支配的になり、界面からの面欠陥の伝搬を抑制する効果が得られる。その結果、起伏加工を施した単結晶基板の表面に単結晶層を形成する方法に比べて、面欠陥を低減することができる。起伏加工を施した単結晶基板の表面に単結晶層を形成する方法では、面欠陥同士が自然に会合して解消するのを待たなくてはならなかったが、本発明の製造方法では、従来の方法と比べて早期の段階で欠陥を解消することができる。 According to the manufacturing method of the present invention, a single crystal layer is formed on the surface of the undulating single crystal substrate by epitaxial growth, and the undulating process is performed again on the surface of the single crystal layer. As a result, the polar plane that has appeared on the base surface of the single crystal layer is once removed, and step flow growth is caused by the newly formed off-slope effect of the undulation. Then, the growth from the step to the terrace width direction becomes dominant, and the effect of suppressing the propagation of surface defects from the interface can be obtained. As a result, surface defects can be reduced as compared with a method in which a single crystal layer is formed on the surface of a single crystal substrate subjected to undulation processing. In the method of forming a single-crystal layer on the surface of a single-crystal substrate subjected to undulation processing, it was necessary to wait for plane defects to naturally associate with each other and eliminate them. The defect can be eliminated at an early stage as compared with the method of (1).
単結晶基板用単結晶としては、例えば、単結晶SiCを挙げることができ、さらに、具体的には、単結晶SiC基板は、基底面が(001)面である立方晶SiCであるか、または基底面が(11−20)面若しくは(1−100)面である六方晶SiCであることができる。上記以外の単結晶基板としては、例えば、単結晶Si基板を挙げることができる。 Examples of the single crystal for the single crystal substrate include single crystal SiC. More specifically, the single crystal SiC substrate is cubic SiC whose basal plane is a (001) plane, or Hexagonal SiC whose basal plane is the (11-20) plane or the (1-100) plane can be used. As other single crystal substrates, for example, a single crystal Si substrate can be mentioned.
化合物単結晶層を構成する結晶としては、例えば、SiCや窒化ガリウム、窒化アルミニウム、窒化アルミガリウム、窒化インジウムガリウム等を挙げることができる。 Examples of the crystal constituting the compound single crystal layer include SiC, gallium nitride, aluminum nitride, aluminum gallium nitride, indium gallium nitride, and the like.
本発明の化合物単結晶の製造方法は、単結晶基板と同一または異なる化合物単結晶層の製造方法であるが、化合物単結晶層が単結晶基板と異なる化合物単結晶である場合には、化合物単結晶層を構成する化合物単結晶と単結晶基板を構成する単結晶とが相似形の空間格子を有する場合に特に有効である。
2つの単結晶が相似形の空間格子を有するとは、結晶の構成単位(基本単位構造)の原子の位置関係が相似であり、かつ原子間の結合方位も一致しており、同一の結晶軸方向に成長する(エピタキシャル成長)するという意味である。
また、相似形の空間格子を有する2つの単結晶としては、例えば、立方晶GaN/立方晶SiC、六方晶GaN/六方晶SiC、六方晶AlN/六方晶SiC、六方晶AlGaN/六方晶SiC、立方晶AlN/立方晶SiC、六方晶(4H)SiC/六方晶(6H)SiC等を挙げることができる。
The method for producing a compound single crystal of the present invention is a method for producing a compound single crystal layer which is the same as or different from a single crystal substrate, but when the compound single crystal layer is a compound single crystal different from the single crystal substrate, This is particularly effective when the compound single crystal forming the crystal layer and the single crystal forming the single crystal substrate have a similar spatial lattice.
When two single crystals have a similar spatial lattice, it means that the positions of the atoms of the structural units (basic unit structure) of the crystals are similar, the bonding directions between the atoms are also the same, and the same crystal axis is used. It means to grow in the direction (epitaxial growth).
Examples of two single crystals having a similar spatial lattice include, for example, cubic GaN / cubic SiC, hexagonal GaN / hexagonal SiC, hexagonal AlN / hexagonal SiC, hexagonal AlGaN / hexagonal SiC, Cubic AlN / cubic SiC, hexagonal (4H) SiC / hexagonal (6H) SiC, and the like can be given.
単結晶基板の表面に施される起伏加工及び単結晶層表面に施される起伏加工について説明する。
単結晶基板の表面に施される起伏及び単結晶層表面に施される起伏は、一方向に延在する複数の起伏であり、単結晶層中の反位相領域境界面等の面欠陥を低減又は解消しうるものであれば特に制限はなく、より具体的には、各起伏の斜面においてK.Shibaharaらにより示されたオフ角の導入効果を得ることができる起伏である。但し、本発明でいう起伏は、数学的に厳密な意味での平行性や鏡面対称関係を要求されるわけではなく、面欠陥を効果的に低減又は解消しうるのに十分な程度の形態を有していればよい。
The undulation processing performed on the surface of the single crystal substrate and the undulation processing performed on the surface of the single crystal layer will be described.
The undulations provided on the surface of the single crystal substrate and the undulations provided on the surface of the single crystal layer are a plurality of undulations extending in one direction, and reduce surface defects such as an antiphase region boundary surface in the single crystal layer. There is no particular limitation as long as it can be eliminated, and more specifically, undulations that can obtain the effect of introducing the off-angle shown by K. Shibahara et al. On the slope of each undulation. However, the undulations in the present invention are not required to have mathematically strictly parallelism or mirror symmetry, and have a form sufficient to effectively reduce or eliminate surface defects. You only need to have it.
例えば、前記起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は、成長基板表面と、発生するツインバンド等の面欠陥とがなす角度より小さい角度であることができる。例えば、立方晶の結晶層では解消したい欠陥の面である{111}面と成長面(水平な面)である(001)面のなす角、即ち、54.7°以下の傾き、好ましくは1°から54.7°の範囲の傾きを有しているものであることができる(図7参照)。また、六方晶の場合、例えば、成長面(0001)に対して、{1−101}のなす角度より小さい角度(角度は結晶の格子定数によって異なる)であることができる。また、M面(01−10)やR面(1−102)に対してはC軸(0001)となす角以下の角度であることができる。
成長面と発生する面欠陥の例をいくつか挙げたが、これらはあくまでも例であり、斜度は上記に限られない。成長面と発生する面欠陥がなす角度より小さい斜度を有する起伏であれば、起伏の効果は得られる。即ち、対向する斜面から発生する面欠陥が対向した面欠陥同士衝突し、解消し得るに十分な角度であれば良い。
For example, the undulation has a center line average roughness in a range of 3 to 1000 nm, and the inclination of the slope of the undulation is an angle smaller than the angle formed between the growth substrate surface and a generated surface defect such as a twin band. be able to. For example, in a cubic crystal layer, the angle formed between the {111} plane, which is the plane of the defect to be eliminated, and the (001) plane, which is the growth plane (horizontal plane), that is, an inclination of 54.7 ° or less, preferably 1 It can have a slope in the range from 5 ° to 54.7 ° (see FIG. 7). In the case of a hexagonal crystal, for example, the angle can be smaller than the angle formed by {1-101} (the angle depends on the lattice constant of the crystal) with respect to the growth plane (0001). Further, the angle with respect to the M plane (01-10) or the R plane (1-102) can be equal to or smaller than the angle formed by the C axis (0001).
Some examples of the growth surface and the generated surface defect have been described, but these are only examples, and the slope is not limited to the above. If the undulation has an inclination smaller than the angle formed between the growth surface and the generated surface defect, the undulation effect can be obtained. That is, it is sufficient that the surface defect generated from the opposing slope collides with the opposing surface defect and is at an angle sufficient to eliminate the defect.
さらに前記起伏は、起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状が曲線状であることができる。
ここでいう起伏は、山部と谷部の繰り返しにより形成され、所謂原子ステップ(atomic steps)ではなく、後述のように、原子ステップよりマクロな寸法を有するものである。そのような起伏は、例えば、中心線平均粗さが3〜1000nmの範囲にある起伏であり、上記山部は、基底面に対して、例えば、立方晶の場合、上述のように、1〜54.7°の傾きを持った斜面を有しているものであることができる。中心線平均粗さが3nm以上であれば効果的なオフ角が得られ易く、面欠陥の発生密度が低くなる。また、中心線平均粗さが1000nm以下であれば、面欠陥同士が衝突し解消する確率が高くなる。中心線平均粗さは10nm以上であること、及び100nm以下であることが望ましい。
Further, in the undulation, in a cross section orthogonal to a direction in which the undulation extends, a shape of a portion where slopes are adjacent to each other may be curved.
The undulations here are formed by the repetition of peaks and valleys, and are not so-called atomic steps, but have dimensions that are more macroscopic than atomic steps, as described below. Such undulations are, for example, undulations whose center line average roughness is in the range of 3 to 1000 nm, and the peaks are 1 to It may have a slope with a slope of 54.7 °. When the center line average roughness is 3 nm or more, an effective off angle is easily obtained, and the density of occurrence of surface defects is reduced. Further, when the center line average roughness is 1000 nm or less, the probability that the surface defects collide with each other and be eliminated increases. The center line average roughness is desirably 10 nm or more, and desirably 100 nm or less.
尚、基板表面の中心線平均粗さは、B0601-1982(JISハンドブック1990)で定義される中心線平均粗さ(Ra)であり、粗さ曲線からその中心線の方向に測定長さLの部分を抜き取り、この抜き取り部分の中心線をX軸、縦倍率の方向をY軸とし、粗さ曲線をy=f(x)で表したとき、次式で表される値を(μm)で表したものをいう。 The center line average roughness of the substrate surface is the center line average roughness (Ra) defined in B0601-1982 (JIS Handbook 1990), and the measured length L is measured in the direction of the center line from the roughness curve. When the center line of the extracted part is X axis, the direction of the vertical magnification is Y axis, and the roughness curve is represented by y = f (x), the value represented by the following equation is expressed in (μm) Refers to what is expressed.
尚、上記JIS B0601-1982での定義では、中心線平均粗さの単位はμmであるが、本発明ではナノメーター(nm)を使用する。また、中心線平均粗さ(Ra)を求めるための粗さ曲線は、原子間力顕微鏡(AFM)を用いて測定される。 In the definition of JIS B0601-1982, the unit of the center line average roughness is μm, but in the present invention, nanometer (nm) is used. Further, a roughness curve for determining the center line average roughness (Ra) is measured using an atomic force microscope (AFM).
さらに、上記起伏の斜面の斜度は1°以上、及び54.7°以下の範囲内であることが好ましい。
本発明の方法では、被成長基板または単結晶層表面における原子レベルのステップ近傍での炭化珪素等の化合物単結晶の成長を促進することにより、その効果が発揮されることから、起伏の斜度は、斜面全面が単一ステップに覆われる(111)面の斜度54.7°以下の傾斜において本発明が実現される。
また、1°未満の斜度においては起伏斜面のステップ密度が著しく減少するため、起伏の斜面の傾斜は1°以上である。さらに、起伏の斜面の傾斜角は2°以上であること、及び10°以下であることが好ましい。
なお、本発明において「起伏の斜面」は、平面、曲面などのあらゆる形態を含む。また、本発明において「起伏の斜面の斜度」は、本発明の効果に寄与する実質的な斜面の斜度を意味し、斜面の平均斜度を意味する。平均斜度とは、基板表面または単結晶層表面の結晶方位面と斜面の交わる角度(評価領域の平均値)を意味する。
Further, it is preferable that the slope of the undulating slope is in the range of 1 ° or more and 54.7 ° or less.
In the method of the present invention, the effect is exhibited by promoting the growth of a compound single crystal such as silicon carbide in the vicinity of an atomic step on the surface of the substrate to be grown or the surface of the single crystal layer. The present invention is realized in the case where the slope of the (111) plane in which the entire slope is covered in a single step is 54.7 ° or less.
Further, when the inclination is less than 1 °, the step density of the undulating slope is significantly reduced, so that the inclination of the undulating slope is 1 ° or more. Further, it is preferable that the inclination angle of the undulating slope is not less than 2 ° and not more than 10 °.
In the present invention, the “undulating slope” includes all forms such as a flat surface and a curved surface. Further, in the present invention, "the slope of the undulating slope" means the substantial slope of the slope which contributes to the effect of the present invention, and means the average slope of the slope. The average inclination means an angle (an average value of an evaluation area) at which a crystal orientation plane and a slope of a substrate surface or a single crystal layer surface intersect.
さらに、上記起伏が延在する方向と直交する断面において、基板または単結晶層表面に存在する斜面同士が隣接する部分の形状が曲線状であることが好ましい。斜面同士が隣接する部分とは、表面に延在する起伏の溝の部分と尾根の部分であり、溝の底の部分も尾根の頂上も断面の形状が曲線状である。起伏が延在する方向と直交する断面における起伏の断面形状は、波長及び波高は一定である必要はないが、1種の正弦波のような形状を有する。このように溝の底の部分も尾根の頂上も断面の形状が曲線状であることで、面欠陥密度を低減することが可能である。 Further, in a cross section orthogonal to the direction in which the undulations extend, it is preferable that the shape of a portion where slopes existing on the surface of the substrate or the single crystal layer are adjacent to each other is curved. The portions where the slopes are adjacent to each other are the portion of the undulating groove and the ridge extending to the surface, and the cross-sectional shape of both the bottom portion of the groove and the top of the ridge is curved. The cross-sectional shape of the undulation in a cross section orthogonal to the direction in which the undulation extends has a shape like a kind of sine wave, although the wavelength and the wave height need not be constant. As described above, the cross-sectional shape of both the bottom of the groove and the top of the ridge is curved, so that the surface defect density can be reduced.
上記のように、基板表面及び単結晶層表面に複数の起伏を具備させることにより、各起伏の斜面においてK.Shibaharaらにより示されたオフ角の導入効果を得ることが可能となる。起伏頂部の間隔は、基板及単結晶層への起伏作製における微細加工技術の限度の観点からは0.01μm以上が好ましい。また、起伏頂部の間隔が1000μmを超えると反位相領域境界面どうしの会合の頻度が極端に低下するため、起伏頂部の間隔は1000μm以下であることが望ましい。さらに、本発明の効果が十分に発揮されるという観点から望ましい起伏頂部の間隔は、0.1μm以上であり、100μm以下である。 As described above, by providing a plurality of undulations on the substrate surface and the single crystal layer surface, it is possible to obtain the effect of introducing the off-angle shown by K. Shibahara et al. On the slope of each undulation. The distance between the tops of the undulations is preferably 0.01 μm or more from the viewpoint of the limit of the fine processing technology in the preparation of undulations on the substrate and the single crystal layer. If the interval between the tops of the undulations exceeds 1000 μm, the frequency of association between the anti-phase region boundary surfaces is extremely reduced. Therefore, the interval between the tops of the undulations is desirably 1000 μm or less. Further, from the viewpoint that the effect of the present invention is sufficiently exhibited, the interval between the tops of the undulations is preferably 0.1 μm or more and 100 μm or less.
起伏の高低差及び間隔は起伏の傾斜度、つまりステップ密度を左右する。好ましいステップ密度は結晶成長条件によって変化するため一概には言えないが、通常必要な起伏高低差は起伏頂部間隔と同程度、つまり0.01μm以上20μm以下である。各起伏は、基底面に対し90°より小さい勾配を持った斜面が互いに対向するようにして形成されており、かつ基底面に対する表面の傾斜角を全表面にわたり積分した場合、その値が実質的に0°になるような形状に形成されているのが好ましい。 The undulation height difference and interval influence the undulation inclination, that is, the step density. Although the preferred step density varies depending on the crystal growth conditions, it cannot be said unconditionally. However, the required difference in the height of the undulations is generally the same as the distance between the tops of the undulations, that is, from 0.01 μm to 20 μm. Each undulation is formed so that slopes having a slope of less than 90 ° with respect to the base surface are opposed to each other, and when the inclination angle of the surface with respect to the base surface is integrated over the entire surface, the value is substantially equal. It is preferable that the shape is formed so as to be 0 °.
本発明では、上記のような基板及び単結晶層全体、又は基板及び単結晶層の一部の領域(但し、この領域は前記複数の起伏を有する)を、一つの成長域として、その上に、化合物単結晶膜を連続的に形成させる。基板及び単結晶層にこのような形状の起伏を設けることにより、まず基板上への単結晶層の成長に従って、斜面に存在するステップから発生し、成長する反位相領域境界面を前記複数の起伏間で互いに会合させることが可能であり、さらには、単結晶層に起伏を導入することで基底面上に現れていた極性面が一旦排除され、新たに形成された起伏のオフ斜面効果によるステップフロー成長がもたらされる。そのため、反位相領域境界面を効果的に消滅させて取り除くことが出来、欠陥の少ない化合物単結晶を得ることができる。 In the present invention, the entire substrate and the single crystal layer as described above, or a partial region of the substrate and the single crystal layer (however, this region has the plurality of undulations) is defined as one growth region, Then, a compound single crystal film is continuously formed. By providing undulations of such a shape on the substrate and the single-crystal layer, firstly, as the single-crystal layer is grown on the substrate, the plurality of undulations generated from the steps existing on the slope and growing are formed. Can be associated with each other, and furthermore, by introducing undulations into the single crystal layer, the polar planes appearing on the basal plane are once removed, and the steps formed by the newly formed undulations by the off-slope effect Flow growth results. Therefore, the anti-phase region boundary surface can be effectively eliminated and removed, and a compound single crystal with few defects can be obtained.
成長基板表面(例えば立方晶炭化珪素(001)面)にオフ斜面を形成する方法は、オフにカットする方法が考えられるが、例えば最もオフの効果が得られる4°というオフ斜面を得るためには、6インチφの基板では最低でも板厚10.5mm以上必要となる(10.5mmの板厚が得られないと4°にカットしても6インチ面の領域を得ることができない)。実際にはカットする際に取りしろが必要になるため、12〜20 mm厚必要となろう。しかしながら、起伏加工を施すことで、数μm厚の3C-SiC表面に対向するオフ斜面を形成することが可能となり、ステップフローモードでのエピタキシャル成長を導入できる。 As a method of forming an off-slope on the growth substrate surface (for example, cubic silicon carbide (001) plane), a method of cutting off can be considered. For example, in order to obtain an off-slope of 4 ° at which the off-effect is obtained most. Requires a board thickness of at least 10.5 mm for a 6-inch φ substrate (if a board thickness of 10.5 mm is not obtained, a 6-inch plane area cannot be obtained even when cut at 4 °). In practice, a margin is required when cutting, so it will be 12 to 20 mm thick. However, by performing the undulating process, it is possible to form an off-slope surface facing the 3C-SiC surface having a thickness of several μm, and it is possible to introduce epitaxial growth in a step flow mode.
基板及び単結晶層の表面に上記のような形状を有する起伏を形成するには、例えば、光リソグラフィ技術、プレス加工技術、レーザー加工や超音波加工技術、研磨加工技術などを用いることができる。何れの方法を用いる場合でも、被成長基板表面及び単結晶層の最終形態が、反位相領域境面を効果的に低減または解消し得るのに十分な程度の形態を有していれば良い。 In order to form undulations having the above-mentioned shape on the surface of the substrate and the single crystal layer, for example, an optical lithography technique, a press working technique, a laser working, an ultrasonic working technique, a polishing working technique, or the like can be used. Whichever method is used, it is sufficient that the final form of the surface of the substrate to be grown and the single crystal layer have a form sufficient to effectively reduce or eliminate the antiphase region boundary.
光リソグラフィ技術を用いれば、基板又は単結晶層に転写するマスクパターンを任意に形成することで、任意の起伏形状を被成長基板又は単結晶層に転写することが可能である。パターンの、例えば線幅を変えることで起伏形状の幅を制御することが可能であり、また、レジストと基板又は単結晶層のエッチング選択比を制御することで起伏形状の深さや斜面の角度を制御することが可能である。基板又は単結晶層表面の起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状が曲線状である基板を形成する場合には、レジストにパターン転写した後、熱処理によりレジストを軟化させることで、断面曲線状(波状形状)の起伏パターンを形成することが可能である。 By using an optical lithography technique, an arbitrary undulating shape can be transferred to a substrate to be grown or a single crystal layer by arbitrarily forming a mask pattern to be transferred to a substrate or a single crystal layer. It is possible to control the width of the undulating shape by changing the line width of the pattern, for example, and to control the etching selectivity between the resist and the substrate or the single crystal layer to change the depth of the undulating shape and the angle of the slope. It is possible to control. When forming a substrate in which the shape of a portion where slopes are adjacent to each other is curved in a cross section orthogonal to the direction in which the undulations of the surface of the substrate or the single crystal layer extend, after pattern transfer to the resist, Is softened, it is possible to form an undulating pattern having a cross-sectional curve (wavy shape).
プレス加工技術を用いれば、プレス用の型を任意に形成することで、被成長基板又は単結晶層上に任意の起伏形状を形成することが可能である。様々な形状の型を形成することで、様々な形状の起伏形状を被成長基板上に形成できる。 By using a press working technique, it is possible to form an arbitrary undulation on the substrate to be grown or the single crystal layer by arbitrarily forming a press die. By forming molds of various shapes, various undulating shapes can be formed on the growth target substrate.
レーザー加工や超音波加工技術を用いれば、基板又は単結晶層に直接起伏形状を加工形成するのでより微細な加工が可能である。
研磨加工を用いれば、研磨の砥粒径の大きさや加工圧力を変化することで、起伏形状の幅や深さを制御することが可能である。一方向起伏形状を設けた基板又は単結晶層を作製しようとする場合には、研磨は一方向のみに行われる。
When laser processing or ultrasonic processing technology is used, finer processing is possible because the undulating shape is directly formed on the substrate or the single crystal layer.
If the polishing process is used, the width and depth of the undulating shape can be controlled by changing the size of the abrasive grain and the processing pressure of the polishing. When a substrate or a single crystal layer having a one-way undulation is to be manufactured, polishing is performed only in one direction.
ドライエッチング加工を用いれば、エッチングの条件とエッチング用マスクの形状を変化させることで、起伏形状の幅や深さを制御する事が可能である。基板又は単結晶層表面の起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状が曲線状である基板を形成する場合は、エッチングマスクを被パターン転写基板から離して配置することにより、マスクと基板又は単結晶層の間でエッチングが拡散して行われるために、曲線状断面を有する波状のパターンを転写させることができる。また、マスクの窓の断面が被パターン転写基板側に末広がりの形の台形を有しているマスクでもよい。 If dry etching is used, the width and depth of the undulating shape can be controlled by changing the etching conditions and the shape of the etching mask. When forming a substrate in which the shape of the portion where the slopes are adjacent to each other is curved in a cross section orthogonal to the direction in which the undulations of the surface of the substrate or the single crystal layer extend, the etching mask is arranged away from the pattern transfer substrate. By doing so, the etching is diffused between the mask and the substrate or the single crystal layer, so that a wavy pattern having a curved cross section can be transferred. Further, the mask may have a trapezoid in which the cross section of the window of the mask is divergent toward the pattern transfer substrate side.
本発明の製造方法においては、単結晶層表面への起伏の形成と、起伏を形成した単結晶層上への、新たな単結晶層の形成を少なくとも1回行う。単結晶層表面への起伏の形成と新たな単結晶層の形成とは、2回以上繰り返し行うこともでき、例えば、2〜10回の範囲で行うことができる。ただし、必要により10回を超える回数行うこともできる。 In the manufacturing method of the present invention, the formation of the undulation on the surface of the single crystal layer and the formation of a new single crystal layer on the single crystal layer having the undulation are performed at least once. The formation of undulations on the surface of the single crystal layer and the formation of a new single crystal layer can be repeated twice or more, for example, in the range of 2 to 10 times. However, if necessary, it can be performed more than 10 times.
本発明の製造方法においては、単結晶基板表面に延在する複数の起伏の方向と、該基板表面に形成された化合物単結晶層の表面に設けられる複数の起伏の延在方向は、同一であっても、直交していてもよい。また、ある単結晶層表面に延在する複数の起伏の方向と、この単結晶層表面に形成された化合物単結晶層の表面に設けられる複数の起伏の延在方向は、同一であっても、直交していてもよい。
Si基板表面に延在する複数の起伏の方向と、この基板表面に形成された化合物単結晶層の表面に設けられる複数の起伏の延在方向が、同一である場合を図1に示す。この方法では、1)でSi基板表面に延在する複数の起伏が形成され、2)で、この基板表面に形成された化合物単結晶層が形成され、3)で、化合物単結晶層の表面に設けられる複数の起伏が設けられ(この起伏の延在方向は、Si基板表面に延在する起伏の延在方向と同一である)、4)で、さらに化合物単結晶層が形成される。
Si基板表面に延在する複数の起伏の方向と、この基板表面に形成された化合物単結晶層の表面に設けられる複数の起伏の延在方向が、直交する場合を図2に示す。この方法では、1)でSi基板表面に延在する複数の起伏が形成され、2)で、この基板表面に形成された化合物単結晶層が形成され、3)で、化合物単結晶層の表面に設けられる複数の起伏が設けられ(この起伏の延在方向は、Si基板表面に延在する起伏の延在方向と直交する)、4)で、さらに化合物単結晶層が形成される。
In the manufacturing method of the present invention, the directions of the plurality of undulations extending on the surface of the single crystal substrate and the directions of the plurality of undulations provided on the surface of the compound single crystal layer formed on the surface of the substrate are the same. Or they may be orthogonal. Also, even if the directions of the plurality of undulations extending on the surface of a single crystal layer and the directions of the plurality of undulations provided on the surface of the compound single crystal layer formed on the surface of the single crystal layer are the same. , May be orthogonal.
FIG. 1 shows a case where the direction of the plurality of undulations extending on the surface of the Si substrate and the direction of extension of the undulations provided on the surface of the compound single crystal layer formed on the surface of the substrate are the same. In this method, a plurality of undulations extending on the surface of the Si substrate are formed in 1), a compound single crystal layer formed on the surface of the substrate is formed in 2), and a surface of the compound single crystal layer is formed in 3). Are provided (the extending direction of the undulation is the same as the extending direction of the undulation extending on the surface of the Si substrate), and in 4), a compound single crystal layer is further formed.
FIG. 2 shows a case where the directions of the plurality of undulations extending on the surface of the Si substrate and the direction of extension of the plurality of undulations provided on the surface of the compound single crystal layer formed on the surface of the substrate are orthogonal to each other. In this method, a plurality of undulations extending on the surface of the Si substrate are formed in 1), a compound single crystal layer formed on the surface of the substrate is formed in 2), and a surface of the compound single crystal layer is formed in 3). Are provided (the extending direction of the undulations is orthogonal to the extending direction of the undulations extending on the surface of the Si substrate), and in 4), a compound single crystal layer is further formed.
例えば、第n層目基板または単結晶層表面に形成された起伏の方位と第n+1層目の単結晶層表面に形成された起伏の方位が一致し、かつ第n層目の結晶の極性面と第n+1層目の結晶の同一極性を有する極性面が同一方位に配向していると、第n層目の結晶層から第n+1層目の層に欠陥が伝播してくるものを、ステップフロー成長を積極的に実施させることにより、抑制することができるという効果がある。
また、第n層目の基板または単結晶層表面に形成された起伏の方位と第n+1層目の単結晶層表面に形成された起伏の方位を同一とし、第n+1層目の単結晶層表面に形成された起伏の方位と第n+2層目の単結晶層表面に形成された起伏の方位を直交させること、あるいは第n層目の基板または単結晶層表面に形成された起伏の方位と第n+1層目の単結晶層表面に形成された起伏の方位を直交させ、第n+1層目の単結晶層表面に形成された起伏の方位と第n+2層目の単結晶層表面に形成された起伏の方位を同一とすることもできる。
いずれの場合にも、形成されるステップやテラスの向き、極性の向きが変わり、成長方向を強制的に変化させることで、成長層への面欠陥伝搬を抑制する効果があり、面欠陥の解消効果が大きくなり、より欠陥の少ない結晶層を得ることができる。
For example, the direction of the undulation formed on the surface of the n-th layer substrate or the single crystal layer matches the direction of the undulation formed on the surface of the (n + 1) th single crystal layer, and the crystal of the n-th layer When the polar plane and the polar plane having the same polarity of the crystal of the (n + 1) th layer are oriented in the same direction, defects propagate from the crystal layer of the (n) th layer to the (n + 1) th layer. There is an effect that it is possible to suppress the generation by actively performing the step flow growth.
Further, the direction of the undulations formed on the surface of the n-th layer substrate or the single crystal layer and the direction of the undulations formed on the surface of the (n + 1) th single crystal layer are the same, and the surface of the (n + 1) th single crystal layer is formed. The direction of the undulations formed on the surface of the n + 2th single crystal layer is orthogonal to the direction of the undulations formed on the surface of the n + 2th single crystal layer. The directions of the undulations formed on the surface of the (n + 1) th single crystal layer are made orthogonal to the undulations formed on the surface of the (n + 1) th single crystal layer and the undulations formed on the surface of the (n + 2) th single crystal layer. May have the same orientation.
In either case, the direction of the formed steps, terraces, and polarity is changed, and the growth direction is forcibly changed, thereby suppressing the propagation of plane defects to the growth layer, and eliminating the plane defects. The effect is increased, and a crystal layer with fewer defects can be obtained.
本発明の製造方法によれば、低欠陥密度の炭化珪素を得ることができる。界面からの伝搬性面欠陥が解消されたことによって、電気諸特性においてリーク電流などの発生が少なくなり、半導体材料として実用することが可能となる。
さらに、本発明の製造方法によれば低欠陥密度の炭化珪素上窒化ガリウムもしくは炭化珪素上窒化アルミニウムの化合物結晶を得ることができる。
さらに、本発明の製造方法によれば、六方晶の化合物結晶を得ることが可能となる。つまり、低欠陥密度の六方晶の炭化珪素、六方晶の窒化ガリウム、窒化アルミニウムを得ることが可能となる。
また、本発明の製造方法によれば、面欠陥密度が1本/cm以下である高品質な化合物結晶を得ることが可能となる。本発明により、半導体材料として十分実用可能な化合物結晶を得ることができる。
According to the manufacturing method of the present invention, silicon carbide having a low defect density can be obtained. The elimination of the propagating surface defect from the interface reduces the occurrence of leak current and the like in various electrical characteristics, and makes it possible to use the semiconductor material as a semiconductor material.
Furthermore, according to the production method of the present invention, a compound crystal of gallium nitride on silicon carbide or aluminum nitride on silicon carbide having a low defect density can be obtained.
Furthermore, according to the production method of the present invention, it is possible to obtain hexagonal compound crystals. That is, it is possible to obtain hexagonal silicon carbide, hexagonal gallium nitride, and aluminum nitride with low defect density.
Further, according to the production method of the present invention, it is possible to obtain a high-quality compound crystal having a plane defect density of 1 / cm or less. According to the present invention, a compound crystal which can be sufficiently used as a semiconductor material can be obtained.
以下、本発明を実施例によりさらに詳細に説明する。
実施例1
直径6インチのSi(001)基板表面に、<110>方向に平行に研磨剤を擦りつける方法で、<110>方向に平行な起伏形成基板を作製した。研磨剤としては、市販されている約φ9μm径のダイヤモンドスラリー(エンギス社製ハイプレス)と市販の研磨クロス(エンギスM414)を用いた。クロスにダイヤモンドスラリーを一様に浸透させ、パッド上にSi(001)基板を置き、0.2kg/cm2の圧力をSi(001)基板全体に加えながら、<110>方向に平行にクロス上を約20cm程度の距離を約300回往復させた(一方向研磨処理)。Si(001)基板表面には<110>方向に平行な研磨傷(起伏)が無数に形成された。
Hereinafter, the present invention will be described in more detail with reference to Examples.
Example 1
An undulation-formed substrate parallel to the <110> direction was prepared by rubbing an abrasive parallel to the <110> direction on the surface of an Si (001) substrate having a diameter of 6 inches. As the abrasive, a commercially available diamond slurry having a diameter of about 9 μm (High Press manufactured by Engis) and a commercially available polishing cloth (Engis M414) were used. The diamond slurry is uniformly infiltrated into the cloth, the Si (001) substrate is placed on the pad, and a pressure of 0.2 kg / cm 2 is applied to the entire Si (001) substrate while the cloth is parallel to the <110> direction. Was reciprocated about 300 times a distance of about 20 cm (unidirectional polishing treatment). Innumerable polishing flaws (undulations) parallel to the <110> direction were formed on the surface of the Si (001) substrate.
一方向研磨処理を施したSi(001)基板表面に研磨砥粒などが付着しているので、超音波洗浄機で洗浄し、その後、過酸化水素水+硫酸混合溶液(1:1)、HF溶液にて洗浄した。洗浄した後、熱処理装置を用いて表1に示す条件にて起伏加工処理基板上に熱酸化膜を約1μm形成した。形成した熱酸化膜を、希フッ酸により除去した。基板表面は、得たい起伏以外にも細かいスパイク上の凹凸や欠陥が多く残存し、被成長基板としては用い難かった。しかし、熱酸化膜を1μmほど形成して改めて酸化膜を除去することで、基板表面を約2000Åほどエッチングし、細かい凹凸が除去されて非常にスムーズなアンジュレーション(起伏)を得ることができた。波状断面を見ると波状凹凸の大きさは不安定で不規則であるが、密度は高い。常に起伏の連続状態にある。溝の深さは30〜50nm、幅は1〜2μmであった。斜度は3〜5°であった。 Since the abrasive grains are attached to the surface of the Si (001) substrate which has been subjected to the unidirectional polishing, the substrate is cleaned with an ultrasonic cleaner, and then a mixed solution of hydrogen peroxide and sulfuric acid (1: 1), HF Washed with the solution. After the cleaning, a thermal oxide film of about 1 μm was formed on the undulating substrate under the conditions shown in Table 1 using a heat treatment apparatus. The formed thermal oxide film was removed with diluted hydrofluoric acid. On the substrate surface, many irregularities and defects on fine spikes remained in addition to the undulations to be obtained, and it was difficult to use as a substrate to be grown. However, by forming a thermal oxide film of about 1 μm and removing the oxide film again, the substrate surface was etched by about 2000 °, and fine irregularities were removed, and a very smooth undulation (undulation) could be obtained. . Looking at the wavy cross section, the size of the wavy irregularities is unstable and irregular, but the density is high. It is always in a state of undulation. The groove had a depth of 30 to 50 nm and a width of 1 to 2 μm. The slope was 3-5 °.
上記方法で得られた基板上に炭化珪素(3C-SiC)を気相成長法により形成した。成長条件は表2及び3の通りである。 Silicon carbide (3C-SiC) was formed on the substrate obtained by the above method by a vapor deposition method. Tables 2 and 3 show the growth conditions.
反応管内へ、ジクロルシランとアセチレンを交互に供給しつつ、3C-SiCの成長を行った。そして、起伏加工を施したSi基板上へ板厚約200μmの3C-SiCを得た。表面は平滑で鏡面となり、下地基板に形成した起伏形状は表面に現れていない。
得られた3C-SiCのエッチピット密度と双晶密度を以下の如く求めた。
3C-SiCを溶融KOH(500度、5分)に曝した後、光学顕微鏡にて表面を観察したところ、積層欠陥や面欠陥(Twin、APB)らしきエッチピットは6インチ全面で1290個、7.3/cm2であった。さらに3C-SiC(111)面に対するX線回折ロッキングカーブ(XRD)の極点図作成をおこない、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は3×10-3 Vol.%であることがわかった。
3C-SiC was grown while alternately supplying dichlorosilane and acetylene into the reaction tube. Then, 3C-SiC having a thickness of about 200 μm was obtained on the undulated Si substrate. The surface is smooth and mirror-finished, and the undulating shape formed on the underlying substrate does not appear on the surface.
The etch pit density and twin density of the obtained 3C-SiC were determined as follows.
After exposing the 3C-SiC to molten KOH (500 ° C, 5 minutes), the surface was observed with an optical microscope. As a result, there were 1290 etch pits on the entire surface of 6 inches, which seemed to be stacking faults and surface defects (Twin, APB). / cm 2 . Further, a pole figure of an X-ray diffraction rocking curve (XRD) for the 3C-SiC (111) plane was prepared, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation were compared. The twin density was calculated from the signal intensity ratio. As a result, the twin density was found to be 3 × 10 −3 Vol.%.
続いて上記で得られた3C-SiC上に、Si基板に形成した起伏と同様の起伏を形成した。形成方法は上述したものと全く同様である。起伏の延在方向は、<110>方位に平行とした。そして、起伏加工を施した3C-SiC上に、3C-SiCを厚さ100μm、ホモエピタキシャル成長した。 Subsequently, undulations similar to those formed on the Si substrate were formed on the 3C-SiC obtained above. The forming method is exactly the same as that described above. The extending direction of the undulation was parallel to the <110> direction. Then, 3C-SiC was homoepitaxially grown to a thickness of 100 μm on the undulated 3C-SiC.
得られた3C-SiCのエッチピット密度と双晶密度を以下の如く求めた。
3C-SiCを溶融KOH(500℃、5分)に曝した後、光学顕微鏡にて表面を観察したところ、積層欠陥や面欠陥(Twin、APB)らしきエッチピットは6インチ全面で420個、2.4/cm2であった。さらに3C-SiC(111)面に対するX線回折ロッキングカーブ(XRD)の極点図作成をおこない、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4 Vol.%以下であることがわかった。
The etch pit density and twin density of the obtained 3C-SiC were determined as follows.
After exposing the 3C-SiC to molten KOH (500 ° C, 5 minutes), the surface was observed with an optical microscope. As a result, there were 420 etch pits that appeared to be stacking faults and surface defects (Twin, APB) on a 6-inch surface, 2.4 / cm 2 . Further, a pole figure of an X-ray diffraction rocking curve (XRD) for the 3C-SiC (111) plane was prepared, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation were compared. The twin density was calculated from the signal intensity ratio. As a result, the twin density was found to be 4 × 10 −4 Vol.% Or less, which is the measurement limit.
比較のため、起伏加工を施したSi基板上に3C-SiCを連続して300μm厚形成した。この3C-SiCを溶融KOH(500℃、5分)に曝した後、光学顕微鏡にて表面を観察したところ、積層欠陥や面欠陥(Twin、APB)らしきエッチピットは6インチ全面で900個、5.1/cm2であった。さらに3C-SiC(111)面に対するX線回折ロッキングカーブ(XRD)の極点図作成をおこない、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は2×10-3 Vol.%以下であることがわかった。
上記結果から、起伏加工を成長層表面へ施し、その上に3C-SiCを成長したことで、基板界面から成長層表面へ伝搬する面欠陥を早期に解消できることが分かる。
For comparison, 3C-SiC was continuously formed to a thickness of 300 μm on the undulated Si substrate. After exposing this 3C-SiC to molten KOH (500 ° C, 5 minutes), when observing the surface with an optical microscope, it was found that there were 900 stack pits that appeared to be stacking faults and surface defects (Twin, APB) on the entire surface of 6 inches, It was 5.1 / cm 2 . Further, a pole figure of an X-ray diffraction rocking curve (XRD) for the 3C-SiC (111) plane was prepared, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation were compared. The twin density was calculated from the signal intensity ratio. As a result, the twin density was found to be 2 × 10 −3 Vol.% Or less.
From the above results, it can be understood that the surface defects propagated from the substrate interface to the growth layer surface can be eliminated at an early stage by performing the undulation processing on the growth layer surface and growing 3C-SiC thereon.
実施例2
直径6インチのSi(001)基板表面に、<110>方向に平行に研磨剤を擦りつける方法で、<110>方向に平行な起伏形成基板を作製することを試みた。研磨剤は市販されている約φ9μm径のダイヤモンドスラリー(エンギス社製ハイプレス)と市販の研磨クロス(エンギスM414)を用いた。クロスにダイヤモンドスラリーを一様に浸透させ、パッド上にSi(001)基板を置き、0.2kg/cm2の圧力をSi(001)基板全体に加えながら、<110>方向に平行にクロス上を約20cm程度の距離を約300回往復させた(一方向研磨処理)。Si(001)基板表面には<110>方向に平行な研磨傷(起伏)が無数に形成された。
Example 2
An attempt was made to produce an undulation-formed substrate parallel to the <110> direction by a method of rubbing an abrasive in parallel with the <110> direction on the surface of a 6-inch-diameter Si (001) substrate. As the abrasive, a commercially available diamond slurry having a diameter of about 9 μm (High Press manufactured by Engis) and a commercially available polishing cloth (Engis M414) were used. The diamond slurry is uniformly infiltrated into the cloth, the Si (001) substrate is placed on the pad, and a pressure of 0.2 kg / cm 2 is applied to the entire Si (001) substrate while the cloth is parallel to the <110> direction. Was reciprocated about 300 times a distance of about 20 cm (unidirectional polishing treatment). Innumerable polishing flaws (undulations) parallel to the <110> direction were formed on the surface of the Si (001) substrate.
一方向研磨処理を施したSi(001)基板表面に研磨砥粒などが付着しているので、超音波洗浄機で洗浄を実施、その後、過酸化水素水+硫酸混合溶液(1:1)、HF溶液にて洗浄した。洗浄した後、熱処理装置を用いて表に示す条件にて起伏加工処理基板上に熱酸化膜を約1μm形成した。形成した熱酸化膜を、希フッ酸により除去した。基板表面は、得たい起伏以外にも細かいスパイク上の凹凸や欠陥が多く残存し、被成長基板としては用い難い。しかし、熱酸化膜を1μmほど形成して改めて酸化膜を除去することで、基板表面を約2000Åほどエッチングし、細かい凹凸が除去されて非常にスムーズなアンジュレーション(起伏)を得ることができた。波状断面を見ると波状凹凸の大きさは不安定で不規則であるが、密度は高い。常に起伏の連続状態にある。溝の深さは30〜50nm、幅は1〜2μmであった。斜度は、ひとつひとつの斜度にばらつきはあるがおおむね3〜5°の範囲であった。 Since polishing abrasive grains and the like are attached to the surface of the Si (001) substrate that has been subjected to the one-way polishing, cleaning is performed using an ultrasonic cleaner, and then, a mixed solution of hydrogen peroxide and sulfuric acid (1: 1) is used. Washed with HF solution. After cleaning, a thermal oxide film was formed to a thickness of about 1 μm on the undulating substrate under the conditions shown in the table using a heat treatment apparatus. The formed thermal oxide film was removed with diluted hydrofluoric acid. In addition to the undulations to be obtained, many irregularities and defects on fine spikes remain on the substrate surface, making it difficult to use as a substrate to be grown. However, by forming a thermal oxide film of about 1 μm and removing the oxide film again, the substrate surface was etched by about 2000 °, and fine irregularities were removed, and a very smooth undulation (undulation) could be obtained. . Looking at the wavy cross section, the size of the wavy irregularities is unstable and irregular, but the density is high. It is always in a state of undulation. The groove had a depth of 30 to 50 nm and a width of 1 to 2 μm. The inclination was generally in the range of 3 to 5 °, although there was variation in each inclination.
作製した起伏加工済みSi(001)基板上に、厚さ200μmの3C-SiCの成長を実施した。形成条件は表2及び3の通りである。
得られた3C-SiC表面に、起伏加工を施した。起伏延在方向は、<1−10>方向に平行とした。すなわち、下地基板上に形成した起伏の延在方向とは、<001>方位に試料を見た場合に直交する方向である。
A 200 μm thick 3C-SiC was grown on the undulated Si (001) substrate thus fabricated. The forming conditions are as shown in Tables 2 and 3.
The obtained 3C-SiC surface was subjected to undulation processing. The undulating extension direction was parallel to the <1-10> direction. That is, the extending direction of the undulations formed on the base substrate is a direction orthogonal to the case where the sample is viewed in the <001> direction.
上記で得られた3C-SiC上に、3C-SiCを厚さ100μmホモエピタキシャル成長した。成長方法は上述した方法と同様である。
得られた3C-SiCのエッチピット密度と双晶密度を以下の如く求めた。
3C-SiCを溶融KOH(500℃、5分)に曝した後、光学顕微鏡にて表面を観察したところ、積層欠陥や面欠陥(Twin、APB)らしきエッチピットは6インチ全面で380個、2.2/cm2であった。さらに3C-SiC(111)面に対するX線回折ロッキングカーブ(XRD)の極点図作成をおこない、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4 Vol.%以下であることがわかった。
3C-SiC was homoepitaxially grown to a thickness of 100 μm on the 3C-SiC obtained above. The growth method is the same as the method described above.
The etch pit density and twin density of the obtained 3C-SiC were determined as follows.
After exposing the 3C-SiC to molten KOH (500 ° C, 5 minutes), the surface was observed with an optical microscope. As a result, stacking defects and surface defects (Twin, APB) were found to have 380 etch pits on a 6-inch surface, 2.2 / cm 2 . Further, a pole figure of an X-ray diffraction rocking curve (XRD) for the 3C-SiC (111) plane was prepared, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation were compared. The twin density was calculated from the signal intensity ratio. As a result, the twin density was found to be 4 × 10 −4 Vol.% Or less, which is the measurement limit.
実施例3
本実施例では、実施例2で得た3C-SiC上に、起伏加工を施した。加工方法は実施例2の方法と同じである。そして、起伏加工を施した3C-SiC表面に、3C-SiCを厚さ100μmエピタキシャル成長した。成長方法は実施例2の方法と同じである。
Example 3
In this embodiment, undulation processing was performed on the 3C-SiC obtained in
得られた3C-SiCのエッチピット密度と双晶密度を以下の如く求めた。
3C-SiCを溶融KOH(500℃、5分)に曝した後、光学顕微鏡にて表面を観察したところ、積層欠陥や面欠陥(Twin、APB)らしきエッチピットは6インチ全面で240個、1.36/cm2であった。さらに3C-SiC<111>方位に対するX線回折ロッキングカーブ(XRD)の極点観察をおこない、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4 Vol.%以下であることがわかった。
The etch pit density and twin density of the obtained 3C-SiC were determined as follows.
After exposing 3C-SiC to molten KOH (500 ° C, 5 minutes), the surface was observed with an optical microscope. As a result, the number of stack pits and surface defects (Twin, APB) was 240 in 6 inches and 1.36 in total. / cm 2 . Furthermore, X-ray diffraction rocking curve (XRD) for 3C-SiC <111> orientation was observed at the extreme points, and signal intensity of {115} plane orientation corresponding to twin plane and signal of normal single crystal plane {111} plane orientation were observed. The twin density was calculated from the intensity ratio. As a result, the twin density was found to be 4 × 10 −4 Vol.% Or less, which is the measurement limit.
実施例4
直径6インチのSi(001)基板表面に、<110>方向に平行に研磨剤を擦りつける方法で、<110>方向に平行な起伏形成基板を作製することを試みた。研磨剤は市販されている約φ9μm径のダイヤモンドスラリー(エンギス社製ハイプレス)と市販の研磨クロス(エンギスM414)を用いた。クロスにダイヤモンドスラリーを一様に浸透させ、パッド上にSi(001)基板を置き、0.2kg/cm2の圧力をSi(001)基板全体に加えながら、<110>方向に平行にクロス上を約20cm程度の距離を約300回往復させた(一方向研磨処理)。Si(001)基板表面には<110>方向に平行な研磨傷(起伏)が無数に形成された。
Example 4
An attempt was made to produce an undulation-formed substrate parallel to the <110> direction by a method of rubbing an abrasive in parallel with the <110> direction on the surface of a 6-inch-diameter Si (001) substrate. As the abrasive, a commercially available diamond slurry having a diameter of about 9 μm (High Press manufactured by Engis) and a commercially available polishing cloth (Engis M414) were used. The diamond slurry is uniformly infiltrated into the cloth, the Si (001) substrate is placed on the pad, and a pressure of 0.2 kg / cm 2 is applied to the entire Si (001) substrate while the cloth is parallel to the <110> direction. Was reciprocated about 300 times a distance of about 20 cm (unidirectional polishing treatment). Innumerable polishing flaws (undulations) parallel to the <110> direction were formed on the surface of the Si (001) substrate.
一方向研磨処理を施したSi(001)基板表面に研磨砥粒などが付着しているので、超音波洗浄機で洗浄を実施、その後、過酸化水素水+硫酸混合溶液(1:1)、HF溶液にて洗浄した。洗浄した後、熱処理装置を用いて表に示す条件にて起伏加工処理基板上に熱酸化膜を約1μm形成した。形成した熱酸化膜を、希フッ酸により除去した。基板表面は、得たい起伏以外にも細かいスパイク上の凹凸や欠陥が多く残存し、被成長基板としては用い難い。しかし、熱酸化膜を1μmほど形成して改めて酸化膜を除去することで、基板表面を約2000Åほどエッチングし、細かい凹凸が除去されて非常にスムーズなアンジュレーション(起伏)を得ることができた。波状断面を見ると波状凹凸の大きさは不安定で不規則であるが、密度は高い。常に起伏の連続状態にある。溝の深さは30〜50nm、幅は1〜2μmであった。斜度は3〜5°であった。 Since polishing abrasive grains and the like are attached to the surface of the Si (001) substrate that has been subjected to the one-way polishing, cleaning is performed using an ultrasonic cleaner, and then, a mixed solution of hydrogen peroxide and sulfuric acid (1: 1) is used. Washed with HF solution. After cleaning, a thermal oxide film was formed to a thickness of about 1 μm on the undulating substrate under the conditions shown in the table using a heat treatment apparatus. The formed thermal oxide film was removed with diluted hydrofluoric acid. In addition to the undulations to be obtained, many irregularities and defects on fine spikes remain on the substrate surface, making it difficult to use as a substrate to be grown. However, by forming a thermal oxide film of about 1 μm and removing the oxide film again, the substrate surface was etched by about 2000 °, and fine irregularities were removed, and a very smooth undulation (undulation) could be obtained. . Looking at the wavy cross section, the size of the wavy irregularities is unstable and irregular, but the density is high. It is always in a state of undulation. The groove had a depth of 30 to 50 nm and a width of 1 to 2 μm. The slope was 3-5 °.
上記で得られた基板上に炭化珪素(3C-SiC)を気相成長法により形成した。成長条件は表2及び3の通りである。
反応管内へ、ジクロルシランとアセチレンを交互に供給しつつ、3C-SiCの成長を行った。そして、起伏加工を施したSi基板上へ板厚約200μmの3C-SiCを得た。表面は平滑で鏡面となり、下地基板に形成した起伏形状は表面に現れていない。
Silicon carbide (3C-SiC) was formed on the substrate obtained above by a vapor deposition method. Tables 2 and 3 show the growth conditions.
3C-SiC was grown while alternately supplying dichlorosilane and acetylene into the reaction tube. Then, 3C-SiC having a thickness of about 200 μm was obtained on the undulated Si substrate. The surface is smooth and mirror-finished, and the undulating shape formed on the underlying substrate does not appear on the surface.
得られた3C-SiCのエッチピット密度と双晶密度を以下の如く求めた。
3C-SiCを溶融KOH(500度、5分)に曝した後、光学顕微鏡にて表面を観察したところ、積層欠陥や面欠陥(Twin、APB)らしきエッチピットは6インチ全面で1290個、7.3/cm2であった。さらに3C-SiC<111>方位に対するX線回折ロッキングカーブ(XRD)の極点観察をおこない、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は3×10-3 Vol.%であることがわかった。
The etch pit density and twin density of the obtained 3C-SiC were determined as follows.
After exposing the 3C-SiC to molten KOH (500 ° C, 5 minutes), the surface was observed with an optical microscope. As a result, there were 1290 etch pits on the entire surface of 6 inches, which seemed to be stacking faults and surface defects (Twin, APB). / cm 2 . Furthermore, X-ray diffraction rocking curve (XRD) for 3C-SiC <111> orientation was observed at the extreme points, and signal intensity of {115} plane orientation corresponding to twin plane and signal of normal single crystal plane {111} plane orientation were observed. The twin density was calculated from the intensity ratio. As a result, the twin density was found to be 3 × 10 −3 Vol.%.
上記で得られた3C-SiC上に、起伏加工を施し、窒化ガリウム(GaN)を形成することを試みた。有機金属化学蒸着(MOCVD)装置によって、トリメチルガリウムとアンモニアを供給し、GaNを形成した。成長温度は1100℃、キャリアガスとして窒素を20 slm、アンモニア(NH3)を10 slm、トリメチルガリウムを1×10-4 mol/min供給した。膜厚は約10μmである。 An attempt was made to form gallium nitride (GaN) by performing relief processing on the 3C-SiC obtained above. Trimethylgallium and ammonia were supplied by a metal organic chemical vapor deposition (MOCVD) apparatus to form GaN. The growth temperature was 1100 ° C., 20 slm of nitrogen, 10 slm of ammonia (NH 3 ) and 1 × 10 −4 mol / min of trimethylgallium were supplied as carrier gases. The thickness is about 10 μm.
得られたGaNの双晶密度を以下の如く求めた。
GaN(111)面に対するX線回折ロッキングカーブ(XRD)の極点図作成をおこない、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4 Vol.%以下であることがわかった。
The twin density of the obtained GaN was determined as follows.
Create a pole figure of the X-ray diffraction rocking curve (XRD) for the GaN (111) plane, and compare the signal intensity of the {115} plane orientation corresponding to the twin plane to the signal intensity of the normal single crystal plane {111} plane The twin density was calculated from. As a result, the twin density was found to be 4 × 10 −4 Vol.% Or less, which is the measurement limit.
比較例として、起伏加工を施していない3C-SiC上にGaNを形成した。形成方法は上述した方法と同様の方法でおこなった。得られたGaNの欠陥密度を次の如く求めた。GaN(111)面に対するX線回折ロッキングカーブ(XRD)の極点図作成をおこない、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は5×10-3 Vol.%であることがわかった。 As a comparative example, GaN was formed on 3C-SiC that was not subjected to undulation processing. The formation was performed in the same manner as described above. The defect density of the obtained GaN was determined as follows. Create a pole figure of the X-ray diffraction rocking curve (XRD) for the GaN (111) plane, and compare the signal intensity of the {115} plane orientation corresponding to the twin plane to the signal intensity of the normal single crystal plane {111} plane The twin density was calculated from. As a result, it was found that the twin density was 5 × 10 −3 Vol.%.
Claims (7)
前記基板表面の少なくとも一部が一方向に延在する複数の起伏を有し、かつ2回目以降のエピタキシャル成長は、直前に形成された化合物単結晶層の表面の少なくとも一部に一方向に延在する複数の起伏を形成した後に行うことを特徴とする方法。 A method for producing a compound single crystal, wherein two or more layers of the same or different compound single crystal layers are sequentially epitaxially grown on the surface of a single crystal substrate,
At least a portion of the substrate surface has a plurality of undulations extending in one direction, and the second and subsequent epitaxial growths extend in one direction on at least a portion of the surface of the compound single crystal layer formed immediately before. Performing the method after forming a plurality of undulations.
The single-crystal SiC substrate is cubic SiC whose basal plane is a (001) plane, or hexagonal SiC whose basal plane is a (11-20) plane or a (1-100) plane. 7. The production method according to any one of 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004236642A JP2004336079A (en) | 2004-08-16 | 2004-08-16 | Manufacturing method for compound single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004236642A JP2004336079A (en) | 2004-08-16 | 2004-08-16 | Manufacturing method for compound single crystal |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001256282A Division JP2003068654A (en) | 2001-08-27 | 2001-08-27 | Production method for compound single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004336079A true JP2004336079A (en) | 2004-11-25 |
Family
ID=33509481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004236642A Pending JP2004336079A (en) | 2004-08-16 | 2004-08-16 | Manufacturing method for compound single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004336079A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008210821A (en) * | 2007-02-23 | 2008-09-11 | Oki Electric Ind Co Ltd | Manufacturing method of semiconductor device |
WO2011122368A1 (en) * | 2010-03-29 | 2011-10-06 | エア・ウォーター株式会社 | Method for producing single crystal 3c-sic substrate and resulting single-crystal 3c-sic substrate |
WO2022004165A1 (en) * | 2020-07-01 | 2022-01-06 | 信越化学工業株式会社 | Large-diameter substrate for group-iii nitride epitaxial growth and method for producing the same |
-
2004
- 2004-08-16 JP JP2004236642A patent/JP2004336079A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008210821A (en) * | 2007-02-23 | 2008-09-11 | Oki Electric Ind Co Ltd | Manufacturing method of semiconductor device |
WO2011122368A1 (en) * | 2010-03-29 | 2011-10-06 | エア・ウォーター株式会社 | Method for producing single crystal 3c-sic substrate and resulting single-crystal 3c-sic substrate |
JP2011225421A (en) * | 2010-03-29 | 2011-11-10 | Air Water Inc | METHOD FOR PRODUCING SINGLE-CRYSTAL 3C-SiC SUBSTRATE, AND RESULTING SINGLE-CRYSTAL 3C-SiC SUBSTRATE |
KR20130040178A (en) * | 2010-03-29 | 2013-04-23 | 에어 워터 가부시키가이샤 | Method for producing single crystal 3c-sic substrate and resulting single-crystal 3c-sic substrate |
US8986448B2 (en) | 2010-03-29 | 2015-03-24 | Air Water Inc. | Method of manufacturing single crystal 3C-SiC substrate and single crystal 3C-SiC substrate obtained from the manufacturing method |
KR101708613B1 (en) | 2010-03-29 | 2017-02-21 | 에어 워터 가부시키가이샤 | Method for producing single crystal 3c-sic substrate |
WO2022004165A1 (en) * | 2020-07-01 | 2022-01-06 | 信越化学工業株式会社 | Large-diameter substrate for group-iii nitride epitaxial growth and method for producing the same |
JP2022012558A (en) * | 2020-07-01 | 2022-01-17 | 信越化学工業株式会社 | Substrate for large-bore group iii nitride-based epitaxial growth, and production method thereof |
JP7618401B2 (en) | 2020-07-01 | 2025-01-21 | 信越化学工業株式会社 | Large-diameter III-nitride epitaxial growth substrate and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100918766B1 (en) | Method for preparing compound single crystal | |
US6596080B2 (en) | Silicon carbide and method for producing the same | |
JP5945505B2 (en) | Silicon carbide substrate, semiconductor element, and method for manufacturing silicon carbide substrate | |
JP5345499B2 (en) | Compound single crystal and method for producing the same | |
JP6060348B2 (en) | Method for producing single crystal substrate with crystalline film, and device production method | |
JP2005534182A (en) | Process for making gallium nitride films with low defect density by vapor phase epitaxy | |
JP2013504865A (en) | Method for reducing internal mechanical stress in a semiconductor structure and semiconductor structure with low mechanical stress | |
CN113366159B (en) | Nitride semiconductor substrate, laminated structure, and method for manufacturing nitride semiconductor substrate | |
JP6248532B2 (en) | 3C-SiC epitaxial layer manufacturing method, 3C-SiC epitaxial substrate, and semiconductor device | |
JP6405767B2 (en) | Gallium nitride substrate | |
JP6346457B2 (en) | Method for manufacturing gallium nitride crystal free-standing substrate | |
KR20030019151A (en) | Method for preparing compound single crystal | |
WO2006132082A1 (en) | Process for producing silicon carbide single crystal | |
JP4563609B2 (en) | Method for producing silicon carbide | |
JP2004336079A (en) | Manufacturing method for compound single crystal | |
CN103443902B (en) | Semiconductor equipment and method for growing semiconductor crystals | |
JP6044975B2 (en) | Epitaxial substrate for semiconductor element and method for producing epitaxial substrate for semiconductor element | |
JP3754294B2 (en) | Method for manufacturing silicon carbide single crystal substrate and method for manufacturing semiconductor device | |
JP6636239B2 (en) | Method for producing single crystal diamond, single crystal diamond, method for producing single crystal diamond substrate, single crystal diamond substrate and semiconductor device | |
JP2002201099A (en) | Method of manufacturing silicon carbide and method of manufacturing semiconductor device | |
CN116525406A (en) | High-quality semiconductor film and its preparation method and application | |
TWI457985B (en) | Semiconductor structure with stress absorbing buffer layer and manufacturing method thereof |