[go: up one dir, main page]

JP2004335880A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2004335880A
JP2004335880A JP2003132000A JP2003132000A JP2004335880A JP 2004335880 A JP2004335880 A JP 2004335880A JP 2003132000 A JP2003132000 A JP 2003132000A JP 2003132000 A JP2003132000 A JP 2003132000A JP 2004335880 A JP2004335880 A JP 2004335880A
Authority
JP
Japan
Prior art keywords
light
light emitting
metal film
insulating substrate
control body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003132000A
Other languages
Japanese (ja)
Inventor
Masami Iwamoto
正己 岩本
Keiichi Shimizu
恵一 清水
Iwatomo Moriyama
厳與 森山
Akiko Nakanishi
晶子 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2003132000A priority Critical patent/JP2004335880A/en
Publication of JP2004335880A publication Critical patent/JP2004335880A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

【課題】発光ダイオード25が発生する熱の放熱性を向上できる発光装置を提供する
【解決手段】絶縁基板21の表面22に配線回路24の複数の表面金属膜23を形成する。表面金属膜23は、周囲に隣り合う表面金属膜23との間に絶縁距離を確保しうる間隔のみでかつ等しい間隔の隙間28をあけて形成する。配線回路24の隣り合う表面金属膜23間に発光ダイオード25を接続する。絶縁基板21の表面における表面金属膜23の面積を広くし、発光ダイオード25が発生する熱を広い面積の表面金属膜23を通じて絶縁基板21に効率よく熱伝導し、放熱性を向上させる。
【選択図】 図1
A plurality of surface metal films of a wiring circuit are formed on a surface of an insulating substrate. The surface metal film 23 is formed with only a gap capable of securing an insulation distance between the surface metal film 23 adjacent to the periphery and an equal gap 28 therebetween. The light emitting diode 25 is connected between the adjacent surface metal films 23 of the wiring circuit 24. The area of the surface metal film 23 on the surface of the insulating substrate 21 is increased, and the heat generated by the light emitting diode 25 is efficiently conducted to the insulating substrate 21 through the surface metal film 23 having a large area, thereby improving heat dissipation.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子を光源とする発光装置に関する。
【0002】
【従来の技術】
従来、発光素子として例えば固体発光素子である発光ダイオードを光源とする照明装置などの発光装置では、絶縁基板の表面に複数の発光ダイオードの配列方向に沿って細いライン状の配線回路が複数形成され、これら各配線回路途中に複数の発光ダイオードが接続されている。そして、一般に、絶縁基板の表面における配線回路の面積は、絶縁基板の表面が直接露出する面積より少なくなっている。
【0003】
この発光装置を照明に使用する場合、照明に必要とする光束が得られるようにするためには、発光ダイオードに流す電流を増加させることで光束の向上が得られるが、発光ダイオードが発生する熱が増加し、発光ダイオードの温度が高くなって効率および寿命が低下してしまうため、放熱性を向上させる必要がある。
【0004】
そこで、絶縁基板の裏面に熱伝導率の高い弾性板を介在して金属製の基台を配置し、発光ダイオードが発生する熱を絶縁基板、弾性板、基台の順に熱伝導させて金属基板から空気中に放熱させることにより、放熱性を向上させている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2000−31546号公報(第2頁および第4頁、図1および図14)
【0006】
【発明が解決しようとする課題】
しかしながら、発光ダイオードを配置する絶縁基板は例えばプラスチックなどの熱伝導が悪い材料で形成されている場合が多いため、発光ダイオードが発生する熱は絶縁基板に熱伝導しにくく、絶縁基板から基台への熱伝導を向上させても、十分な放熱性が得られない問題がある。
【0007】
本発明は、このような点に鑑みなされたもので、発光素子が発生する熱の放熱性を向上できる発光装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1記載の発光装置は、絶縁基板と;絶縁基板の表面に形成される複数の表面金属膜を有し、各表面金属膜が周囲に隣り合う全ての表面金属膜との間に絶縁距離を確保しうる隙間をあけて形成された配線回路と;配線回路の隣り合う表面金属膜間に接続された発光素子とを具備しているものである。
【0009】
そして、この構成では、絶縁基板の表面に形成された配線回路の複数の表面金属膜を、各表面金属膜が周囲に隣り合う表面金属膜との間に絶縁距離を確保しうる隙間をあけて形成し、絶縁基板の表面における表面金属膜の面積を広くしたため、発光素子が発生する熱を広い面積の表面金属膜を通じて絶縁基板に効率よく熱伝導し、発光素子が発生する熱の放熱性を向上させる。
【0010】
請求項2記載の発光装置は、請求項1記載の発光装置において、各表面金属膜が周囲に隣り合う全ての表面金属膜との間の隙間は等しい間隔であるものである。
【0011】
そして、この構成では、各表面金属膜が周囲に隣り合う全ての表面金属膜との間の隙間が、絶縁距離を確保しうる隙間であるとともに、等しい間隔であり、発光素子が発生する熱を広い面積の表面金属膜を通じて絶縁基板に効率よく熱伝導させる。
【0012】
請求項3記載の発光装置は、請求項1または2記載の発光装置において、絶縁基板の裏面の略全面に形成された裏面金属膜と;絶縁基板の裏面側に位置し、裏面金属膜から熱伝導を受けて放熱させる放熱体とを具備しているものである。
【0013】
そして、この構成では、絶縁基板の裏面の略全面に裏面金属膜を形成したため、絶縁基板に熱伝導された熱を裏面金属膜を通じて効率よく放熱体に熱伝導し、放熱性を向上させる。
【0014】
請求項4記載の発光装置は、請求項1ないし3いずれか一記載の発光装置において、発光素子の光が入射する入射面、入射面から入射した光を全反射させる反射面、および全反射した光を出射させる出射面を有する制光体と;制光体の反射面に形成されるとともに表面金属膜に接触された制光体金属膜とを具備しているものである。
【0015】
そして、この構成では、制光体の反射面に制光体金属膜を形成し、この制光体金属膜を表面金属膜に接触させたため、表面金属膜に熱伝導された熱を制光体金属膜を通じて制光体に効率よく熱伝導し、表面側からの放熱性を向上させる。
【0016】
請求項5記載の発光装置は、請求項1ないし3いずれか一記載の発光装置において、発光素子の光が入射する入射面、入射面から入射した光を全反射させる反射面、および全反射した光を出射させる出射面を有する制光体と;制光体の入射面と発光素子との間に充填された透光性を有する充填材とを具備しているものである。
【0017】
そして、この構成では、制光体の入射面と発光素子との間に透光性を有する充填材を充填したため、発光素子が発生する熱を充填材を通じて制光体に効率よく熱伝導し、表面側からの放熱性を向上させる。
【0018】
【発明の実施の形態】
以下、本発明の一実施の形態を図面を参照して説明する。
【0019】
図1ないし図6に第1の実施の形態を示し、図1は発光装置の絶縁基板の一部の正面図、図2は図1のA−A断面図、図3は発光装置の絶縁基板および制光体の一部の断面図、図4は発光装置の制光体の1つの制光部を示す斜視図、図5は発光装置の正面図、図6は発光装置の使用状態の一例を示す斜視図である。
【0020】
図5および図6において、11は発光装置としての照明装置で、この照明装置11は、四角形であって本実施の形態では正方形で薄形に形成された器具本体12を有し、この器具本体12の表面に開口部13が形成され、この開口部13内に複数の照明モジュールとしての発光モジュール14が密着状態で縦横に並んで配列され、これら複数の発光モジュール14によって1つの一体形で平面状の発光面15が形成されている。
【0021】
図1ないし図3に示すように、各発光モジュール14は、例えばプラスチックなどの絶縁性を有する材料にて四角形状であって本実施の形態では正方形に形成された絶縁基板21を有し、この絶縁基板21の一面である表面22の略全面に複数の表面金属膜23を有する配線回路24が形成され、この配線回路24上に発光素子として固体発光素子である発光ダイオード25が縦横に等間隔に並んで複数個配列されてそれぞれ電気的および機械的に接続された状態に実装されている。絶縁基板21の裏面26の略全面には裏面金属膜27が形成されている。
【0022】
配線回路24は、絶縁基板21の表面22の全体に表面金属膜23が一体形成された後、この表面金属膜23がエッチング処理によって略升目状に剥離され、剥離された略升目状の隙間28を介して略四角形であって本実施の形態では略正方形の複数の表面金属膜23が分割されて配列形成されている。隣り合う表面金属膜23間の隙間28の寸法wは、隣り合う表面金属膜23間の絶縁距離を確保しうる最低限必要な間隔のみでかつ全て等しい間隔とされている。したがって、絶縁基板21の表面22に、各表面金属膜23がそれぞれ周囲に隣り合う表面金属膜23との間に絶縁距離を確保しうる間隔のみでかつ全て等しい間隔の隙間28をあけて形成されている。絶縁基板21の表面22における配線回路24の表面金属膜23の面積は、絶縁基板21の表面22が直接露出する面積より多くなっている。
【0023】
各表面金属膜23には、発光ダイオード25を接続する位置出し用のマウント部29,30がそれぞれ形成されている。各表面金属膜23の一側縁には窪み部31が形成され、この窪み部31の奥側から一方のマウント部29が突出形成され、また、各表面金属膜23の他側縁には隣り合う表面金属膜23の窪み部31内にその開口側から入り込む突出部32が形成され、この突出部32の先端に他方のマウント部30が形成されている。これらマウント部29とマウント部30との間、窪み部31と突出部32との間にも、寸法wの隙間28がそれぞれ形成されている。
【0024】
発光ダイオード25は、一方の電極が一方のマウント部29に配置されて銀ペーストなどで接続され、他方の電極から引き出された金属ワイヤ33が他方のマウント部30にワイヤーボンディングによって接続されている。この発光ダイオード25を実装する場合、各表面金属膜23にマウント部29,30が形成されているため、発光ダイオード25の位置出しを容易にでき、発光ダイオード25の実装位置の位置ずれの発生を防止できる。発光ダイオード25の発光色は、照明用として白色が用いられるが、他の単色の色や、複数色を用いてもよい。
【0025】
また、器具本体12は、器具本体12の裏面側に配設されて外枠の一部を構成する放熱体としての金属製の基台41を有し、この基台41の表面側に各発光モジュール14の裏面が離間対向した状態に配置されている。基台41と各発光モジュール14との間には、基台41と各発光モジュール14の裏面金属膜27とに接触して熱伝導させる熱伝導部材としての金属板42が介在されている。この金属板42は、弾性を有し、略U字形に折り曲げられ、両端側がそれぞれ基台41と各発光モジュール14の裏面金属膜27とに接触する状態でそれらの間に弾性的に挟み込まれて圧接している。
【0026】
また、図6に示すように、器具本体12は天井面などの設置面に対して吊下装置43によって吊下げ支持されている。
【0027】
そして、絶縁基板21の表面22に形成された配線回路24の複数の表面金属膜23を、各表面金属膜23が周囲に隣り合う表面金属膜23との間に絶縁距離を確保しうる間隔のみでかつ全て等しい間隔の隙間28をあけて形成し、絶縁基板21の表面22における表面金属膜23の面積を広くしているため、点灯時に発光ダイオード25が発生する熱を広い面積の表面金属膜23を通じて絶縁基板21に効率よく熱伝導できる。さらに、絶縁基板21の裏面26の略全面に裏面金属膜27を形成しているため、絶縁基板21に熱伝導された熱を裏面金属膜27から金属板42を通じて効率よく金属製の基台41に熱伝導でき、表面積の大きい基台41から効率よく空気中に放熱できる。したがって、発光ダイオード25が発生する熱を裏面側へ効率よく熱伝導でき、放熱性を向上できる。
【0028】
また、図3ないし図5に示すように、各発光モジュール14の絶縁基板21の表面22側には各発光ダイオード25の光を制光して配光を制御するプリズムまたはレンズである制光体51が配設されている。この制光体51は、導光性を有する透明な樹脂やガラスにて一体形成され、各発光ダイオード25に対応した複数の制光部52を有している。各制光部52は、裏面側に発光ダイオード25を収容する凹部53が形成され、この凹部53の内面が発光ダイオード25の光が入射する入射面54に形成され、凹部53の周囲から表面側へ向けて拡開し入射面54から入射した光を表面側へ全反射させる反射面55が形成され、表面側には入射面54から入射した直接光および反射面55で全反射した反射光を表面側へ出射させる出射面56が形成されている。図4に示すように、1つの制光部52の出射面56は光軸を中心とする四角形であって本実施の形態では正方形に形成され、複数の制光部52の出射面56が平面状に一体形成されて照明装置11の発光面15の一部を構成している。
【0029】
各制光部52の反射面55の外面には制光体金属膜57が形成され、この制光体金属膜57は、制光体51の制光体金属膜57を形成しない箇所をマスキングして金属膜を蒸着することで形成されている。制光体金属膜57は、対応する発光ダイオード25が接続された隣り合う一対の表面金属膜23のうちのいずれか一方に接触され、他方からは所定の絶縁距離を介して離反されているとともに、隣り合う制光体金属膜57とも所定の絶縁距離を介して互いに離反されている。
【0030】
そして、制光体51の反射面55に制光体金属膜57を形成し、この制光体金属膜57を表面金属膜23に接触させたため、発光ダイオード25の点灯時に表面金属膜23に熱伝導された発光ダイオード25の熱を制光体金属膜57を通じて制光体51に効率よく熱伝導でき、この制光体51の表面から空気中に放熱でき、表面側からの放熱性を向上できる。そのため、例えば、器具本体12の裏面を天井面や壁面などの設置面に近接または接触させて取り付け、裏面からの十分な放熱性が得られない場合でも、制光体51の表面側からの放熱により、十分な放熱性を得ることができる。
【0031】
しかも、制光体51の反射面55に形成された制光体金属膜57が制光体51内に入射した光を反射させる反射面として構成でき、光照射効率を向上できる。
【0032】
このように、照明装置11によれば、発光ダイオード25の点灯時に発生する熱を絶縁基板21の表面22に形成された広い面積の表面金属膜23に効率よく熱伝導させ、この表面金属膜23から絶縁基板21、裏面金属膜27および金属板42を通じて基台41に効率よく熱伝導させて裏面側から効率よく放熱できるとともに、表面金属膜23から制光体金属膜57を通じて制光体51に効率よく熱伝導させて表面側から効率よく放熱できる。そのため、発光ダイオード25に流す電流を増加させて光束を向上させた場合でも、発光ダイオード25の温度上昇を抑制でき、発光ダイオード25の効率および寿命を向上できる。
【0033】
また、図7に第2の実施の形態を示し、制光体51の凹部53内に、つまり制光体51の入射面54と発光ダイオード25との間に、例えばシリコーン樹脂などの透光性を有する充填材61を充填することにより、発光ダイオード25が発生する熱を充填材61を通じて制光体51に効率よく熱伝導でき、表面側からの放熱性を向上できる。そのため、例えば、器具本体12の裏面を天井面や壁面などの設置面に近接または接触させて取り付け、裏面からの十分な放熱性が得られない場合でも、制光体51の表面側からの放熱により、十分な放熱性を得ることができる。
【0034】
しかも、制光体51が屈折率1.5程度のアクリル樹脂製で、充填材61が屈折率1.4程度のシリコーン樹脂製の場合、屈折率が近いため、制光体51への光入射効率が向上し、制光体51を通じた光照射効率を向上させることができる。しかも、制光体51の入射面54の界面に空気がないため、界面での光反射がなくなり、制光体51への光入射効率が向上し、制光体51を通じた光照射効率を向上させることができる。
【0035】
なお、図7に示す第2の実施の形態では、制光体51には制光体金属膜57を設けない例を示すが、図3に示したように制光体51に制光体金属膜57を併用してもよく、この場合、発光ダイオード25が発生する熱を制光体51により効率よく熱伝導でき、表面側からの放熱性をより向上できる。
【0036】
また、図8に第3の実施の形態を示し、制光体51の各制光部52の反射面55の外面が光を拡散させる拡散面72に形成され、この拡散面72に金属膜を蒸着することで反射体71が形成され、これら拡散面72および反射体71とで拡散反射面として構成されている。そして、発光ダイオード25から制光体51の制光部52に入射した光が拡散面72で乱反射することで拡散して出射面56から出射するため、輝度むらの発生を低減できる。なお、反射体71は、絶縁基板21の表面金属膜23から所定の絶縁距離以上離反して設けてもよいが、図3に示す実施の形態のように絶縁基板21の表面金属膜23に接触させて制光体金属膜57として構成してもよい。
【0037】
また、図9に第4の実施の形態を示す。絶縁基板21の各表面金属膜23に図1に示したマウント部29,30を設けない例を示し、各表面金属膜23は、四角形つまり正方形で、形状を単純にでき、製造性を向上できる。
【0038】
なお、絶縁基板21の表面金属膜23の形状は、四角形とすることで、複数の絶縁基板21を組み合わせて照明装置11を構成する際に、絶縁基板21の縁で表面金属膜23が不揃いとなることを防止できるが、絶縁基板21の表面22における表面金属膜23の面積を広くし、放熱性の向上を図るうえでは、四角形に限らず、六角形などの多角形に形成することができる。
【0039】
また、裏面金属膜27と基台41とを接触させる金属板42を用いることにより、絶縁基板21および基台41にはうねりなどの変形がある場合でも、金属板42を介して裏面金属膜27から基台41への熱伝導が確実にできるが、絶縁基板21および基台41にうねりなどの変形がない場合や変形を矯正できる場合には、裏面金属膜27と基台41とを全面的に直接接触させることもできる。
【0040】
また、照明装置11は、吊下げ装置43を用いた吊下げ形に限らず、天井面や壁面などに直付けしたり、スタンドに取り付けることができる。
【0041】
また、発光装置は、一般照明用の照明装置11に限らず、各種機器の光源としても用いることができる。
【0042】
【発明の効果】
請求項1記載の発光装置によれば、絶縁基板の表面に形成された配線回路の複数の表面金属膜を、各表面金属膜が周囲に隣り合う全て表面金属膜との間に絶縁距離を確保しうる隙間をあけて形成し、絶縁基板の表面における表面金属膜の面積を広くしたため、発光素子が発生する熱を広い面積の表面金属膜を通じて絶縁基板に効率よく熱伝導でき、発光素子が発生する熱の放熱性を向上できる。
【0043】
請求項2記載の発光装置によれば、請求項1記載の発光装置の効果に加えて、各表面金属膜が周囲に隣り合う全ての表面金属膜との間の隙間が、絶縁距離を確保しうる隙間であるとともに、等しい間隔であり、発光素子が発生する熱を広い面積の表面金属膜を通じて絶縁基板に効率よく熱伝導できる。
【0044】
請求項3記載の発光装置によれば、請求項1または2記載の発光装置の効果に加えて、絶縁基板の裏面の略全面に裏面金属膜を形成したため、絶縁基板に熱伝導された熱を裏面金属膜を通じて効率よく放熱体に熱伝導でき、放熱性を向上できる。
【0045】
請求項4記載の発光装置によれば、請求項1ないし3いずれか一記載の発光装置の効果に加えて、制光体の反射面に制光体金属膜を形成し、この制光体金属膜を表面金属膜に接触させたため、表面金属膜に熱伝導された熱を制光体金属膜を通じて制光体に効率よく熱伝導でき、表面側からの放熱性を向上できる。
【0046】
請求項5記載の発光装置によれば、請求項1ないし3いずれか一記載の発光装置の効果に加えて、制光体の入射面と発光素子との間に透光性を有する充填材を充填したため、発光素子が発生する熱を充填材を通じて制光体に効率よく熱伝導でき、表面側からの放熱性を向上できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す発光装置の絶縁基板の一部の正面図である。
【図2】同上図1のA−A断面図である。
【図3】同上発光装置の絶縁基板および制光体の一部の断面図である。
【図4】同上発光装置の制光体の1つの制光部を示す斜視図である。
【図5】同上発光装置の正面図である。
【図6】同上発光装置の使用状態の一例を示す斜視図である。
【図7】本発明の第2の実施の形態を示す絶縁基板および制光体の一部の断面図である。
【図8】本発明の第3の実施の形態を示す絶縁基板および制光体の一部の断面図である。
【図9】本発明の第4の実施の形態を示す発光装置の絶縁基板の一部の正面図である。
【符号の説明】
11 発光装置としての照明装置
21 絶縁基板
22 表面
23 表面金属膜
24 配線回路
25 発光素子としての発光ダイオード
26 裏面
27 裏面金属膜
28 隙間
41 放熱体としての基台
51 制光体
54 入射面
55 反射面
56 出射面
57 制光体金属膜
61 充填材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting device using a light emitting element as a light source.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a light emitting device such as a lighting device using a light emitting diode as a light emitting element as a light emitting element as a light source, a plurality of thin line-shaped wiring circuits are formed on the surface of an insulating substrate along an arrangement direction of a plurality of light emitting diodes. A plurality of light emitting diodes are connected in the middle of each of these wiring circuits. In general, the area of the wiring circuit on the surface of the insulating substrate is smaller than the area where the surface of the insulating substrate is directly exposed.
[0003]
When this light-emitting device is used for lighting, in order to obtain a light flux required for lighting, the light flux can be improved by increasing the current flowing through the light-emitting diode, but the heat generated by the light-emitting diode can be improved. Increases, the temperature of the light emitting diode increases, and the efficiency and the life decrease, so that it is necessary to improve the heat dissipation.
[0004]
Therefore, a metal base is placed on the back of the insulating substrate with an elastic plate with high thermal conductivity interposed, and the heat generated by the light emitting diodes is conducted to the insulating substrate, the elastic plate, and the base in this order. By dissipating heat into the air from above, heat dissipation is improved (for example, see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-2000-31546 (pages 2 and 4, FIGS. 1 and 14)
[0006]
[Problems to be solved by the invention]
However, since the insulating substrate on which the light emitting diodes are arranged is often formed of a material having poor heat conductivity, such as plastic, the heat generated by the light emitting diodes is not easily conducted to the insulating substrate, and the heat generated by the light emitting diodes travels from the insulating substrate to the base. However, there is a problem that sufficient heat dissipation cannot be obtained even if the heat conduction is improved.
[0007]
The present invention has been made in view of such a point, and an object of the present invention is to provide a light emitting device that can improve the heat dissipation of heat generated by a light emitting element.
[0008]
[Means for Solving the Problems]
The light emitting device according to claim 1, further comprising: an insulating substrate; and a plurality of surface metal films formed on the surface of the insulating substrate, wherein each surface metal film has an insulating distance between all adjacent surface metal films. And a light emitting element connected between adjacent surface metal films of the wiring circuit.
[0009]
In this configuration, the plurality of surface metal films of the wiring circuit formed on the surface of the insulating substrate are separated from each other by a gap capable of securing an insulation distance between the surface metal films adjacent to each other. The heat generated by the light emitting element is efficiently conducted to the insulating substrate through the surface metal film having a large area because the surface metal film area on the surface of the insulating substrate is increased. Improve.
[0010]
In the light emitting device according to the second aspect, in the light emitting device according to the first aspect, the gap between each surface metal film and all surface metal films adjacent to each other is equal.
[0011]
In this configuration, the gap between each surface metal film and all adjacent surface metal films is a gap that can secure an insulation distance and is equally spaced, and the heat generated by the light emitting element is reduced. Heat is efficiently conducted to the insulating substrate through the surface metal film having a large area.
[0012]
A light emitting device according to claim 3 is the light emitting device according to claim 1 or 2, wherein a back surface metal film formed on substantially the entire back surface of the insulating substrate; And a radiator for receiving and conducting heat to dissipate heat.
[0013]
In this configuration, since the back surface metal film is formed on substantially the entire back surface of the insulating substrate, the heat conducted to the insulating substrate is efficiently conducted to the radiator through the back surface metal film, thereby improving heat dissipation.
[0014]
According to a fourth aspect of the present invention, there is provided the light emitting device according to any one of the first to third aspects, wherein the light of the light emitting element is incident on the light incident surface, the light is reflected from the incident surface, and the light is totally reflected. A light control body having an emission surface for emitting light; and a light control body metal film formed on a reflection surface of the light control body and in contact with the surface metal film.
[0015]
In this configuration, the light control body metal film is formed on the reflection surface of the light control body, and the light control body metal film is brought into contact with the surface metal film. It efficiently conducts heat to the light control body through the metal film, and improves heat dissipation from the surface side.
[0016]
According to a fifth aspect of the present invention, there is provided the light emitting device according to any one of the first to third aspects, wherein the light of the light emitting element is incident on the light incident surface, the reflecting surface totally reflects the light incident from the incident surface, and totally reflected. A light control body having an emission surface for emitting light; and a light-transmitting filler filled between the light incident surface of the light control body and the light emitting element.
[0017]
And, in this configuration, since a filler having a light-transmitting property is filled between the incident surface of the light control body and the light emitting element, heat generated by the light emitting element is efficiently conducted to the light control body through the filler, Improves heat dissipation from the front side.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0019]
1 to 6 show a first embodiment, FIG. 1 is a front view of a part of an insulating substrate of a light emitting device, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. FIG. 4 is a perspective view showing one light control portion of the light control device of the light emitting device, FIG. 5 is a front view of the light emitting device, and FIG. FIG.
[0020]
5 and 6, reference numeral 11 denotes an illuminating device as a light emitting device. The illuminating device 11 has an appliance body 12 which is formed in a quadrangular shape and, in this embodiment, square and thin. An opening 13 is formed on the surface of the light emitting module 12, and a plurality of light emitting modules 14 as lighting modules are arranged vertically and horizontally in close contact with each other in the opening 13, and the plurality of light emitting modules 14 form one integrated flat surface. A light emitting surface 15 is formed.
[0021]
As shown in FIGS. 1 to 3, each light emitting module 14 has an insulating substrate 21 which is made of a material having an insulating property such as plastic and has a square shape and is formed in a square shape in the present embodiment. A wiring circuit 24 having a plurality of surface metal films 23 is formed on substantially the entire surface 22 as one surface of the insulating substrate 21, and light emitting diodes 25, which are solid state light emitting elements, are arranged on the wiring circuit 24 at equal intervals in the vertical and horizontal directions. Are mounted in a state of being electrically and mechanically connected to each other. A back surface metal film 27 is formed on substantially the entire back surface 26 of the insulating substrate 21.
[0022]
After the surface metal film 23 is integrally formed on the entire surface 22 of the insulating substrate 21, the wiring circuit 24 is peeled off in a substantially square shape by an etching process, and the peeled-off substantially grid-like gap 28 is formed. In this embodiment, a plurality of surface metal films 23 each having a substantially square shape and having a substantially square shape are divided and formed in an array. The dimension w of the gap 28 between the adjacent surface metal films 23 is set to be only the minimum necessary interval capable of securing the insulation distance between the adjacent surface metal films 23 and equal to each other. Therefore, each surface metal film 23 is formed on the surface 22 of the insulating substrate 21 with a gap 28 having only an interval capable of securing an insulation distance between the adjacent surface metal films 23 and all equally spaced. ing. The area of the surface metal film 23 of the wiring circuit 24 on the surface 22 of the insulating substrate 21 is larger than the area where the surface 22 of the insulating substrate 21 is directly exposed.
[0023]
On each surface metal film 23, mounting portions 29 and 30 for positioning to connect the light emitting diodes 25 are formed. A concave portion 31 is formed on one side edge of each surface metal film 23, and one mount portion 29 is formed to protrude from the deep side of the concave portion 31, and an adjacent side edge is formed on the other side edge of each surface metal film 23. A protruding portion 32 is formed in the recessed portion 31 of the mating surface metal film 23 from its opening side, and the other mounting portion 30 is formed at the tip of the protruding portion 32. A gap 28 having a dimension w is also formed between the mount 29 and the mount 30 and between the recess 31 and the protrusion 32.
[0024]
The light emitting diode 25 has one electrode arranged on one mount part 29 and connected with a silver paste or the like, and a metal wire 33 drawn from the other electrode is connected to the other mount part 30 by wire bonding. When the light emitting diode 25 is mounted, since the mounting portions 29 and 30 are formed on each surface metal film 23, the position of the light emitting diode 25 can be easily determined, and the displacement of the mounting position of the light emitting diode 25 can be reduced. Can be prevented. As the emission color of the light emitting diode 25, white is used for illumination, but another single color or a plurality of colors may be used.
[0025]
Further, the appliance main body 12 has a metal base 41 as a heat radiator that is arranged on the back side of the appliance main body 12 and forms a part of the outer frame. The module 14 is arranged in a state where the back surface faces away. Between the base 41 and each light emitting module 14, a metal plate 42 as a heat conducting member that is in contact with the base 41 and the back metal film 27 of each light emitting module 14 to conduct heat is interposed. The metal plate 42 has elasticity and is bent in a substantially U-shape, and is elastically sandwiched between the base 41 and the back surface metal film 27 of each light emitting module 14 in a state where both ends are in contact therewith. We are in pressure contact.
[0026]
As shown in FIG. 6, the appliance body 12 is suspended and supported by a suspension device 43 on an installation surface such as a ceiling surface.
[0027]
Then, the plurality of surface metal films 23 of the wiring circuit 24 formed on the surface 22 of the insulating substrate 21 are separated from each other by a distance capable of securing an insulation distance between the surface metal films 23 and the adjacent surface metal films 23. In addition, since the surface metal film 23 is formed on the surface 22 of the insulating substrate 21 with the gaps 28 having the same interval therebetween, the heat generated by the light emitting diode 25 at the time of lighting is reduced. The heat can be efficiently conducted to the insulating substrate 21 through 23. Further, since the back metal film 27 is formed on substantially the entire back surface 26 of the insulating substrate 21, the heat conducted to the insulating substrate 21 is efficiently transferred from the back metal film 27 through the metal plate 42 to the metal base 41. And heat can be efficiently radiated into the air from the base 41 having a large surface area. Therefore, the heat generated by the light emitting diode 25 can be efficiently conducted to the rear surface side, and the heat dissipation can be improved.
[0028]
As shown in FIG. 3 to FIG. 5, on the surface 22 side of the insulating substrate 21 of each light emitting module 14, a light control body which is a prism or a lens which controls the light distribution by controlling the light of each light emitting diode 25. 51 are provided. The light control body 51 is integrally formed of transparent resin or glass having a light guiding property, and has a plurality of light control portions 52 corresponding to the respective light emitting diodes 25. In each light control section 52, a concave portion 53 for accommodating the light emitting diode 25 is formed on the back surface side, and an inner surface of the concave portion 53 is formed on an incident surface 54 on which light of the light emitting diode 25 is incident. A reflection surface 55 is formed to expand toward the surface and totally reflect the light incident from the incident surface 54 to the front surface side. On the front surface side, the direct light incident from the incident surface 54 and the reflected light totally reflected by the reflection surface 55 are formed. An emission surface 56 for emitting light to the front surface side is formed. As shown in FIG. 4, the emission surface 56 of one light control unit 52 is a quadrangle centered on the optical axis and is formed in a square in the present embodiment, and the emission surfaces 56 of the plurality of light control units 52 are flat. And a part of the light emitting surface 15 of the lighting device 11.
[0029]
A light control metal film 57 is formed on the outer surface of the reflection surface 55 of each light control portion 52. The light control metal film 57 masks a portion of the light control material 51 where the light control metal film 57 is not formed. It is formed by evaporating a metal film. The light control metal film 57 is in contact with any one of a pair of adjacent surface metal films 23 to which the corresponding light emitting diode 25 is connected, and is separated from the other via a predetermined insulating distance. The adjacent light control metal films 57 are separated from each other via a predetermined insulating distance.
[0030]
Then, since the light control metal film 57 is formed on the reflection surface 55 of the light control member 51 and the light control metal film 57 is brought into contact with the surface metal film 23, heat is applied to the surface metal film 23 when the light emitting diode 25 is turned on. The conducted heat of the light emitting diode 25 can be efficiently conducted to the light control body 51 through the light control body metal film 57, heat can be radiated from the surface of the light control body 51 into the air, and heat radiation from the surface side can be improved. . Therefore, for example, even when the back surface of the appliance body 12 is attached close to or in contact with an installation surface such as a ceiling surface or a wall surface, and sufficient heat radiation from the back surface cannot be obtained, heat radiation from the front surface side of the light control body 51 is not required. Thereby, sufficient heat dissipation can be obtained.
[0031]
In addition, the light control body metal film 57 formed on the reflection surface 55 of the light control body 51 can be configured as a reflection surface for reflecting the light incident into the light control body 51, and the light irradiation efficiency can be improved.
[0032]
As described above, according to the lighting device 11, the heat generated when the light emitting diode 25 is turned on is efficiently conducted to the surface metal film 23 having a large area formed on the surface 22 of the insulating substrate 21. From the front metal film 23 to the light control body 51 through the light control body metal film 57 while efficiently conducting heat to the base 41 through the insulating substrate 21, the back metal film 27, and the metal plate 42. Efficient heat conduction allows efficient heat dissipation from the front side. Therefore, even when the luminous flux is improved by increasing the current flowing through the light emitting diode 25, the temperature rise of the light emitting diode 25 can be suppressed, and the efficiency and life of the light emitting diode 25 can be improved.
[0033]
FIG. 7 shows a second embodiment in which a light-transmitting material such as a silicone resin is provided in a concave portion 53 of a light control body 51, that is, between an incident surface 54 of the light control body 51 and the light emitting diode 25. The heat generated by the light emitting diode 25 can be efficiently conducted to the light control body 51 through the filler 61 by the filling of the filler 61 having the above, and the heat radiation from the surface side can be improved. Therefore, for example, even when the back surface of the appliance body 12 is mounted close to or in contact with an installation surface such as a ceiling surface or a wall surface, and sufficient heat radiation from the back surface cannot be obtained, heat radiation from the front surface side of the light control body 51 can be obtained. Thereby, sufficient heat dissipation can be obtained.
[0034]
In addition, when the light control body 51 is made of an acrylic resin having a refractive index of about 1.5 and the filler 61 is made of a silicone resin having a refractive index of about 1.4, the refractive index is close, so that light enters the light control body 51. The efficiency is improved, and the efficiency of light irradiation through the light control body 51 can be improved. In addition, since there is no air at the interface of the incident surface 54 of the light control body 51, light reflection at the interface is eliminated, the efficiency of light incidence on the light control body 51 is improved, and the efficiency of light irradiation through the light control body 51 is improved. Can be done.
[0035]
In the second embodiment shown in FIG. 7, an example is shown in which the light control body 51 is not provided with the light control body metal film 57. However, as shown in FIG. The film 57 may be used in combination. In this case, the heat generated by the light-emitting diode 25 can be efficiently conducted by the light control body 51, and the heat radiation from the front side can be further improved.
[0036]
FIG. 8 shows a third embodiment, in which the outer surface of the reflection surface 55 of each light control portion 52 of the light control member 51 is formed as a diffusion surface 72 for diffusing light, and a metal film is formed on the diffusion surface 72. A reflector 71 is formed by vapor deposition, and the diffusion surface 72 and the reflector 71 constitute a diffuse reflection surface. Then, light incident on the light control portion 52 of the light control body 51 from the light emitting diode 25 is diffusely reflected by the diffusion surface 72 and diffused and emitted from the light emission surface 56, so that occurrence of luminance unevenness can be reduced. The reflector 71 may be provided at a distance of a predetermined insulation distance or more from the surface metal film 23 of the insulating substrate 21, but may be in contact with the surface metal film 23 of the insulating substrate 21 as in the embodiment shown in FIG. Thus, the light control body metal film 57 may be configured.
[0037]
FIG. 9 shows a fourth embodiment. An example in which the mount portions 29 and 30 shown in FIG. 1 are not provided on each surface metal film 23 of the insulating substrate 21 is shown. Each surface metal film 23 is a quadrangle, that is, a square, and can have a simple shape, and can improve manufacturability. .
[0038]
The shape of the surface metal film 23 of the insulating substrate 21 is rectangular, so that when the lighting device 11 is configured by combining a plurality of insulating substrates 21, the surface metal film 23 may be uneven at the edges of the insulating substrate 21. However, in order to increase the area of the surface metal film 23 on the surface 22 of the insulating substrate 21 and to improve heat dissipation, the surface metal film 23 can be formed not only in a square but also in a polygon such as a hexagon. .
[0039]
Further, by using the metal plate 42 for bringing the back metal film 27 into contact with the base 41, even when the insulating substrate 21 and the base 41 are deformed such as undulation, the back metal film 27 is When the insulating substrate 21 and the base 41 have no deformation such as undulation or when the deformation can be corrected, the back metal film 27 and the base 41 are completely Can be directly contacted.
[0040]
In addition, the lighting device 11 is not limited to a hanging type using the hanging device 43, and can be directly attached to a ceiling surface, a wall surface, or the like, or can be attached to a stand.
[0041]
Further, the light emitting device is not limited to the lighting device 11 for general lighting, and can be used as a light source of various devices.
[0042]
【The invention's effect】
According to the light emitting device of the first aspect, the insulation distance between the plurality of surface metal films of the wiring circuit formed on the surface of the insulating substrate and all the surface metal films adjacent to each other is ensured. The surface metal film on the surface of the insulating substrate is widened to allow for efficient heat transfer to the insulating substrate through the surface metal film over a large area. The heat radiation of the heat generated can be improved.
[0043]
According to the light emitting device of the second aspect, in addition to the effect of the light emitting device of the first aspect, the gap between each surface metal film and all the surface metal films adjacent to the periphery ensures the insulation distance. The gap is equal to the gap, and the heat generated by the light emitting element can be efficiently conducted to the insulating substrate through the surface metal film having a large area.
[0044]
According to the light emitting device of the third aspect, in addition to the effect of the light emitting device of the first or second aspect, since the back surface metal film is formed on substantially the entire back surface of the insulating substrate, the heat conducted to the insulating substrate can be reduced. The heat can be efficiently conducted to the radiator through the back metal film, and the heat dissipation can be improved.
[0045]
According to the light-emitting device of the fourth aspect, in addition to the effects of the light-emitting device of any one of the first to third aspects, a light-control metal film is formed on the reflection surface of the light-control member. Since the film is brought into contact with the surface metal film, the heat conducted to the surface metal film can be efficiently conducted to the light control body through the light control body metal film, and the heat dissipation from the surface side can be improved.
[0046]
According to the light emitting device of the fifth aspect, in addition to the effect of the light emitting device of any one of the first to third aspects, a filler having translucency is provided between the light incident surface of the light control body and the light emitting element. Due to the filling, the heat generated by the light emitting element can be efficiently conducted to the light control body through the filler, and the heat dissipation from the front side can be improved.
[Brief description of the drawings]
FIG. 1 is a front view of a part of an insulating substrate of a light emitting device according to a first embodiment of the present invention.
FIG. 2 is a sectional view taken along the line AA of FIG. 1;
FIG. 3 is a cross-sectional view of a part of an insulating substrate and a light control body of the light emitting device.
FIG. 4 is a perspective view showing one light control portion of a light control member of the light emitting device.
FIG. 5 is a front view of the light emitting device.
FIG. 6 is a perspective view showing an example of a usage state of the light emitting device.
FIG. 7 is a cross-sectional view of a part of an insulating substrate and a light control body according to a second embodiment of the present invention.
FIG. 8 is a partial cross-sectional view of an insulating substrate and a light control body according to a third embodiment of the present invention.
FIG. 9 is a front view of a part of an insulating substrate of a light emitting device according to a fourth embodiment of the present invention.
[Explanation of symbols]
11 Lighting Device 21 as Light Emitting Device 21 Insulating Substrate 22 Front Surface 23 Surface Metal Film 24 Wiring Circuit 25 Light Emitting Diode 26 as Light Emitting Element Back Surface 27 Back Metal Film 28 Gap 41 Base 51 as Heat Dissipator 51 Light Control Body 54 Incident Surface 55 Reflection Surface 56 Emission surface 57 Light control metal film 61 Filler

Claims (5)

絶縁基板と;
絶縁基板の表面に形成される複数の表面金属膜を有し、各表面金属膜が周囲に隣り合う全ての表面金属膜との間に絶縁距離を確保しうる隙間をあけて形成された配線回路と;
配線回路の隣り合う表面金属膜間に接続された発光素子と;
を具備していることを特徴とする発光装置。
An insulating substrate;
A wiring circuit having a plurality of surface metal films formed on the surface of an insulating substrate, each surface metal film being formed with a gap capable of securing an insulation distance between all surface metal films adjacent to the surface metal film. When;
A light emitting element connected between adjacent surface metal films of the wiring circuit;
A light-emitting device comprising:
各表面金属膜が周囲に隣り合う全ての表面金属膜との間の隙間は等しい間隔であることを特徴とする請求項1記載の発光装置。2. The light emitting device according to claim 1, wherein gaps between each surface metal film and all surface metal films adjacent to the periphery are equal. 絶縁基板の裏面の略全面に形成された裏面金属膜と;
絶縁基板の裏面側に位置し、裏面金属膜から熱伝導を受けて放熱させる放熱体と;
を具備していることを特徴とする請求項1または2記載の発光装置。
A back surface metal film formed on substantially the entire back surface of the insulating substrate;
A radiator that is located on the back side of the insulating substrate and receives heat conduction from the back metal film to radiate heat;
The light emitting device according to claim 1, further comprising:
発光素子の光が入射する入射面、入射面から入射した光を全反射させる反射面、および全反射した光を出射させる出射面を有する制光体と;
制光体の反射面に形成されるとともに表面金属膜に接触された制光体金属膜と;
を具備していることを特徴とする請求項1ないし3いずれか一記載の発光装置。
A light control body having an incident surface on which light from the light emitting element is incident, a reflecting surface for totally reflecting light incident from the incident surface, and an emission surface for emitting totally reflected light;
A light control body metal film formed on the reflection surface of the light control body and in contact with the surface metal film;
The light emitting device according to any one of claims 1 to 3, further comprising:
発光素子の光が入射する入射面、入射面から入射した光を全反射させる反射面、および全反射した光を出射させる出射面を有する制光体と;
制光体の入射面と発光素子との間に充填された透光性を有する充填材と;
を具備していることを特徴とする請求項1ないし3いずれか一記載の発光装置。
A light control body having an incident surface on which light from the light emitting element is incident, a reflecting surface for totally reflecting light incident from the incident surface, and an emission surface for emitting totally reflected light;
A light-transmitting filler filled between the light incident surface of the light control body and the light emitting element;
The light emitting device according to any one of claims 1 to 3, further comprising:
JP2003132000A 2003-05-09 2003-05-09 Light emitting device Pending JP2004335880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132000A JP2004335880A (en) 2003-05-09 2003-05-09 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132000A JP2004335880A (en) 2003-05-09 2003-05-09 Light emitting device

Publications (1)

Publication Number Publication Date
JP2004335880A true JP2004335880A (en) 2004-11-25

Family

ID=33507033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132000A Pending JP2004335880A (en) 2003-05-09 2003-05-09 Light emitting device

Country Status (1)

Country Link
JP (1) JP2004335880A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165101A (en) * 2004-12-03 2006-06-22 Harison Toshiba Lighting Corp Light emitting device envelope
JP2006244779A (en) * 2005-03-01 2006-09-14 Matsushita Electric Works Ltd Illumination light source, illumination device, and display device
JP2007036073A (en) * 2005-07-29 2007-02-08 Hitachi Displays Ltd LIGHTING DEVICE AND DISPLAY DEVICE USING THE LIGHTING DEVICE
JP2007142256A (en) * 2005-11-21 2007-06-07 Sharp Corp Led substrate, led back light device and image display device
JP2007172872A (en) * 2005-12-19 2007-07-05 Hitachi Displays Ltd LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
JP2007234571A (en) * 2006-02-27 2007-09-13 Kuei-Fang Chen Illumination apparatus having heat dissipating function
WO2007122761A1 (en) * 2006-04-19 2007-11-01 Sharp Kabushiki Kaisha Illuminating device and liquid crystal display comprising same
WO2009017006A1 (en) * 2007-07-27 2009-02-05 Sharp Kabushiki Kaisha Chassis, illuminating device provided with the chassis, and display device
WO2009017007A1 (en) * 2007-07-27 2009-02-05 Sharp Kabushiki Kaisha Chassis, and lighting device and display device with the same
JP2009111395A (en) * 2007-10-31 2009-05-21 Cree Inc Light emitting diode package and manufacturing method thereof
JP2010537400A (en) * 2007-08-16 2010-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical element connected to a thin side-emitting LED
US8669572B2 (en) 2005-06-10 2014-03-11 Cree, Inc. Power lamp package
US8735920B2 (en) 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
US8748915B2 (en) 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
US8791471B2 (en) 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US9035439B2 (en) 2006-03-28 2015-05-19 Cree Huizhou Solid State Lighting Company Limited Apparatus, system and method for use in mounting electronic elements
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US9722158B2 (en) 2009-01-14 2017-08-01 Cree Huizhou Solid State Lighting Company Limited Aligned multiple emitter package
JP2017228712A (en) * 2016-06-24 2017-12-28 シチズン電子株式会社 LED light emitting device
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
US10622522B2 (en) 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165101A (en) * 2004-12-03 2006-06-22 Harison Toshiba Lighting Corp Light emitting device envelope
JP2006244779A (en) * 2005-03-01 2006-09-14 Matsushita Electric Works Ltd Illumination light source, illumination device, and display device
US8669572B2 (en) 2005-06-10 2014-03-11 Cree, Inc. Power lamp package
JP2007036073A (en) * 2005-07-29 2007-02-08 Hitachi Displays Ltd LIGHTING DEVICE AND DISPLAY DEVICE USING THE LIGHTING DEVICE
JP2007142256A (en) * 2005-11-21 2007-06-07 Sharp Corp Led substrate, led back light device and image display device
JP2007172872A (en) * 2005-12-19 2007-07-05 Hitachi Displays Ltd LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
JP2007234571A (en) * 2006-02-27 2007-09-13 Kuei-Fang Chen Illumination apparatus having heat dissipating function
US9035439B2 (en) 2006-03-28 2015-05-19 Cree Huizhou Solid State Lighting Company Limited Apparatus, system and method for use in mounting electronic elements
WO2007122761A1 (en) * 2006-04-19 2007-11-01 Sharp Kabushiki Kaisha Illuminating device and liquid crystal display comprising same
US8287149B2 (en) 2006-04-19 2012-10-16 Sharp Kabushiki Kaisha Illuminating device and liquid crystal display comprising same
US8748915B2 (en) 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
US8735920B2 (en) 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
WO2009017006A1 (en) * 2007-07-27 2009-02-05 Sharp Kabushiki Kaisha Chassis, illuminating device provided with the chassis, and display device
WO2009017007A1 (en) * 2007-07-27 2009-02-05 Sharp Kabushiki Kaisha Chassis, and lighting device and display device with the same
EP2191521B1 (en) * 2007-08-16 2018-10-10 Lumileds Holding B.V. Optical element coupled to low profile side emitting led
TWI447941B (en) * 2007-08-16 2014-08-01 Philips Lumileds Lighting Co Optical element coupled to a low profile side emitting light emitting diode
JP2010537400A (en) * 2007-08-16 2010-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical element connected to a thin side-emitting LED
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
JP2009111395A (en) * 2007-10-31 2009-05-21 Cree Inc Light emitting diode package and manufacturing method thereof
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
JP2012084900A (en) * 2007-10-31 2012-04-26 Cree Inc Light emitting diode package and manufacturing method thereof
US11791442B2 (en) 2007-10-31 2023-10-17 Creeled, Inc. Light emitting diode package and method for fabricating same
US10892383B2 (en) 2007-10-31 2021-01-12 Cree, Inc. Light emitting diode package and method for fabricating same
JP2013093604A (en) * 2007-10-31 2013-05-16 Cree Inc Light emitting diode package and method for fabricating the same
US8791471B2 (en) 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
US9722158B2 (en) 2009-01-14 2017-08-01 Cree Huizhou Solid State Lighting Company Limited Aligned multiple emitter package
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
US10622522B2 (en) 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces
JP2017228712A (en) * 2016-06-24 2017-12-28 シチズン電子株式会社 LED light emitting device

Similar Documents

Publication Publication Date Title
JP2004335880A (en) Light emitting device
JP5327601B2 (en) Light emitting module and lighting device
JP5282990B1 (en) Light emitting element lamp and lighting apparatus
JP5871402B2 (en) lighting equipment
JP2009129809A (en) Lighting device
JP5368774B2 (en) lighting equipment
JP2009016095A (en) Illuminating device and substrate
JP2007311760A (en) Led module
KR101443652B1 (en) Lighting device with LED having diffusion cover unificated lens
JP2005129354A (en) LED lighting device
JP2015500556A (en) LED lighting device
JP6586306B2 (en) LED lighting fixtures
US9726345B2 (en) Lighting module and lighting apparatus having the same
JP5308125B2 (en) lighting equipment
JP6315757B2 (en) lighting equipment
JP2013008582A (en) Lamp device
JP6960098B2 (en) lighting equipment
JP7568535B2 (en) Lighting fixtures
JP5556116B2 (en) Light source unit and lighting device
JP5469398B2 (en) LED lighting fixtures
JPH0882798A (en) Backlit display device
KR102131349B1 (en) LED light fixture constituting light guide plate
JP4961048B2 (en) lighting equipment
TW201026995A (en) LED module and liquid crystal display having the same
CN219222334U (en) Lamp set