[go: up one dir, main page]

JP2004334003A - Manufacture method of optical coupler and optical recording device - Google Patents

Manufacture method of optical coupler and optical recording device Download PDF

Info

Publication number
JP2004334003A
JP2004334003A JP2003131643A JP2003131643A JP2004334003A JP 2004334003 A JP2004334003 A JP 2004334003A JP 2003131643 A JP2003131643 A JP 2003131643A JP 2003131643 A JP2003131643 A JP 2003131643A JP 2004334003 A JP2004334003 A JP 2004334003A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
fiber array
light
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003131643A
Other languages
Japanese (ja)
Inventor
Yasuyuki Shibayama
恭之 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Printing Systems Ltd
Original Assignee
Hitachi Printing Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Printing Solutions Inc filed Critical Hitachi Printing Solutions Inc
Priority to JP2003131643A priority Critical patent/JP2004334003A/en
Publication of JP2004334003A publication Critical patent/JP2004334003A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection method for connecting an optical fiber array part and an optical waveguide element, which can enhance the reliability by hardly causing positional deviation . <P>SOLUTION: A YAG (yittlium, aluminum an garnet) laser absorption member is formed in a non-light propagation region of the contact surface between the optical fiber array part and the optical waveguide element and the contact surface is welded and fixed by subjecting the YAG laser absorption member formed on the non-light propagation region in the contact surface to the irradiation with YAG laser which is made incident from the side surface of the optical fiber array part or the optical waveguide element and is transmitted by the optical fiber array part and the optical waveguide element, or to the irradiation of YAG laser using an optical fiber for the YAG laser propagation which is disposed on the optical fiber array part beforehand. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光通信、光計測、光記録などの分野に用いられる光ファイバアレイ、光導波路素子などの光結合素子の製造方法及び光記録装置に関する。
【0002】
【従来の技術】
光ファイバアレイと光導波路チップとの接合方法に関する従来の技術として、光ファイバアレイと光導波路チップとの接合面に所定の幅の間隙を設け、この間隙間に紫外線硬化型の接着剤を充填した後、紫外線を照射することによって樹脂を硬化させ、光ファイバアレイと光導波路チップとを接合している(例えば、特許文献1参照。)。
【0003】
しかし、上記の方法によると、接合面には樹脂が介在するため信頼性が低いという問題があった。また、光ファイバと光導波路の光路間、すなわち光ファイバと光導波路の光伝搬領域であるコア部の接合領域に接着剤である紫外線硬化樹脂が介在しているために、高強度の光エネルギーをもつレーザ光、特に紫外域に近い波長をもつ短波長のレーザ光を用いた場合には、紫外線硬化樹脂が変質したり、光損傷したりするという問題がある。このため、樹脂の劣化による光強度の変動や、光ファイバアレイと光導波路接合面での光結合効率の変動が生じやすく、信頼性の高い装置は実現できないという困難があった。
【0004】
他の例として、光ファイバアレイブロックと光素子ブロックの側面に金属薄膜を形成し、光ファイバアレイブロックと光素子ブロックと境界部に小スポットのYAGレーザを照射して光ファイバアレイブロックと光素子ブロックを接合している(例えば、特許文献2参照。)。
【0005】
しかし、上記の方法によると、金属薄膜が形成されているのは光ファイバアレイブロックと光素子ブロックの側面であり、光ファイバアレイブロックと光素子ブロックと境界部にYAGレーザを照射する際に、光ファイバアレイブロックのエッジと光素子ブロックのエッジが完全に一致していないと光素子の光軸と垂直方向に位置ずれが発生し易く、光ファイバアレイから光素子への結合効率が劣化しやすいという問題があった。
【0006】
また、光ファイバアレイ基板と光導波路基板との結合方法に関するものとして、光ファイバアレイ基板と光導波路基板の接合面を熱線吸収性ガラスで構成し、この部分をYAGレーザ照射することで上記光ファイバアレイ基板と光導波路基板とを接合している(例えば、特許文献3参照。)。しかし、本例においてはYAGレーザの照射部位、およびYAGレーザ照射方法に関しては何も言及していない。
【特許文献1】
特開平6−331856号公報
【特許文献2】
特開平8−21153号公報
【特許文献3】
特開平8−15539号公報
【0007】
【発明が解決しようとする課題】
本発明の課題は、光ファイバアレイ部と光導波路素子との接合の際に、位置ずれが少なく信頼性の高い接合方法を提供すること、また、光ファイバ及び光導波路伝搬光として高強度のレーザ光、あるいは短波長のレーザ光を用いたとしても光ファイバアレイと光導波路界面の状態が劣化しない高信頼性を有する光学部品接合方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の課題は、それぞれ独立した半導体レーザから発したビームを光ファイバにカップリングした半導体レーザモジュール部と、前記光ファイバの光出射端を複数本互いに近接させて配列した光ファイバアレイ部とを有し、該光ファイバアレイ部の光出射端面には複数の光導波路を有する光導波路素子の光入射端面が高精度に位置合わせして接合されており、該接合面の非光伝搬領域にはYAGレーザ吸収部材が形成されており、前記接合面を、該接合面内の非光伝搬部に形成されたYAGレーザ吸収部材が、前記光ファイバアレイ部もしくは前記光導波路素子の側面から入射し、前記光ファイバアレイ部もしくは前記光導波路素子を透過させたYAGレーザの照射、或いは前記光ファイバアレイ部に予め設けられたYAGレーザ伝搬用の光ファイバを用いたYAGレーザ照射により溶着固定することによって解決される。
【0009】
【発明の実施の形態】
以下、図面により本発明の実施例を説明する。
【0010】
図1は接合前の光ファイバアレイ部1と光導波路部2の外観である。
【0011】
光ファイバアレイ1を構成している各々の光ファイバの入射端は、それぞれ独立した図示しない半導体レーザから発したビームを光ファイバにカップリングした半導体レーザモジュール部が設けられている。
【0012】
光ファイバアレイ部1の光出射端は図2に示すように、各々の光ファイバ3〜7(図2では5本としている)の光出射端がV溝状の基板8上に複数本、互いに隣接し、近接させて配列させたのち固定された光素子であり、各光ファイバは、中心の光伝搬領域であるコア部とその周りのクラッド部から構成される。また、光ファイバアレイ部1の光出射端面において、非光伝搬領域、つまりコア部以外にはYAGレーザ吸収部材9が形成されている。一方、光導波路2の端面は図3に示すように、光学結晶、あるいは光学ガラスを用いた光導波路基板10に複数の導光路11〜15がパターニングされて製作された光素子であり、この端面の非導光路部分(図3の斜線部)にもYAGレーザ吸収部材9が形成されている。これらの光ファイバアレイ部1と光導波路2との接合の際には、各光ファイバのコア部と各導光路とが高精度に位置合わせされ、調芯される。調芯後は、図4に示すように光ファイバアレイ部1、もしくは光導波路素子2の側面からYAGレーザ光16を入射し、光ファイバアレイ部1、もしくは光導波路素子2を透過させたのち光ファイバアレイ部1と光導波路2の接合面に照準を合わせ、YAGレーザ吸収部材9を照射し、YAGレーザ吸収部材9を溶融固化させることで接合面の固定を行う。このように、YAGレーザを光素子部材の接合面内に照射することで、YAGレーザ吸収部材9の溶融固化の際に発生する応力により生じる位置ずれ(図4のxy方向の位置ずれ)を、従来のように接合部材の側面からのYAGレーザ照射の場合よりも小さく抑えることができるため、光利用効率の高い光素子を実現することができる。
【0013】
光ファイバアレイ部1、もしくは光導波路素子2の側面からYAGレーザ光を入射する方法とは異なった方法を、図5、図6に示す。この方法は、光ファイバアレイ部1に光導波路結合用の光ファイバとは別に予めYAGレーザ伝搬用の光ファイバ17を用いてアレイを作製しておくもので、YAGレーザ伝搬用の光ファイバ17の光出射面にはYAGレーザ吸収部材9が形成されている。こうすることで、図6に示すように、光ファイバアレイ部1と光導波路2の位置合わせ調芯ののち、YAGレーザ伝搬用の光ファイバ17を伝搬させてYAGレーザを照射し接続界面のYAGレーザ吸収部材9を溶着固定することで同様の効果が得られる。YAGレーザ照射後のYAGレーザ伝搬用の光ファイバ17は、アレイ部を残してカットする。
【0014】
なお、上記実施例において、図9に示すように、光ファイバアレイ部と光導波路素子との接合面は、光ファイバ配列方向に対して斜面を形成し、その斜面の傾斜角が次式を満足させるようにしても良い。
sinφ>(1/n)・sin(sin−1(NA)/2) …(1)
但し、φは光ファイバアレイ部と光導波路素子の接合面の光ファイバ配列垂直方向に対してなす角、nは光ファイバアレイを形成する各光ファイバのコアの屈折率、NAは光ファイバアレイを形成する各光ファイバの開口数である。
【0015】
図9に示すように、光ファイバアレイ部1と光導波路素子2の接合面の光ファイバ配列垂直方向、即ちxy面に対してなす角をφ、光ファイバアレイ部1出射光の光ファイバアレイ部1出射面および光導波路素子2入射面の垂線に対する角度をφ’とすると、屈折の法則より次式が成り立つ。
n・sinφ=1・sinφ’ …(A)
ここで、図9より光導波路素子2入射面からの反射戻り光が光ファイバアレイ部1出射光となす角は2φ’であるから、この角度が光ファイバアレイを構成する各光ファイバの開口数NAよりも大きければ、即ち、次式を満足していれば光導波路素子2入射面で反射戻り光が生じても、光ファイバにはカップリングされることはない。
sin(2φ’)>NA …(B)
上記(A)式を(B)式に代入すれば、(1)式が得られ、これを満足させることにより光素子結合面における反射戻り光を防止できるので安定した素子を実現できる。
【0016】
ここで、光ファイバアレイ部1の各光ファイバから出射し、光導波路にカップリングされる光の強度を5mW、各光ファイバのコア部の大きさをφ4μmとして、光ファイバ出射端における光エネルギー密度を算出すると、次式のように非常に高エネルギーになる。
【0017】
光エネルギー密度=5 (mW)/(π・(4/2)) (μm)=0.4 (mW/μm)=400(W/mm) …(2)
このため、光ファイバアレイ部1と光導波路2との接合面に、通常の紫外線硬化性樹脂、熱硬化性樹脂などを用いると、光ファイバから出射する高エネルギー光によって、変質したり光損傷したりしてしまうため使用することができない。特に、光源である半導体レーザとして、最近開発が進んでいる400nm付近の紫外域に近い波長の光を発する紫色半導体レーザを用いる場合には、接合部材として用いる紫外線硬化性樹脂材料の光透過率も低下するため、樹脂の変質、光損傷はより顕著になることが予想される。しかし、光ファイバアレイ部1と光導波路2との接合面に何も用いない場合は、光入出射面における反射戻り光が生じる。特に反射戻り光が光源である半導体レーザにまで戻る場合、レーザの発振が不安定になるので特性にばらつきが生じる原因となる。
【0018】
そこで、本発明の別の実施例では、図7に示すように、図4、図6で説明した光ファイバアレイ部1と光導波路2との接合面に、ポリシラザン溶液、あるいは珪素化合物溶液、あるいはシロキサン溶液等の無機ポリマー18を使用する。上記の溶液は、例えば、ポリシラザン溶液の場合、Si−N(珪素と窒素)結合をもつ化合物を基本ユニットとした有機溶剤に可溶な無機ポリマーで、塗布後に常温環境下に放置することで高純度シリカ(アモルファスSiO)膜を形成する。これらの材料はすでに数社から製品化されており、最近では電子線や遠紫外線を照射するだけで完全に非晶質シリカ膜を形成することができる感光性珪素化合物溶液も開発されているので、このような溶液を界面に充填すれば、従来の樹脂材料を用いた場合のような不具合を解消することが出来る。
【0019】
以上説明した光ファイバアレイと光導波路素子を接合した光結合素子の使用例を図8に示す。
【0020】
それぞれ独立した複数の半導体レーザ光源19〜23(図中では5個にしている)から出射したレーザ光は、非図示のカップリングレンズを介して、それぞれに対応する複数本の光ファイバ24〜28に入射する。これらの半導体レーザ19〜23、カップリングレンズ、光ファイバ24〜28の各々は、半導体レーザの発光部、レンズの光軸、光ファイバの光伝搬部(以下、コア部)が同一軸上に位置調整されパッケージ化された半導体レーザモジュール部29〜33を構成している。光ファイバの光出射端は、互いに近接させ等間隔で配置固定された光ファイバアレイ部1を形成しており、この光ファイバアレイ1の光出射端は、上記した結合手段により、複数本の光導波路を持つ光導波路素子2端面に接合されている。光導波路素子2の光出射端部は、光導波路を互いに平行に一列に配列した光導波路アレイ部を形成している。
【0021】
光導波路部2を出射した光はその後、光学系34を介して回転多面鏡35、走査レンズ36により光記録部材37上に複数の光スポットとして結像し、これらの光スポットを光変調して走査することにより光記録部材37には印字・画像情報が記録される。
【0022】
この際、光記録部材37上の光スポット列の位置精度は、大元の光出射部の位置精度によって決まる。大元の光出射部に光ファイバアレイを用いる場合には光ファイバ自身の形状精度などの限界によりファイバ配列精度にも限界があるが、光導波路はリソグラフィープロセス等を用いた高精度のパターニング技術を用いることにより高精度のアレイ配列が容易に得られるので、上述のように光出射部として光ファイバアレイ先端に光導波路を接合することで高画質の光記録装置が実現できる。
【0023】
【発明の効果】
以上説明したように本発明によれば、光ファイバアレイ部と光導波路素子との接合の際に、位置ずれが少なく信頼性の高い接合方法を提供すること、また、光ファイバ及び光導波路伝搬光として高強度のレーザ光、あるいは短波長のレーザ光を用いたとしても光ファイバアレイと光導波路界面の状態が劣化しない高信頼性を有する光学部品接合方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例である光結合素子の外観図。
【図2】本発明の実施例における光ファイバアレイの光出射端面の説明図。
【図3】本発明の実施例における光導波路素子の光入射端面の説明図。
【図4】本発明の実施例における光結合素子の組立方法の説明図。
【図5】本発明の他の実施例における光ファイバアレイの光出射端面の説明図。
【図6】本発明の他の実施例における光結合素子の組立方法の説明図。
【図7】本発明の更に他の実施例における光結合素子の構造説明図。
【図8】本発明の光結合素子を用いた光記録装置の概略図。
【図9】本発明の更に他の実施例における光結合素子の側面図。
【符号の説明】
1…光ファイバアレイ部、2…光導波路素子部、3〜7…光ファイバ、8…V字形状基板、9…YAGレーザ吸収部材、10…光導波路基板、11〜15…光導波路、16…YAGレーザ光、17…YAGレーザ伝搬用光ファイバ、18…無機ポリマー材、19〜23…半導体レーザ光源、24〜28…光ファイバ、29〜33…半導体レーザモジュール、34…光学系、35…回転多面鏡、36…走査レンズ、37…光記録部材。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical coupling device such as an optical fiber array and an optical waveguide device used in fields such as optical communication, optical measurement, and optical recording, and an optical recording device.
[0002]
[Prior art]
As a conventional technique related to a method of joining an optical fiber array and an optical waveguide chip, a gap having a predetermined width is provided on a joint surface between the optical fiber array and the optical waveguide chip, and an ultraviolet curable adhesive is filled between the gaps. The resin is cured by irradiating ultraviolet rays to join the optical fiber array and the optical waveguide chip (for example, see Patent Document 1).
[0003]
However, according to the above-described method, there is a problem that the reliability is low because the resin is interposed on the bonding surface. In addition, since the ultraviolet curing resin as an adhesive is interposed between the optical path of the optical fiber and the optical waveguide, that is, the bonding area of the core portion, which is the light propagation area of the optical fiber and the optical waveguide, high intensity light energy is provided. When a laser beam having a short wavelength having a wavelength close to the ultraviolet region is used, there is a problem that the ultraviolet curable resin is deteriorated or damaged by light. For this reason, a change in the light intensity due to the deterioration of the resin and a change in the optical coupling efficiency at the joint surface between the optical fiber array and the optical waveguide are likely to occur, and there is a difficulty that a highly reliable device cannot be realized.
[0004]
As another example, a metal thin film is formed on the side surfaces of the optical fiber array block and the optical element block, and a small spot of a YAG laser is applied to the boundary between the optical fiber array block and the optical element block to thereby form the optical fiber array block and the optical element. The blocks are joined (for example, see Patent Document 2).
[0005]
However, according to the above method, the metal thin film is formed on the side surfaces of the optical fiber array block and the optical element block, and when the boundary between the optical fiber array block and the optical element block is irradiated with the YAG laser, If the edge of the optical fiber array block and the edge of the optical element block do not completely coincide with each other, misalignment tends to occur in the direction perpendicular to the optical axis of the optical element, and the coupling efficiency from the optical fiber array to the optical element tends to deteriorate. There was a problem.
[0006]
Further, as to a method of coupling the optical fiber array substrate and the optical waveguide substrate, the bonding surface between the optical fiber array substrate and the optical waveguide substrate is made of a heat-absorbing glass, and this portion is irradiated with a YAG laser to produce the optical fiber. The array substrate and the optical waveguide substrate are joined (for example, see Patent Document 3). However, in this example, nothing is mentioned about the YAG laser irradiation site and the YAG laser irradiation method.
[Patent Document 1]
JP-A-6-331856 [Patent Document 2]
JP-A-8-21153 [Patent Document 3]
JP-A-8-15539
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a highly reliable bonding method with a small displacement when bonding an optical fiber array section and an optical waveguide element, and a high-intensity laser as an optical fiber and an optical waveguide propagation light. An object of the present invention is to provide a highly reliable optical component bonding method in which the state of the interface between the optical fiber array and the optical waveguide is not deteriorated even when light or laser light of a short wavelength is used.
[0008]
[Means for Solving the Problems]
The above problem has a semiconductor laser module section in which beams emitted from independent semiconductor lasers are coupled to an optical fiber, and an optical fiber array section in which a plurality of light emitting ends of the optical fiber are arranged close to each other. A light incident end face of an optical waveguide element having a plurality of optical waveguides is joined to the light exit end face of the optical fiber array portion with high precision, and a non-light propagation area of the joint face is YAG. A laser absorbing member is formed, and the joining surface is formed such that a YAG laser absorbing member formed in a non-light propagation portion in the joining surface enters from the side of the optical fiber array portion or the optical waveguide element, Irradiation of a YAG laser transmitted through the optical fiber array unit or the optical waveguide element, or light for propagation of the YAG laser provided in the optical fiber array unit in advance It is solved by welding fixed by YAG laser irradiation with Aiba.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010]
FIG. 1 is an external view of an optical fiber array section 1 and an optical waveguide section 2 before joining.
[0011]
At the incident end of each optical fiber constituting the optical fiber array 1, there is provided a semiconductor laser module section in which a beam emitted from an independent semiconductor laser (not shown) is coupled to the optical fiber.
[0012]
As shown in FIG. 2, a plurality of light emitting ends of each of the optical fibers 3 to 7 (five in FIG. 2) are provided on a substrate 8 having a V-groove shape. The optical elements are arranged adjacently, in close proximity, and then fixed, and each optical fiber is composed of a core portion, which is a central light propagation region, and a cladding portion therearound. On the light emitting end face of the optical fiber array section 1, a YAG laser absorbing member 9 is formed in a non-light propagation area, that is, other than the core section. On the other hand, as shown in FIG. 3, an end face of the optical waveguide 2 is an optical element manufactured by patterning a plurality of light guides 11 to 15 on an optical waveguide substrate 10 using an optical crystal or an optical glass. The YAG laser absorbing member 9 is also formed in the non-light guide path portion (the hatched portion in FIG. 3). When the optical fiber array 1 and the optical waveguide 2 are joined, the core of each optical fiber and each light guide are aligned with high precision and aligned. After the alignment, as shown in FIG. 4, the YAG laser beam 16 is incident from the side of the optical fiber array unit 1 or the optical waveguide device 2, and is transmitted through the optical fiber array unit 1 or the optical waveguide device 2 and then emitted. The joint surface between the fiber array unit 1 and the optical waveguide 2 is aimed, the YAG laser absorbing member 9 is irradiated, and the joint surface is fixed by melting and solidifying the YAG laser absorbing member 9. By irradiating the bonding surface of the optical element member with the YAG laser as described above, the displacement (the displacement in the xy direction in FIG. 4) caused by the stress generated when the YAG laser absorbing member 9 is melted and solidified is reduced. As compared with the conventional case where irradiation with the YAG laser is performed from the side surface of the bonding member, it can be suppressed to a smaller value, so that an optical element with high light use efficiency can be realized.
[0013]
FIGS. 5 and 6 show a method different from the method in which the YAG laser light is incident from the side of the optical fiber array unit 1 or the optical waveguide element 2. In this method, an array is prepared in advance in the optical fiber array unit 1 using an optical fiber 17 for YAG laser propagation separately from an optical fiber for coupling an optical waveguide. A YAG laser absorbing member 9 is formed on the light emitting surface. By doing so, as shown in FIG. 6, after the alignment of the optical fiber array unit 1 and the optical waveguide 2 is performed, the optical fiber 17 for propagating the YAG laser is propagated, and the YAG laser is irradiated to irradiate the YAG laser. The same effect can be obtained by fixing the laser absorbing member 9 by welding. The optical fiber 17 for YAG laser propagation after YAG laser irradiation is cut while leaving the array portion.
[0014]
In the above embodiment, as shown in FIG. 9, the joint surface between the optical fiber array section and the optical waveguide element forms a slope with respect to the optical fiber arrangement direction, and the slope angle of the slope satisfies the following equation. You may make it do.
sinφ> (1 / n) · sin (sin −1 (NA) / 2) (1)
Here, φ is the angle formed by the optical fiber array unit and the optical waveguide element at the junction surface with respect to the vertical direction of the optical fiber array, n is the refractive index of the core of each optical fiber forming the optical fiber array, and NA is the optical fiber array. The numerical aperture of each optical fiber to be formed.
[0015]
As shown in FIG. 9, the angle between the joining surface of the optical fiber array unit 1 and the optical waveguide element 2 in the direction perpendicular to the optical fiber array, that is, the xy plane, is φ, and the optical fiber array unit 1 emits the optical fiber array unit. Assuming that the angle between the light exit surface 1 and the incident surface of the optical waveguide element 2 with respect to the perpendicular is φ ′, the following equation is established from the law of refraction.
n · sin φ = 1 · sin φ '(A)
Here, from FIG. 9, the angle formed by the reflected light returning from the incident surface of the optical waveguide element 2 and the light emitted from the optical fiber array section 1 is 2φ ′, and this angle is the numerical aperture of each optical fiber constituting the optical fiber array. If it is larger than NA, that is, if the following expression is satisfied, even if reflected return light is generated on the incident surface of the optical waveguide element 2, it is not coupled to the optical fiber.
sin (2φ ′)> NA (B)
By substituting the above equation (A) into the equation (B), the following equation (1) is obtained. By satisfying this equation, reflected return light at the optical element coupling surface can be prevented, so that a stable element can be realized.
[0016]
Here, assuming that the intensity of light emitted from each optical fiber of the optical fiber array unit 1 and coupled to the optical waveguide is 5 mW, the size of the core of each optical fiber is 4 μm, and the light energy density at the optical fiber emission end is Is calculated, the energy becomes very high as in the following equation.
[0017]
Light energy density = 5 (mW) / (π · (4/2) 2 ) (μm 2 ) = 0.4 (mW / μm 2 ) = 400 (W / mm 2 ) (2)
For this reason, when a normal ultraviolet curable resin, a thermosetting resin, or the like is used for the joint surface between the optical fiber array unit 1 and the optical waveguide 2, the optical fiber is deteriorated or damaged by high-energy light emitted from the optical fiber. Can not be used. In particular, when a violet semiconductor laser that emits light having a wavelength close to the ultraviolet region around 400 nm, which has recently been developed, is used as the semiconductor laser as the light source, the light transmittance of the ultraviolet-curable resin material used as the bonding member also increases. It is expected that the deterioration and the photo-damage of the resin will become more remarkable due to the decrease. However, when nothing is used for the joint surface between the optical fiber array unit 1 and the optical waveguide 2, reflected return light is generated on the light entrance / exit surface. In particular, when the reflected return light returns to the semiconductor laser which is the light source, the oscillation of the laser becomes unstable, which causes variations in characteristics.
[0018]
Accordingly, in another embodiment of the present invention, as shown in FIG. 7, a polysilazane solution, a silicon compound solution, or a polysilazane solution is provided on the bonding surface between the optical fiber array unit 1 and the optical waveguide 2 described with reference to FIGS. An inorganic polymer 18 such as a siloxane solution is used. For example, in the case of a polysilazane solution, the above solution is an inorganic polymer soluble in an organic solvent having a compound having a Si—N (silicon and nitrogen) bond as a basic unit. A pure silica (amorphous SiO 2 ) film is formed. These materials have already been commercialized by several companies.Recently, photosensitive silicon compound solutions that can completely form amorphous silica films only by irradiating electron beams or far ultraviolet rays have been developed. If such an interface is filled with such a solution, it is possible to solve the problem as in the case where a conventional resin material is used.
[0019]
FIG. 8 shows a usage example of the optical coupling element in which the optical fiber array and the optical waveguide element described above are joined.
[0020]
Laser beams emitted from a plurality of independent semiconductor laser light sources 19 to 23 (five in the figure) are respectively coupled to a plurality of optical fibers 24 to 28 via a coupling lens (not shown). Incident on. In each of these semiconductor lasers 19 to 23, coupling lens, and optical fibers 24 to 28, the light emitting portion of the semiconductor laser, the optical axis of the lens, and the light propagation portion (hereinafter, core portion) of the optical fiber are located on the same axis. The adjusted and packaged semiconductor laser module units 29 to 33 are configured. The light emitting ends of the optical fibers form an optical fiber array section 1 which is arranged close to and fixed at equal intervals. The light emitting ends of the optical fiber array 1 are connected to a plurality of light guides by the coupling means described above. It is joined to the end face of the optical waveguide element 2 having a wave path. The light emitting end of the optical waveguide element 2 forms an optical waveguide array in which the optical waveguides are arranged in a line in parallel with each other.
[0021]
The light emitted from the optical waveguide section 2 is then imaged as a plurality of light spots on an optical recording member 37 by a rotating polygon mirror 35 and a scanning lens 36 via an optical system 34, and these light spots are light-modulated. By scanning, printing / image information is recorded on the optical recording member 37.
[0022]
At this time, the position accuracy of the light spot array on the optical recording member 37 is determined by the position accuracy of the light emitting portion at the base. When an optical fiber array is used for the light emitting portion of the base, there is a limit in the fiber alignment accuracy due to limitations in the shape accuracy of the optical fiber itself, etc. Since a high-precision array arrangement can be easily obtained by using the optical waveguide, a high-quality optical recording device can be realized by joining an optical waveguide to the tip of an optical fiber array as a light emitting portion as described above.
[0023]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a highly reliable joining method with a small displacement when joining an optical fiber array section and an optical waveguide element, and to provide an optical fiber and an optical waveguide propagating light. The present invention can provide a highly reliable optical component bonding method in which the state of the interface between the optical fiber array and the optical waveguide is not deteriorated even when high intensity laser light or short wavelength laser light is used.
[Brief description of the drawings]
FIG. 1 is an external view of an optical coupling element according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a light emitting end face of the optical fiber array according to the embodiment of the present invention.
FIG. 3 is an explanatory diagram of a light incident end face of the optical waveguide device according to the embodiment of the present invention.
FIG. 4 is an explanatory diagram of an assembling method of the optical coupling element in the embodiment of the present invention.
FIG. 5 is an explanatory view of a light emitting end face of an optical fiber array according to another embodiment of the present invention.
FIG. 6 is an explanatory view of a method of assembling an optical coupling element according to another embodiment of the present invention.
FIG. 7 is a structural explanatory view of an optical coupling element according to still another embodiment of the present invention.
FIG. 8 is a schematic diagram of an optical recording apparatus using the optical coupling device of the present invention.
FIG. 9 is a side view of an optical coupling device according to still another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Optical fiber array part, 2 ... Optical waveguide element part, 3-7 ... Optical fiber, 8 ... V-shaped substrate, 9 ... YAG laser absorption member, 10 ... Optical waveguide substrate, 11-15 ... Optical waveguide, 16 ... YAG laser light, 17 ... YAG laser propagation optical fiber, 18 ... Inorganic polymer material, 19-23 ... Semiconductor laser light source, 24-28 ... Optical fiber, 29-33 ... Semiconductor laser module, 34 ... Optical system, 35 ... Rotation Polyhedral mirror, 36: scanning lens, 37: optical recording member.

Claims (5)

それぞれ独立した半導体レーザから発したビームを光ファイバにカップリングした半導体レーザモジュール部と、前記光ファイバの光出射端を複数本互いに近接させて配列した光ファイバアレイ部とを有し、該光ファイバアレイ部の光出射端面には複数の光導波路を有する光導波路素子の光入射端面が高精度に位置合わせして接合されており、該接合面の非光伝搬領域にはYAGレーザ吸収部材が形成されており、前記接合面を、該接合面内の非光伝搬部に形成されたYAGレーザ吸収部材が、前記光ファイバアレイ部もしくは前記光導波路素子の側面から入射し、前記光ファイバアレイ部もしくは前記光導波路素子を透過させたYAGレーザの照射、或いは前記光ファイバアレイ部に予め設けられたYAGレーザ伝搬用の光ファイバを用いたYAGレーザ照射により溶着固定することを特徴とする光結合素子の製造方法。A semiconductor laser module section in which beams emitted from independent semiconductor lasers are coupled to an optical fiber, and an optical fiber array section in which a plurality of light emitting ends of the optical fiber are arranged close to each other; A light incident end face of an optical waveguide element having a plurality of optical waveguides is joined to the light emitting end face of the array portion with high precision alignment, and a YAG laser absorbing member is formed in a non-light propagation area of the joined face. The YAG laser absorbing member formed in the non-light propagation portion in the bonding surface enters the optical fiber array portion or the side surface of the optical waveguide element, and the optical fiber array portion or Irradiation with a YAG laser transmitted through the optical waveguide element or using an optical fiber for YAG laser propagation provided in advance in the optical fiber array unit Method for manufacturing an optical coupling element, characterized in that the welded and fixed by YAG laser irradiation. 前記光ファイバにカップリングする半導体レーザ光の発振波長が450nm以下であることを特徴とする請求項1記載の光結合素子の製造方法。2. The method according to claim 1, wherein the oscillation wavelength of the semiconductor laser light coupled to the optical fiber is 450 nm or less. 前記光ファイバアレイ部と前記光導波路素子との接合面が、光ファイバ配列方向に対して傾斜しており、その傾斜角が次式を満足していることを特徴とする請求項1記載の光結合素子の製造方法。
sinφ>(1/n)・sin(sin−1(NA)/2)
但し、φは光ファイバアレイ部と光導波路素子の接合面の光ファイバ配列垂直方向に対してなす角、nは光ファイバアレイを形成する各光ファイバのコアの屈折率、NAは光ファイバアレイを形成する各光ファイバの開口数である。
2. The light according to claim 1, wherein a joining surface between the optical fiber array section and the optical waveguide element is inclined with respect to an optical fiber arrangement direction, and the inclination angle satisfies the following expression. Manufacturing method of coupling element.
sinφ> (1 / n) · sin (sin −1 (NA) / 2)
Here, φ is the angle formed by the optical fiber array unit and the optical waveguide element at the junction surface with respect to the vertical direction of the optical fiber array, n is the refractive index of the core of each optical fiber forming the optical fiber array, and NA is the optical fiber array. The numerical aperture of each optical fiber to be formed.
前記光ファイバアレイ部と前記光導波路素子との接合界面には、ポリシラザン溶液、珪素化合物溶液、或いはシロキサン溶液等の無機ポリマーが充填されていることを特徴とする請求項1記載の光結合素子の製造方法。2. The optical coupling device according to claim 1, wherein a bonding interface between the optical fiber array portion and the optical waveguide device is filled with an inorganic polymer such as a polysilazane solution, a silicon compound solution, or a siloxane solution. Production method. 請求項1〜請求項5のいずれかに記載の方法によって製造した光結合素子を備えた光記録装置。An optical recording device comprising an optical coupling element manufactured by the method according to claim 1.
JP2003131643A 2003-05-09 2003-05-09 Manufacture method of optical coupler and optical recording device Pending JP2004334003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131643A JP2004334003A (en) 2003-05-09 2003-05-09 Manufacture method of optical coupler and optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131643A JP2004334003A (en) 2003-05-09 2003-05-09 Manufacture method of optical coupler and optical recording device

Publications (1)

Publication Number Publication Date
JP2004334003A true JP2004334003A (en) 2004-11-25

Family

ID=33506764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131643A Pending JP2004334003A (en) 2003-05-09 2003-05-09 Manufacture method of optical coupler and optical recording device

Country Status (1)

Country Link
JP (1) JP2004334003A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286652A (en) * 2009-06-11 2010-12-24 Sumitomo Electric Ind Ltd Optical fiber array component and optical component
JP2017044761A (en) * 2015-08-24 2017-03-02 日本電信電話株式会社 Optical module and manufacturing method thereof
JP2018004830A (en) * 2016-06-29 2018-01-11 日本電信電話株式会社 High heat-resistant optical fiber module and manufacture method of the same
JP2018194802A (en) * 2017-05-22 2018-12-06 日本電信電話株式会社 Optical module and manufacturing method thereof
WO2022018816A1 (en) * 2020-07-20 2022-01-27 日本電信電話株式会社 Optical module
JPWO2022038763A1 (en) * 2020-08-21 2022-02-24

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286652A (en) * 2009-06-11 2010-12-24 Sumitomo Electric Ind Ltd Optical fiber array component and optical component
JP2017044761A (en) * 2015-08-24 2017-03-02 日本電信電話株式会社 Optical module and manufacturing method thereof
JP2018004830A (en) * 2016-06-29 2018-01-11 日本電信電話株式会社 High heat-resistant optical fiber module and manufacture method of the same
JP2018194802A (en) * 2017-05-22 2018-12-06 日本電信電話株式会社 Optical module and manufacturing method thereof
WO2022018816A1 (en) * 2020-07-20 2022-01-27 日本電信電話株式会社 Optical module
JPWO2022018816A1 (en) * 2020-07-20 2022-01-27
JP7372578B2 (en) 2020-07-20 2023-11-01 日本電信電話株式会社 optical module
JPWO2022038763A1 (en) * 2020-08-21 2022-02-24
WO2022038763A1 (en) * 2020-08-21 2022-02-24 日本電信電話株式会社 Optical module

Similar Documents

Publication Publication Date Title
JP6147341B2 (en) Semiconductor laser module
EP1522882A1 (en) Optical waveguide having mirror surface formed by laser beam machining
US10591694B2 (en) Photonic chip having a monolithically integrated reflector unit and method of manufacturing a reflector unit
US6791675B2 (en) Optical waveguide path, manufacturing method and coupling method of the same, and optical waveguide path coupling structure
JP2008009098A (en) Optical connection device and mounting method
CN101501543B (en) Wafer-level alignment of optical elements
JP4308684B2 (en) Optical waveguide device and manufacturing method thereof
JPH09113832A (en) Optical scanning device
JP3256489B2 (en) Optical coupling structure, optical device, their manufacturing method and manufacturing apparatus
JP2011513774A (en) Optical transmission device manufacturing method and optical transmission device
JP4752092B2 (en) Optical waveguide connection structure and optical element mounting structure
JP2004334003A (en) Manufacture method of optical coupler and optical recording device
JP7601113B2 (en) Optical connection structure, optical module, and method for manufacturing optical connection structure
US20020172236A1 (en) Fiber laser device and a laser apparatus
JP7516351B2 (en) Optical Components and Semiconductor Laser Modules
JP4967803B2 (en) Method for manufacturing photoelectric composite substrate
JP5244585B2 (en) OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE
JP4351130B2 (en) Manufacturing method of optical connection device and optical connection device
JPH0815539A (en) Optical coupler
JP4288604B2 (en) Optical coupling device
JP2005215426A (en) Semiconductor laser module
JPH05241044A (en) Optical coupling system of optical element and optical waveguide
JP2002040271A (en) Optical fiber terminal structure and optical fiber terminal processing method
JP2000150987A (en) Optical fiber laser, laser device, and optical fiber amplifier
US20250155644A1 (en) Optical connection structure, optical module, and method for manufacturing optical module