JP2004332100A - High-strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability, and method for producing the same - Google Patents
High-strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability, and method for producing the same Download PDFInfo
- Publication number
- JP2004332100A JP2004332100A JP2003353430A JP2003353430A JP2004332100A JP 2004332100 A JP2004332100 A JP 2004332100A JP 2003353430 A JP2003353430 A JP 2003353430A JP 2003353430 A JP2003353430 A JP 2003353430A JP 2004332100 A JP2004332100 A JP 2004332100A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- mass
- strength
- weldability
- hole expandability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
【課題】引張強さ800MPa以上の高強度鋼板の耐水素脆化、溶接性、穴拡げ性及び延性を同時に改善する。
【解決手段】質量%にて、C、Si、Mn、P、S、Al、Nを所定量含有し、Ni、Cu、Cr、Mo、Nbのうち1種以上を所定量含有し、残部鉄および不可避的不純物からなり、面積率でベイナイト、ベイニティックフェライトの一方又は双方を合計で70%以上、残留オーステナイト(Vγ)を3%未満含有し、引張強さ(TS)が800MPa以上であり、(1−1)〜(1−3)式を満たす鋼板。(3.0Nb+2.5Mo+1/10Si+Mn)−(2C0.5+2)>0 …(1−1) 0≦0.8×{2Cu+20Mo+3Ni+Cr+Vγ}−{0.1−3.5×107×(TS)-3.1} …(1−2) 0>Si+Al+7.67C−1.78 …(1−3)
【選択図】 なしAn object of the present invention is to simultaneously improve hydrogen embrittlement resistance, weldability, hole expandability, and ductility of a high-strength steel sheet having a tensile strength of 800 MPa or more.
SOLUTION: In mass%, C, Si, Mn, P, S, Al, N are contained in predetermined amounts, Ni, Cu, Cr, Mo, Nb are contained in predetermined amounts, and the balance is iron. And 70% or more in total of one or both of bainite and bainitic ferrite in area ratio, less than 3% of retained austenite (Vγ), and a tensile strength (TS) of 800 MPa or more. , (1-1) to (1-3). (3.0Nb + 2.5Mo + 1 / 10Si + Mn) - (2C 0.5 +2)> 0 ... (1-1) 0 ≦ 0.8 × {2Cu + 20Mo + 3Ni + Cr + Vγ} - {0.1-3.5 × 10 7 × (TS) -3.1 … (1-2) 0> Si + Al + 7.67C-1.78 (1-3)
[Selection diagram] None
Description
本発明は、建材、家電製品、自動車などに適する溶接性および穴拡げ性に優れ、引張強度が800MPa以上の高強度鋼板において、特に問題となる、水素脆化、置き割れや遅れ破壊を抑制した高強度薄鋼板及びその製造方法に関するものである。 INDUSTRIAL APPLICABILITY The present invention has excellent weldability and hole expandability suitable for building materials, home appliances, automobiles, and the like, and in a high-strength steel sheet having a tensile strength of 800 MPa or more, particularly suppressed hydrogen embrittlement, placing cracks and delayed fracture, which are particularly problematic. The present invention relates to a high-strength thin steel sheet and a method for producing the same.
従来、ボルト、PC鋼線やラインパイプといった用途には高強度鋼が多く使われており、980MPa以上の引張強度になると、鋼中への水素の侵入により遅れ破壊が発生することが知られている。これに対し、薄鋼板は板厚が薄いため水素が侵入しても短時間で放出されることから、いわゆる遅れ破壊に対する問題意識は低かったと言える。しかし、最近では自動車の軽量化や衝突安全性の向上の必要性から、980MPa以上の超高強度鋼板にプレス成形、パイプ成形、曲げ加工、端面加工、穴拡げ加工などを施して、バンパーやインパクトビーム等の補強材やシートレール等に使用に供する場合が急速に増えてきている。したがって、耐遅れ破壊性を備えた超高強度薄鋼板の開発が急務である。 Conventionally, high-strength steels are often used for applications such as bolts, PC steel wires and line pipes, and it is known that when the tensile strength exceeds 980 MPa, delayed fracture occurs due to intrusion of hydrogen into the steel. I have. On the other hand, since the thin steel sheet has a small thickness and is released in a short time even if hydrogen enters, it can be said that the awareness of the problem of so-called delayed fracture was low. However, recently, due to the need to reduce the weight of automobiles and improve collision safety, ultra-high-strength steel sheets of 980MPa or higher are subjected to press forming, pipe forming, bending, end face processing, hole expanding, etc. to make bumpers and impacts. The use of such materials as reinforcing materials such as beams, seat rails, and the like is rapidly increasing. Therefore, there is an urgent need to develop an ultra-high strength steel sheet having delayed fracture resistance.
これまで、耐遅れ破壊を向上させる技術はほとんどがボルトや条鋼、厚板といった、製品のままでかつ耐力または降伏応力以下で使用されることの多い鋼材に対して開発されてきた。例えば条鋼・ボルト用鋼においては、焼き戻しマルテンサイトを中心に開発が行われ、非特許文献1{「遅れ破壊解明の新展開」(日本鉄鋼協会、1997年1月発行)}にCr, MoやVといった焼き戻し軟化抵抗性を示す添加元素が耐遅れ破壊性向上に有効であることが報告されている。これは、合金炭化物を析出させて、これを水素のトラップサイトに活用することで遅れ破壊形態を粒界から粒内破壊へと移行させる技術である。しかし、これらの鋼はC量0.4%以上で合金元素も多く含むことから、薄鋼板で要求される加工性や溶接性が劣悪で、さらに、合金炭化物析出には数時間以上という析出熱処理が必要なため、製造性にも問題がある。 Heretofore, most techniques for improving delayed fracture resistance have been developed for steel materials, such as bolts, steel bars, and thick plates, which are often used as products and having a yield strength or yield stress or less. For example, in steels for steel bars and bolts, development has been conducted mainly on tempered martensite, and in Non-Patent Document 1 {"New development of delayed fracture elucidation" (Iron and Steel Institute of Japan, issued in January 1997)). It has been reported that an additive element exhibiting temper softening resistance, such as V or V, is effective in improving delayed fracture resistance. This is a technique in which an alloy carbide is precipitated and is used as a hydrogen trap site to shift a delayed fracture mode from a grain boundary to an intragranular fracture. However, since these steels have a C content of 0.4% or more and contain a lot of alloying elements, the workability and weldability required for thin steel sheets are inferior, and the precipitation heat treatment for alloy carbide precipitation is several hours or more. However, there is also a problem in manufacturability.
また、特許文献1(特開平11−293383号公報)では、Ti、Mgを主体とする酸化物が水素性欠陥を防ぐことに効果があるとされている。しかし、これは対象が厚鋼板であり、特に大入熱の溶接後の遅れ破壊については考慮されている。しかしながら、薄鋼板の自動車に部品における使用環境を十分考慮したものは無い。一方、薄鋼板の遅れ破壊に関しては、例えば、非特許文献2(CAMP−ISIJ,vol.5 1839〜1842頁、山崎ら、1992年10、日本鉄鋼協会発行)に残留オーステナイト量の加工誘起変態に起因した遅れ破壊の助長について報告されている。これは、薄鋼板の成型加工を考慮したものであるが、耐遅れ破壊性を劣化させない残留オーステナイト量の規制について述べられている。すなわち、特定の組織を持つ高強度薄鋼板に関するものであり、根本的な耐遅れ破壊向上対策とは言えない。 Patent Document 1 (Japanese Patent Application Laid-Open No. 11-293383) states that an oxide mainly composed of Ti and Mg is effective in preventing hydrogen-induced defects. However, this is intended for thick steel plates, and in particular, delayed fracture after high heat input welding is considered. However, there is no sheet steel automobile that sufficiently considers the usage environment in parts. On the other hand, with respect to delayed fracture of a thin steel sheet, for example, Non-Patent Document 2 (CAMP-ISIJ, vol. 5, pp. 1839-1842, Yamazaki et al., October 1992, published by the Iron and Steel Institute of Japan) describes a work-induced transformation of the amount of retained austenite. It has been reported that the cause of delayed fracture caused by this is. This takes into account the forming of a thin steel sheet, but describes the regulation of the amount of retained austenite that does not degrade delayed fracture resistance. That is, it relates to a high-strength thin steel sheet having a specific structure, and cannot be said to be a fundamental measure for improving delayed fracture resistance.
さらに、このような高強度材を用いて部材を組みあげる時には、延性、曲げ性、穴拡げ性や溶接性などが、引張り強度で590MPa程度までの高強度鋼板以上に大きな問題となるため、これらに対する対策が必要となる。各特性に対して、以下のような対策が各々講じられている。たとえば、穴拡げ性については、非特許文献3(CAMP−ISIJ,vol.13(2000) p.395)にあるように、主相をベイナイトとして穴拡げ性を向上させ、さらには張り出し性形成性についても、第2相に残留オーステナイトを生成させることで現行の残留オーステナイト鋼並の張り出し性を示すことが開示されている。さらには、Ms温度以下でオーステンパ処理をすることで面積率2〜3%の残留オーステナイトを生成させると、引張り強度×穴拡率が最大となることも示されている。しかし、800MPaを超えて顕在化する溶接性および溶接熱影響部での軟化挙動については考慮されていない。 Furthermore, when assembling a member using such a high-strength material, ductility, bendability, hole-expandability, weldability, and the like are more serious problems than a high-strength steel plate having a tensile strength of up to about 590 MPa. Countermeasures are needed. The following measures are taken for each characteristic. For example, regarding the hole expandability, as described in Non-Patent Document 3 (CAMP-ISIJ, vol. 13 (2000) p. 395), the hole expandability is improved by using the main phase as bainite, and the overhanging formability is further improved. It is also disclosed that by forming retained austenite in the second phase, the second phase exhibits the same overhang property as the existing retained austenite steel. Furthermore, it is also shown that when austempering is performed at an Ms temperature or lower to generate retained austenite having an area ratio of 2 to 3%, tensile strength × hole expansion ratio becomes maximum. However, no consideration is given to the weldability that becomes apparent beyond 800 MPa and the softening behavior in the heat affected zone.
また、溶接性については、溶接熱影響部における軟化挙動(HAZ軟化挙動)が問題視されるケースが多い。これに対して、例えば、特許文献2(特開2000−87175号公報)にあるようにNbおよびMoの炭化物(Nb,Mo)Cの析出によりHAZ軟化挙動を抑制することが示されている。しかし、この技術は、疲労強度に関して考慮されているものの穴拡げ性等の加工性について十分な考慮はない。また、HAZ軟化挙動を抑制の効果も強度レベルが低く、800MPa以上の極めて高強度な材料における溶接性や加工性について十分とはいえない。特に、引張り強度が800MPa以上になると、溶接自体が困難になり、980MPa以上でさらに顕著となる。このため、スポット溶接等の従来の溶接方法に加えてレーザー溶接なども一部適用される例もある。しかし、高強度故母材は特に溶接部および熱影響部での材質変動が590MPaクラスの高強度材に比べ極めて顕著となる。また、高強度化にマルテンサイトの活用は穴拡げ性や延性低下が助長されてしまう。 Regarding the weldability, there are many cases where the softening behavior (HAZ softening behavior) in the heat affected zone is regarded as a problem. On the other hand, for example, as described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2000-87175), it is shown that the HAZ softening behavior is suppressed by precipitation of carbides of Nb and Mo (Nb, Mo) C. However, although this technique is considered in terms of fatigue strength, it does not sufficiently consider workability such as hole expandability. Further, the effect of suppressing the HAZ softening behavior also has a low strength level, and it cannot be said that the weldability and workability of a very high-strength material of 800 MPa or more are sufficient. In particular, when the tensile strength is 800 MPa or more, the welding itself becomes difficult, and when the tensile strength is 980 MPa or more, it becomes more remarkable. For this reason, in some cases, laser welding or the like is partially applied in addition to conventional welding methods such as spot welding. However, the high-strength base metal has a remarkable variation in the material quality particularly in the welded portion and the heat-affected zone as compared with the high-strength material of the 590 MPa class. In addition, the use of martensite for increasing the strength promotes hole-expandability and ductility.
また、高強度材の高延性化を図るために、複合組織化を積極的に活用することが一般的である。しかし、第2相にマルテンサイトや残留オーステナイトを活用した場合に、穴拡げ性が著しく低下してしまうという問題がある、例えば技術文献4(CAMP−ISIJ,vol.13(2000),p.391)。また、本文献中には、主相をフェライト、第2相をマルテンサイトとし、両者の硬度差を減少させることで穴拡げ率が向上することが開示されているが、穴拡げ率で70%未満と、著しく改善されているわけではない。 In addition, in order to increase the ductility of a high-strength material, it is common to actively use a composite structure. However, when martensite or retained austenite is used for the second phase, there is a problem that the hole expandability is significantly reduced. For example, Technical Document 4 (CAMP-ISIJ, vol. 13 (2000), p. 391) ). This document discloses that the main phase is ferrite, the second phase is martensite, and the hole expansion ratio is improved by reducing the hardness difference between the two, but the hole expansion ratio is 70%. Less than that is not a significant improvement.
上記のように、特に自動車用薄鋼板の使用環境を十分考慮して水素脆化型の遅れ破壊に対する対策を講じかつ使用特性である溶接性や穴広げ性等を十分考慮した開発事例はほとんどない。本発明は、前述のような従来技術の問題点を解決し、引張り強度が800MPa以上の高強度鋼板の溶接性および穴拡げ性を同時に改善した高強度鋼板およびその製造方法を提供することを目的とする。 As mentioned above, there are few development examples that take measures against hydrogen embrittlement-type delayed fracture in consideration of the working environment of automotive thin steel sheets in particular, and that fully consider the use properties such as weldability and hole expanding properties. . An object of the present invention is to provide a high-strength steel sheet which solves the above-mentioned problems of the prior art and simultaneously improves the weldability and hole expandability of a high-strength steel sheet having a tensile strength of 800 MPa or more, and a method for producing the same. And
発明者らは、以上のような背景から、薄鋼板における使用環境を十分に考慮して、溶接性や加工性を確保したまま耐遅れ破壊性を向上させる方法を見出すに至った。すなわち、鋼板の組織および析出物制御に加えて鋼板中のトラップサイト制御および環境から侵入し得る水素量を低減することで水素起因の耐遅れ破壊性を向上させることが可能なことを見出した。詳細は以下の通りである。 In view of the above background, the inventors have come to find a method of improving delayed fracture resistance while ensuring weldability and workability by sufficiently considering the use environment of a thin steel sheet. That is, it has been found that by controlling the trap site in the steel sheet and reducing the amount of hydrogen that can enter from the environment in addition to controlling the structure and precipitates of the steel sheet, the delayed fracture resistance due to hydrogen can be improved. Details are as follows.
(1)質量%にて、C:0.01%〜0.25%、Si:0.01〜3.0%、Mn:0.01〜4.0%、P:0.0001〜0.05%、S:0.0001〜0.05%、Al:0.01〜3.0%、N:0.0001〜0.01%を含有し、Ni:0.001〜5.5%、Cu:0.001〜3.0%、Cr:0.001〜5.0%、Mo:0.005〜5%、Nb:0.001〜1.0%のうち1種以上を含有し、残部が鉄および不可避的不純物からなり、ミクロ組織が、面積率でベイナイトまたはベイニティックフェライトの一方又は双方を合計で70%以上、残留オーステナイト(Vγ)を3%未満含有し、引張強さ(TS)が800MPa以上であり、下記式(1−1)〜(1−3)を満たすことを特徴とする耐水素脆化、溶接性および穴拡げ性に優れた高強度鋼板。
(3.0Nb+2.5Mo+1/10Si+Mn)−(2C0.5+2)>0 … (1−1)
0≦0.8×{2Cu+20Mo+3Ni+Cr+Vγ}−{0.1−3.5×107×(TS)-3.1}−0.3Vγ … (1−2)
0>Si+Al+7.67C−1.78 … (1−3)
ここで、TS:引張強さ(MPa)
元素記号は鋼中に含まれる各元素の質量%
(1) In mass%, C: 0.01% to 0.25%, Si: 0.01 to 3.0%, Mn: 0.01 to 4.0%, P: 0.0001 to 0. 0.05%, S: 0.0001-0.05%, Al: 0.01-3.0%, N: 0.0001-0.01%, Ni: 0.001-5.5%, Cu: 0.001 to 3.0%, Cr: 0.001 to 5.0%, Mo: 0.005 to 5%, Nb: 0.001 to 1.0%, and The balance consists of iron and unavoidable impurities, and the microstructure contains at least 70% of bainite or bainitic ferrite in total in area ratio, less than 3% of retained austenite (Vγ), and a tensile strength ( (TS) is 800 MPa or more and satisfy the following formulas (1-1) to (1-3). High-strength steel sheet having excellent sex and hole expandability.
(3.0Nb + 2.5Mo + 1 / 10Si + Mn) - (2C 0.5 +2)> 0 ... (1-1)
0 ≦ 0.8 × {2Cu + 20Mo + 3Ni + Cr + Vγ} − {0.1−3.5 × 10 7 × (TS) −3.1 } −0.3Vγ (1-2)
0> Si + Al + 7.67C-1.78 (1-3)
Here, TS: tensile strength (MPa)
Element symbol is mass% of each element contained in steel
(2)質量%にて、C:0.01%〜0.25%、Si:0.01〜3.0%、Mn:0.01〜4.0%、P:0.0001〜0.020%、S:0.0001〜0.020%、Al:0.01〜3.0%、N:0.0001〜0.01%、を含有し、Ni:0.001〜5.5%、Cu:0.001〜3.0%、Cr:0.001〜5.0%、Mo:0.005〜5%、Nb:0.001〜1.0%のうち1種以上を含有し、更に、V:0.005〜1%を含有し、残部が鉄および不可避的不純物からなり、ミクロ組織が、面積率でベイナイト、ベイニティックフェライトの一方又は双方を合計で70%以上、残留オーステナイト(Vγ)を3%未満含有し、引張強さ(TS)が800MPa以上であり、更に下記(2−1)〜(2−3)式を満たすことを特徴とする耐水素脆化、溶接性および穴拡げ性に優れた高強度鋼板。
(3.0Nb+2.5Mo+1/10Si+Mn)−(2C0.5+2)>0 … (2−1)
0≦0.8×{2Cu+20Mo+3Ni+Cr+20V}−{0.1−V/5−3.5×107×(TS)-3.1}−0.3Vγ … (2−2)
0>Si+Al+7.67C−1.78 … (2−3)
ここで、TS:引張強さ(MPa)、
元素記号は鋼中に含まれる各元素の質量%を示す。
(2) In mass%, C: 0.01% to 0.25%, Si: 0.01 to 3.0%, Mn: 0.01 to 4.0%, P: 0.0001 to 0. 020%, S: 0.0001 to 0.020%, Al: 0.01 to 3.0%, N: 0.0001 to 0.01%, Ni: 0.001 to 5.5% , Cu: 0.001 to 3.0%, Cr: 0.001 to 5.0%, Mo: 0.005 to 5%, and Nb: 0.001 to 1.0%. And V: 0.005 to 1%, the balance being iron and unavoidable impurities, and the microstructure remaining at least 70% of bainite and / or bainitic ferrite in area ratio in total. It contains less than 3% austenite (Vγ), has a tensile strength (TS) of 800 MPa or more, and further has the following (2-1) to (2-3) Hydrogen embrittlement resistance characterized by satisfying the equation, weldability and hole expandability excellent high-strength steel sheet.
(3.0Nb + 2.5Mo + 1 / 10Si + Mn) - (2C 0.5 +2)> 0 ... (2-1)
0 ≦ 0.8 × {2Cu + 20Mo + 3Ni + Cr + 20V} − {0.1−V / 5−3.5 × 10 7 × (TS) -3.1 } −0.3Vγ (2-2)
0> Si + Al + 7.67C-1.78 (2-3)
Here, TS: tensile strength (MPa),
Element symbols indicate mass% of each element contained in the steel.
(3)更に、質量%にて、Se:0.0002〜0.05%、As:0.0002〜0.05%、Sb:0.0002〜0.05%、Sn:0.0002〜0.05%、Pb:0.0002〜0.05%、Bi:0.0002〜0.05%、の1種または2種以上を含有し、かつ、それらの合計が0.05%以下を満たすことを特徴とする前記(1)又は(4)記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板。
(4)更に、質量%にて、REM:0.0002〜0.10%、Ca:0.0002〜0.10%、Y:0.0002〜0.10%、Mg:0.0002〜0.10%の1種または2種以上を含むことを特徴とする前記(1)〜(3)の何れか1項に記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板。
(3) Further, in mass%, Se: 0.0002 to 0.05%, As: 0.0002 to 0.05%, Sb: 0.0002 to 0.05%, Sn: 0.0002 to 0%. 0.05%, Pb: 0.0002-0.05%, Bi: 0.0002-0.05%, and the total thereof satisfies 0.05% or less. A high-strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability according to the above (1) or (4), characterized in that:
(4) Further, in mass%, REM: 0.0002 to 0.10%, Ca: 0.0002 to 0.10%, Y: 0.0002 to 0.10%, Mg: 0.0002 to 0%. High strength thinness excellent in hydrogen embrittlement resistance, weldability, and hole expandability according to any one of the above (1) to (3), characterized by containing one or more of 10%. steel sheet.
(5)更に、質量%にて、Ti:0.002〜1%、Zr:0.005〜1%、Hf:0.005〜1%、Ta: 0.005〜1%、の1種または2種以上を含有することを特徴とする前記(1)〜(4)の何れか1項に記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板。
(6)更に、質量%にて、W:0.005〜5%、Co:0.005〜2.0%、の1種または2種を含有することを特徴とする前記(1)〜(5)の何れか1項に記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板。
(5) Further, in mass%, one of Ti: 0.002 to 1%, Zr: 0.005 to 1%, Hf: 0.005 to 1%, Ta: 0.005 to 1%, or The high-strength steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability according to any one of the above (1) to (4), comprising two or more kinds.
(6) The above-mentioned (1) to (1), further including one or two of W: 0.005 to 5% and Co: 0.005 to 2.0% by mass%. 5) A high-strength steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability according to any one of 5).
(7)更に、質量%にて、B:0.0002〜0.1%、を含有することを特徴とする前記(1)〜(6)の何れか1項に記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板。
(8)ミクロ組織が、面積率で炭素量が0.1%未満またはビッカ―ス硬度が450以下であるマルテンサイト、ベイナイト、ベイニティックフェライトの一相は2相以上を合計で70%以上、残留オーステナイト(Vγ)を3%未満含有することを特徴とする前記(1)〜(7)の何れか1項に記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度鋼板。
(7) The hydrogen embrittlement resistance according to any one of the above (1) to (6), further comprising, by mass%, B: 0.0002 to 0.1%. High-strength steel sheet with excellent weldability and hole expandability.
(8) One phase of martensite, bainite, and bainitic ferrite having a microstructure having an area ratio of less than 0.1% of carbon or Vickers hardness of 450 or less is 70% or more in total of two or more phases. High-strength steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability according to any one of the above (1) to (7), containing less than 3% of retained austenite (Vγ). .
(9)前記(1)〜(7)のいずれかに記載の組成からなる鋳片を1100℃以上に加熱し、Ar3 点+30℃以上の仕上温度で熱間圧延を施し、400〜650℃の温度域に30℃/s以上で冷却して、同温度域で捲取り、次いで酸洗の後、圧下率を10〜80%として冷間圧延後、その後焼鈍時の最高温度が0.8×(Ac3 −Ac1 )+Ac1 (℃)以上、Ac3 +30(℃)以下で焼鈍した後に、1〜150℃/秒の冷却速度で350〜500℃の温度域に冷却し、引き続いて同温度域で1秒〜3000秒保持することを特徴とする耐水素脆化、溶接性、穴拡げ性および延性に優れた高強度薄鋼板の製造方法。 (9) A slab having the composition described in any of (1) to (7) above is heated to 1100 ° C. or higher, and hot-rolled at a finishing temperature of 3 points of Ar + 30 ° C. or higher, and 400 to 650 ° C. After cooling at a temperature of 30 ° C./s or more to a temperature range of not less than 30 ° C./s, then pickling, then cold rolling at a rolling reduction of 10 to 80%, and then the maximum temperature during annealing is 0.8 × (Ac 3 −Ac 1 ) + Ac 1 (° C.) or more and after annealing at Ac 3 +30 (° C.) or less, cooled to a temperature range of 350 to 500 ° C. at a cooling rate of 1 to 150 ° C./sec. A method for producing a high-strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability, hole expandability, and ductility, wherein the steel sheet is held at the same temperature range for 1 second to 3000 seconds.
(10)焼鈍した後に、1〜150℃/秒の冷却速度でMf+10℃以下の温度域に冷却し、引き続いてMf〜450℃の温度域で1秒〜3000秒保持することを特徴とする前記(9)記載の耐水素脆化、溶接性、穴拡げ性に優れた高強度薄鋼板の製造方法である。 ここで、Mf(℃)=361−474×C(質量%)−33×Mn(質量%)−17×Ni(質量%)−17×Cr(質量%)−21×Mo(質量%) (10) After annealing, it is cooled to a temperature range of Mf + 10 ° C. or lower at a cooling rate of 1 to 150 ° C./sec, and subsequently kept at a temperature range of Mf to 450 ° C. for 1 second to 3000 seconds. (9) A method for producing a high-strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability, and hole expandability described in (9). Here, Mf (° C.) = 361-474 × C (% by mass) -33 × Mn (% by mass) -17 × Ni (% by mass) -17 × Cr (% by mass) -21 × Mo (% by mass)
本発明により、引張り強度が800MPa以上の高強度鋼板の溶接性、穴拡げ性を同時に改善し、さらに、耐遅れ破壊性を向上させた高強度高延性鋼板およびその製造方法を得ることができる。 According to the present invention, it is possible to obtain a high-strength high-ductility steel plate having improved weldability and hole expandability of a high-strength steel plate having a tensile strength of 800 MPa or more, and further improved delayed fracture resistance, and a method for producing the same.
これまでの高強度鋼材である焼き戻しマルテンサイト鋼では、水素起因の遅れ破壊は旧オーステナイト粒界等に水素が集積することにより、ボイド等が形成して、その部分が起点となって破壊を生じると考えられている。そこで、水素のトラップサイトを均等かつ微細に分散させて、その部分に水素をトラップさせると、拡散性水素濃度が下がり、遅れ破壊の感受性が下がる。前出の特許文献1にあるように、MgおよびTiを複合添加した厚鋼板における酸化物の分散形態制御で、水素起因の耐遅れ破壊性が向上することが分かっている。しかし、環境から来る水素量が局部的にでも大量である場合を考えると、いくら鋼材内に水素のトラップサイトを分散させても必然的に水素起因の遅れ破壊は発生してしまう。このため、まず(イ)鋼材内にトラップサイトを分散させて鋼材自体の許容水素量を高めておくこと、および残留オーステナイトの抑制に加えて、(ロ)置かれた環境から侵入し得る水素量を低減することが重要である。 In conventional tempered martensitic steel, which is a high-strength steel material, delayed fracture caused by hydrogen causes voids to form due to the accumulation of hydrogen at the former austenite grain boundary, etc. It is believed to occur. Therefore, if the hydrogen trap sites are evenly and finely dispersed and hydrogen is trapped in that portion, the concentration of diffusible hydrogen decreases, and the sensitivity to delayed fracture decreases. As described in Patent Document 1 mentioned above, it has been found that by controlling the dispersion form of oxides in a thick steel sheet to which Mg and Ti are added in combination, delayed fracture resistance due to hydrogen is improved. However, considering the case where the amount of hydrogen coming from the environment is large even locally, no matter how many hydrogen trap sites are dispersed in the steel material, hydrogen-induced delayed fracture necessarily occurs. Therefore, first, (a) the trap sites are dispersed in the steel material to increase the allowable hydrogen amount of the steel material itself. In addition to suppressing the retained austenite, (b) the amount of hydrogen that can enter from the placed environment It is important to reduce
本発明者らは、上述の背景を踏まえて、薄鋼板の使用環境において、耐遅れ破壊性を確保・向上させるため、種々の晶出物、析出物のトラップサイトの分散や鋼板の強度の影響に加えて、環境から入り得る水素量の低減について検討した。その結果、薄鋼板の使用環境下(例えばプレス加工後の設計応力相当付加下)で、水素起因の耐遅れ破壊性を向上・確保するための技術を見出した。すなわち、
(イ)鋼板の強度と成分による析出物および残留オーステナイト量の制御。
(ロ)鋼板の成分による耐侵入水素特性の制御。
をそれぞれ行うことで、自動車用薄鋼板の使用環境下での耐水素脆化を向上させることが出きる。これを満たすための条件として、式(1−2)および(2−2)を規定した。
In view of the above-mentioned background, the present inventors, in the use environment of a thin steel sheet, in order to secure and improve delayed fracture resistance, various crystallized substances, dispersion of trap sites of precipitates and the influence of the strength of the steel sheet. In addition, the reduction of the amount of hydrogen that can enter from the environment was examined. As a result, the inventors have found a technique for improving and securing the delayed fracture resistance due to hydrogen under the use environment of a thin steel sheet (for example, under the application of design stress after press working). That is,
(A) Control of the amount of precipitates and retained austenite by the strength and composition of the steel sheet.
(B) Control of the resistance to intrusion hydrogen by the composition of the steel sheet.
Respectively, it is possible to improve the hydrogen embrittlement resistance under the usage environment of the automotive thin steel sheet. Equations (1-2) and (2-2) are defined as conditions for satisfying this.
本式を満たすことで、高強度薄鋼板の対遅れ破壊性が確保できる。
次に、(ロ)鋼材の成分による水素侵入特性の制御、について述べる。水素侵入の過程は、腐食や酸洗などによって、水分子(中性またはアルカリ性環境の場合)または水素イオン(酸性環境の場合)の還元反応が鋼板表面で生じると、鋼板表面に水素原子が生成、吸着する。この吸着水素原子は、(1)再結合して水素分子としてガス化するか、鋼板内部に侵入する。本発明者らはこれらの過程を鋭意研究した結果、水素侵入速度を低減するには、耐食性を向上させるほかに、(1)腐食反応の進行に伴う環境のpH(水素イオン濃度)低下を極力抑えて、表面の吸着水素原子濃度を低くする、(2)再結合反応(水素発生反応)を加速することが有効であることを見出した。
By satisfying this expression, the delayed fracture resistance of the high-strength thin steel sheet can be secured.
Next, (b) the control of the hydrogen penetration characteristics by the components of the steel material will be described. In the process of hydrogen intrusion, when a reduction reaction of water molecules (in a neutral or alkaline environment) or hydrogen ions (in an acidic environment) occurs on the steel sheet surface due to corrosion or pickling, hydrogen atoms are generated on the steel sheet surface Adsorb. The adsorbed hydrogen atoms (1) are recombined and gasified as hydrogen molecules, or penetrate into the steel plate. The present inventors have conducted intensive studies on these processes. As a result, in order to reduce the hydrogen penetration rate, in addition to improving the corrosion resistance, (1) reducing the pH (hydrogen ion concentration) of the environment accompanying the progress of the corrosion reaction as much as possible. It has been found that it is effective to suppress the concentration and lower the concentration of adsorbed hydrogen atoms on the surface and (2) accelerate the recombination reaction (hydrogen generation reaction).
(1)については、鋼中へのREM,Ca,Mg添加が有効であることを見出した。ここでREMは、Rare Earth Metalの略でLaから始まるランタノイド系元素の総称である。工業的な添加としてはミッシュメタルの形で添加する場合が多く、この場合にはLaやCeの添加量が多くなる。腐食反応でREM、Ca,Y、Mgが溶出すると、水酸化物の平衡反応により、雰囲気をアルカリ化、すなわち腐食反応によるpHの低下を抑制する。 Regarding (1), it was found that REM, Ca, and Mg addition to steel was effective. Here, REM is an abbreviation of Rare Earth Metal and is a general term for lanthanoid elements starting with La. As industrial addition, it is often added in the form of misch metal, and in this case, the added amount of La or Ce increases. When REM, Ca, Y, and Mg are eluted in the corrosion reaction, the atmosphere is alkalized by the equilibrium reaction of the hydroxide, that is, a decrease in pH due to the corrosion reaction is suppressed.
(2)については、二つの方法が見出された。第一の方法は、水素イオンまたは水の還元反応の交換電流密度を上昇させる方法である。Cu,Ni,Cr,Moが有効であり、0.1≦2Cu+20Mo+3Ni+Cr+20Vを満足した場合、水素透過速度は著しく抑制される。第二の方法は、上記の交換電流密度を低下させる。または水素発生過電圧を著しく上昇させる不純物元素を制限する方法である。該当する不純物元素として、Se、As,Sb,Pb,Biを制限すれば、水素透過速度の増加を抑制できる。 Regarding (2), two methods were found. The first method is to increase the exchange current density of the reduction reaction of hydrogen ions or water. Cu, Ni, Cr, and Mo are effective, and when 0.1 ≦ 2Cu + 20Mo + 3Ni + Cr + 20V is satisfied, the hydrogen permeation rate is significantly suppressed. The second method reduces the exchange current density described above. Alternatively, this is a method of restricting an impurity element that significantly increases the hydrogen generation overvoltage. By limiting Se, As, Sb, Pb, and Bi as the corresponding impurity elements, an increase in the hydrogen permeation rate can be suppressed.
自動車用薄鋼板の使用において、水素侵入は次の過程で生じる。第一に、プレス加工などの加工工程、第二に、酸洗、脱脂、水洗、塗装などの防食被覆工程、第三に使用環境での腐食である。いずれの環境でも、上記に述べた鋼材の成分による水素侵入特性の制御は有効である。自動車用鋼板の裸耐食性を向上させて水素侵入を抑制するには、高価な元素を大量に添加する必要があるが、これらの(1)および(2)の方法では、いずれも微量添加で顕著な効果が得られるという利点がある。 In the use of automotive steel sheets, hydrogen intrusion occurs in the following process. First, processing steps such as press working, second, anticorrosion coating steps such as pickling, degreasing, water washing, and painting, and third, corrosion in the use environment. In any environment, the control of the hydrogen penetration characteristics by the components of the steel material described above is effective. It is necessary to add a large amount of expensive elements in order to improve the bare corrosion resistance of steel sheets for automobiles and suppress hydrogen intrusion. However, in these methods (1) and (2), the addition of a very small amount is significant. There is an advantage that a special effect can be obtained.
さらに、溶接性、穴広げおよび延性の確保については、ミクロ組織およびを成分範囲や(1−1)および(2−1)式による限定を行うことで、800MPa以上の高強度を保ちつつ溶接熱影響部の軟化挙動を抑制して、さらには、穴拡げ率:(穴拡げ試験前の穴の内径/穴拡げ試験前の穴径−1)×100が70%以上の穴拡げ性を確保できることを見出した。穴拡げ性を十分に確保するためにはベイナイト、ベイニティックフェライトの一方又は双方とするのが有効で、面積率で70%以上含むこととした。この様な組織を形成させるためには式(1−3)および(2−3)を満たす必要がある。 Furthermore, in order to ensure the weldability, hole expansion and ductility, the microstructure and the component range and the limits according to the formulas (1-1) and (2-1) are limited, so that the welding heat can be maintained at a high strength of 800 MPa or more. Suppressing the softening behavior of the affected part and further ensuring a hole expandability of 70% or more with a hole expansion ratio: (inner diameter of hole before hole expansion test / hole diameter before hole expansion test-1) × 100. Was found. In order to ensure sufficient hole expandability, it is effective to use one or both of bainite and bainitic ferrite. The area ratio is set to 70% or more. In order to form such a structure, it is necessary to satisfy the expressions (1-3) and (2-3).
また、ここで言うベイナイトはラス境界に炭化物が生成している上部ベイナイトおよびラス内に微細炭化物が生成している下部ベイナイトの双方を含む。また、ベイニティックフェライトは炭化物のないベイナイトを意味し、例えばアキュラーフェライトがその1例である。穴拡げ性向上には、炭化物が微細分散している下部ベイナイトもしくは炭化物の無いベイニティックフェライトが主相で、面積率が97%を超えることが望ましい。一方、溶接熱影響部での軟化防止が問題となる。これに対しては、後述するように成分を規定した(1−1)および(2−1)式を満たすことで、引張り強度が800MPa以上の高強度材の溶接性を確保するものとした。 In addition, the bainite referred to here includes both upper bainite in which carbide is generated at the lath boundary and lower bainite in which fine carbide is generated in the lath. Bainitic ferrite means bainite having no carbide, and for example, acicular ferrite is one example. In order to improve the hole expandability, it is preferable that the lower bainite in which carbides are finely dispersed or the bainitic ferrite without carbides is the main phase, and the area ratio exceeds 97%. On the other hand, prevention of softening in the heat affected zone becomes a problem. In order to cope with this, the weldability of a high-strength material having a tensile strength of 800 MPa or more is satisfied by satisfying formulas (1-1) and (2-1) in which the components are specified as described later.
また、硬質のマルテンサイトが共存すると溶接時の耐軟化抵抗性確保等が困難になるが、そのマルテンサイト中の炭素量が質量%で0.1%未満またはビッカ―ス硬度が450以下である場合には、溶接性の低下の程度は大きくない(ただし、溶接性の観点からはより低炭素および低硬度が望ましい)。したがって、低炭素または比較的低硬度のマルテンサイトであれば主相として十分機能する。一般に、この種の低温変態生成物を区別することは難しい。しかし、レペラ―液によるエッチングや膨張・収縮曲線を採取する事で区別可能である。例えば、冷却時の収縮曲線にて観察される変曲点の違いにより区別可能である。 Further, if hard martensite coexists, it is difficult to ensure softening resistance during welding, etc., but the amount of carbon in the martensite is less than 0.1% by mass% or Vickers hardness is 450 or less. In such a case, the degree of decrease in weldability is not large (however, from the viewpoint of weldability, lower carbon and lower hardness are desirable). Therefore, low carbon or relatively low hardness martensite functions sufficiently as a main phase. Generally, it is difficult to distinguish this type of low-temperature transformation product. However, they can be distinguished by etching with a repeller solution or collecting expansion / contraction curves. For example, it can be distinguished by the difference of the inflection point observed in the contraction curve at the time of cooling.
具体的には、Ms(℃)=561−474×C(mass%)−33×Mn(mass%)−17×Ni(mass%)−17×Cr(mass%)−21×Mo(mass%)であらわされる温度以下で変態が観察される場合には、その低温変態生成物はマルテンサイトであり、Ms以上Bs(℃)=830−270×C(mass%)−90×Mn(mass%)−37×Ni(mass%)−70×Cr(mass%)−83×Mo(mass%)以下での温度域で観察される変態生成物はベイナイトである。さらに、硬度については、荷重100g以下のマイクロビッカ―ス硬度測定で求めることが出来る。通常マルテンサイトは非常に微細な組織単位からなっているが、ここでは主相としてのマルテンサイト相の硬度を既定するもので圧痕の大きさとして数十ミクロン程度以下の測定条件で求める事が望ましい。 Specifically, Ms (° C.) = 561-474 × C (mass%) − 33 × Mn (mass%) − 17 × Ni (mass%) − 17 × Cr (mass%) − 21 × Mo (mass%) )), The transformation is observed at a temperature lower than or equal to the temperature represented by (B) (C) = 830 to 270 × C (mass%)-90 × Mn (mass%). ) The transformation product observed in the temperature range of -37 x Ni (mass%)-70 x Cr (mass%)-83 x Mo (mass%) or less is bainite. Further, the hardness can be determined by measuring the micro Vickers hardness under a load of 100 g or less. Normally, martensite is composed of very fine structural units, but here it is desirable to determine the hardness of the martensite phase as the main phase and determine the size of the indentation under measurement conditions of about several tens of microns or less. .
延性確保や高強度化の観点からすると、面積率で30%未満のフェライトを含んでも良い。一方、オーステナイトおよび/または硬質のマルテンサイトを含むことは穴拡げ加工性や溶接熱影響部の軟化挙動の点から望ましくないが、面積率3%未満程度であれば、顕著な特性劣化が認められないことから、面積率で3%未満含んでも良い。さらに、酸化物や硫化物等の介在物を不可避的に含んでも良い。
また、式(1−1)及び式(1−2)を満足しない場合には、引張り強度で800MPa以上を確保できなかったり、溶接熱影響部分の軟化を抑制できないことに加えて穴拡げ性の確保も困難となる。
(3.0Nb+2.5Mo+1/10Si+Mn)−(2C0.5+2)>0 … (1−1) (2−1)
From the viewpoint of ensuring ductility and increasing the strength, ferrite having an area ratio of less than 30% may be included. On the other hand, it is not desirable to include austenite and / or hard martensite from the viewpoint of hole expanding workability and softening behavior of the heat affected zone by welding, but when the area ratio is less than about 3%, remarkable property deterioration is recognized. Therefore, the area ratio may be less than 3%. Further, inclusions such as oxides and sulfides may be inevitably contained.
When the formulas (1-1) and (1-2) are not satisfied, the tensile strength cannot be 800 MPa or more, the softening of the weld heat-affected zone cannot be suppressed, and the hole expandability cannot be reduced. It is also difficult to secure.
(3.0Nb + 2.5Mo + 1 / 10Si + Mn) - (2C 0.5 +2)> 0 ... (1-1) (2-1)
また、上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物の1又は2以上を面積率1%以下で含有する場合も本発明で用いることができ、これらは主相の面積率に含めた。なお、上記ミクロ組織の各相、フェライト(ベイニティックフェライト)、ベイナイト、オーステナイト、マルテンサイト、界面酸化相および残部組織の同定、存在位置の観察および面積率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延直角方向断面を腐食して500倍〜1000倍の光学顕微鏡観察および1000〜100000倍の電子顕微鏡(走査型および透過型)により定量化が可能である。各20視野以上の観察を行い、ポイントカウント法や画像解析により各組織の面積率を求める事ができる。 In addition to the above, a case where one or two or more of carbide, nitride, sulfide and oxide are contained at an area ratio of 1% or less as the remaining structure of the microstructure can be used in the present invention. It was included in the area ratio of the phase. The identification of each phase of the microstructure, ferrite (bainitic ferrite), bainite, austenite, martensite, interfacial oxide phase and the remaining structure, observation of the existing position, and measurement of the area ratio were carried out using the Nital reagent and the method disclosed in Corrosion of the cross section in the rolling direction or the direction perpendicular to the rolling direction by the reagent disclosed in JP-A-59-219473, and quantification by 500 to 1000 times optical microscope observation and 1000 to 100,000 times electron microscope (scanning type and transmission type). Is possible. By observing at least 20 visual fields, the area ratio of each tissue can be determined by the point count method or image analysis.
以下に本発明を更に詳細に説明する。まず、本発明における鋼の化学成分の限定理由について説明する。
Cは、良好な強度−穴拡げ性バランスを確保するための主相および第2相の率を制御する目的で添加する元素である。素地の微細均一化についても影響を与える。強度および各第2相の面積率を確保するために下限を0.01%とし、逆に多く含有すると、脆性破壊の起点となるセメンタイトを増加させるため、水素脆性や穴拡げ性の劣化を生じ易くする。従って、上限を0.25%とした。また、残留オーステナイトやマルテンサイトの生成を抑制して優れた穴拡げ性の確保の観点から式(1−3)および(2−3)の範囲を満たすこととした。
Hereinafter, the present invention will be described in more detail. First, the reasons for limiting the chemical components of steel in the present invention will be described.
C is an element added for the purpose of controlling the ratio of the main phase and the second phase for securing a good strength-hole expanding property balance. It also affects the fine uniformity of the substrate. The lower limit is set to 0.01% in order to secure the strength and the area ratio of each second phase. Conversely, if the content is large, the amount of cementite, which is the starting point of brittle fracture, is increased, which causes hydrogen embrittlement and deterioration of hole expandability. Make it easier. Therefore, the upper limit is set to 0.25%. Further, the ranges of the expressions (1-3) and (2-3) are satisfied from the viewpoint of suppressing the generation of retained austenite and martensite and ensuring excellent hole expandability.
Siは、材質を大きく硬質化する置換型固溶体強化元素であり、0.01%以上含有することにより鋼板の強度を上昇させることに有効なうえ、セメンタイト析出を抑制する元素であるが、3.0%を超えると鋼材の靭性自体に悪影響を及ぼすため、3.0%を上限とする。
Mnは、鋼板の強度上昇に有効な元素である。また、フェライト変態を抑制して、主相をベイナイト、ベイニティックフェライトの一方又は双方にするのに有効である。さらに、強度低下と穴拡げ性劣化の1つの原因である炭化物析出や、パーライト生成を抑制する目的で添加する。しかし、0.01%未満ではこの効果が得られないので、下限値を0.01%とした。逆に多いと偏析が顕著となり、加工性が劣化する場合があるため4.0%を上限値とする。
Si is a substitutional solid solution strengthening element that greatly hardens the material, and is effective in increasing the strength of the steel sheet by containing 0.01% or more, and is an element that suppresses cementite precipitation. If it exceeds 0%, the toughness itself of the steel material is adversely affected, so the upper limit is 3.0%.
Mn is an element effective for increasing the strength of the steel sheet. Further, it is effective to suppress the ferrite transformation and make the main phase bainite or bainitic ferrite or both. Furthermore, it is added for the purpose of suppressing carbide precipitation and pearlite generation, which are one of the causes of a decrease in strength and a deterioration in hole expandability. However, if the content is less than 0.01%, this effect cannot be obtained, so the lower limit is set to 0.01%. Conversely, if the content is large, segregation becomes remarkable, and workability may be deteriorated. Therefore, the upper limit is set to 4.0%.
Pは、粒界偏析による粒界破壊の助長をする元素であり、低い方が望ましいが、極低下は製造コスト上好ましくないため、下限を0.0001%ととした。また、耐食性を劣化させる元素であるため、上限を0.05%とする。
Sは、腐食環境下での水素吸収を助長する元素であり、低い方が望ましいため上限を0.05%とする。一方、極低下は製造コスト上好ましくないため、下限を0.0001%とした。
P is an element that promotes grain boundary destruction due to grain boundary segregation, and is preferably as low as possible. However, since the extreme decrease is not preferable in terms of manufacturing cost, the lower limit is set to 0.0001%. Further, since it is an element that deteriorates corrosion resistance, the upper limit is set to 0.05%.
S is an element that promotes hydrogen absorption in a corrosive environment, and the lower the better, the upper limit is made 0.05%. On the other hand, the extremely lowering is not preferable in terms of manufacturing cost, so the lower limit was made 0.0001%.
Alは、脱酸のために0.01%以上を添加するが、添加量が増加するとアルミナ等の介在物が増加し、加工性が劣化するため3.0%を上限とする。
Nは、加工性劣化や溶接時のブローホール発生にも寄与するため少ない方が良い。0.01%を越えると加工性が劣化してくるので、0.01%を上限とする。また、極低下は経済的に不利なため下限を、0.0001%とする。
Niは、水素侵入を抑制し遅れ破壊特性を向上させる効果や、鋼板の焼入れ性を高めることにより鋼板の強度を確保する効果がある。しかし、0.001%未満ではこれらの効果が得られないため下限値を0.001%とした。逆に、5.5%超では加工性が悪くなるため、上限値を5.5%とした。
Al is added in an amount of 0.01% or more for deoxidation. Increasing the amount of Al increases inclusions such as alumina and deteriorates workability, so the upper limit is 3.0%.
N should be small as it contributes to deterioration of workability and generation of blowholes during welding. If it exceeds 0.01%, workability deteriorates, so the upper limit is made 0.01%. In addition, since the extreme decrease is economically disadvantageous, the lower limit is set to 0.0001%.
Ni has the effect of suppressing hydrogen intrusion and improving delayed fracture characteristics, and the effect of securing the strength of the steel sheet by increasing the hardenability of the steel sheet. However, if the content is less than 0.001%, these effects cannot be obtained, so the lower limit is set to 0.001%. Conversely, if the content exceeds 5.5%, the workability deteriorates, so the upper limit is set to 5.5%.
Cuは、水素侵入を抑制し遅れ破壊特性を向上させる効果や、強化に有効である上、自信の微細析出は遅れ破壊の向上にも寄与するため、0.001%以上の添加とした。また、過剰添加は加工性の劣化を招くことから、上限を3.0%とした。
Crは、水素侵入を抑制し遅れ破壊特性を向上させる効果や、鋼板の強度上昇に有効な元素である。しかし、0.001%未満ではこれらの効果が得られないため、下限値を0.001%とした。逆に、5%超含有すると加工性低下が生じるため、上限値を5%とした。
Cu is effective in strengthening delayed fracture characteristics by suppressing hydrogen penetration and strengthening, and is effective for strengthening. In addition, since fine precipitation of self contributes to improvement in delayed fracture, Cu is added in an amount of 0.001% or more. Moreover, since excessive addition causes deterioration of workability, the upper limit is set to 3.0%.
Cr is an element that suppresses hydrogen intrusion and improves delayed fracture characteristics, and is effective for increasing the strength of steel sheets. However, if the content is less than 0.001%, these effects cannot be obtained, so the lower limit is set to 0.001%. Conversely, if the content exceeds 5%, the workability decreases, so the upper limit is set to 5%.
Moは、水素侵入を抑制し遅れ破壊特性を向上させる効果や、鋼板の焼入れ性を高め連続焼鈍設備で安定してマルテンサイトを得るために有効な元素であるだけでなく、粒界を強化して水素脆性の発生を抑制する効果がある。また、強度−穴拡げ性バランスを劣化させる炭化物やパーライトの生成を抑制する。さらには、フェライト変態を抑制して、主相をベイナイトまたはベイニティックフェライトにするのに有効であり、良好な強度−穴拡げ性−溶接性の極めて良好なバランスを得るために重要な添加元素である。しかし、0.005%未満ではこれらの効果が得られないため、下限値を0.005%とした。また、5%超ではこれらの効果が飽和するため、上限値を5%とした。 Mo is an element that suppresses hydrogen intrusion and improves delayed fracture characteristics, and is an effective element for improving the hardenability of steel sheets and obtaining martensite stably with continuous annealing equipment, as well as strengthening grain boundaries. This has the effect of suppressing the occurrence of hydrogen embrittlement. In addition, the generation of carbides and pearlite that degrade the strength-hole expandability balance is suppressed. Furthermore, it is effective for suppressing the ferrite transformation and making the main phase bainite or bainitic ferrite, and is an important additive element for obtaining a very good balance of good strength-hole expanding property-weldability. It is. However, if the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. If the content exceeds 5%, these effects are saturated, so the upper limit is set to 5%.
Nbは、鋼板の強度上昇及び細粒化に有効な元素である。微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化に極めて有効である。また、フェライト変態を遅滞させ、ベイナイトおよびベイニティックフェライトの生成を助長する。さらには、溶接熱影響部の軟化抑制にも効果的である。しかし、0.001%未満ではこれらの効果が得られないため、下限値を0.001%とした。逆に、1%超含有すると、炭窒化物の析出が多くなり加工性および耐遅れ破壊性低下が生じるため、上限値を1%とした。 Nb is an element effective for increasing the strength and reducing the grain size of the steel sheet. By forming fine carbides, nitrides or carbonitrides, it is extremely effective in strengthening steel sheets. It also slows down ferrite transformation and promotes the formation of bainite and bainitic ferrite. Furthermore, it is also effective in suppressing softening of the heat affected zone. However, if the content is less than 0.001%, these effects cannot be obtained, so the lower limit is set to 0.001%. Conversely, if the content exceeds 1%, the precipitation of carbonitrides increases and the workability and the delayed fracture resistance decrease, so the upper limit was made 1%.
Vは、水素侵入を抑制し遅れ破壊特性を向上させる効果や鋼板の強度上昇及び粒径の微細化に加えて炭窒化物の形態制御により水素のトラップサイトととして活用可能であることからも耐水素脆化向上のための重要な添加元素である。しかし、0.005%未満ではこの効果が得られないために、下限値を0.005%とした。逆に、1%超含有すると炭窒化物の析出が顕著になり、延性低下が著しくなる。このため上限値を1%とした。 V can be used as a trap site for hydrogen by controlling the carbonitride shape, in addition to the effect of suppressing hydrogen intrusion and improving delayed fracture characteristics, increasing the strength and reducing the grain size of the steel sheet. It is an important additive element for improving hydrogen embrittlement. However, since the effect cannot be obtained with less than 0.005%, the lower limit is set to 0.005%. Conversely, when the content exceeds 1%, precipitation of carbonitride becomes remarkable, and ductility decreases remarkably. Therefore, the upper limit is set to 1%.
Se,As,Sb,Sn,Pb,Biは、単独で0.05%を超えて含有または合計で0.05%を超えて含有すると、耐遅れ破壊特性を著しく阻害するため、各々の元素について上限を0.05%とし、かつ、元素の合計について上限を0.05%とした。一方で、極低化はリサイクル上の制限を狭める理由から、それぞれ0.0002%を下限とした。
REM,Ca,Mgは、鋼板表面の腐食に伴う界面雰囲気の水素イオン濃度の上昇を抑制する、すなわちpHの低下を抑制するのに有効な元素である。しかし、それぞれ0.0002%未満ではこれらの効果が得られないため、下限値を0.0002%とした。逆に、それぞれ0.1%超含有すると加工性が劣化するため、上限値を0.1%とした。
If Se, As, Sb, Sn, Pb, and Bi are contained alone in an amount exceeding 0.05% or in a total amount exceeding 0.05%, the delayed fracture resistance is significantly impaired. The upper limit was set to 0.05%, and the upper limit was set to 0.05% for the total of the elements. On the other hand, in order to reduce restrictions on recycling, the lower limit was set to 0.0002% for each.
REM, Ca, and Mg are effective elements for suppressing an increase in the hydrogen ion concentration in the interface atmosphere due to corrosion of the steel sheet surface, that is, for suppressing a decrease in pH. However, these effects cannot be obtained if each is less than 0.0002%, so the lower limit was made 0.0002%. Conversely, if the content exceeds 0.1%, the workability deteriorates, so the upper limit was made 0.1%.
Yは、介在物の形態制御に有効で、耐遅れ破壊性に寄与することから、0.0002%以上の添加とした。一方、過剰添加は熱間加工性を劣化させるため、0.1%以下の添加とした。
Tiは、析出物や介在物を生成するために必要な元素である。しかし、0.002%未満では析出物を活用できないため、下限値を0.002%とした。逆に、1%超では粗大析出または昇出物が生成するために加工性および耐遅れ破壊性が低下する。このため、上限値を1%とした。
Y is effective for controlling the form of inclusions and contributes to delayed fracture resistance. Therefore, Y was added in an amount of 0.0002% or more. On the other hand, excessive addition deteriorates hot workability, so the addition was made 0.1% or less.
Ti is an element necessary to generate precipitates and inclusions. However, if the content is less than 0.002%, the precipitate cannot be used, so the lower limit is set to 0.002%. Conversely, if it exceeds 1%, coarse precipitates or exudates are formed, so that workability and delayed fracture resistance are reduced. Therefore, the upper limit is set to 1%.
Zrは、鋼板の強度上昇及び細粒化に有効な元素である。しかし、0.005%未満ではこれらの効果が得られないため、下限値を0.005%とした。逆に、1%超含有すると、炭窒化物の析出が多くなり加工性および耐遅れ破壊性低下が生じるため、上限値を1%とした。
Hfは、鋼板の強度上昇及び細粒化に有効な元素である。しかし、0.005%未満ではこれらの効果が得られないため、下限値を0.005%とした。逆に、1%超含有すると、炭窒化物の析出が多くなり加工性および耐遅れ破壊性低下が生じるため、上限値を1%とした。
Zr is an element effective for increasing the strength and reducing the grain size of the steel sheet. However, if the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, if the content exceeds 1%, the precipitation of carbonitrides increases and the workability and the delayed fracture resistance decrease, so the upper limit was made 1%.
Hf is an element effective for increasing the strength and reducing the grain size of the steel sheet. However, if the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, if the content exceeds 1%, the precipitation of carbonitrides increases and the workability and the delayed fracture resistance decrease, so the upper limit was made 1%.
Taは、鋼板の強度上昇及び細粒化に有効な元素である。しかし、0.005%未満ではこれらの効果が得られないため、下限値を0.005%とした。逆に、1%超含有すると、炭窒化物の析出が多くなり加工性および耐遅れ破壊性低下が生じるため、上限値を1%とした。
Wは、鋼板の強度上昇に有効な元素である。しかし、0.005%未満ではこれらの効果が得られないため、下限値を0.005%とした。逆に、5%超含有すると加工性低下が生じるため、上限値を5%とした。
Ta is an element effective for increasing the strength and reducing the grain size of the steel sheet. However, if the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, if the content exceeds 1%, the precipitation of carbonitrides increases and the workability and the delayed fracture resistance decrease, so the upper limit was made 1%.
W is an element effective for increasing the strength of the steel sheet. However, if the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, if the content exceeds 5%, the workability decreases, so the upper limit is set to 5%.
Coは、強化に有効であるため、0.005%以上の添加とした。また、過剰添加は加工性の劣化を招くことから、上限を2.0%ととした。
Bは、鋼板の強度上昇に有効な元素である。しかし、0.0002%未満ではこれらの効果が得られないため、下限値を0.0002%とした。逆に、0.1%超含有すると熱間加工性が劣化するため、上限値を0.1%とした。
Since Co is effective for strengthening, 0.005% or more is added. Moreover, since excessive addition causes deterioration of workability, the upper limit is set to 2.0%.
B is an element effective for increasing the strength of the steel sheet. However, if these effects are not obtained at less than 0.0002%, the lower limit is set to 0.0002%. Conversely, if the content exceeds 0.1%, the hot workability deteriorates, so the upper limit was set to 0.1%.
次に製造方法について説明する。特に製品板での表面状態を確保するために、製造工程における酸化スケールの形成およびデスケを十分に行う観点から下記のような製造方法とするのが望ましい。
まず、熱延時の加熱温度は変形抵抗の観点から1100℃以上とした、また、高温すぎると粒粗大化やスケール形成の増大などの問題があるため1300℃以下とすることが望ましい。熱間圧延ではフェライト粒にひずみが過度に加わり加工性が低下するのを防ぐために熱間圧延をAr3 +30℃以上で行い、また、高温すぎても焼鈍後の再結晶粒径が必要以上に粗大化するため、仕上温度は940℃以下が望ましい。
Next, a manufacturing method will be described. In particular, in order to ensure the surface condition of the product plate, it is desirable to adopt the following manufacturing method from the viewpoint of sufficiently forming oxide scale and deskewing in the manufacturing process.
First, the heating temperature at the time of hot rolling is set to 1100 ° C. or higher from the viewpoint of deformation resistance. If the temperature is too high, there are problems such as grain coarsening and increase in scale formation. In hot rolling, hot rolling is performed at Ar 3 + 30 ° C. or higher to prevent excessive reduction of workability due to excessive strain applied to ferrite grains, and even if the temperature is too high, the recrystallized grain size after annealing becomes unnecessarily large. The finishing temperature is desirably 940 ° C. or less for coarsening.
仕上げ後はスケール形成を出来るだけ防止する観点から、冷速を30℃/sとし、巻き取り温度については、高温にすれば再結晶や粒成長が促進され、加工性の向上が望まれるが、熱間圧延時に発生するスケール生成も促進され酸洗性が低下するので、650℃以下とする。一方で低温になりすぎると硬化するため、冷間圧延時での負荷が高くなる。このため、400℃以上とする。ここで、トラップサイトである微細析出物を巻き取り時に積極的に析出させるためには550〜650℃の巻き取り処理が望ましい。 From the viewpoint of preventing scale formation as much as possible after finishing, the cooling rate is set to 30 ° C./s, and the winding temperature is set to a high temperature to promote recrystallization and grain growth, and it is desired to improve workability. Since the formation of scale generated during hot rolling is promoted and the pickling property is reduced, the temperature is set to 650 ° C. or lower. On the other hand, if the temperature is too low, the material is hardened, so that the load during cold rolling increases. Therefore, the temperature is set to 400 ° C. or higher. Here, a winding process at 550 to 650 ° C. is desirable in order to positively precipitate fine precipitates as trap sites during winding.
酸洗後の冷間圧延は、圧下率が低いと鋼板の形状矯正が難しくなるため下限値を10%とする。また、80%を超える圧下率で圧延すると、鋼板のエッジ部に割れの発生及び形状の乱れのため上限値を80%とする。
冷延後焼鈍する際に、焼鈍温度が鋼の化学成分によって決まる温度Ac1 およびAc3 温度(例えば「鉄鋼材料学」:W.C.Leslie著、幸田成康監訳、丸善P273)で、表現される0.8×(Ac3 −Ac1 )+Ac1 (℃)未満の場合には、焼鈍温度で得られるオーステナイト量が少ないので、最終的な鋼板中に主にベイナイト、ベイニティックフェライトの一方又は双方を生成させることができない。また、焼鈍温度が高温となるほど結晶粒の粗大化や表面酸化が促進されるうえ、製造コストの上昇をまねくために、焼鈍温度の上限をAc3 +30(℃)とした。この温度域での焼鈍時間は鋼板の温度均一化とオーステナイトの確保のために10秒以上が好ましい。しかし、30分超では、粒界酸化相生成が促進されるうえ、コストの上昇を招く。
In cold rolling after pickling, if the rolling reduction is low, the shape correction of the steel sheet is difficult, so the lower limit is set to 10%. Further, when rolling is performed at a rolling reduction of more than 80%, the upper limit is set to 80% due to the occurrence of cracks at the edges of the steel sheet and the disorder of the shape.
When performing annealing after cold rolling, the annealing temperature is expressed by the temperatures Ac 1 and Ac 3 determined by the chemical composition of the steel (for example, “Steel and Materials Science”: WC Leslie, translated by Shigeyasu Koda, Maruzen P273). If less than 0.8 × (Ac 3 −Ac 1 ) + Ac 1 (° C.), the amount of austenite obtained at the annealing temperature is small, so that one of bainite and bainitic ferrite is mainly contained in the final steel sheet. Or neither can be generated. Further, as the annealing temperature increases, the coarsening of crystal grains and the surface oxidation are promoted, and the upper limit of the annealing temperature is set to Ac 3 +30 (° C.) in order to increase the manufacturing cost. The annealing time in this temperature range is preferably 10 seconds or more for uniformizing the temperature of the steel sheet and securing austenite. However, if the time exceeds 30 minutes, the formation of the grain boundary oxidized phase is promoted and the cost is increased.
その後の一次冷却はオーステナイト相からフェライト相への変態をある程度抑しつつ、ベイナイト、ベイニティックフェライトの一方又は双方を生成させるのに重要である。この冷却速度を1℃/秒未満にすることは、フェライトやパーライトの生成を促進して強度低下を招く懸念があることから、冷却速度の下限を1℃/秒とした。一方、冷却速度が150℃/秒超の場合には最終的な鋼板中のマルテンサイト相などの硬質相が多量になってしまうことや、操業上困難なため、これを上限とした。 Subsequent primary cooling is important for forming one or both of bainite and bainitic ferrite while suppressing the transformation from the austenite phase to the ferrite phase to some extent. Setting the cooling rate to less than 1 ° C./sec promotes the formation of ferrite and pearlite, which may cause a decrease in strength. Therefore, the lower limit of the cooling rate is set to 1 ° C./sec. On the other hand, when the cooling rate is more than 150 ° C./sec, the hard steel phase such as the martensite phase in the final steel sheet becomes large and the operation is difficult, so the upper limit is set.
この一次冷却が350℃未満まで行われると、冷却中にマルテンサイトが多量に生成して、穴拡げ性や遅れ破壊を助長するため、冷却停止温度は350〜500℃とした。また、冷却停止温度が500℃を超えると、その後の保持時に炭化物が短時間で生成してしまい、強度低下を招くため、これを上限とした。また、次にベイナイト変態の進行を促すため、この温度域での保持を行う。この停留時間が長時間になると生産性上好ましくないうえ、炭化物が生成してしまうことから3000秒以内とすることが望ましい。また、ベイナイト変態を進行させるため、1秒以上保持し、好ましくは15秒から20分保持することが望ましい。200℃未満ではベイナイト変態が起こりにくく、500℃を超えると炭化物が生じて十分な残留オーステナイト相を残すことが困難となる。 When the primary cooling is performed to less than 350 ° C., a large amount of martensite is generated during the cooling, which promotes hole expandability and delayed fracture. Therefore, the cooling stop temperature was set to 350 to 500 ° C. Further, if the cooling stop temperature exceeds 500 ° C., carbides are generated in a short time at the time of subsequent holding, which causes a decrease in strength. Next, in order to promote the progress of bainite transformation, the temperature is maintained in this temperature range. If the dwell time is long, it is not preferable in terms of productivity, and carbide is generated. In order to advance the bainite transformation, it is desirable to hold for 1 second or more, preferably for 15 seconds to 20 minutes. If the temperature is lower than 200 ° C., bainite transformation hardly occurs. If the temperature exceeds 500 ° C., carbides are generated, and it becomes difficult to leave a sufficient residual austenite phase.
また、比較的低炭素または低硬度のマルテンサイト相を主相とするまたは主相の一部として活用する場合には、特にベイナイト変態を促進する必要はない。したがって、一次冷却の停止温度の上限をMf+10℃とし、低炭素または低硬度のマルテンサイト相を確保する事とした。その後硬度の調整のためMf以上450℃以下での保持を行うことも出来る。この保持温度が450℃超になると炭化物等の析出が生じ、穴拡げ性劣化や強度低下につながるため450℃を上限とした。ここで、Mf温度は、Mf(℃)=361−474×C(mass%)−33×Mn(mass%)−17×Ni(mass%)−17×Cr(mass%)−21×Mo(mass%)で経験的にあらわされる。また、溶接方法については、通常行われる溶接方法、たとえばアーク、TIG、MIG、マッシュおよびレーザー等の溶接を行っても本発明の範囲とする。 When a relatively low carbon or low hardness martensite phase is used as a main phase or is used as a part of the main phase, it is not particularly necessary to promote bainite transformation. Therefore, the upper limit of the primary cooling stop temperature is set to Mf + 10 ° C., and a low carbon or low hardness martensite phase is secured. Thereafter, for adjusting the hardness, holding at a temperature of not less than Mf and not more than 450 ° C. can be performed. When the holding temperature exceeds 450 ° C., precipitation of carbides and the like occurs, which leads to deterioration of hole expandability and a decrease in strength. Here, the Mf temperature is Mf (° C.) = 361-474 × C (mass%) − 33 × Mn (mass%) − 17 × Ni (mass%) − 17 × Cr (mass%) − 21 × Mo ( mass%). In addition, the present invention is also within the scope of the present invention, even if welding methods such as arc, TIG, MIG, mash, and laser are performed.
以下、実施例によって本発明をさらに詳細に説明する。
表1に示すような組成の鋼板を、1150〜1250℃に加熱し、Ar3 +30℃変態温度以上で熱延を完了し、冷却後巻き取った鋼帯を酸洗後、冷延して1.2mm厚とした。これらのAc1 およびAc3 変態温度から計算される焼鈍温度に10%H2 −N2 雰囲気中で昇温・保定したのち、3〜150℃/秒の冷却速度で200〜450℃まで冷却し、引き続いて1〜3000秒保持した後、冷却した。鋼種No.18〜21は、焼鈍した後、1〜150℃/秒の冷却速度でMf+10℃以下の温度域に冷却し、引き続いてMf〜450℃の温度域で1秒〜3000秒保持した。これらの鋼板からJIS5号引張り試験片を採取して、機械的性質を測定した。さらに、鉄鋼連盟規格に準拠して穴拡げ試験を行い、穴拡げ率を求めた。溶接性については鋼板をつきあわせた各種溶接を行い、テフロン(登録商標)潤滑にて球頭張り出し試験を行い、母材に対する張り出し高さおよび破断位置を測定した。
Hereinafter, the present invention will be described in more detail with reference to examples.
A steel sheet having a composition as shown in Table 1 was heated to 1150 to 1250 ° C., hot rolling was completed at an Ar 3 + 30 ° C. transformation temperature or higher, and a steel strip wound up after cooling was pickled and then cold rolled to 1 .2 mm thick. After the temperature is raised and maintained in an atmosphere of 10% H 2 —N 2 at an annealing temperature calculated from the Ac 1 and Ac 3 transformation temperatures, it is cooled to 200 to 450 ° C. at a cooling rate of 3 to 150 ° C./sec. Then, after holding for 1 to 3000 seconds, it was cooled. Steel type No. After annealing, the samples Nos. 18 to 21 were cooled to a temperature range of Mf + 10 ° C. or lower at a cooling rate of 1 to 150 ° C./sec, and subsequently kept at a temperature range of Mf to 450 ° C. for 1 second to 3000 seconds. JIS No. 5 tensile test pieces were collected from these steel sheets, and their mechanical properties were measured. Further, a hole expansion test was performed in accordance with the standards of the Iron and Steel Federation to determine the hole expansion ratio. Regarding the weldability, various weldings were performed with the steel plates joined together, a ball head overhang test was performed using Teflon (registered trademark) lubrication, and the overhang height and the fracture position with respect to the base metal were measured.
鋼板の耐遅れ破壊性の評価方法の詳細は以下の通りである。
(1)調質圧延後、プレス時の歪を模擬する目的で2%歪を鋼板に与える。
(2)鋼板より応力集中率3.2の切欠き板状引張り試験片を採取する。
(3)3%NaCl−3g/1NH4 SCN水溶液中で0.01〜0.025mA/cm2 で定電流陰極チャージを施す。
(4)Cdめっきを行う。
(5)引張り強度の0.8倍の一定荷重を付加する。
(6)100hまで試験を行い、破断か未破断を判断する。
The details of the method for evaluating the delayed fracture resistance of a steel sheet are as follows.
(1) After temper rolling, a 2% strain is applied to the steel sheet for the purpose of simulating the strain during pressing.
(2) A notched plate-shaped tensile test piece having a stress concentration rate of 3.2 is sampled from a steel sheet.
(3) A constant current cathode charge is performed at 0.01 to 0.025 mA / cm 2 in a 3% NaCl-3 g / 1 NH 4 SCN aqueous solution.
(4) Cd plating is performed.
(5) Apply a constant load of 0.8 times the tensile strength.
(6) The test is performed up to 100 hours, and it is determined whether the sample is broken or not broken.
表2に各鋼のミクロ組織と各材質について、また、表3、表4に各製造条件と材質について示す。本発明の要件を満たす発明鋼は、溶接性、強度(引張り強度で800MPa以上)、穴拡げ性に優れていることがわかる。特に、穴広げ性については80%と優れた値を示す。一方、本発明の条件から外れる比較例は、溶接部の球頭張り出し高さ、引っ張り強度および穴拡げ性、遅れ破壊評価の何れかが劣勢である。
また、低炭素・低硬度マルテンサイト相を主相とする鋼種No.18〜21の本発明の要件を満たす発明鋼は、溶接性、強度(引張り強度で800MPa以上)、穴拡げ性に優れていることがわかる。一方、同じように主相をマルテンサイトの場合でも要件を満たさない鋼種No−処理Noの6−1および17−2は、強度は高いものの、遅れ破壊、溶接性および穴拡げ性のいずれも劣る。
Table 2 shows the microstructure and each material of each steel, and Tables 3 and 4 show each manufacturing condition and material. It is understood that the inventive steel satisfying the requirements of the present invention is excellent in weldability, strength (800 MPa or more in tensile strength), and hole expandability. In particular, the hole expanding property shows an excellent value of 80%. On the other hand, in the comparative examples that deviate from the conditions of the present invention, any of the overhang height, the tensile strength, the hole expandability, and the delayed fracture evaluation of the welded portion are inferior.
In addition, a steel type No. having a low carbon / low hardness martensite phase as a main phase. It can be seen that invention steels satisfying the requirements of the present invention of Nos. 18 to 21 have excellent weldability, strength (800 MPa or more in tensile strength), and hole expandability. On the other hand, steel types No. 6-1 and 17-2, which do not satisfy the requirements even when the main phase is martensite, have high strength, but are inferior in all of delayed fracture, weldability and hole expandability. .
特許出願人 新日本製鐵株式会社
代理人 弁理士 椎 名 彊 他1
Patent applicant Nippon Steel Corporation
Attorney Patent Attorney Shiina Jin and others 1
Claims (10)
C :0.01〜0.25%、
Si:0.01〜3.0%、
Mn:0.01〜4.0%、
P :0.0001〜0.05%、
S :0.0001〜0.05%、
Al:0.01〜3.0%、
N :0.0001〜0.01%、
を含有し、
Ni:0.001〜5.5%、
Cu:0.001〜3.0%、
Cr:0.001〜5.0%、
Mo:0.005〜5%、
Nb:0.001〜1.0%
のうち1種以上を含有し、残部が鉄および不可避的不純物からなり、ミクロ組織が、面積率でベイナイト、ベイニティックフェライトの一方又は双方を合計で70%以上、残留オーステナイト(Vγ)を3%未満含有し、引張強さ(TS)が800MPa以上であり、更に下記式(1−1)〜(1−3)を満たすことを特徴とする耐水素脆化、溶接性および穴拡げ性に優れた高強度鋼板。
(3.0Nb+2.5Mo+1/10Si+Mn)−(2C0.5+2)>0 … (1−1)
0≦0.8×{2Cu+20Mo+3Ni+Cr+Vγ}−{0.1−3.5×107 ×(TS)-3.1}−0.3Vγ … (1−2)
0>Si+Al+7.67C−1.78 … (1−3)
ここで、TS:引張強さ(MPa)、
元素記号は鋼中に含まれる各元素の質量%を示す。 In mass%,
C: 0.01-0.25%,
Si: 0.01 to 3.0%,
Mn: 0.01 to 4.0%,
P: 0.0001-0.05%,
S: 0.0001-0.05%,
Al: 0.01 to 3.0%,
N: 0.0001 to 0.01%,
Containing
Ni: 0.001 to 5.5%,
Cu: 0.001 to 3.0%,
Cr: 0.001 to 5.0%,
Mo: 0.005 to 5%,
Nb: 0.001 to 1.0%
And the balance consists of iron and unavoidable impurities, and the microstructure is bainite and / or bainitic ferrite in an area ratio of 70% or more in total and 3% of retained austenite (Vγ). %, And has a tensile strength (TS) of 800 MPa or more, and further satisfies the following formulas (1-1) to (1-3). Excellent high strength steel sheet.
(3.0Nb + 2.5Mo + 1 / 10Si + Mn) - (2C 0.5 +2)> 0 ... (1-1)
0 ≦ 0.8 × {2Cu + 20Mo + 3Ni + Cr + Vγ} − {0.1−3.5 × 10 7 × (TS) −3.1 } −0.3Vγ (1-2)
0> Si + Al + 7.67C-1.78 (1-3)
Here, TS: tensile strength (MPa),
Element symbols indicate mass% of each element contained in the steel.
C :0.01%〜0.25%、
Si:0.01〜3.0%、
Mn:0.01〜4.0%、
P :0.0001〜0.020%、
S :0.0001〜0.020%、
Al:0.01〜3.0%、
N :0.0001〜0.01%
を含有し、
Ni:0.001〜5.5%、
Cu:0.001〜3.0%、
Cr:0.001〜5.0%、
Mo:0.005〜5%、
Nb:0.001〜1.0%、
のうち1種以上を含有し、更に、V:0.005〜1%を含有し、残部が鉄および不可避的不純物からなり、ミクロ組織が、面積率でベイナイト、ベイニティックフェライトの一方又は双方を合計で70%以上、残留オーステナイト(Vγ)を3%未満含有し、引張強さ(TS)が800MPa以上であり、更に下記(2−1)〜(2−3)式を満たすことを特徴とする耐水素脆化、溶接性および穴拡げ性に優れた高強度鋼板。
(3.0Nb+2.5Mo+1/10Si+Mn)−(2C0.5+2)> 0 … (2−1)
0≦0.8×{2Cu+20Mo+3Ni+Cr+20V}−{0.1−V/5−3.5×107 ×(TS)-3.1}−0.3Vγ … (2−2)
0>Si+Al+7.67C−1.78 … (2−3)
ここで、TS:引張強さ(MPa)、
元素記号は鋼中に含まれる各元素の質量%を示す。 In mass%,
C: 0.01% to 0.25%,
Si: 0.01 to 3.0%,
Mn: 0.01 to 4.0%,
P: 0.0001 to 0.020%,
S: 0.0001 to 0.020%,
Al: 0.01 to 3.0%,
N: 0.0001 to 0.01%
Containing
Ni: 0.001 to 5.5%,
Cu: 0.001 to 3.0%,
Cr: 0.001 to 5.0%,
Mo: 0.005 to 5%,
Nb: 0.001 to 1.0%,
And V contains 0.005 to 1%, and the balance consists of iron and unavoidable impurities, and the microstructure is bainite or bainitic ferrite in terms of area ratio. Contains 70% or more in total, less than 3% of retained austenite (Vγ), has a tensile strength (TS) of 800 MPa or more, and further satisfies the following formulas (2-1) to (2-3). High-strength steel sheet with excellent hydrogen embrittlement resistance, weldability, and hole expandability.
(3.0Nb + 2.5Mo + 1 / 10Si + Mn) - (2C 0.5 +2)> 0 ... (2-1)
0 ≦ 0.8 × {2Cu + 20Mo + 3Ni + Cr + 20V} − {0.1−V / 5−3.5 × 10 7 × (TS) −3.1 } −0.3Vγ (2-2)
0> Si + Al + 7.67C-1.78 (2-3)
Here, TS: tensile strength (MPa),
Element symbols indicate mass% of each element contained in the steel.
Se:0.0002〜0.05%、
As:0.0002〜0.05%、
Sb:0.0002〜0.05%、
Sn:0.0002〜0.05%、
Pb:0.0002〜0.05%、
Bi:0.0002〜0.05%、
の1種または2種以上を含有し、かつ、それらの合計が0.05%以下を満たすことを特徴とする請求項1又は2記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板。 Furthermore, in mass%,
Se: 0.0002-0.05%,
As: 0.0002-0.05%,
Sb: 0.0002-0.05%,
Sn: 0.0002-0.05%,
Pb: 0.0002-0.05%,
Bi: 0.0002-0.05%,
3. Hydrogen embrittlement resistance, weldability and hole expandability according to claim 1 or 2, wherein one or more of the following are contained, and the total of them satisfies 0.05% or less. High strength steel sheet.
REM:0.0002〜0.10%、
Ca:0.0002〜0.10%、
Y :0.0002〜0.10%、
Mg:0.0002〜0.10%
の1種または2種以上を含むことを特徴とする請求項1〜3の何れか1項に記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板。 Furthermore, in mass%,
REM: 0.0002-0.10%,
Ca: 0.0002 to 0.10%,
Y: 0.0002 to 0.10%,
Mg: 0.0002 to 0.10%
The high-strength steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability according to any one of claims 1 to 3, which comprises one or more of the following.
Ti:0.002〜1%、
Zr:0.005〜1%、
Hf:0.005〜1%、
Ta: 0.005〜1%、
の1種または2種以上を含有することを特徴とする請求項1〜4の何れか1項に記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板。 Further, in mass% Ti: 0.002 to 1%,
Zr: 0.005 to 1%,
Hf: 0.005 to 1%,
Ta: 0.005 to 1%,
The high-strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability according to any one of claims 1 to 4, comprising one or more of the following.
W :0.005〜5%、
Co:0.005〜2.0%、
の1種または2種を含有することを特徴とする請求項1〜5の何れか1項に記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板。 Further, in mass% W: 0.005 to 5%,
Co: 0.005 to 2.0%,
The high-strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability according to any one of claims 1 to 5, comprising one or two of the following.
B :0.0002〜0.1%、
を含有することを特徴とする請求項1〜6の何れか1項に記載の耐水素脆化、溶接性および穴拡げ性に優れた高強度薄鋼板。 Furthermore, in mass%,
B: 0.0002 to 0.1%,
The high-strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability according to any one of claims 1 to 6, characterized by comprising:
ここで、Mf(℃)=361−474×C(質量%)−33×Mn(質量%)−17×Ni(質量%)−17×Cr(質量%)−21×Mo(質量%) 10. Annealing, cooling at a cooling rate of 1 to 150 [deg.] C./sec to a temperature range of Mf + 10 [deg.] C. or less, and subsequently maintaining the temperature range of Mf to 450 [deg.] C. for 1 to 3000 seconds. For producing high-strength thin steel sheets with excellent hydrogen embrittlement resistance, weldability and hole expandability.
Here, Mf (° C.) = 361-474 × C (% by mass) -33 × Mn (% by mass) -17 × Ni (% by mass) -17 × Cr (% by mass) -21 × Mo (% by mass)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003353430A JP4102281B2 (en) | 2003-04-17 | 2003-10-14 | High strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability, and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003113400 | 2003-04-17 | ||
JP2003353430A JP4102281B2 (en) | 2003-04-17 | 2003-10-14 | High strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004332100A true JP2004332100A (en) | 2004-11-25 |
JP4102281B2 JP4102281B2 (en) | 2008-06-18 |
Family
ID=33513261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003353430A Expired - Fee Related JP4102281B2 (en) | 2003-04-17 | 2003-10-14 | High strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4102281B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1676932A1 (en) * | 2004-12-28 | 2006-07-05 | Kabushiki Kaisha Kobe Seiko Sho | High strength thin steel sheet having high hydrogen embrittlement resisting property |
EP1686195A1 (en) * | 2005-01-28 | 2006-08-02 | Kabushiki Kaisha Kobe Seiko Sho | High strength spring steel having excellent hydrogen embrittlement resistance |
JP2007198895A (en) * | 2006-01-26 | 2007-08-09 | Kobe Steel Ltd | Evaluation method of delayed fracture resistance of high strength steel sheet |
EP1832667A1 (en) | 2006-03-07 | 2007-09-12 | ARCELOR France | Method of producing steel sheets having high strength, ductility and toughness and thus produced sheets. |
JP2007302974A (en) * | 2006-05-15 | 2007-11-22 | Jfe Steel Kk | High strength thick steel plate with excellent delayed fracture resistance and method for producing the same |
CN100359034C (en) * | 2005-02-06 | 2008-01-02 | 宝山钢铁股份有限公司 | A 1000Mpa high-strength hot-rolled bulletproof steel plate and its manufacturing method |
US7468109B2 (en) | 2006-05-29 | 2008-12-23 | Kobe Steel, Ltd. | High strength steel sheet having excellent stretch flangeability |
US7767036B2 (en) | 2005-03-30 | 2010-08-03 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength cold rolled steel sheet and plated steel sheet excellent in the balance of strength and workability |
KR100985298B1 (en) | 2008-05-27 | 2010-10-04 | 주식회사 포스코 | Low specific gravity high strength hot rolled sheet, cold rolled sheet, galvanized sheet and its manufacturing method |
JP2011508085A (en) * | 2007-12-28 | 2011-03-10 | ポスコ | High strength thin steel sheet with excellent weldability and method for producing the same |
EP2878695A4 (en) * | 2012-07-26 | 2015-12-30 | Jfe Steel Corp | STEEL SUITABLE FOR PROCESSING BY NITROCARBURATION, NITROCABURED PART, AND PROCESSES FOR PRODUCING SAID STEEL READY FOR TREATMENT BY NITROCARBURING AND NITROCABRURED PART |
JP2018178145A (en) * | 2017-04-04 | 2018-11-15 | 株式会社神戸製鋼所 | Large sized cast steel article for weld structure |
CN111155025A (en) * | 2020-01-20 | 2020-05-15 | 北京理工大学 | Bainitic steel with high strength, high toughness and high-speed impact resistance and preparation method thereof |
WO2023241471A1 (en) * | 2022-06-15 | 2023-12-21 | 宝山钢铁股份有限公司 | Anti-delayed cracking and wear-resistant steel plate and manufacturing method therefor |
CN117444552A (en) * | 2023-12-25 | 2024-01-26 | 中北大学 | A method to improve the hydrogen embrittlement resistance of 316L stainless steel hydrogen pipe |
CN118007019A (en) * | 2023-12-25 | 2024-05-10 | 鞍钢股份有限公司 | 1.0 GPa-grade hydrogen embrittlement-resistant cold-formed automotive steel and production method thereof |
CN118478189A (en) * | 2024-07-12 | 2024-08-13 | 中北大学 | A method for improving high temperature fatigue performance of 2.25Cr-1Mo-0.25V steel hydrogen transmission pipe |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5771034B2 (en) | 2010-03-29 | 2015-08-26 | 株式会社神戸製鋼所 | Ultra-high strength steel plate with excellent workability and manufacturing method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04235253A (en) * | 1990-12-28 | 1992-08-24 | Kawasaki Steel Corp | Ultrahigh strength cold rolled steel sheet having good bendability and impact property and its manufacture |
JP2000080440A (en) * | 1998-08-31 | 2000-03-21 | Kawasaki Steel Corp | High strength cold rolled thin steel sheet and method for producing the same |
JP2000109951A (en) * | 1998-08-05 | 2000-04-18 | Kawasaki Steel Corp | High strength hot rolled steel sheet excellent in stretch flangeability and method for producing the same |
JP2000273576A (en) * | 1999-03-26 | 2000-10-03 | Kawasaki Steel Corp | High tension cold rolled steel sheet with excellent roll formability and buckling resistance |
JP2001220647A (en) * | 2000-02-04 | 2001-08-14 | Kawasaki Steel Corp | High strength cold rolled steel sheet excellent in workability and method for producing the same |
JP2001226741A (en) * | 2000-02-15 | 2001-08-21 | Kawasaki Steel Corp | High-strength cold-rolled steel sheet excellent in stretch flangeability and its manufacturing method |
JP3895986B2 (en) * | 2001-12-27 | 2007-03-22 | 新日本製鐵株式会社 | High-strength steel plate excellent in weldability and hole expansibility and method for producing the same |
-
2003
- 2003-10-14 JP JP2003353430A patent/JP4102281B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04235253A (en) * | 1990-12-28 | 1992-08-24 | Kawasaki Steel Corp | Ultrahigh strength cold rolled steel sheet having good bendability and impact property and its manufacture |
JP2000109951A (en) * | 1998-08-05 | 2000-04-18 | Kawasaki Steel Corp | High strength hot rolled steel sheet excellent in stretch flangeability and method for producing the same |
JP2000080440A (en) * | 1998-08-31 | 2000-03-21 | Kawasaki Steel Corp | High strength cold rolled thin steel sheet and method for producing the same |
JP2000273576A (en) * | 1999-03-26 | 2000-10-03 | Kawasaki Steel Corp | High tension cold rolled steel sheet with excellent roll formability and buckling resistance |
JP2001220647A (en) * | 2000-02-04 | 2001-08-14 | Kawasaki Steel Corp | High strength cold rolled steel sheet excellent in workability and method for producing the same |
JP2001226741A (en) * | 2000-02-15 | 2001-08-21 | Kawasaki Steel Corp | High-strength cold-rolled steel sheet excellent in stretch flangeability and its manufacturing method |
JP3895986B2 (en) * | 2001-12-27 | 2007-03-22 | 新日本製鐵株式会社 | High-strength steel plate excellent in weldability and hole expansibility and method for producing the same |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1676932A1 (en) * | 2004-12-28 | 2006-07-05 | Kabushiki Kaisha Kobe Seiko Sho | High strength thin steel sheet having high hydrogen embrittlement resisting property |
EP1686195A1 (en) * | 2005-01-28 | 2006-08-02 | Kabushiki Kaisha Kobe Seiko Sho | High strength spring steel having excellent hydrogen embrittlement resistance |
US7438770B2 (en) | 2005-01-28 | 2008-10-21 | Kobe Steel, Ltd. | High strength spring steel having excellent hydrogen embrittlement resistance |
CN100359034C (en) * | 2005-02-06 | 2008-01-02 | 宝山钢铁股份有限公司 | A 1000Mpa high-strength hot-rolled bulletproof steel plate and its manufacturing method |
US7767036B2 (en) | 2005-03-30 | 2010-08-03 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength cold rolled steel sheet and plated steel sheet excellent in the balance of strength and workability |
JP2007198895A (en) * | 2006-01-26 | 2007-08-09 | Kobe Steel Ltd | Evaluation method of delayed fracture resistance of high strength steel sheet |
EP1832667A1 (en) | 2006-03-07 | 2007-09-12 | ARCELOR France | Method of producing steel sheets having high strength, ductility and toughness and thus produced sheets. |
US10370746B2 (en) | 2006-03-07 | 2019-08-06 | Arcelormittal | Process for manufacturing steel sheet |
JP2007302974A (en) * | 2006-05-15 | 2007-11-22 | Jfe Steel Kk | High strength thick steel plate with excellent delayed fracture resistance and method for producing the same |
US7468109B2 (en) | 2006-05-29 | 2008-12-23 | Kobe Steel, Ltd. | High strength steel sheet having excellent stretch flangeability |
JP2011508085A (en) * | 2007-12-28 | 2011-03-10 | ポスコ | High strength thin steel sheet with excellent weldability and method for producing the same |
KR100985298B1 (en) | 2008-05-27 | 2010-10-04 | 주식회사 포스코 | Low specific gravity high strength hot rolled sheet, cold rolled sheet, galvanized sheet and its manufacturing method |
EP2878695A4 (en) * | 2012-07-26 | 2015-12-30 | Jfe Steel Corp | STEEL SUITABLE FOR PROCESSING BY NITROCARBURATION, NITROCABURED PART, AND PROCESSES FOR PRODUCING SAID STEEL READY FOR TREATMENT BY NITROCARBURING AND NITROCABRURED PART |
US10125416B2 (en) | 2012-07-26 | 2018-11-13 | Jfe Steel Corporation | Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component |
JP2018178145A (en) * | 2017-04-04 | 2018-11-15 | 株式会社神戸製鋼所 | Large sized cast steel article for weld structure |
CN111155025A (en) * | 2020-01-20 | 2020-05-15 | 北京理工大学 | Bainitic steel with high strength, high toughness and high-speed impact resistance and preparation method thereof |
WO2023241471A1 (en) * | 2022-06-15 | 2023-12-21 | 宝山钢铁股份有限公司 | Anti-delayed cracking and wear-resistant steel plate and manufacturing method therefor |
CN117444552A (en) * | 2023-12-25 | 2024-01-26 | 中北大学 | A method to improve the hydrogen embrittlement resistance of 316L stainless steel hydrogen pipe |
CN117444552B (en) * | 2023-12-25 | 2024-03-12 | 中北大学 | Method for improving hydrogen embrittlement resistance of 316L stainless steel hydrogen conveying pipe |
CN118007019A (en) * | 2023-12-25 | 2024-05-10 | 鞍钢股份有限公司 | 1.0 GPa-grade hydrogen embrittlement-resistant cold-formed automotive steel and production method thereof |
CN118478189A (en) * | 2024-07-12 | 2024-08-13 | 中北大学 | A method for improving high temperature fatigue performance of 2.25Cr-1Mo-0.25V steel hydrogen transmission pipe |
Also Published As
Publication number | Publication date |
---|---|
JP4102281B2 (en) | 2008-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4091894B2 (en) | High-strength steel sheet excellent in hydrogen embrittlement resistance, weldability, hole expansibility and ductility, and method for producing the same | |
JP4317384B2 (en) | High-strength galvanized steel sheet with excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its manufacturing method | |
JP6525114B1 (en) | High strength galvanized steel sheet and method of manufacturing the same | |
US10612113B2 (en) | Micro-alloyed high-strength multi-phase steel containing silicon and having a minimum tensile strength of 750 MPA and improved properties and method for producing a strip from said steel | |
JP3854506B2 (en) | High strength steel plate excellent in weldability, hole expansibility and ductility, and manufacturing method thereof | |
EP2157203B1 (en) | High-strength steel sheet superior in formability | |
CA2731492C (en) | Hot rolled dual phase steel sheet, and method of making the same | |
US8747578B2 (en) | Steel for structural part of automobile and method for producing the same | |
JP3704306B2 (en) | Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same | |
JP5412746B2 (en) | High strength steel plate with good weldability and stretch flangeability | |
JP4102281B2 (en) | High strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability, and method for producing the same | |
JP6897874B2 (en) | High-strength cold-rolled steel sheet and its manufacturing method | |
JP2010090475A (en) | High-strength steel plate and manufacturing method thereof | |
JP2011111675A (en) | HIGH STRENGTH STEEL SHEET EXCELLENT IN HYDROGEN EMBRITTLEMENT RESISTANCE AND HAVING THE MAXIMUM TENSILE STRENGTH OF >=900 MPa, METHOD FOR PRODUCING HIGH STRENGTH COLD ROLLED STEEL SHEET, AND METHOD FOR PRODUCING HIGH STRENGTH GALVANIZED STEEL SHEET | |
JP2004308002A (en) | Ultrahigh strength steel sheet having excellent elongation and hydrogen embrittlement resistance, its production method, and method of manufacturing ultrahigh strength press-formed component using the ultrahigh strength steel sheet | |
JP6388056B2 (en) | Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet | |
KR100697905B1 (en) | High-strength hot-dip galvanized steel sheet with excellent spot weldability and stability of material properties and manufacturing method thereof | |
JP4317491B2 (en) | Steel sheet for hot press | |
JP2004231992A (en) | High-strength steel sheet excellent in hydrogen embrittlement resistance and method for producing the same | |
JP3895986B2 (en) | High-strength steel plate excellent in weldability and hole expansibility and method for producing the same | |
JP3924108B2 (en) | Manufacturing method of high strength steel sheet with excellent hydroformability after pre-processing | |
JP2006193823A (en) | Ferritic / austenitic stainless steel with excellent corrosion resistance at welds | |
JP4445420B2 (en) | High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet and high-strength galvanized steel sheet, high-strength cold-rolled steel sheet manufacturing method, high-strength hot-dip galvanized steel sheet manufacturing method, high-strength galvannealed steel sheet Manufacturing method | |
KR102658163B1 (en) | High-strength steel plate and its manufacturing method | |
JP2003293075A (en) | High-strength steel pipe material having low surface hardness and yield ratio after pipe forming and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080321 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110328 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4102281 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120328 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140328 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |