JP2004332006A - METHOD OF PRODUCING ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE, MEMBER COATED WITH ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE, AND ITS PRODUCTION METHOD - Google Patents
METHOD OF PRODUCING ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE, MEMBER COATED WITH ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE, AND ITS PRODUCTION METHOD Download PDFInfo
- Publication number
- JP2004332006A JP2004332006A JP2003125548A JP2003125548A JP2004332006A JP 2004332006 A JP2004332006 A JP 2004332006A JP 2003125548 A JP2003125548 A JP 2003125548A JP 2003125548 A JP2003125548 A JP 2003125548A JP 2004332006 A JP2004332006 A JP 2004332006A
- Authority
- JP
- Japan
- Prior art keywords
- alumina film
- type crystal
- crystal structure
- sintered body
- cbn sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 87
- 239000013078 crystal Substances 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000463 material Substances 0.000 claims abstract description 35
- 230000003647 oxidation Effects 0.000 claims abstract description 23
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 23
- 230000001590 oxidative effect Effects 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 31
- 239000011230 binding agent Substances 0.000 claims description 23
- 238000000576 coating method Methods 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 19
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000005240 physical vapour deposition Methods 0.000 claims description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052582 BN Inorganic materials 0.000 claims description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 6
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 10
- 239000000203 mixture Substances 0.000 abstract description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract 1
- 229910052796 boron Inorganic materials 0.000 abstract 1
- 239000010408 film Substances 0.000 description 71
- 238000005520 cutting process Methods 0.000 description 20
- 239000010410 layer Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000005546 reactive sputtering Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000002233 thin-film X-ray diffraction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- -1 carbon nitrides Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、耐磨耗性に優れた立方晶窒化硼素(以下、「cBN」と略記することがある)焼結体を基材とし、この基材上に耐酸化性にすぐれたα型結晶構造を主体とするアルミナ皮膜を製造するための有用な方法、およびこうした皮膜を形成して耐磨耗性・耐酸化性に優れたものとした表面被覆部材、およびこのような表面被覆部材の製造するための有用な方法等に関するものである。
【0002】
【従来の技術】
切削工具には優れた耐摩耗性や耐熱性が要求されるのであるが、こうした切削工具に用いられる素材としては、超硬合金、高速度鋼、cBN等が知られており、こうした素材(基材)の表面に更に各種硬質皮膜を形成したものも切削工具として広く使用されている。
【0003】
上記した各種の素材のうちで、cBNは他の素材に比べて強度や耐摩耗性の点で優れているといわれているが、こうしたcBNを用いるものとして、例えば特許文献1のような技術が知られている。この技術では、TiCやTiN或はTiCN、更にはAl2O3やWC、TiB2等で構成されたセラミックス結合相が20〜50体積%を占め、残りが実質的にcBN分散相からなる組成を有するcBN焼結体基材の表面に、物理蒸着法(PVD法)や化学蒸着法(CVD法)を適用して、Tiの炭化物、窒化物、炭・窒化物、炭酸化物および炭窒酸化物、並びに酸化アルミニウムのうちの1種の単層または2種以上の複層からなる硬質被覆層を5〜20μmの平均層厚で形成してなる表面被覆cBN基セラミックス製切削工具が提案されており、この工具は高硬度焼入鋼や鋳鉄などの切削加工に用いられている。
【0004】
切削工具の特性は工具基材とその表面に形成される硬質皮膜との適切な組み合わせによって決定されるといえるが、こうした観点からcBN焼結体を基材としたときの被覆材料として最も魅力的であるのは、酸化アルミニウム(Al2O3:アルミナ)皮膜である。これは、高温下での耐塑性変形性に優れたcBN焼結体を基材とし、化学的安定性に優れるAl2O3皮膜を密着力良く被覆することによって、高温・高負荷下での耐摩耗性、特に耐クレータ性に優れる被覆部材が構成でき、こうした特性が要求される切削工具等への適用に適していると考えられるからである。
【0005】
こうした観点から、これまでにもcBN焼結体基材へのアルミナ皮膜形成に関する技術が様々提案されている。例えば特許文献2には、鉄系材料の高硬度難削材切削および高速・高能率切削において、耐摩耗性、特に耐クレーター摩耗性に優れる切削工具を提供する目的において、cBN焼結体基材における切削に関与する表面の少なくとも一部に1層以上のAl2O3層を形成した工具が提案されている。この焼結体基材はcBN分散相を20〜99体積%、平均粒径1μm以下のAl2O3を結合相として1.0〜10体積%未満を含み、その基材上にアルミナ皮膜が厚さ0.5〜50μm程度で形成されたものである。また、Al2O3皮膜は、厚さが0.5〜25μmの場合には、平均結晶粒径を0.01〜4μmに、厚さが25超〜50μmの場合には、平均結晶粒径を0.01〜10μmに制御するのが有効であることも開示されている。
【0006】
一方、金属加工のためのコーティングされたcBN切削工具に関する技術として、例えば特許文献3には、焼結炭化物支持体を伴うまたは伴わない1若しくは複数のcBN焼結体からなる工具であって、コーティングは1または複数の耐熱性化合物の層で構成されており、この層のうちの少なくとも1つの層は、粒度が0.1μm未満の微粒結晶質γ相アルミナからなっているものが開示されている。そしてこのアルミナ層は、450〜700℃の基材温度において、2極パルスDMS(デュアルマグネトロンスパッタリング)技術によって堆積させるものである。
【0007】
或は、同様のcBN切削工具に関する技術として、例えば特許文献4には、同様の構成の工具であるが、皮膜としてのγ相アルミナは、プラズマ活性化化学気相堆積(PACVD)で堆積させることを特徴とするものが開示されている。そしてこの技術では、コーティングする工具基材を固定して電気的に接続した2つの電極の間に2極パルス直流電圧を適用することによって、プラズマをもたらしている。
【0008】
【特許文献1】
特開昭59−8679号公報 特許請求の範囲等
【特許文献2】
特開2000−44370号公報 特許請求の範囲等
【特許文献3】
特表2002−543993号公報 特許請求の範囲等
【特許文献4】
特表2002−543997号公報 特許請求の範囲等
【0009】
【発明が解決しようとする課題】
アルミナ皮膜形成について、これまで提案された各種技術においても以下のような問題がある。即ち、上記特許文献3、4の技術で形成されるアルミナ皮膜はγ型結晶構造を有するアルミナ(γアルミナ)であるが、このγアルミナは、各種の結晶形態が存在するアルミナの中で準安定な結晶形態であるので、皮膜が高温環境に曝されると本質的に安定なα型結晶構造のアルミナ(αアルミナ)に変態することがあり、この変態に伴って皮膜に亀裂が生じたり皮膜剥離が発生したりする恐れがある。こうしたことから、高速切削化の傾向にある近年の切削加工には十分に対応できない。
【0010】
これに対して、特許文献2に示された技術では、形成されるアルミナ皮膜としてα型結晶構造を有するアルミナも含まれており、この結晶形態であれば前記のような問題は生じない。しかしながら、この技術では皮膜を形成するcBN焼結体中の結合相の組成が限定されることになる。また、この技術でαアルミナ皮膜を形成する方法としては、CVD法が示されているが、こうした方法では皮膜形成時の基板温度は1000℃を超える高温雰囲気となり、このような高温では基材のcBN焼結体が過熱されて、hBN相へ変態する可能性があり、好ましくない事態を招くことになる。
【0011】
本発明はこうした状況の下でなされたものであって、その目的は、cBN焼結体基材へのα型結晶構造を主体とするアルミナ皮膜を、CVD法のような高温によることなく、またcBN焼結体の組成を特定しなくても形成可能とするアルミナ皮膜の製造方法、およびこうしたアルミナ皮膜を被覆した部材、並びに該アルミナ被覆部材を製造するための有用な方法を提供することにある。
【0012】
【課題を解決する為の手段】
本発明に係るα型結晶構造主体のアルミナ皮膜の製造方法とは、結合相と立方晶窒化硼素分散相からなるcBN焼結体基材上に、α型結晶を主体とするアルミナ皮膜を製造する方法であって、cBN焼結体基材表面を酸化処理し、その後にアルミナ皮膜を形成する点に要旨を有するものである。この方法において、前記cBN焼結体中の結合相としては、TiC,TiN,TiCN,AlN,TiB2およびAl2O3よりなる群から選ばれる1種以上を含むものが挙げられる。
【0013】
また前記酸化処理は酸化性ガス酸化雰囲気下で基材温度を650〜800℃に保持して行うことが好ましく、前記α型結晶構造を主体とするアルミナ膜の形成は、基材温度を650〜800℃としてPVD法を適用して行うことが好ましい。
【0014】
一方、上記目的を達成し得た本発明の被覆部材とは、結合相と立方晶窒化硼素分散相からなるcBN焼結体基材上に、α型結晶を主体とするアルミナ皮膜を被覆した被覆部材であって、cBN焼結体とアルミナ皮膜との界面には、酸化物含有層が介在されたものである点に要旨を有するものである。こうした被覆部材においては、前記結合相は、TiC,TiN,TiCN,AlN,TiB2およびAl2O3よりなる群から選ばれる1種以上を含むものであることが好ましく、この結合相は、焼結体全体に対して1〜50体積%含むものであることが好ましい。
【0015】
こうした被覆部材の表面に形成されたα型結晶構造を主体とするアルミナ皮膜は、圧縮の残留応力を有するものとなる。
【0016】
上記のような部材と製造するに当たっては、cBN焼結体基材の表面を酸化処理する工程と、α型結晶構造を主体とするアルミナ皮膜を形成する工程を、同一成膜装置内で順次実施することが好ましい。
【0017】
【発明の実施の形態】
本発明者らは、α型結晶構造を主体とするアルミナ皮膜をcBN焼結体基材上へ被覆するに際して、CVDのような高温によることなく、且つcBN焼結体の組成を特定しなくても実現し得る技術について様々な角度から検討した。その結果、cBN焼結体の表面を酸化性ガス雰囲気下に暴露して酸化処理した後、基材温度を650〜800℃としてPVD法によって成膜処理してやれば、cBN焼結体基材表面にα型結晶構造を主体とするアルミナ皮膜ができることを見出し、本発明を完成した。
【0018】
また本発明によると、耐磨耗性に優れたcBN焼結体基板上に、耐酸化性に優れたα型結晶構造主体のアルミナ皮膜を効果的に形成することができ、耐磨耗性および耐酸化性に優れた表面被覆部材が実現できることになる。しかも、該表面被覆部材を製造するに際して、CVD法を適用するときのような高温雰囲気に曝すことなく、またcBN焼結体の組成上の制約を受けることもないのである。
【0019】
上記の様な効果が発揮される理由については、その全てを解明し得た訳ではないが、おそらく次の様に考えることができる。即ち、cBN焼結体は結合相としてTiC,TiN,TiCN,AlN,TiB2、Al2O3などを含有しており、皮膜を形成する表面層にもその一部が露出した状態となっているが、このような焼結体基材を高温で酸化雰囲気に暴して酸化処理すると、前記結合相のうち非酸化物結合相は表面に露出している部分から酸化されることになる。また、Al2O3のような酸化物の結合相であっても微視的にはその表面が炭化水素等の汚染物が付着物状態であり、高温で酸化雰囲気に暴して酸化処理することによって、こうした汚染物が除去されその表面には純粋な酸化物の表面が露出するものと考えられる。このようにして酸化処理工程を経過した後は、cBN焼結体の表面には、結合相が酸化した酸化物、あるいは元々酸化物の結合相にあっては表面が純粋な酸化物状態となって、酸化物含有相が存在する部位が基板表面全域に亘って分散した状態となったと考えられる。また焼結体中のcBN自体も表面に酸化物を形成している可能性もある。こうしたことから、cBN焼結体基板の表面全体に亘ってαアルミナの結晶成長に好適な領域となる酸化物層が形成されており、こうした領域を起点として、αアルミナの結晶成長が起こるためα型結晶構造主体のアルミナ皮膜が比較的低い成膜温度で形成できるものと考えられる。
【0020】
本発明で基材として用いるcBN焼結体中に含まれる結合相としては、特定の種類に限定されるものではなく、TiC,TiN,TiCN,AlN,TiB2およびAl2O3よりなる群から選ばれる1種以上を少なくとも含有しているものが採用できるが、これ以外にも周期律表4a、5a、6a族の金属若しくはAl、Si等の金属の窒化物、炭化物、硼化物およびこれらの相互固溶体や、金属(例えば、Al,Ti,Cr,Fe若しくはこれらを含む合金)を含むものも利用できる。尚、本発明による酸化処理による効果を考慮すると、結合相としての化合物は非酸化物系のものを少なくとも含んでいることが好ましい。
【0021】
cBN焼結体中の結合相の含有量としては、焼結体全体に対して1〜50体積%であることが好ましい。結合相の含有量が1体積%未満では所望の強度を確保できず、その含有量が50体積%を越えると基材の耐磨耗性が低下することになる。
【0022】
本発明ではcBN焼結体基材の表面を酸化して、その表面(即ち、cBN焼結体とアルミナ皮膜との界面となる部分)に酸化物含有層を形成するものである。この酸化処理工程は、被覆部材を効率良く製造するという観点から、次の工程で成膜するアルミナ皮膜を形成する成膜装置内で行うことが望ましく、酸化性ガスの雰囲気中で基材温度を高めて行う熱酸化が好ましい方法である。このときの酸化性ガス雰囲気としては、例えば酸素、オゾン、H2O2等の酸化性ガスを含有する雰囲気が挙げられ、その中には大気雰囲気も勿論含まれる。
【0023】
また前記酸化は、基材温度を650〜800℃に保持して熱酸化を行うことが望ましい。基材温度が低過ぎると十分に酸化が行われないからであり、好ましくは700℃以上に高めて行うのが良い。基材温度を高めるにつれて酸化は促進されるが、基材温度の上限は、本発明の目的に照らして1000℃未満に抑えることが必要である。本発明では、800℃以下でもα型結晶構造主体のアルミナ皮膜の形成に有用な酸化物含有層を形成することができる。
【0024】
本発明では、上記酸化処理のその他の条件について格別の制限はなく、具体的な酸化方法として、上記熱酸化の他、例えば酸素、オゾン、H2O2等の酸化性ガスをプラズマ化して照射する方法を採用することも勿論有効である。
【0025】
上記のような酸化物含有層を形成すれば、その表面にα型結晶構造主体のアルミナの膜を確実に形成することができるのである。尚、このα型結晶構造が70%以上のものが優れた耐熱性を発揮するので好ましく、より好ましくはα型結晶構造が90%以上のものであり、最も好ましくはα結晶構造が100%のものである。
【0026】
α型結晶構造を主体とするアルミナ皮膜の膜厚は、0.1〜20μmとすることが望ましい。該アルミナ皮膜の優れた耐熱性を持続させるには、0.1μm以上確保することが有効だからであり、好ましくは1μm以上である。しかしα型結晶構造主体アルミナ皮膜の膜厚が厚すぎると、該アルミナ皮膜中に内部応力が生じて亀裂等が生じ易くなるので好ましくない。従って、前記膜厚は20μm以下とするのがよく、より好ましくは10μm以下、更に好ましくは5μm以下である。
【0027】
本発明ではα型結晶構造主体のアルミナ皮膜の形成手段は特に限定されないが、CVD法では1000℃以上の高温で行う必要があるので好ましくなく、比較的低温域で成膜することのできるPVD法を採用することが望ましい。こうしたPVDのうち、スパッタリング法特に反応性スパッタリング法では、安価なメタルターゲットを用いて高速成膜が実現できるので好適である。またアルミナ皮膜を形成するときの温度は特に限定されないが、前工程の酸化処理からの連続性を考慮すると、酸化処理工程のときと同レベルであることが好ましく、650〜800℃が好適である。またこの温度範囲では、α型結晶構造主体のアルミナ皮膜が形成されやすくなる上でも好ましい。
【0028】
上記のようにしてα型主体アルミナ皮膜を基板表面に形成することによって、基板、中間層、酸化物含有層およびα型主体のアルミナ皮膜が順次形成されたアルミナ皮膜被覆部材が実現でき、こうした部材は、耐摩耗性および耐熱性に優れたものとなり、切削工具等の素材として有用である。
【0029】
α型結晶構造主体のアルミナ皮膜はPVD法、より好ましくは反応性スパッタリング法で形成されるので、被覆する条件の選択により圧縮の残留応力を付与することができ、これは、被覆部材全体の強度を確保する上で好ましい。また、反応性スパッタリング法で形成したα型結晶構造主体のアルミナ皮膜には、AlおよびO以外にArが微量含有されたものとなる。
【0030】
上記のようにしてα型結晶構造主体のアルミナ皮膜をcBN焼結体基材表面に形成することによって、基材上に酸化物含有層およびαアルミナ皮膜が順次形成されたアルミナ皮膜被覆部材が実現でき、こうした部材は、耐摩耗性および耐熱性に優れたものとなり、切削工具等の素材として有用である。またこうした部材を製造するに当たっては、前記酸化物含有層およびαアルミナ皮膜の各形成工程を、同一装置内で行うことが生産性向上の観点から好ましい。
【0031】
【実施例】
以下、実施例挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。
【0032】
本発明ではアルミナ皮膜を形成する基材として、市販のcBN焼結体切削工具を用いた。図1に示すPVD装置(真空成膜装置)を用いて、該基材上へのアルミナ皮膜の形成を行った。まず、試料(基材)2を装置内1の遊星回転治具4にセットし、装置1内をほぼ真空状態となるまで排気した後、装置内部の側面と中央に配置したヒータ5で試料を750℃まで加熱した。試料が750℃になった時点で、装置1内に酸素ガスを流量300sccm、圧力約0.75Paで導入し、20分間表面の酸化処理を行った。
【0033】
次に、2台のアルミターゲットを装着したスパッタリングカソード6を、アルゴンと酸素の混合雰囲気中で、約2.5kWのパルスDC電力を投入してスパッタを行い、前記酸化温度とほぼ同じ温度条件(750℃)で、アルミナ皮膜の形成を行った。アルミナ皮膜の形成に当たっては、放電電圧制御とプラズマ発光分光を利用して、放電状態をいわゆる遷移モードに保ち、約2μmのアルミナ皮膜を形成した。尚、このアルミナ皮膜の形成では、前記図1に示した回転テーブル3を回転(公転)させるとともに、その上に設置した遊星回転治具も回転させながら行った。
【0034】
処理完了後の各実施例のサンプルについては、薄膜X線回折により分析を行い、その結晶組織の特定を行った。図2は、cBN焼結体基材上に形成したアルミナ皮膜の薄膜X線回折結果を示したグラフである。図2には、基材のcBN焼結体からの回折ピークも含め、多くの回折ピークが観察されたため、まず基板単独でX線回折を行った結果との対比で、皮膜からの回折ピークと基材からの回折ピークを分別した。図2では基板からの回折ピークには三角形の印をつけ、このうちcBNによる回折ピークを「▽」、cBN以外からの回折ピークには「▼」をつけ区別した。また、皮膜からの回折ピークには丸の印をつけ、このうちα型結晶構造のアルミナからの回折ピークには「○」、それ以外のピークには「●」をつけ区別した。
【0035】
図2から判るように、基材とするcBN焼結体はcBN以外にも多くの回折ピークが観察されるが、これは結合相からの回折ピークである。結合相と思われる回折ピークの幾つかは六方晶のAlNに合致する角度に観察されたので、結合相は少なくともAlNを含むと考えられる。皮膜からの回折ピークは、図からも判るようにその殆どはαアルミナからのものであり、極わずかであるがγアルミナからの回折に一致する位置に非常に弱いピークが観察された。
【0036】
併せて、この皮膜をXPS(X線光電子分光法)により組成分析した結果では、微量(1原子%程度)のArを含有するが、これを除けば皮膜組成はAl:Oが2:3の割合で含有しているものである。
【0037】
これらの結果から、cBN焼結体基材上に形成された皮膜は、α型結晶構造を主体とするアルミナ皮膜と特定でき、cBN焼結体基材上にα型結晶構造を主体とするアルミナ皮膜を被覆した被覆部材が製造できていると判断できた。
【0038】
このようにして製作した被覆部材は、硬度に優れたcBN焼結体基材上に、耐酸化性にすぐれたアルミナ皮膜を、特に熱的な安定性が良いα型の結晶構造を主体として形成できているため、たとえば切削工具に適用した場合に、高硬度材を高速切削する等の用途に適しており、優れた性能が期待できる。
【0039】
【発明の効果】
本発明は以上の様に構成されており、cBN焼結体基材へのα型結晶構造を主体とするアルミナ皮膜を、CVD法のような高温によることなく、またcBN焼結体の組成を特定しなくても形成可能とするアルミナ皮膜の製造方法が実現できた。
【図面の簡単な説明】
【図1】本発明の実施に用いる装置例を示す概略説明図(上面図)である。
【図2】cBN焼結体基材上に形成したアルミナ皮膜の薄膜X線回折結果を示したグラフである。
【符号の説明】
1 装置
2 試料(基板)
3 回転テーブル
4 遊星回転治具
5 ヒータ
6 スパッタリングカソード[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is based on a cubic boron nitride (hereinafter sometimes abbreviated as “cBN”) sintered body having excellent wear resistance as a base material, and an α-type crystal having excellent oxidation resistance is formed on the base material. A useful method for producing an alumina coating mainly having a structure, a surface-coated member having such a coating formed thereon to have excellent wear resistance and oxidation resistance, and production of such a surface-coated member It is related to a useful method or the like for performing
[0002]
[Prior art]
Cutting tools are required to have excellent wear resistance and heat resistance. Materials used for such cutting tools include cemented carbide, high-speed steel, cBN, and the like. ) On which various hard coatings are further formed are widely used as cutting tools.
[0003]
Among the various materials described above, cBN is said to be superior in strength and abrasion resistance as compared with other materials. As such a material using cBN, for example, a technology such as Patent Document 1 is disclosed. Are known. In this technique, a ceramic binder phase composed of TiC, TiN or TiCN, and further, Al 2 O 3 , WC, TiB 2, etc. occupies 20 to 50% by volume, and the rest substantially consists of a cBN dispersed phase. By applying physical vapor deposition (PVD) or chemical vapor deposition (CVD) to the surface of a cBN sintered body substrate having Ti, carbides, nitrides, carbon nitrides, carbonates, and carbonitrides of Ti And a surface-coated cBN-based ceramic cutting tool in which a hard coating layer composed of a single layer or two or more layers of aluminum oxide is formed with an average layer thickness of 5 to 20 μm. This tool is used for cutting hardened steel and cast iron.
[0004]
It can be said that the properties of a cutting tool are determined by an appropriate combination of a tool base material and a hard coating formed on the surface thereof. From this viewpoint, the most attractive coating material when a cBN sintered body is used as a base material. Is an aluminum oxide (Al 2 O 3 : alumina) film. This is because a cBN sintered body excellent in plastic deformation resistance at high temperature is used as a base material, and an Al 2 O 3 film excellent in chemical stability is coated with good adhesion, so that under high temperature and high load. This is because a coating member having excellent wear resistance, particularly excellent crater resistance, can be formed and is considered to be suitable for application to a cutting tool or the like that requires such characteristics.
[0005]
From such a viewpoint, various techniques relating to the formation of an alumina film on a cBN sintered body substrate have been proposed. For example,
[0006]
On the other hand, as a technique related to a coated cBN cutting tool for metal working, for example, Patent Document 3 discloses a tool formed of one or more cBN sintered bodies with or without a sintered carbide support, Is composed of one or more layers of a heat-resistant compound, and at least one of the layers is composed of fine-grained crystalline γ-phase alumina having a particle size of less than 0.1 μm. . The alumina layer is deposited at a substrate temperature of 450 to 700 ° C. by a bipolar pulse DMS (dual magnetron sputtering) technique.
[0007]
Alternatively, as a technique related to a similar cBN cutting tool, for example, Patent Document 4 discloses a tool having a similar configuration, but a gamma-phase alumina as a film is deposited by plasma-activated chemical vapor deposition (PACVD). Are disclosed. In this technique, a plasma is produced by applying a bipolar pulse DC voltage between two electrodes which are fixed and electrically connected to a tool substrate to be coated.
[0008]
[Patent Document 1]
JP-A-59-8679 Patent claims etc. [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-44370 Patents [Patent Document 3]
JP-T-2002-543993 Patent claims etc. [Patent Document 4]
JP, 2002-543997, A A claim etc.
[Problems to be solved by the invention]
Regarding the formation of an alumina film, there are the following problems in various techniques proposed so far. That is, the alumina film formed by the techniques of Patent Documents 3 and 4 is alumina having a γ-type crystal structure (γ-alumina), which is metastable among aluminas having various crystal forms. When the film is exposed to a high temperature environment, it may be transformed into an alumina having an essentially stable α-type crystal structure (α-alumina). Peeling may occur. For these reasons, it is not possible to sufficiently cope with recent cutting work which tends to perform high-speed cutting.
[0010]
On the other hand, in the technique disclosed in
[0011]
The present invention has been made under such a circumstance, and an object of the present invention is to provide an alumina film mainly composed of an α-type crystal structure on a cBN sintered body base without using a high temperature such as a CVD method, and An object of the present invention is to provide a method for producing an alumina film that can be formed without specifying the composition of a cBN sintered body, a member coated with such an alumina film, and a useful method for producing the alumina-coated member. .
[0012]
[Means for solving the problem]
The method for producing an alumina film mainly composed of an α-type crystal structure according to the present invention is to produce an alumina film mainly composed of α-type crystals on a cBN sintered body base material comprising a binder phase and a cubic boron nitride dispersed phase. This method has a gist in that an oxidation treatment is performed on the surface of the cBN sintered body base material and then an alumina film is formed. In this method, the binder phase in the cBN sintered body includes one containing at least one selected from the group consisting of TiC, TiN, TiCN, AlN, TiB 2 and Al 2 O 3 .
[0013]
Preferably, the oxidation treatment is performed in an oxidizing gas oxidizing atmosphere while maintaining the substrate temperature at 650 to 800 ° C., and the formation of the alumina film mainly composed of the α-type crystal structure is performed at a substrate temperature of 650 to 800 It is preferable to carry out by applying the PVD method at 800 ° C.
[0014]
On the other hand, the coated member of the present invention that can achieve the above object is a coated member in which an alumina coating mainly composed of an α-type crystal is coated on a cBN sintered body base material comprising a binder phase and a cubic boron nitride dispersed phase. A gist of the present invention is that the oxide-containing layer is interposed at the interface between the cBN sintered body and the alumina coating. In such a covering member, the binder phase preferably includes at least one selected from the group consisting of TiC, TiN, TiCN, AlN, TiB 2 and Al 2 O 3 , and the binder phase is a sintered body. It is preferable to contain 1 to 50% by volume based on the whole.
[0015]
The alumina film mainly composed of the α-type crystal structure formed on the surface of such a covering member has a compressive residual stress.
[0016]
In manufacturing the above member, the step of oxidizing the surface of the cBN sintered body base and the step of forming an alumina coating mainly composed of an α-type crystal structure are sequentially performed in the same film forming apparatus. Is preferred.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have found that when coating an alumina film mainly composed of an α-type crystal structure on a cBN sintered body base material, without using a high temperature such as CVD, and without specifying the composition of the cBN sintered body. The technology which can also be realized was examined from various angles. As a result, after exposing the surface of the cBN sintered body to an oxidizing gas atmosphere and oxidizing the film, the substrate temperature is set to 650 to 800 ° C. and the film is formed by the PVD method. The inventors have found that an alumina film mainly composed of an α-type crystal structure can be formed, and completed the present invention.
[0018]
Further, according to the present invention, an alumina film mainly composed of an α-type crystal structure having excellent oxidation resistance can be effectively formed on a cBN sintered body substrate having excellent wear resistance. A surface covering member having excellent oxidation resistance can be realized. In addition, when manufacturing the surface coating member, it is not exposed to a high-temperature atmosphere as in the case of applying the CVD method, and there is no restriction on the composition of the cBN sintered body.
[0019]
Although not all of the reasons for the above effects have been elucidated, it can be considered as follows. That is, the cBN sintered body contains TiC, TiN, TiCN, AlN, TiB 2 , Al 2 O 3, and the like as a binder phase, and a part of the cBN sintered body is also exposed to the surface layer forming the film. However, when such a sintered body is exposed to an oxidizing atmosphere at a high temperature and oxidized, a non-oxide bonded phase of the bonded phase is oxidized from a portion exposed on the surface. Further, even in the case of an oxide bonding phase such as Al 2 O 3 , the surface thereof is microscopically contaminated with hydrocarbons or other contaminants. It is believed that this removes these contaminants and exposes the surface of the pure oxide. After passing through the oxidation treatment step in this way, the surface of the cBN sintered body is an oxide in which the binder phase is oxidized, or the surface is in a pure oxide state in the case of the oxide originally. Thus, it is considered that the portion where the oxide-containing phase exists was dispersed over the entire surface of the substrate. Also, there is a possibility that cBN itself in the sintered body also forms an oxide on the surface. For this reason, an oxide layer that is a region suitable for crystal growth of α-alumina is formed over the entire surface of the cBN sintered body substrate, and crystal growth of α-alumina starts from such a region. It is considered that the alumina film mainly composed of the type crystal structure can be formed at a relatively low film formation temperature.
[0020]
The binder phase contained in the cBN sintered body used as the base material in the present invention is not limited to a specific type, and may be selected from the group consisting of TiC, TiN, TiCN, AlN, TiB 2 and Al 2 O 3. Those containing at least one or more selected ones can be employed, but other than these, nitrides, carbides, borides and the like of metals of the periodic table 4a, 5a, and 6a or metals such as Al and Si Those containing a mutual solid solution or a metal (for example, Al, Ti, Cr, Fe or an alloy containing them) can also be used. In consideration of the effect of the oxidation treatment according to the present invention, the compound as the binder phase preferably contains at least a non-oxide compound.
[0021]
The content of the binder phase in the cBN sintered body is preferably 1 to 50% by volume based on the whole sintered body. If the content of the binder phase is less than 1% by volume, the desired strength cannot be ensured, and if the content exceeds 50% by volume, the abrasion resistance of the base material decreases.
[0022]
In the present invention, the surface of the cBN sintered body substrate is oxidized to form an oxide-containing layer on the surface (that is, the portion that becomes the interface between the cBN sintered body and the alumina film). This oxidation treatment step is desirably performed in a film forming apparatus for forming an alumina film to be formed in the next step from the viewpoint of efficiently manufacturing a coating member. Enhanced thermal oxidation is the preferred method. The oxidizing gas atmosphere at this time includes, for example, an atmosphere containing an oxidizing gas such as oxygen, ozone, and H 2 O 2 , and of course, includes an air atmosphere.
[0023]
It is preferable that the oxidation is performed while maintaining the substrate temperature at 650 to 800 ° C. If the temperature of the base material is too low, the oxidation is not sufficiently performed, and the temperature is preferably increased to 700 ° C. or more. Oxidation is promoted as the substrate temperature is raised, but the upper limit of the substrate temperature must be kept below 1000 ° C. for the purpose of the present invention. In the present invention, an oxide-containing layer useful for forming an alumina film mainly composed of an α-type crystal structure can be formed even at 800 ° C. or lower.
[0024]
In the present invention, there is no particular limitation on the other conditions of the oxidation treatment. As a specific oxidation method, in addition to the thermal oxidation, for example, an oxidizing gas such as oxygen, ozone, or H 2 O 2 is turned into plasma and irradiated. It is, of course, also effective to adopt a method of performing the above.
[0025]
By forming the oxide-containing layer as described above, it is possible to reliably form an alumina film mainly composed of an α-type crystal structure on the surface thereof. Incidentally, those having an α-type crystal structure of 70% or more are preferred because they exhibit excellent heat resistance, more preferably those having an α-type crystal structure of 90% or more, and most preferably those having an α-crystal structure of 100%. Things.
[0026]
The thickness of the alumina film mainly composed of the α-type crystal structure is desirably 0.1 to 20 μm. In order to maintain the excellent heat resistance of the alumina film, it is effective to secure 0.1 μm or more, and preferably 1 μm or more. However, if the thickness of the alumina film mainly composed of the α-type crystal structure is too large, internal stress is generated in the alumina film, and cracks and the like are likely to occur, which is not preferable. Therefore, the thickness is preferably 20 μm or less, more preferably 10 μm or less, and still more preferably 5 μm or less.
[0027]
In the present invention, the means for forming an alumina film mainly composed of an α-type crystal structure is not particularly limited. It is desirable to employ. Among such PVDs, a sputtering method, particularly a reactive sputtering method, is preferable because high-speed film formation can be realized using an inexpensive metal target. The temperature at which the alumina film is formed is not particularly limited. However, considering the continuity from the oxidation treatment in the previous step, the temperature is preferably the same as that in the oxidation treatment step, and 650 to 800 ° C. is suitable. . This temperature range is also preferable in that an alumina film mainly composed of an α-type crystal structure is easily formed.
[0028]
By forming the α-type alumina film on the substrate surface as described above, an alumina film-coated member in which the substrate, the intermediate layer, the oxide-containing layer and the α-type alumina film are sequentially formed can be realized. Has excellent wear resistance and heat resistance, and is useful as a material for cutting tools and the like.
[0029]
Since the alumina film mainly composed of the α-type crystal structure is formed by the PVD method, more preferably the reactive sputtering method, a compressive residual stress can be imparted by selecting a coating condition, and the strength of the entire coated member can be increased. It is preferable to secure Further, the alumina film mainly composed of the α-type crystal structure formed by the reactive sputtering method contains a small amount of Ar in addition to Al and O.
[0030]
By forming an alumina film mainly composed of an α-type crystal structure on the surface of the cBN sintered body as described above, an alumina film-coated member in which an oxide-containing layer and an α-alumina film are sequentially formed on the substrate is realized. Such a member becomes excellent in wear resistance and heat resistance, and is useful as a material for cutting tools and the like. In manufacturing such a member, it is preferable to perform the respective steps of forming the oxide-containing layer and the α-alumina film in the same apparatus from the viewpoint of improving productivity.
[0031]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be implemented with appropriate changes within a range that can be adapted to the purpose described above and below. And they are all included in the technical scope of the present invention.
[0032]
In the present invention, a commercially available cBN sintered compact cutting tool was used as the base material on which the alumina film was formed. Using a PVD apparatus (vacuum film forming apparatus) shown in FIG. 1, an alumina film was formed on the substrate. First, the sample (substrate) 2 is set on the planetary rotary jig 4 in the apparatus 1, and the inside of the apparatus 1 is evacuated to a substantially vacuum state. Heated to 750 ° C. When the temperature of the sample reached 750 ° C., oxygen gas was introduced into the apparatus 1 at a flow rate of 300 sccm and a pressure of about 0.75 Pa, and the surface was oxidized for 20 minutes.
[0033]
Next, the sputtering
[0034]
The samples of each example after the completion of the treatment were analyzed by thin-film X-ray diffraction, and their crystal structures were identified. FIG. 2 is a graph showing a thin-film X-ray diffraction result of an alumina film formed on a cBN sintered body substrate. In FIG. 2, since many diffraction peaks were observed, including the diffraction peak from the cBN sintered body of the substrate, the diffraction peak from the film was compared with the result of first performing X-ray diffraction on the substrate alone. The diffraction peak from the substrate was separated. In FIG. 2, the diffraction peaks from the substrate are marked with triangles, and the diffraction peaks due to cBN are marked with “▽”, and the diffraction peaks other than cBN are marked with “▼”. The diffraction peaks from the coating were marked with circles, and the diffraction peaks from alumina having an α-type crystal structure were marked with “○”, and the other peaks were marked with “●”.
[0035]
As can be seen from FIG. 2, the cBN sintered body used as the base material has many diffraction peaks other than cBN, but this is a diffraction peak from the binder phase. Some of the diffraction peaks, which are thought to be binder phases, were observed at angles consistent with hexagonal AlN, so the binder phase is believed to contain at least AlN. As can be seen from the figure, most of the diffraction peaks from the coating are from α-alumina, and very weak peaks were observed at very low but coincident positions with diffraction from γ-alumina.
[0036]
At the same time, as a result of composition analysis of this film by XPS (X-ray photoelectron spectroscopy), the film composition contains a trace amount (about 1 atomic%) of Ar. It is contained in proportions.
[0037]
From these results, the film formed on the cBN sintered body substrate can be identified as an alumina film mainly composed of an α-type crystal structure, and the alumina film mainly composed of α-type crystal structure is formed on the cBN sintered body substrate. It could be judged that the coated member coated with the film could be manufactured.
[0038]
The coated member produced in this way is formed by forming an alumina film with excellent oxidation resistance on a cBN sintered body base material with excellent hardness, mainly based on the α-type crystal structure with particularly good thermal stability. Therefore, when applied to a cutting tool, for example, it is suitable for applications such as high-speed cutting of a high-hardness material, and excellent performance can be expected.
[0039]
【The invention's effect】
The present invention is configured as described above. An alumina film mainly composed of an α-type crystal structure is formed on a cBN sintered body base material without using a high temperature such as a CVD method, and the composition of the cBN sintered body is not changed. A method for producing an alumina film that can be formed without specifying the same was realized.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view (top view) showing an example of an apparatus used for carrying out the present invention.
FIG. 2 is a graph showing a thin-film X-ray diffraction result of an alumina film formed on a cBN sintered body substrate.
[Explanation of symbols]
1
3 rotating table 4 planetary
Claims (9)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003125548A JP3971338B2 (en) | 2003-04-30 | 2003-04-30 | Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same |
US10/523,931 US7531212B2 (en) | 2002-08-08 | 2003-08-08 | Process for producing an alumina coating comprised mainly of α crystal structure |
EP03784598.9A EP1553210B1 (en) | 2002-08-08 | 2003-08-08 | PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF a-TYPE CRYSTAL STRUCTURE |
EP14169851.4A EP2848712B1 (en) | 2002-08-08 | 2003-08-08 | Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating , member clad with the alumina coating or laminate coating, process for producing the member, and physical vapor deposition apparatus |
PCT/JP2003/010114 WO2004015170A1 (en) | 2002-08-08 | 2003-08-08 | PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF α-TYPE CRYSTAL STRUCTURE, ALUMINA COATING COMPOSED MAINLY OF α-TYPE CRYSTAL STRUCTURE, LAMINATE COATING INCLUDING THE ALUMINA COATING, MEMBER CLAD WITH THE ALUMINA COATING OR LAMINATE COATING, PROCESS FOR PRODUCING THE MEMBER, AND PHYSICAL EVAPORATION APPARATU |
AU2003254888A AU2003254888A1 (en) | 2002-08-08 | 2003-08-08 | PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF Alpha-TYPE CRYSTAL STRUCTURE, ALUMINA COATING COMPOSED MAINLY OF Alpha-TYPE CRYSTAL STRUCTURE, LAMINATE COATING INCLUDING THE ALUMINA COATING, MEMBER CLAD WITH THE ALUMINA COATING OR LAMINATE COATING, PROCESS FOR PRODUCING THE MEMBER, AND PHYSICAL EVAPORATION APPARATU |
EP20140169853 EP2865784A1 (en) | 2002-08-08 | 2003-08-08 | Process for producing alumina coating composed mainly of alpha-type crystal structure |
CNB038189275A CN100413998C (en) | 2002-08-08 | 2003-08-08 | Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating, |
IL166622A IL166622A (en) | 2002-08-08 | 2005-02-01 | Process for producing an alumina coating and laminate coatings including the same |
US12/402,763 US20090173625A1 (en) | 2002-08-08 | 2009-03-12 | Process for producing an alumina coating comprised mainly of alpha crystal structure |
US12/402,755 US8323807B2 (en) | 2002-08-08 | 2009-03-12 | Process for producing alumina coating composed mainly of α-type crystal structure |
IL218369A IL218369A0 (en) | 2002-08-08 | 2012-02-28 | A process for producing an alumina coating and laminate coatings including the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003125548A JP3971338B2 (en) | 2003-04-30 | 2003-04-30 | Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004332006A true JP2004332006A (en) | 2004-11-25 |
JP3971338B2 JP3971338B2 (en) | 2007-09-05 |
Family
ID=33502778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003125548A Expired - Fee Related JP3971338B2 (en) | 2002-08-08 | 2003-04-30 | Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3971338B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005344148A (en) * | 2004-06-01 | 2005-12-15 | Sumitomo Electric Ind Ltd | Abrasion-resistant coating and surface-coated cutting tool using the same |
WO2006067956A1 (en) * | 2004-12-22 | 2006-06-29 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool |
JP2006175560A (en) * | 2004-12-22 | 2006-07-06 | Sumitomo Electric Hardmetal Corp | Surface coated cutting tool |
JP2006181645A (en) * | 2004-12-24 | 2006-07-13 | Sumitomo Electric Hardmetal Corp | Surface coated cutting tool |
JP2010524699A (en) * | 2006-04-21 | 2010-07-22 | エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド | Cubic boron nitride composite material and tool |
JP2011088240A (en) * | 2009-10-21 | 2011-05-06 | Mitsubishi Materials Corp | Cutting tool made of surface-coated cubic boron nitride based ultra-high pressure sintered material |
JP2013053344A (en) * | 2011-09-05 | 2013-03-21 | Mitsubishi Materials Corp | Method of manufacturing surface-coated cutting tool excellent in wear resistance |
CN114807854A (en) * | 2022-04-14 | 2022-07-29 | 华南理工大学 | A method for depositing α-alumina dielectric film on silicon-based surface |
-
2003
- 2003-04-30 JP JP2003125548A patent/JP3971338B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005344148A (en) * | 2004-06-01 | 2005-12-15 | Sumitomo Electric Ind Ltd | Abrasion-resistant coating and surface-coated cutting tool using the same |
WO2006067956A1 (en) * | 2004-12-22 | 2006-06-29 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool |
JP2006175560A (en) * | 2004-12-22 | 2006-07-06 | Sumitomo Electric Hardmetal Corp | Surface coated cutting tool |
JP2006181645A (en) * | 2004-12-24 | 2006-07-13 | Sumitomo Electric Hardmetal Corp | Surface coated cutting tool |
JP2010524699A (en) * | 2006-04-21 | 2010-07-22 | エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド | Cubic boron nitride composite material and tool |
US8414229B2 (en) | 2006-04-21 | 2013-04-09 | Element Six Abrasives S.A. | cBN composite material and tool |
JP2011088240A (en) * | 2009-10-21 | 2011-05-06 | Mitsubishi Materials Corp | Cutting tool made of surface-coated cubic boron nitride based ultra-high pressure sintered material |
JP2013053344A (en) * | 2011-09-05 | 2013-03-21 | Mitsubishi Materials Corp | Method of manufacturing surface-coated cutting tool excellent in wear resistance |
CN114807854A (en) * | 2022-04-14 | 2022-07-29 | 华南理工大学 | A method for depositing α-alumina dielectric film on silicon-based surface |
Also Published As
Publication number | Publication date |
---|---|
JP3971338B2 (en) | 2007-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4786800B2 (en) | Cutting tool coated with PVD- | |
JP4205546B2 (en) | Method for producing a laminated film having excellent wear resistance, heat resistance and adhesion to a substrate | |
JP4427271B2 (en) | Alumina protective film and method for producing the same | |
WO2004015170A1 (en) | PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF α-TYPE CRYSTAL STRUCTURE, ALUMINA COATING COMPOSED MAINLY OF α-TYPE CRYSTAL STRUCTURE, LAMINATE COATING INCLUDING THE ALUMINA COATING, MEMBER CLAD WITH THE ALUMINA COATING OR LAMINATE COATING, PROCESS FOR PRODUCING THE MEMBER, AND PHYSICAL EVAPORATION APPARATU | |
JP4850074B2 (en) | Method for coating abrasives | |
JP3382781B2 (en) | Multi-layer coated hard tool | |
JP3384110B2 (en) | Coated cutting tool and its manufacturing method | |
JP2006028600A (en) | Stacked film having excellent wear resistance and heat resistance | |
JP2003340610A (en) | Cutting tool insert | |
WO2000079022A1 (en) | Coated hard alloy | |
JP4028891B2 (en) | Multi-component hard layer manufacturing method and composite | |
CN102650049B (en) | The manufacture method of the surface-coated cutting tool of excellent in wear resistance | |
JP2004100004A (en) | Coated cemented carbide and production method therefor | |
JP5555835B2 (en) | Surface-coated cutting tool with excellent wear resistance and method for producing the same | |
JP3971338B2 (en) | Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same | |
JP3971293B2 (en) | Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance | |
JP4375691B2 (en) | Composite high hardness material | |
EP1616974B1 (en) | Method for preparing an alpha alumina coating | |
JP3962300B2 (en) | Aluminum oxide coated tool | |
JP3914687B2 (en) | Cutting tool and manufacturing method thereof | |
JP5035980B2 (en) | Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same | |
EP4041931A1 (en) | A coated cutting tool | |
JP3971337B2 (en) | Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same | |
JP5035979B2 (en) | Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same | |
JP3358696B2 (en) | High strength coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041007 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070501 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070607 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3971338 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |