[go: up one dir, main page]

JP2004330032A - Electric desalting method - Google Patents

Electric desalting method Download PDF

Info

Publication number
JP2004330032A
JP2004330032A JP2003127607A JP2003127607A JP2004330032A JP 2004330032 A JP2004330032 A JP 2004330032A JP 2003127607 A JP2003127607 A JP 2003127607A JP 2003127607 A JP2003127607 A JP 2003127607A JP 2004330032 A JP2004330032 A JP 2004330032A
Authority
JP
Japan
Prior art keywords
activated carbon
carbon fiber
liquid
water
fiber sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003127607A
Other languages
Japanese (ja)
Inventor
Kazunori Masaki
一規 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2003127607A priority Critical patent/JP2004330032A/en
Publication of JP2004330032A publication Critical patent/JP2004330032A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems when water is passed through an electric desalter where a plurality of activated carbon fiber sheets are stacked through a liquid-permeable electrical insulating sheet and water is passed through the laminate to which voltage having a reverse polarity is applied, while repeating the regeneration of the desalter, a liquid feeding time until breakthrough becomes gradually shorter, and the electric conductivity of permeate is increased. <P>SOLUTION: When the feeding of water to and the regeneration of the electric desalter where a plurality of the activated carbon fiber sheets are stacked through the liquid-permeable electrical insulating sheet and water is passed through the laminate to which the voltage having a reverse polarity is applied are carried out repeatedly, the polarity of the voltage applied to the activated carbon fiber sheets is reversed at each water feeding. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】本発明は、通液性の電気絶縁シートと活性炭繊維シートを交互に積層して隣接する各活性炭繊維シート層が互いに異極となるよう正負の電極に接続させた積層体にイオン性物質を含む液体を通液させて液体中のイオン性物質を除去する電気脱塩方法に関するものである。
【0002】
【従来の技術】
従来から、イオン性物質を含まない水を製造するために、静電気を利用してイオン性物質を除去する方法が知られている。
【0003】
例えば、特開平6−325983号公報には、電気絶縁性の多孔質通水性シートからなるセパレータを挟んで、高比表面積活性炭を主材とする活性炭層を配置し、その活性炭層の外側に通水口を有する集電極を配置し、さらにその集電極の外側に給水口、排水口を有する押え板を配置した構成の通水液型電気二重層コンデンサが開示されている。この通水型電気二重層コンデンサでは、押さえ板の給水口からイオン性物質を含む水を流入させながら各集電極に直流定電圧を引加し次いで短絡させるサイクルを交互に繰り返すことにより、電圧印加時に正極側にアニオン性のイオン性物質が、負極側にカチオン性のイオン性物質がそれぞれ吸着されて、押え板の排水口からはイオン性物質の除去された水が排出される。
【0004】
集電極に印加される電圧は、所定のタイミングで短絡され、あるいは逆転され、この操作によって活性炭に吸着されたイオン性物質は活性炭から離脱して高いイオン濃度の水が押え板の排水口から排出される。
【0005】
しかしながら、このような従来の方法では、通水口を有する集電極が水の通路を遮るように配置されているため長期間実施していると集電極の表面にスケールが堆積してイオンの除去効率が低下するという問題があった。また、通過する水が集電極表面に沿って流れて給水口から活性炭層に流入するため、集電極の給水口から離れた部分では水の流れが活性炭層に平行になり、イオン性物質の除去効率が低下するという問題があった。
【0006】
さらに、対向する集電極が活性炭層/セパレータ/活性炭層を介して配設されるため、電極間隔が広くなって電極間の電位傾度が小さくなりイオン保持量が小さくなるという問題もあった。
【0007】
これらの問題を解決するため、本出願人は、先に、通液性の電気絶縁シートと活性炭繊維シートを複数層交互に積層して積層体を形成し、この積層体の各活性炭繊維シート層を互いに隣接する層が異極となるよう正負の電極に接続して直流低電圧を印加しながら、積層体の厚さ方向にイオン性物質を含む液体を通液する電気脱塩方法を特許出願した(特願2002−262143号)。
【0008】
この方法では、長く通液を続けていると、活性炭繊維シートが破過してイオンが通過するようになるため、所定のタイミングで異極となっている活性炭繊維シートを短絡させて活性炭繊維シートに静電気的に吸着されているイオン性物質を離脱させ、イオン性物質を高い濃度で含む液体を排出させている。
【0009】
この直流低電圧の印加と短絡又は逆電圧を所定のタイミングで繰り返しながら電気脱塩が行われる。
【0010】
しかしながら、この方法でも、通液と短絡を繰り返していると、徐々に破過までの通液時間が短くなり、また透過水の導電率も高くなっていくという問題があった。
【0011】
【特許文献1】
特開平6−325983号公報
【0012】
【発明が解決しようとする課題】
本発明者等は、この問題について研究をすすめたところ、活性炭繊維シートを構成する活性炭繊維は、多数の微細で深い細孔を有し、この細孔深くに吸着されたイオンは短時間短絡させただけではその全部を細孔から離脱させることができず、この細孔内に吸着されたイオンが蓄積していくため活性炭繊維シートの見掛け上の吸着容量が小さくなり透過水の導電率も高くなるとの知見を得た。
【0013】
本発明は、かかる知見に基づいてなされたもので、長期にわたって高いイオン性物質吸着容量を保持し、しかも低い導電率の透過水を得ることのできる電気脱塩方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の第1の電気脱塩方法は、通液性の電気絶縁シートと活性炭繊維シートを少なくとも活性炭繊維シートが2層以上となるように交互に積層して積層体を形成し、前記積層体の各活性炭繊維シート層を互いに隣接する層が異極となるよう正負の電極に接続するとともに、前記積層体の厚さ方向の一方の側から他方の側にイオン性物質を含む液体を通液し、再生した後再度通液する際に前記各電極の極性を先の通液時の極性と逆極性にすることを特徴としている。
【0015】
第1の電気脱塩方法における再生は、通常、通液を一旦停止し正負の電極を短絡させた状態でイオン性物質を実質的に含まない洗浄液(又は被処理液)を通液することにより行われるが、通液を継続したまま前記の正負の電極を短絡させて短絡時の透過液を洗浄液として排出するようにしてもよい。また、必要に応じて、正負の電極の短絡前又は後に短時間各電極に通液時の極性と逆極性の電圧を印加して吸着イオンの離脱を促進させ、離脱したイオンをドレンとして排出するようにしてもよい。
【0016】
また、本発明の第2の電気脱塩方法は、通液性の電気絶縁シートと活性炭繊維シートを少なくとも活性炭繊維シートが2層以上となるように交互に積層して積層体を形成し、前記積層体の各活性炭繊維シート層を互いに隣接する層が異極となるよう正負の電極に接続するとともに、前記積層体の厚さ方向の一方の側から他方の側にイオン性物質を含む液体を通液しつつ所定のタイミングで前記各電極の短絡、極性の転換を繰り返し、短絡時の透過液はドレンとして排出することを特徴としている。
【0017】
この方法では、下流の透過液の配管にドレンと透過液に切り換える切替えバルブを設置しておき、電極を切替えたときに切替えバルブを透過液からドレン側に切り換えるようにする。
【0018】
いずれの方法においても各電極の極性を転換した際に、活性炭繊維シートの細孔に捕捉されていたイオンが排出されるが、このイオンは下流側の逆極性の活性炭繊維シートに吸着される。
【0019】
このように、通液時に所定のタイミングで各電極の極性を転換することにより、細孔深くに捕捉されたイオンが蓄積されて活性炭繊維シートの吸着能力が低下するのを防止することができる。
【0020】
本発明に使用される電気脱塩装置は、例えば、通液性の電気絶縁シートと活性炭繊維シートを少なくとも活性炭繊維シートが2層以上となるように交互に積層してなる積層体と、側板内面で前記積層体を液密的に保持し対向する端板には通液口を設けてなる容器本体と、前記各活性炭繊維シートに接続されて前記各活性炭繊維シートに交互に正負の極性を発生させる電極装置とから構成される。
【0021】
本発明に使用される活性炭繊維シートとしては、例えば比表面積が700〜2500m2 /gで、シートに130±50g/m2 程度の活性炭を含有する厚さが0.4〜1.0mm程度のものが適している。このような市販の活性炭繊維シートとしては、例えばクラレケミカル社製「クラクティブ」(商品名)や日本カイノール社製「カイノール活性炭繊維」等が例示される。
【0022】
本発明に使用する前記活性炭繊維シートの形状は通常、正方形又は正方形に近い矩形とされ、一辺には給電部となる舌片が形成される。これらの舌片は、正負の極性ごとに後述する容器本体の異なる側面から液密的に導出されて、それぞれ電極装置の正負の電極に接続される。なお、活性炭繊維シートと電気絶縁性シートとを多数枚交互に積層する場合には、正負の極性ごとに容器本体の異なる側面から導出して、それぞれ複数まとめて導電接着剤により接着し、あるいは導電性の金属板により挟んでボルトで固定する等の方法で構造的及び電気的に一体化し、それぞれ導電性の金属テープ、例えば銅テープやアルミテープからなる電極に接続し、この電極を一括してそれぞれリード線を介して電極装置の異極に接続する。なお、各電極間の電位を均等にするため、複数まとめる際に、各活性炭繊維シートをそれぞれ良導電性の金属箔に導電性接着剤で接着し、あるいは導電性の金属板により挟んでボルトで固定する等の方法で固定して、並列的に各金属箔を直流電源に接続することが望ましい。また、必要に応じて、活性炭繊維シートの舌片を複数重ねて導電接着剤により接着し、舌片自体を電極として用いることも可能である。
【0023】
本発明に用いる通液性の電気絶縁性シートとしては、例えば合成樹脂繊維を集積させた不織布や射出成型等により形成されたメッシュ状の成形体が使用される。本発明に使用される電気絶縁性シートの形状は、活性炭繊維シートと同形またはわずかに大きい寸法であることが望ましい。電気絶縁性シートの厚さは、0.01〜0.5mm程度、殊に0.02〜0.3mm程度が適当である。電気絶縁性シートとして使用し得る不織布としては、例えばクラレ社製「メルトブロー」(商品名)のような多数の透孔を穿設して通液性を改善した合成樹脂不織布が例示される。
【0024】
活性炭繊維シートと電気絶縁性シートとは、通常、それぞれ1枚ずつを矩形の枠体の内側に固定して使用される。枠体としては、合成ゴムのような弾性があり、液密性が良好で、活性炭繊維シートと電気絶縁性シートとを重ねた厚さとほぼ等厚か、わずかに厚いものが適している。枠体には、活性炭繊維シートの舌片を導出するための凹部を形成することが望ましい。このような凹部を形成することにより、枠体を横切って舌片を導出する際に大きい隙間が生じることを防止することができる。合成樹脂製で成型したメッシュを電気絶縁性シートとして使用する場合には、枠体とメッシュを同時成型し、メッシュで構成された電気絶縁性シート上に活性炭繊維シートを配置するようにしてもよい。
【0025】
本発明における容器本体の側面部は、これらの枠体を積層して構成することができる。容器本体の前後部は、別に用意した通液口を有する1組の端板を前後端の枠体に当接し、これらの端板をボルトにより締め付け固定して構成される。
【0026】
端板を容器本体の対向面として構成する場合には、端板の内側に縦横に凹部を形成して通液口から入った液体の圧力が積層体の面に直接加わるようにし、さらに必要に応じて多孔性の中間板を端板と積層体の間に介在させるようにする。
【0027】
後述するように、容器本体は、このような枠体を使用せずに、別に合成樹脂で成形し、活性炭繊維シートと電気絶縁性シートとの積層体を収容するように構成することも可能である。
【0028】
電極装置の電極は、銅板、アルミニウム板、カーボン板、フォイル状グラファイトなどの電気良導体であって、活性炭繊維シートとの緊密な接触が可能なものが用いられる。厚さは特に限定はないが、0.1〜0.5mm程度のものを用いることが多い。電極には、リード線を介して電圧が印加される。
【0029】
活性炭繊維層の電位を均一にする為、電極にリード線を取り付け定電圧装置により給電することが望ましい。活性炭繊維シート間の隙間を少なくするため、各活性炭繊維の電極にリード線を取り付ける場合には、複数の舌片を重ねて1本のリード線に接続することも可能である。
【0030】
活性炭繊維シートとリード線の接続にも、導電性接着剤を使用することが望ましい。
【0031】
通液量は、水を対象とする場合には、活性炭繊維に付着した活性炭1gに対して0.1〜10ml/min好ましくは0.5〜2ml/minとすることが望ましい。
【0032】
【作用】
図1は、本発明の原理を水を対象とした例について示したものである。
【0033】
電気脱塩装置に通水を続けているとイオン吸着能が低下してくる。図1(a)は、このような状態で通水を停止したときの活性炭繊維シート1の状態を模式的に示したもので、活性炭繊維シート1は正の直流電圧が印加され活性炭繊維シート1の細孔1vを含む表面には静電気的な吸引力により負のイオン(イオン性物質)Iが吸着されている。
【0034】
このとき、活性炭繊維シートが接続されている正負の電極を短絡させると図1(b)に示すように、活性炭繊維シート1表面の正電気的な吸引力が消滅して、イオンIは活性炭繊維シート1の表面から遊離して拡散する。
【0035】
この状態で洗浄水を流すと、図1(c)に示すように、活性炭繊維シート1表面から遊離したイオンIは洗浄水でほとんど流されてしまう。このときの洗浄水はドレンとして放出される。
【0036】
しかし、図1(d)に示すように、活性炭繊維シート1の細孔1v内に吸着されたイオンIは洗浄水の流れが細孔1v内まで入らないため細孔1v内に残留する。
【0037】
ここで、図1(e)に示すように、再度通水を開始する際に電極の極性を逆極性にすると細孔1v内に残留したイオンIは活性炭繊維シート1表面に同極の電圧が印加されるため、静電気的な斥力が作用して細孔1v内から押し出されて通水により運び去られる。
【0038】
このようにして活性炭繊維シート1の細孔1vから放出された負のイオンIは、次の層の活性炭繊維シートが逆の極性の正の電圧が印加されているので、次の層の活性炭繊維シートに吸着されて透過水に混入することはない。
【0039】
以上は、正の電圧を印加している活性炭繊維シートを短絡し、再生した後、電極を負に切り替えて通水を再開する場合の例であるが、逆の場合、すなわちの負の電圧を印加している活性炭繊維シートを短絡し、再生した後、電極を正に切りかえる場合にも同様に吸着されていた正のイオンが細孔から離脱する。また、上記の例は、電極の切替えの際に、通水を一旦停止して行うようにした場合であるが、連続的に通水しながら短絡、電極の極性の切り換えを行っても同様の効果を得ることができる。ただし、この場合には、短絡時の透過水はドレンとして排出される。また、いずれの方法においても電極の短絡の前又は後に短時間だけ先の通水時に印加されていた電圧と逆極性の電圧を活性炭繊維シートに印加してイオンの細孔からの離脱を促進させることもできる。
【0040】
なお、活性炭繊維シートは、静電気的作用によりイオン性物質を捕捉するほか、濁質が低い液体に対しては活性炭繊維がフィルターとして機能して濁質を除去する作用をする。
【0041】
【発明の実施の形態】
次に、本発明の実施の形態について説明する。
(実施例1)
図2ないし図6を参照しながら本発明の実施例について説明する。
図2ないし4に示すように、活性炭繊維シート(厚さ0.5mm、活性炭量130g/m2 、比表面積1800〜2000m2 /g、商品名「クラクティブ」)を、80mm×80mmの正方形の一辺の角部に30mm×30mmの舌片を設けた形状に裁断して単位活性炭繊維シート1を多数枚形成した。また、多数の透孔を形成した合成樹脂不織布(厚さ0.4mm、商品名「メルトブロー」)を、80mm×80mmの正方形部に裁断した単位電気絶縁性シート2を多数枚形成した。
【0042】
さらに、厚さ1mmの合成ゴムシートを、外形100mm×100mm、内径80mm×80mmの枠状に裁断し、単位活性炭繊維シートの舌片に対応する位置に、枠体を横切って、幅10mm、深さ0.5mmの凹溝を形成して単位枠体とした。
【0043】
次に、単位活性炭繊維シート1と単位電気絶縁性シート2とを重ねて、凹溝に活性炭繊維シート1の舌片1aを嵌合させて、単位活性炭繊維シート1と単位電気絶縁性シート2を単位枠体3内に嵌め込み、液状ゴムにより、単位活性炭繊維シート1と単位電気絶縁性シート2の周辺を単位枠体3の内面に、舌片1aを枠体1の凹溝内に接着させて単位ユニット4とした。
【0044】
しかる後、図5に示すように、単位ユニット4を単位活性炭繊維シート1が同じ側となり、かつ舌片1aが交互に対向する辺側となるように40枚積層し、この積層体の両端には、それぞれ通水口5a、6aを突設し内側に多数の縦横の溝(図示せず)を形成し、さらに全辺にわたって複数のボルト孔5b,6bを形成した端板5,6(120mm×120mm×5mm)を配置し、ステンレスボルトで締め付け固定して本発明の電気脱塩装置を構成した。このようにして得られる各単位ユニット4の枠体3は、互いに完全に密接して水密構造となり、端板5,6とともに液密の容器本体を構成している。
【0045】
この装置の両側に突出した舌片1aを同じ側の5枚ずつを重ねて導電接着剤で固定し、それぞれ銅箔からなる電極に導電接着剤で接続し、さらに左右それぞれの側の電極をリード線Wa,Wbの一端に接続し、それらの他端は、オフ操作、銅箔からなる電極の短絡操作および正負の極性の切替えが可能な切替えスイッチSWを介して直流電源DCの正負の電極にリード線で共通に接続した。
【0046】
この装置に約180μS/cmの供給水を23 ml/min(LV=0.2)で流しながら、左右それぞれの電極に3Vの電圧を印加し(220〜400mA)処理水の導電率を所定の経過時間ごとに測定した。測定結果は図6のグラフに(a)で示したとおりである(図では通水量に対する導電率で示してある。)。
【0047】
次に、左右それぞれの電極に直流電源DCから3Vの電圧を印加し、導電率が高くなったところで、左右の電極を短絡させ1回の通水量のほぼ1/3の量の水で洗浄することを繰り返しながら導電率の変化を測定した。6回繰り返したときの導電率の変化は図6のグラフに(b)で示したとおりである。
【0048】
さらに、7回目の通水を行うにあたって、洗浄後に左右それぞれの電極を短絡させ、この状態で1回の通水量のほぼ1/3の量の水で洗浄した後、左右の電極の極性を逆にして3Vの電圧を印加し、通水開始当初の透過水を廃棄した後、電極の極性を逆にした以外は同じ条件で通水を行った。この7回目の透過水の導電率の変化は図6のグラフに(c)で示したとおりである。
【0049】
【発明の効果】
以上の実施例からも明らかなように、本発明によれば、各電極の極性を同一にしたまま通水再生を繰り返す方式に比べて、破過までの通液時間が長くなり、かつ透過水の導電率も初期の低い値を保持させることができる。
【0050】
さらに、先に出願した特願2002−262143号発明と同様に、活性炭繊維自体に電圧を掛けているので、電極にスケーリングが生じることがなく構造を簡単にでき、活性炭繊維シートに電極を介さずに直接電圧を印加するので、正負に帯電した活性炭繊維シートの間隔が最小限の隙間となり、活性炭繊維シート間の電位傾度が大きくなりイオン保持量が大きくなることができ、さらに、活性炭繊維シートに対して垂直方向から通水するのでイオン除去性能が高い、活性炭繊維シートにイオン交換とフィルターとして機能させることができる等の効果も奏する。
【図面の簡単な説明】
【図1】本発明の作用を説明するための図。
【図2】本発明の一実施例に用いる活性炭繊維シートの正面図。
【図3】図2に示した活性炭繊維シートの背面図。
【図4】図2に示した活性炭繊維シートのIV−IVに沿った要部の拡大断面図。
【図5】本発明に用いる電気脱塩装置の一例の分解図。
【図6】本発明の実施例による効果を示すグラフ。
【符号の説明】
1……単位活性炭繊維シート、1v……細孔、1a……舌片、2……単位電気絶縁性シート、3……枠体、4……単位ユニット、5,6……端板、5a、6a……通水口
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated structure in which a liquid-permeable electric insulating sheet and an activated carbon fiber sheet are alternately laminated, and adjacent activated carbon fiber sheet layers are connected to positive and negative electrodes so that they have mutually different polarities. The present invention relates to an electrodesalting method for removing a ionic substance in a liquid by passing a liquid containing the ionic substance through a body.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known a method of removing ionic substances using static electricity in order to produce water containing no ionic substances.
[0003]
For example, in JP-A-6-325983, an activated carbon layer mainly composed of activated carbon having a high specific surface area is disposed with a separator made of an electrically insulating porous water-permeable sheet interposed therebetween, and the activated carbon layer is provided outside the activated carbon layer. There is disclosed a water-flowing liquid type electric double layer capacitor in which a collecting electrode having a water port is disposed, and a holding plate having a water supply port and a drain port is disposed outside the collecting electrode. In this water-permeable electric double-layer capacitor, voltage is applied by alternately repeating a cycle of applying a DC constant voltage to each collector electrode and then short-circuiting while flowing water containing an ionic substance from a water supply port of the holding plate. Sometimes, an anionic ionic substance is adsorbed on the positive electrode side and a cationic ionic substance is adsorbed on the negative electrode side, and water from which the ionic substance has been removed is discharged from a drain port of the holding plate.
[0004]
The voltage applied to the collector electrode is short-circuited or reversed at a predetermined timing, and the ionic substance adsorbed on the activated carbon is released from the activated carbon by this operation, and water with a high ion concentration is discharged from the drainage port of the holding plate. Is done.
[0005]
However, in such a conventional method, the scale is deposited on the surface of the collector and the efficiency of ion removal is increased when the collector is operated for a long period of time because the collector having the water inlet is arranged so as to block the water passage. However, there was a problem that was reduced. In addition, since the passing water flows along the surface of the collector electrode and flows into the activated carbon layer from the water supply port, the flow of water becomes parallel to the activated carbon layer at the part away from the water supply port of the collector electrode, removing ionic substances. There is a problem that the efficiency is reduced.
[0006]
Further, since the facing collecting electrodes are disposed via the activated carbon layer / separator / activated carbon layer, there is a problem that the electrode spacing is widened, the potential gradient between the electrodes is reduced, and the ion holding amount is reduced.
[0007]
In order to solve these problems, the present applicant firstly forms a laminate by alternately laminating a plurality of liquid-permeable electric insulating sheets and activated carbon fiber sheets, and forms each activated carbon fiber sheet layer of the laminate. Patent application for an electrodesalting method in which a liquid containing an ionic substance is passed in the thickness direction of the laminate while applying a DC low voltage by connecting the positive and negative electrodes so that adjacent layers have different polarities. (Japanese Patent Application No. 2002-262143).
[0008]
In this method, if the liquid is continuously passed for a long time, the activated carbon fiber sheet breaks through and the ions pass therethrough.Therefore, the activated carbon fiber sheet having a different polarity is short-circuited at a predetermined timing to activate the activated carbon fiber sheet. The ionic substance which is electrostatically adsorbed on the substrate is released, and the liquid containing the ionic substance at a high concentration is discharged.
[0009]
Electrodesalting is performed while repeating the application of the low DC voltage and the short circuit or the reverse voltage at a predetermined timing.
[0010]
However, even in this method, if the liquid passage and the short circuit are repeated, there is a problem that the liquid passage time until breakthrough is gradually shortened and the conductivity of the permeated water is also increased.
[0011]
[Patent Document 1]
JP-A-6-325983
[Problems to be solved by the invention]
The present inventors have conducted research on this problem, and found that the activated carbon fibers constituting the activated carbon fiber sheet have a large number of fine and deep pores, and the ions adsorbed deeply in these pores are short-circuited for a short time. By itself, not all of them can be removed from the pores, and the ions adsorbed in these pores accumulate, reducing the apparent adsorption capacity of the activated carbon fiber sheet and increasing the conductivity of the permeated water. I learned that it would be.
[0013]
The present invention has been made based on such knowledge, and an object of the present invention is to provide an electrodesalting method capable of maintaining a high ionic substance adsorption capacity for a long period of time and obtaining permeated water having low conductivity. .
[0014]
[Means for Solving the Problems]
In the first method for desalination of the present invention, the laminated body is formed by alternately laminating a liquid-permeable electric insulating sheet and an activated carbon fiber sheet so that at least two activated carbon fiber sheets are formed. Each of the activated carbon fiber sheet layers is connected to positive and negative electrodes such that adjacent layers have different polarities, and a liquid containing an ionic substance flows from one side in the thickness direction of the laminate to the other side. Then, when the liquid is passed again after the regeneration, the polarity of each of the electrodes is made opposite to the polarity at the time of the previous liquid passing.
[0015]
The regeneration in the first electrodeionization method is usually performed by passing a washing liquid (or a liquid to be treated) substantially containing no ionic substance in a state where the liquid is once stopped and the positive and negative electrodes are short-circuited. However, the above-mentioned positive and negative electrodes may be short-circuited while continuing the flow, and the permeated liquid at the time of the short-circuit may be discharged as the cleaning liquid. Further, if necessary, before or after the short circuit of the positive and negative electrodes, a voltage having a polarity opposite to the polarity at the time of passing the liquid through each electrode is applied for a short time to promote the desorption of the adsorbed ions, and the desorbed ions are discharged as drain. You may do so.
[0016]
Further, in the second method for desalination of the present invention, a liquid-permeable electric insulating sheet and an activated carbon fiber sheet are alternately laminated so that at least two activated carbon fiber sheets are formed to form a laminate. Each of the activated carbon fiber sheet layers of the laminate is connected to positive and negative electrodes so that adjacent layers have different polarities, and a liquid containing an ionic substance is applied from one side in the thickness direction of the laminate to the other side. The method is characterized in that short-circuiting of the electrodes and reversal of polarity are repeated at a predetermined timing while passing the liquid, and the permeated liquid at the time of short-circuiting is discharged as drain.
[0017]
In this method, a switching valve for switching between drain and permeate is provided in a downstream permeate pipe, and the switch valve is switched from permeate to drain when the electrode is switched.
[0018]
In either method, when the polarity of each electrode is changed, ions trapped in the pores of the activated carbon fiber sheet are discharged, but the ions are adsorbed by the activated carbon fiber sheet of the opposite polarity on the downstream side.
[0019]
In this way, by changing the polarity of each electrode at a predetermined timing during the passage of the liquid, it is possible to prevent the ions trapped deep in the pores from accumulating and lowering the adsorption ability of the activated carbon fiber sheet.
[0020]
The electric desalination apparatus used in the present invention includes, for example, a laminate obtained by alternately laminating a liquid-permeable electric insulating sheet and an activated carbon fiber sheet so that at least two activated carbon fiber sheets are formed, and a side plate inner surface. The container body having the laminated body in a liquid-tight manner and provided with a liquid-passing port on the opposite end plate and connected to the activated carbon fiber sheets to generate positive and negative polarities alternately in the activated carbon fiber sheets. And an electrode device.
[0021]
The activated carbon fiber sheet used in the present invention is, for example, a sheet having a specific surface area of 700 to 2500 m 2 / g, a sheet containing activated carbon of about 130 ± 50 g / m 2 and a thickness of about 0.4 to 1.0 mm. Are suitable. Such commercially available activated carbon fiber sheets include, for example, "Krakutiv" (trade name) manufactured by Kuraray Chemical Co., Ltd. and "Kynol Activated Carbon Fiber" manufactured by Nippon Kainol.
[0022]
The shape of the activated carbon fiber sheet used in the present invention is usually a square or a rectangle close to a square, and a tongue piece serving as a power supply portion is formed on one side. These tongues are liquid-tightly drawn out from different side surfaces of the container body described later for each of the positive and negative polarities, and connected to the positive and negative electrodes of the electrode device. When a large number of activated carbon fiber sheets and electrically insulating sheets are alternately stacked, the sheets are drawn out from different sides of the container body for each of the positive and negative polarities, and a plurality of the sheets are collectively adhered by a conductive adhesive or electrically conductive. Structurally and electrically integrated by a method such as fixing it with bolts by sandwiching it between conductive metal plates, connecting to electrodes made of conductive metal tape, for example, copper tape or aluminum tape, and connecting these electrodes collectively Each is connected to a different pole of the electrode device via a lead wire. In order to equalize the potential between the electrodes, each activated carbon fiber sheet is bonded to a good conductive metal foil with a conductive adhesive, or is sandwiched between conductive metal plates with bolts when a plurality of sheets are put together. It is desirable that the metal foils be fixed by a method such as fixing and connected in parallel to a DC power supply. Further, if necessary, a plurality of tongue pieces of the activated carbon fiber sheet may be overlapped and bonded with a conductive adhesive, and the tongue pieces themselves may be used as electrodes.
[0023]
As the liquid-pervious electrically insulating sheet used in the present invention, for example, a nonwoven fabric in which synthetic resin fibers are accumulated, or a mesh-shaped molded body formed by injection molding or the like is used. The shape of the electrically insulating sheet used in the present invention is desirably the same as or slightly larger than the activated carbon fiber sheet. The suitable thickness of the electrically insulating sheet is about 0.01 to 0.5 mm, particularly about 0.02 to 0.3 mm. Examples of the nonwoven fabric that can be used as the electrically insulating sheet include a synthetic resin nonwoven fabric in which a large number of through-holes are formed and liquid permeability is improved, such as Kuraray “melt blow” (trade name).
[0024]
The activated carbon fiber sheet and the electrically insulating sheet are usually used by fixing one sheet each to the inside of a rectangular frame. As the frame, a material having elasticity such as synthetic rubber, good liquid tightness, and substantially the same thickness as or slightly thicker than the overlapped activated carbon fiber sheet and the electrically insulating sheet is suitable. It is desirable to form a recess in the frame for leading out the tongue piece of the activated carbon fiber sheet. By forming such a concave portion, it is possible to prevent a large gap from being generated when the tongue piece is led out across the frame. When a mesh formed of a synthetic resin is used as the electric insulating sheet, the frame and the mesh may be simultaneously formed, and the activated carbon fiber sheet may be arranged on the electric insulating sheet formed of the mesh. .
[0025]
The side portion of the container body in the present invention can be configured by stacking these frames. The front and rear portions of the container body are configured by abutting a pair of end plates having separately prepared liquid passages with the front and rear end frames, and tightening and fixing these end plates with bolts.
[0026]
When the end plate is configured as an opposing surface of the container body, a concave portion is formed in the end plate vertically and horizontally so that the pressure of the liquid entered from the liquid passage port is directly applied to the surface of the laminate, and further necessary. Accordingly, a porous intermediate plate is interposed between the end plate and the laminate.
[0027]
As will be described later, the container body can be formed of a synthetic resin separately without using such a frame, and configured to accommodate a laminate of an activated carbon fiber sheet and an electrically insulating sheet. is there.
[0028]
The electrode of the electrode device is a good electrical conductor such as a copper plate, an aluminum plate, a carbon plate, and foil-like graphite, which can be in close contact with the activated carbon fiber sheet. The thickness is not particularly limited, but is often about 0.1 to 0.5 mm. A voltage is applied to the electrode via a lead wire.
[0029]
In order to make the potential of the activated carbon fiber layer uniform, it is desirable to attach a lead wire to the electrode and supply power with a constant voltage device. When a lead wire is attached to the electrode of each activated carbon fiber to reduce the gap between the activated carbon fiber sheets, a plurality of tongue pieces can be overlapped and connected to one lead wire.
[0030]
It is desirable to use a conductive adhesive also for the connection between the activated carbon fiber sheet and the lead wire.
[0031]
In the case of water, the flow rate is preferably 0.1 to 10 ml / min, more preferably 0.5 to 2 ml / min, per 1 g of activated carbon attached to the activated carbon fiber.
[0032]
[Action]
FIG. 1 shows an example of the principle of the present invention for water.
[0033]
If water continues to flow through the electrodeionization apparatus, the ion adsorption capacity will decrease. FIG. 1A schematically shows a state of the activated carbon fiber sheet 1 when water flow is stopped in such a state. The activated carbon fiber sheet 1 is supplied with a positive DC voltage, A negative ion (ionic substance) I is adsorbed on the surface including the pores 1v by electrostatic attraction.
[0034]
At this time, when the positive and negative electrodes to which the activated carbon fiber sheet is connected are short-circuited, as shown in FIG. 1 (b), the positive electric suction force on the surface of the activated carbon fiber sheet 1 disappears, and the ions I become activated carbon fiber. It is released from the surface of the sheet 1 and diffuses.
[0035]
When the washing water is flowed in this state, as shown in FIG. 1C, the ions I released from the surface of the activated carbon fiber sheet 1 are almost completely washed away by the washing water. The washing water at this time is discharged as drain.
[0036]
However, as shown in FIG. 1D, the ions I adsorbed in the pores 1v of the activated carbon fiber sheet 1 remain in the pores 1v because the flow of the washing water does not enter the pores 1v.
[0037]
Here, as shown in FIG. 1 (e), if the polarity of the electrode is reversed when water flow is started again, ions I remaining in the pores 1 v will have a voltage of the same polarity on the surface of the activated carbon fiber sheet 1. Since the repulsion is applied, an electrostatic repulsion acts and is pushed out from the inside of the pore 1v and carried away by water.
[0038]
The negative ions I released from the pores 1v of the activated carbon fiber sheet 1 in this manner are applied to the activated carbon fiber sheet of the next layer because a positive voltage of the opposite polarity is applied to the activated carbon fiber sheet of the next layer. It is not adsorbed on the sheet and mixed into the permeated water.
[0039]
The above is an example of a case where the activated carbon fiber sheet to which a positive voltage is applied is short-circuited, regenerated, and then the electrode is switched to negative to restart water flow. Similarly, when the applied activated carbon fiber sheet is short-circuited and regenerated, and the electrode is switched to positive, the adsorbed positive ions are similarly released from the pores. In the above example, when switching the electrodes, the water flow is temporarily stopped to perform the switching. However, the same applies even when the short circuit is performed while the water is continuously switched and the polarity of the electrodes is switched. The effect can be obtained. However, in this case, the permeated water at the time of the short circuit is discharged as drain. In addition, in any method, a voltage having a polarity opposite to that of the voltage applied at the time of passing water for a short time before or after the short circuit of the electrode is applied to the activated carbon fiber sheet to promote the detachment of ions from the pores. You can also.
[0040]
The activated carbon fiber sheet not only captures ionic substances by electrostatic action, but also acts on a liquid with low turbidity to remove turbidity by the activated carbon fiber functioning as a filter.
[0041]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described.
(Example 1)
An embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 2 to 4, an activated carbon fiber sheet (thickness 0.5 mm, activated carbon amount 130 g / m 2, specific surface area 1800 to 2000 m 2 / g, trade name “Cractive”) was placed on one side of an 80 mm × 80 mm square. A plurality of unit activated carbon fiber sheets 1 were formed by cutting into a shape in which a tongue piece of 30 mm × 30 mm was provided at a corner. In addition, a large number of unit electric insulating sheets 2 were formed by cutting a synthetic resin nonwoven fabric (thickness: 0.4 mm, trade name: “melt blow”) having a large number of through holes into a square portion of 80 mm × 80 mm.
[0042]
Further, a synthetic rubber sheet having a thickness of 1 mm is cut into a frame shape having an outer shape of 100 mm x 100 mm and an inner diameter of 80 mm x 80 mm. A groove having a thickness of 0.5 mm was formed to obtain a unit frame.
[0043]
Next, the unit activated carbon fiber sheet 1 and the unit electrically insulating sheet 2 are overlapped, and the tongue piece 1a of the activated carbon fiber sheet 1 is fitted into the concave groove, and the unit activated carbon fiber sheet 1 and the unit electrically insulating sheet 2 are separated. The perimeter of the unit activated carbon fiber sheet 1 and the unit electrically insulating sheet 2 is adhered to the inner surface of the unit frame 3, and the tongue piece 1 a is adhered to the concave groove of the frame 1 by liquid rubber. The unit was 4.
[0044]
Thereafter, as shown in FIG. 5, forty unit units 4 are stacked such that the unit activated carbon fiber sheet 1 is on the same side and the tongue pieces 1a are on opposite sides alternately. Are end plates 5 and 6 (120 mm × 120 mm × 10 mm) formed with a plurality of vertical and horizontal grooves (not shown) formed on the inside thereof, and formed with a plurality of bolt holes 5 b and 6 b all over the sides. (120 mm × 5 mm), which was fastened and fixed with stainless steel bolts to constitute the electric desalination apparatus of the present invention. The frames 3 of the unit units 4 thus obtained are completely in close contact with each other to form a water-tight structure, and together with the end plates 5 and 6, constitute a liquid-tight container body.
[0045]
Five tongue pieces 1a protruding from both sides of this device are stacked on the same side and fixed with a conductive adhesive, and each is connected to an electrode made of copper foil with a conductive adhesive. The other ends of the lines Wa and Wb are connected to the positive and negative electrodes of the DC power supply DC via a changeover switch SW capable of turning off, short-circuiting an electrode made of copper foil, and switching between positive and negative polarities. Commonly connected with lead wires.
[0046]
While supplying about 180 μS / cm of supply water at 23 ml / min (LV = 0.2) to this apparatus, a voltage of 3 V is applied to each of the left and right electrodes (220 to 400 mA) to set the conductivity of the treated water to a predetermined value. It was measured at each elapsed time. The measurement results are as shown by (a) in the graph of FIG. 6 (in the figure, the conductivity is shown with respect to the amount of water flow).
[0047]
Next, a voltage of 3 V is applied from the DC power supply DC to each of the left and right electrodes, and when the conductivity is increased, the left and right electrodes are short-circuited and washed with approximately one-third of the amount of water flow each time. By repeating this, the change in the conductivity was measured. The change in the electrical conductivity when repeated six times is as shown by (b) in the graph of FIG.
[0048]
Further, when performing the seventh water passage, the left and right electrodes are short-circuited after washing, and in this state, the electrodes are washed with approximately one-third of the amount of water per passage, and then the polarity of the left and right electrodes is reversed. After applying a voltage of 3 V and discarding the permeated water at the beginning of water flow, water flow was performed under the same conditions except that the polarity of the electrode was reversed. The change in the conductivity of the seventh permeated water is as shown by (c) in the graph of FIG.
[0049]
【The invention's effect】
As is clear from the above embodiments, according to the present invention, the permeation time until breakthrough becomes longer and the permeated water is longer than in the method of repeating water regeneration while maintaining the same polarity of each electrode. Can also keep the initial low value.
[0050]
Furthermore, similarly to the previously filed Japanese Patent Application No. 2002-262143, the voltage is applied to the activated carbon fiber itself, so that the structure can be simplified without causing scaling of the electrode, and the activated carbon fiber sheet is not passed through the electrode. Since the voltage is directly applied to the activated carbon fiber sheet, the interval between the positively and negatively charged activated carbon fiber sheets becomes a minimum gap, the potential gradient between the activated carbon fiber sheets becomes large, and the ion holding amount can be increased. On the other hand, water is passed from the vertical direction, so that the ion-exchange performance is high, and the activated carbon fiber sheet can be made to function as an ion exchange filter.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the operation of the present invention.
FIG. 2 is a front view of an activated carbon fiber sheet used in one embodiment of the present invention.
FIG. 3 is a rear view of the activated carbon fiber sheet shown in FIG. 2;
FIG. 4 is an enlarged sectional view of a main part of the activated carbon fiber sheet shown in FIG. 2 along IV-IV.
FIG. 5 is an exploded view of an example of the electric desalination apparatus used in the present invention.
FIG. 6 is a graph showing the effect of the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Unit activated carbon fiber sheet, 1v ... Pores, 1a ... Tongue piece, 2 ... Unit electrically insulating sheet, 3 ... Frame, 4 ... Unit unit, 5, 6 ... End plate, 5a , 6a ... Water inlet

Claims (3)

通液性の電気絶縁シートと活性炭繊維シートを少なくとも活性炭繊維シートが2層以上となるように交互に積層して積層体を形成し、前記積層体の各活性炭繊維シート層を互いに隣接する層が異極となるよう正負の電極に接続するとともに、前記積層体の厚さ方向の一方の側から他方の側にイオン性物質を含む液体を通液し、再生した後再度通液する際に前記各電極の極性を先の通液時の極性と逆極性にすることを特徴とする電気脱塩方法。A laminate is formed by alternately laminating a liquid-permeable electric insulating sheet and an activated carbon fiber sheet so that at least two activated carbon fiber sheets are formed, and a layer adjacent to each activated carbon fiber sheet layer of the laminate is formed. When connected to the positive and negative electrodes so as to be different polarities, the liquid containing an ionic substance is passed from one side in the thickness direction of the laminate to the other side, and when the liquid is passed again after regeneration, An electrodeionization method characterized in that the polarity of each electrode is made opposite to the polarity when the liquid was passed. 前記再生は、前記正負の電極を短絡させつつ洗浄水を通液することにより行われる請求項1記載の電気脱塩方法。The method according to claim 1, wherein the regeneration is performed by passing washing water while short-circuiting the positive and negative electrodes. 通液性の電気絶縁シートと活性炭繊維シートを少なくとも活性炭繊維シートが2層以上となるように交互に積層して積層体を形成し、前記積層体の各活性炭繊維シート層を互いに隣接する層が異極となるよう正負の電極に接続するとともに、前記積層体の厚さ方向の一方の側から他方の側にイオン性物質を含む液体を通液しつつ所定のタイミングで前記各電極の短絡、極性の転換を繰り返し、短絡時の透過液はドレンとして排出することを特徴とする電気脱塩方法。A laminate is formed by alternately laminating a liquid-permeable electric insulating sheet and an activated carbon fiber sheet so that at least two activated carbon fiber sheets are formed, and a layer adjacent to each activated carbon fiber sheet layer of the laminate is formed. While being connected to the positive and negative electrodes so as to have different polarities, short-circuiting of each electrode at a predetermined timing while passing a liquid containing an ionic substance from one side in the thickness direction of the laminate to the other side, An electrodesalting method characterized in that the polarity change is repeated and the permeate at the time of short circuit is discharged as drain.
JP2003127607A 2003-05-02 2003-05-02 Electric desalting method Withdrawn JP2004330032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127607A JP2004330032A (en) 2003-05-02 2003-05-02 Electric desalting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127607A JP2004330032A (en) 2003-05-02 2003-05-02 Electric desalting method

Publications (1)

Publication Number Publication Date
JP2004330032A true JP2004330032A (en) 2004-11-25

Family

ID=33504044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127607A Withdrawn JP2004330032A (en) 2003-05-02 2003-05-02 Electric desalting method

Country Status (1)

Country Link
JP (1) JP2004330032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440989B1 (en) * 2009-06-03 2010-03-24 ダイセン・メンブレン・システムズ株式会社 Method for producing purified water
WO2010150534A1 (en) * 2009-06-23 2010-12-29 クラレケミカル株式会社 Flow-through capacitor, method for producing deionized water, and device for producing deionized water
WO2020039676A1 (en) * 2018-08-23 2020-02-27 株式会社寿通商 Water treatment device and ion concentration adjusted water manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440989B1 (en) * 2009-06-03 2010-03-24 ダイセン・メンブレン・システムズ株式会社 Method for producing purified water
JP2010279870A (en) * 2009-06-03 2010-12-16 Daicen Membrane Systems Ltd Method for producing purified water
WO2010150534A1 (en) * 2009-06-23 2010-12-29 クラレケミカル株式会社 Flow-through capacitor, method for producing deionized water, and device for producing deionized water
JPWO2010150534A1 (en) * 2009-06-23 2012-12-06 クラレケミカル株式会社 Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus
JP5687620B2 (en) * 2009-06-23 2015-03-18 クラレケミカル株式会社 Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus
WO2020039676A1 (en) * 2018-08-23 2020-02-27 株式会社寿通商 Water treatment device and ion concentration adjusted water manufacturing method
CN112566712A (en) * 2018-08-23 2021-03-26 寿控股有限公司 Water treatment device and method for producing ion concentration-adjusted water
JPWO2020039676A1 (en) * 2018-08-23 2021-08-12 株式会社寿ホールディングス Water treatment equipment and manufacturing method of ion concentration adjusted water

Similar Documents

Publication Publication Date Title
US20080073288A1 (en) Multifunctional filtration and water purification systems
CA2444390C (en) Charge barrier flow-through capacitor
CN105417635B (en) Device for purifying a fluid and method for purifying a fluid by means of the same
WO2008016671A2 (en) Multifunctional filtration and water purification systems
JP2000091169A (en) Liquid-passable capacitor and method of treating liquid using the same
KR20110032722A (en) Electric adsorption water treatment device
US12030795B2 (en) Desalination device and method of manufacturing such a device
WO2015138235A2 (en) Capacitive deionization system and method for operating the system
KR20120030834A (en) Apparatus for treating water using capacitive deionization
WO2015052574A1 (en) Apparatus for treating a fluid
JP2004330032A (en) Electric desalting method
US9878927B2 (en) Apparatus for purifying a fluid and method for purifying a fluid, in particular by means of the aforesaid apparatus
JP4212856B2 (en) Electrodesalting method and electrodesalting apparatus
KR101068664B1 (en) Hybrid desalination apparatus, desalination method and regeneration method using the same
JP4090635B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP7130147B1 (en) ion remover
KR100801916B1 (en) Electrode Water Softener
JP2004024990A (en) Method of removing ionic substance in liquid and liquid treatment apparatus
JP2005087898A (en) Electrostatic deionization apparatus and electrostatic deionization method
CN210505702U (en) A polarized membrane electrosorption device
CN113398760B (en) Electrode, method of manufacturing electrode, separation device and separation method
JP2002336859A (en) Desalted water production method
KR20130031973A (en) Water treatment cell by electrosorption, electrosorptive water treatment apparatus and method using the same
JP2002336863A (en) Desalted water production method and apparatus
CN113398763A (en) Regeneration method and separation device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704