[go: up one dir, main page]

JP2004327878A - Method of washing silicon wafer - Google Patents

Method of washing silicon wafer Download PDF

Info

Publication number
JP2004327878A
JP2004327878A JP2003123169A JP2003123169A JP2004327878A JP 2004327878 A JP2004327878 A JP 2004327878A JP 2003123169 A JP2003123169 A JP 2003123169A JP 2003123169 A JP2003123169 A JP 2003123169A JP 2004327878 A JP2004327878 A JP 2004327878A
Authority
JP
Japan
Prior art keywords
wafer
aqueous solution
surfactant
back surfaces
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123169A
Other languages
Japanese (ja)
Inventor
Shigeru Okuuchi
茂 奥内
Takeshi Harada
剛 原田
Kazunari Takaishi
和成 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumitomo Mitsubishi Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corp filed Critical Sumitomo Mitsubishi Silicon Corp
Priority to JP2003123169A priority Critical patent/JP2004327878A/en
Publication of JP2004327878A publication Critical patent/JP2004327878A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrict a particle contamination occurred from a back surface and an end surface of a wafer. <P>SOLUTION: A method of washing a silicon wafer which includes the step of dipping a silicon wafer 12 in an aqueous solution containing a fluoric acid and a surfactant respectively to remove an oxide film of a back surface 12a of the wafer, and the step of dipping the wafer obtained by removing the oxide film in a dissolved ozone aqueous solution 14 to wash both surfaces of the wafer is improved. As the characteristic constitution, this method further contains the step of dipping the wafer in an aqueous solution 13 containing the surfactant between the oxide film removing step and the dissolved ozonous water washing step to wash both the surfaces of the wafer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フッ酸洗浄に起因するパーティクル汚染を抑制し得るシリコンウェーハの洗浄方法に関する。
【0002】
【従来の技術】
一般に、ウェーハ表裏面に形成される熱酸化膜、CVD酸化膜、自然酸化膜等の除去はフッ酸水溶液に接触させることで除去しているが、フッ酸処理を行って露出したウェーハ表裏面は疎水性となる。このためウェーハ表裏面にパーティクルが付着し易いという問題がある。ウェーハ表裏面にパーティクルが付着するとデバイスの歩留まりを低下させることから、ウェーハ表裏面へのパーティクルの付着を低減することが必要とされている。
【0003】
フッ酸処理後のウェーハ表裏面へのパーティクルの付着を抑制する方法として、半導体ウェーハ表裏面の酸化膜を除去した後、オゾンを供給する水槽内に半導体ウェーハを浸漬して親水性処理を行うことを特徴とする半導体ウェーハの洗浄方法が開示されている(例えば、特許文献1参照。)。この洗浄方法では、図4に示すように、フッ酸を含む水溶液にシリコンウェーハを浸漬(工程1)してウェーハ表裏面の酸化膜を除去した後、溶存オゾン水溶液にシリコンウェーハを浸漬(工程2)してオゾンによって発生する酸素イオンで露出したウェーハ表裏面を酸化して親水性処理を施すことにより、パーティクルの付着を低減している。しかしながら、この洗浄方法においても、フッ酸水溶液によって処理した後のウェーハ表裏面へのパーティクルの付着抑制、低減効果は十分とはいえなかった。
【0004】
このような上記問題を解決する方策として、界面活性剤を添加したフッ酸水溶液を用いてシリコンウェーハを洗浄し、オゾンを含有した純水を用いて水洗するシリコンウェーハの洗浄方法が開示されている(例えば、特許文献2参照。)。図5に示すように、フッ酸水溶液中に界面活性剤を添加した水溶液にシリコンウェーハを浸漬(工程3)することにより、ウェーハ表裏面に界面活性剤の薄膜を形成してウェーハ表裏面を親水化し、フッ酸水溶液処理を施した後のウェーハを溶存オゾン水溶液に浸漬(工程4)することにより、ウェーハ表裏面に形成された界面活性剤の薄膜を除去すると同時に、ウェーハ表裏面に自然酸化膜を形成してウェーハ表裏面を親水性に保つ。この結果、ウェーハ表裏面へのパーティクルの付着防止効果を高めることが可能となる。
【0005】
【特許文献1】
特開昭62−198127号公報
【特許文献2】
特許第2914555号公報
【0006】
【発明が解決しようとする課題】
しかし、上記特許文献2に示された洗浄方法では、界面活性剤を添加したフッ酸によって処理した後のウェーハには、界面活性剤だけでなくフッ酸も付着しているため、このフッ酸が付着したウェーハ表裏面をオゾンを含有した純水により処理すると、ウェーハ表層においてフッ酸とオゾンとが反応を起こしてしまい、ウェーハ表裏面の面荒れを引き起こす問題があった。特に洗浄の対象となるウェーハが鏡面ウェーハであると、ウェーハ表裏面及び端面部における面荒れの発生が顕著であった。
本発明の目的は、ウェーハ表裏面及び端面部より発生するパーティクル汚染を抑制し得る、シリコンウェーハの洗浄方法を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、フッ酸及び界面活性剤をそれぞれ含む水溶液11にシリコンウェーハ12を浸漬させてウェーハ表裏面12aの酸化膜を除去する工程(a)と、酸化膜を除去したウェーハ12を溶存オゾン水溶液14に浸漬させてウェーハ表裏面12aを洗浄する工程(c)とを含むシリコンウェーハの洗浄方法の改良である。その特徴ある構成は、酸化膜除去工程(a)と溶存オゾン水洗浄工程(c)との間にウェーハ12を界面活性剤を含む水溶液13に浸漬させてウェーハ表裏面12aを洗浄する工程(b)を更に含むところにある。
請求項1に係る発明では、酸化物除去工程(a)を施した後のウェーハ表裏面にはフッ酸が付着しており、本発明では界面活性剤水溶液洗浄工程(b)を施すことにより、ウェーハ表裏面に付着したフッ酸を界面活性剤で効果的に取除く。この結果、従来発生していたフッ酸とオゾンがともに存在したときに発生する反応を抑制でき、ウェーハ表裏面及び端面部より発生するパーティクル汚染を除去することができる。
【0008】
請求項2に係る発明は、請求項1に係る発明であって、界面活性剤水溶液洗浄工程(b)における界面活性剤の含有量が1ppm〜2000ppmである洗浄方法である。
請求項3に係る発明は、請求項1に係る発明であって、溶存オゾン水洗浄工程(c)におけるオゾン濃度が1ppm以上である洗浄方法である。
請求項4に係る発明は、請求項1に係る発明であって、酸化膜除去工程(a)におけるフッ酸濃度が0.01〜1.0重量%であって、界面活性剤の含有量が1ppm〜2000ppmである洗浄方法である。
【0009】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
本発明のシリコンウェーハの洗浄方法は、図1に示すように、先ず、フッ酸及び界面活性剤をそれぞれ含む水溶液11を水槽16に貯留し、この水溶液11にシリコンウェーハ12を浸漬させてウェーハ表裏面12aの酸化膜を除去する(工程(a))。フッ酸によりウェーハ表裏面の酸化膜を取除くとともに、露出したシリコン表裏面に界面活性剤の薄膜を形成することでパーティクル等の付着を抑制する。
この工程(a)におけるフッ酸濃度を0.01〜1.0重量%、界面活性剤の含有量を1ppm〜2000ppmに規定する。フッ酸濃度が0.01重量%未満であると、酸化膜を十分に除去できず、1.0重量%を越えると金属汚染、特にCu元素の析出に伴うウェーハ表面の面質変化を引き起こす不具合を生じる。界面活性剤の含有量が1ppm未満であると、パーティクルの付着を十分に抑制することができず、2000ppmを越えてもその効果は向上せず、不経済である。界面活性剤の種類は特に限定はなく、アニオン系、カチオン系、非イオン系等の種類を用いることができる。好ましくはフッ酸濃度が0.05〜0.5重量%であり、界面活性剤の含有量が10ppm〜100ppmである。
【0010】
本発明の洗浄方法の特徴は、界面活性剤を含む水溶液13を水槽17に貯留し、この水溶液13にウェーハ12を浸漬させてウェーハ表裏面12aを洗浄する工程(b)を含むところにある。酸化物除去工程(a)を終えたウェーハ表裏面12aにはフッ酸が付着しており、後に続く工程(c)においてこのフッ酸が付着したウェーハ表裏面12aを溶存オゾンにより処理すると、ウェーハ表層においてフッ酸とオゾンとが反応を起こしてしまい、ウェーハ表裏面12aの面荒れを引き起こす問題がある。そこで、この工程(b)において、界面活性剤によりウェーハ表裏面に付着したフッ酸を効果的に取除く。
この工程(b)では界面活性剤の含有量を1ppm〜2000ppmに規定する。界面活性剤の含有量が1ppm未満であると、ウェーハ表裏面に付着したフッ酸を十分に除去することができず、2000ppmを越えてもその効果は向上せず、不経済である。好ましくは10ppm〜100ppmである。またこの工程(b)における界面活性剤は、酸化膜除去工程(a)で用いた界面活性剤と同じ種類を用いることが好ましい。
【0011】
次に、酸化膜を除去したウェーハ12を溶存オゾン水溶液14に浸漬させてウェーハ表裏面12aを洗浄する(工程(c))。オゾンにより発生する活性酸素でウェーハ表裏面12aに形成した界面活性剤の薄膜を除去するとともに、ウェーハ表裏面を酸化して親水性処理を施す。
溶存オゾン水洗浄工程(c)におけるオゾン濃度を1ppm以上に規定する。オゾン濃度が1ppm未満であると、界面活性剤の薄膜を十分に除去できず、ウェーハ表裏面を十分に酸化することができない。溶存オゾン水溶液のオゾン濃度の上限値は、水溶液に溶解する飽和濃度まで使用しても良い。好ましいオゾン濃度は5ppm〜10ppmである。
【0012】
本実施の形態では、この溶存オゾン水洗浄工程(c)は次のようにして行われる。図2に示すように、超純水が貯えられた洗浄槽18の外部には超純水とオゾンガス19とを混合する溶解モジュール21が設けられる。洗浄槽18の底部近傍の側壁若しくは底部に管路22の一端が接続され、管路22の他端は溶解モジュール21に接続される。管路22には循環用ポンプ23が設けられる。溶解モジュール21には管路24の一端が接続され、管路24の他端は洗浄槽18の開口部上方に間隔をあけて設置される。溶解モジュール21はオゾンガス供給管26を備え、この供給管26にはバルブ27が設けられる。
【0013】
このような構成を有する溶解モジュール内のオゾンガス供給管26に設けられたバルブ27を開いてモジュール21内にオゾンガス19を供給するとともに、ポンプ23を作動させてモジュール内に超純水を供給することにより、溶解モジュール21内でオゾンガス19を超純水に溶解させて、溶存オゾン水溶液14を調製する。この調製された溶存オゾン水溶液14は洗浄槽18開口部より供給される。このオゾンガス19を連続的に又は間欠的に供給管26から供給し、かつ水溶液14が循環している状態でウェーハ12を浸漬する。本発明では、溶解モジュールの構造は特に問わない。
なお、本実施の形態では図2に示すように、超純水にオゾンガスを溶解させた溶存オゾン水溶液を洗浄槽に供給する例を示したが、図3に示すように、洗浄槽内で超純水に直接オゾンガスを注入して溶存オゾン水溶液としても良い。これら上記工程を施したウェーハは乾燥された後、次に続く所定の工程へと送られる。
【0014】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、8インチポリッシュドウェーハをサンプルウェーハとして用意した。また、フッ酸と界面活性剤(商品名:エクセムライト)をそれぞれ含み、フッ酸濃度が0.1重量%、界面活性剤の含有量が20ppmの水溶液と、上記界面活性剤を20ppmを含む水溶液と、10ppmのオゾンを含む溶存オゾン水をそれぞれ調製した。
次いで、図1に示すように、上記フッ酸と界面活性剤をそれぞれ含む水溶液11を貯留した洗浄槽16にサンプルウェーハ12を浸漬させ、15分間保持した後に、ウェーハ12を引上げる酸化膜除去工程(a)を施した。次に、上記界面活性剤を含む水溶液13を貯留した洗浄槽17にウェーハ12を浸漬させ、4分間保持した後に、ウェーハ12を引上げる界面活性剤水溶液洗浄工程(b)を施した。更に、上記溶存オゾン水溶液14を貯留した洗浄槽18にウェーハ12を浸漬させ、4分間保持した後に、ウェーハ12を引上げる溶存オゾン水洗浄工程(c)を施した。
【0015】
<比較例1>
0.1重量%のフッ酸水溶液を調製し、図2に示すように、上記0.1重量%のフッ酸水溶液を貯留した洗浄槽にサンプルウェーハを浸漬させ、15分間保持した後に、ウェーハを引上げる酸化膜除去工程1を施した。次に、ウェーハを純水によりリンスした。更に、溶存オゾン水を貯留した洗浄槽にウェーハを浸漬させ、4分間保持した後に、ウェーハを引上げる溶存オゾン水洗浄工程2を施した。
<比較例2>
図3に示すように、フッ酸と界面活性剤をそれぞれ含む水溶液を貯留した洗浄槽にサンプルウェーハを浸漬させ、4分間保持した後に、ウェーハを引上げる酸化膜除去工程3を施した。次に、溶存オゾン水を貯留した洗浄槽にウェーハを浸漬させ、4分間保持した後に、ウェーハを引上げる溶存オゾン水洗浄工程4を施した。
【0016】
<比較試験及び評価>
実施例1及び比較例1,2で各処理を終えたウェーハに対して、先ずウェーハ表面に存在する粒径0.1μm以上のパーティクルをパーティクル測定装置(SP1)により測定した。またヘイズ測定装置によりウェーハ表面のヘイズの平均値とピーク値を測定した。次いで、5重量%フッ酸水溶液によりウェーハ表裏面を処理して表面酸化膜を取除き、DIW(deionized water)によりウェーハ表裏面をリンスした。リンスを終えたウェーハを乾燥し、乾燥後のウェーハ表面を再び再度パーティクル測定及びヘイズ測定した。次に、フッ酸処理前後に測定したパーティクル測定値の差を求め、この数値をパーティクル増加量として算出した。また、実施例1及び比較例1,2前後に測定したヘイズ測定値の差をそれぞれ求め、この数値をヘイズ増加量として算出した。表1にその結果をそれぞれ示す。
【0017】
【表1】

Figure 2004327878
【0018】
表1より明らかなように、比較例1及び2ではパーティクル増加量及びヘイズ増加量が多い測定結果となった。これに対して実施例1では、パーティクル増加量及びヘイズ増加量が低減しており、特に面荒れ値の指標として測定したヘイズ増加量が大幅に低減されていた。このことから、工程12を施すことでパーティクルの発生を抑制することが判る。
【0019】
【発明の効果】
以上述べたように、本発明のシリコンウェーハの洗浄方法は、フッ酸及び界面活性剤をそれぞれ含む水溶液にシリコンウェーハを浸漬させてウェーハ表裏面の酸化膜を除去する工程(a)と、酸化膜を除去したウェーハを溶存オゾン水溶液に浸漬させてウェーハ表裏面を洗浄する工程(c)とを含む洗浄方法の改良であり、その特徴ある構成は、酸化膜除去工程(a)と溶存オゾン水洗浄工程(c)との間にウェーハを界面活性剤を含む水溶液に浸漬させてウェーハ表裏面を洗浄する工程(b)を更に含むところにある。酸化膜除去工程を施した後のウェーハ表面にはフッ酸が付着しており、本発明では界面活性剤水溶液洗浄工程を施すことにより、ウェーハ表面に付着したフッ酸を界面活性剤で効果的に取除く。この結果、従来発生していたフッ酸とオゾンがともに存在したときに発生する反応を抑制でき、ウェーハ裏面及び端面部より発生するパーティクル汚染を除去することができる。
【図面の簡単な説明】
【図1】本発明のシリコンウェーハの洗浄方法の各工程を示す図。
【図2】溶存オゾン水溶液による処理工程を示す図。
【図3】溶存オゾン水溶液による別の処理工程を示す図。
【図4】従来のシリコンウェーハの洗浄方法の各工程を示す図。
【図5】従来の別のシリコンウェーハの洗浄方法の各工程を示す図。
【符号の説明】
11 フッ酸及び界面活性剤をそれぞれ含む水溶液
12 シリコンウェーハ
12a ウェーハ表裏面
13 界面活性剤を含む水溶液
14 溶存オゾン水溶液[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a silicon wafer cleaning method capable of suppressing particle contamination caused by hydrofluoric acid cleaning.
[0002]
[Prior art]
Generally, the thermal oxide film, the CVD oxide film, the natural oxide film, etc. formed on the front and back surfaces of the wafer are removed by contacting with a hydrofluoric acid aqueous solution. Become hydrophobic. Therefore, there is a problem that particles easily adhere to the front and back surfaces of the wafer. If particles adhere to the front and back surfaces of the wafer, the yield of the device is reduced. Therefore, it is necessary to reduce the adhesion of particles to the front and back surfaces of the wafer.
[0003]
As a method of suppressing the adhesion of particles to the front and back surfaces of the wafer after the hydrofluoric acid treatment, after removing the oxide film on the front and back surfaces of the semiconductor wafer, the semiconductor wafer is immersed in a water tank for supplying ozone to perform a hydrophilic treatment. (See, for example, Patent Document 1). In this cleaning method, as shown in FIG. 4, a silicon wafer is immersed in an aqueous solution containing hydrofluoric acid (Step 1) to remove oxide films on the front and back surfaces of the wafer, and then immersed in a dissolved ozone aqueous solution (Step 2). ), The front and back surfaces of the wafer exposed by oxygen ions generated by ozone are oxidized and subjected to a hydrophilic treatment to reduce the adhesion of particles. However, even with this cleaning method, the effect of suppressing and reducing the adhesion of particles to the front and back surfaces of the wafer after the treatment with the hydrofluoric acid aqueous solution was not sufficient.
[0004]
As a measure for solving the above problem, a method for cleaning a silicon wafer is disclosed, in which the silicon wafer is cleaned using a hydrofluoric acid aqueous solution to which a surfactant is added, and then washed with pure water containing ozone. (For example, see Patent Document 2). As shown in FIG. 5, the silicon wafer is immersed in an aqueous solution of a hydrofluoric acid solution to which a surfactant has been added (Step 3), thereby forming a thin film of the surfactant on the front and back surfaces of the wafer to make the front and rear surfaces of the wafer hydrophilic. The wafer after the hydrofluoric acid aqueous solution treatment is immersed in a dissolved ozone aqueous solution (Step 4) to remove the surfactant thin film formed on the front and back surfaces of the wafer and at the same time to remove the natural oxide film on the front and back surfaces of the wafer. To keep the front and back surfaces of the wafer hydrophilic. As a result, it is possible to enhance the effect of preventing particles from adhering to the front and back surfaces of the wafer.
[0005]
[Patent Document 1]
JP-A-62-198127 [Patent Document 2]
Japanese Patent No. 2,914,555
[Problems to be solved by the invention]
However, in the cleaning method disclosed in Patent Document 2, the wafer treated with hydrofluoric acid to which a surfactant has been added contains not only the surfactant but also hydrofluoric acid. If the attached front and back surfaces of the wafer are treated with ozone-containing pure water, hydrofluoric acid and ozone react on the surface of the wafer, causing a problem of roughening of the front and back surfaces of the wafer. In particular, when the wafer to be cleaned is a mirror-finished wafer, the occurrence of surface roughness on the front and back surfaces and the end surface of the wafer was remarkable.
An object of the present invention is to provide a method for cleaning a silicon wafer, which can suppress particle contamination generated from the front and back surfaces and end surfaces of the wafer.
[0007]
[Means for Solving the Problems]
As shown in FIG. 1, the invention according to claim 1 includes a step (a) of immersing a silicon wafer 12 in an aqueous solution 11 containing hydrofluoric acid and a surfactant to remove an oxide film on the front and back surfaces 12a of the wafer. This is an improvement of the silicon wafer cleaning method including the step (c) of immersing the wafer 12 from which the oxide film has been removed in a dissolved ozone aqueous solution 14 to clean the front and rear surfaces 12a of the wafer. The characteristic configuration is that the wafer 12 is immersed in an aqueous solution 13 containing a surfactant between the oxide film removing step (a) and the dissolved ozone water cleaning step (c) to clean the front and back surfaces 12a of the wafer (b). ).
In the invention according to claim 1, hydrofluoric acid is attached to the front and back surfaces of the wafer after the oxide removing step (a), and in the present invention, by performing the surfactant aqueous solution cleaning step (b), The hydrofluoric acid attached to the front and back surfaces of the wafer is effectively removed with a surfactant. As a result, it is possible to suppress the reaction that occurs when both hydrofluoric acid and ozone, which are conventionally generated, are present, and it is possible to remove particle contamination generated from the front and back surfaces and the end surface of the wafer.
[0008]
The invention according to claim 2 is the cleaning method according to claim 1, wherein the surfactant content in the surfactant aqueous solution washing step (b) is 1 ppm to 2000 ppm.
The invention according to claim 3 is the cleaning method according to claim 1, wherein the ozone concentration in the dissolved ozone water cleaning step (c) is 1 ppm or more.
The invention according to claim 4 is the invention according to claim 1, wherein the hydrofluoric acid concentration in the oxide film removing step (a) is 0.01 to 1.0% by weight, and the content of the surfactant is The cleaning method is 1 ppm to 2000 ppm.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
In the method for cleaning a silicon wafer according to the present invention, as shown in FIG. 1, first, an aqueous solution 11 containing hydrofluoric acid and a surfactant is stored in a water tank 16, and the silicon wafer 12 is immersed in the aqueous solution 11 to prepare a wafer surface. The oxide film on the back surface 12a is removed (step (a)). By removing the oxide film on the front and back surfaces of the wafer with hydrofluoric acid, and by forming a thin film of a surfactant on the exposed front and back surfaces of silicon, adhesion of particles and the like is suppressed.
In this step (a), the hydrofluoric acid concentration is defined as 0.01 to 1.0% by weight, and the content of the surfactant is defined as 1 ppm to 2000 ppm. If the concentration of hydrofluoric acid is less than 0.01% by weight, the oxide film cannot be sufficiently removed, and if it exceeds 1.0% by weight, metal contamination, particularly a change in the surface quality of the wafer surface due to precipitation of Cu element. Is generated. If the content of the surfactant is less than 1 ppm, the adhesion of particles cannot be sufficiently suppressed, and even if the content exceeds 2,000 ppm, the effect is not improved and it is uneconomical. The type of surfactant is not particularly limited, and anionic, cationic, nonionic, and other types can be used. Preferably, the hydrofluoric acid concentration is 0.05 to 0.5% by weight, and the content of the surfactant is 10 ppm to 100 ppm.
[0010]
A feature of the cleaning method of the present invention is that the method includes a step (b) of storing an aqueous solution 13 containing a surfactant in a water tank 17 and immersing the wafer 12 in the aqueous solution 13 to wash the front and back surfaces 12a of the wafer. Hydrofluoric acid is attached to the front and back surfaces 12a of the wafer after the oxide removing step (a), and in the subsequent step (c), the wafer front and back surfaces 12a to which the hydrofluoric acid is attached are treated with dissolved ozone to obtain a wafer surface layer. However, there is a problem that hydrofluoric acid and ozone react with each other to cause surface roughness of the front and rear surfaces 12a of the wafer. Therefore, in this step (b), the hydrofluoric acid attached to the front and back surfaces of the wafer is effectively removed by the surfactant.
In this step (b), the content of the surfactant is set to 1 ppm to 2000 ppm. If the content of the surfactant is less than 1 ppm, hydrofluoric acid attached to the front and back surfaces of the wafer cannot be sufficiently removed, and even if it exceeds 2,000 ppm, its effect is not improved and it is uneconomical. Preferably it is 10-100 ppm. Further, as the surfactant in this step (b), it is preferable to use the same type as the surfactant used in the oxide film removing step (a).
[0011]
Next, the wafer 12 from which the oxide film has been removed is immersed in a dissolved ozone aqueous solution 14 to clean the front and rear surfaces 12a of the wafer (step (c)). The thin film of the surfactant formed on the front and back surfaces 12a of the wafer is removed with active oxygen generated by ozone, and the front and back surfaces of the wafer are oxidized to perform a hydrophilic treatment.
The ozone concentration in the dissolved ozone water washing step (c) is specified to be 1 ppm or more. If the ozone concentration is less than 1 ppm, the surfactant thin film cannot be sufficiently removed, and the front and back surfaces of the wafer cannot be sufficiently oxidized. The upper limit of the ozone concentration of the dissolved ozone aqueous solution may be used up to a saturation concentration at which the ozone is dissolved in the aqueous solution. A preferred ozone concentration is 5 ppm to 10 ppm.
[0012]
In the present embodiment, the dissolved ozone water cleaning step (c) is performed as follows. As shown in FIG. 2, a dissolving module 21 for mixing the ultrapure water and the ozone gas 19 is provided outside the cleaning tank 18 in which the ultrapure water is stored. One end of a pipe 22 is connected to a side wall or a bottom near the bottom of the cleaning tank 18, and the other end of the pipe 22 is connected to the dissolving module 21. A circulation pump 23 is provided in the conduit 22. One end of a pipe 24 is connected to the dissolving module 21, and the other end of the pipe 24 is installed above the opening of the washing tank 18 with a space. The dissolving module 21 includes an ozone gas supply pipe 26, and a valve 27 is provided in the supply pipe 26.
[0013]
Opening the valve 27 provided on the ozone gas supply pipe 26 in the dissolving module having such a configuration to supply the ozone gas 19 into the module 21 and operating the pump 23 to supply ultrapure water into the module. Thus, the ozone gas 19 is dissolved in the ultrapure water in the dissolving module 21 to prepare the dissolved ozone aqueous solution 14. The prepared dissolved ozone aqueous solution 14 is supplied from the opening of the cleaning tank 18. The ozone gas 19 is supplied continuously or intermittently from the supply pipe 26, and the wafer 12 is immersed in a state where the aqueous solution 14 is circulating. In the present invention, the structure of the melting module is not particularly limited.
In this embodiment, as shown in FIG. 2, an example is shown in which an aqueous solution of dissolved ozone obtained by dissolving ozone gas in ultrapure water is supplied to the cleaning tank. However, as shown in FIG. Ozone gas may be directly injected into pure water to form a dissolved ozone aqueous solution. After the wafer subjected to these steps is dried, it is sent to the next predetermined step.
[0014]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, an 8-inch polished wafer was prepared as a sample wafer. Further, an aqueous solution containing hydrofluoric acid and a surfactant (trade name: Exemulite) and having a hydrofluoric acid concentration of 0.1% by weight and a surfactant content of 20 ppm, and an aqueous solution containing the above surfactant at 20 ppm And dissolved ozone water containing 10 ppm of ozone were prepared.
Next, as shown in FIG. 1, the sample wafer 12 is immersed in a cleaning tank 16 storing the aqueous solution 11 containing the above-mentioned hydrofluoric acid and the surfactant, and is held for 15 minutes. (A) was applied. Next, the wafer 12 was immersed in the cleaning tank 17 storing the aqueous solution 13 containing the surfactant, and held for 4 minutes. Then, a surfactant aqueous solution cleaning step (b) for pulling up the wafer 12 was performed. Further, the wafer 12 was immersed in a cleaning tank 18 in which the dissolved ozone aqueous solution 14 was stored, held for 4 minutes, and then subjected to a dissolved ozone water cleaning step (c) in which the wafer 12 was pulled up.
[0015]
<Comparative Example 1>
A 0.1% by weight aqueous hydrofluoric acid solution was prepared, and as shown in FIG. 2, the sample wafer was immersed in a washing tank storing the 0.1% by weight aqueous hydrofluoric acid solution, and held for 15 minutes. An oxide film removing step 1 was performed. Next, the wafer was rinsed with pure water. Further, the wafer was immersed in a cleaning tank storing dissolved ozone water, held for 4 minutes, and then subjected to a dissolved ozone water cleaning step 2 of pulling up the wafer.
<Comparative Example 2>
As shown in FIG. 3, the sample wafer was immersed in a cleaning tank storing an aqueous solution containing hydrofluoric acid and a surfactant, held for 4 minutes, and then subjected to an oxide film removing step 3 of pulling up the wafer. Next, the wafer was immersed in a cleaning tank storing dissolved ozone water, held for 4 minutes, and then subjected to a dissolved ozone water cleaning step 4 of pulling up the wafer.
[0016]
<Comparison test and evaluation>
First, particles having a particle diameter of 0.1 μm or more existing on the wafer surface were measured by the particle measuring device (SP1) for the wafers that had been subjected to the respective processes in Example 1 and Comparative Examples 1 and 2. The average and peak values of the haze on the wafer surface were measured by a haze measuring device. Next, the front and back surfaces of the wafer were treated with a 5% by weight aqueous hydrofluoric acid solution to remove the surface oxide film, and the front and back surfaces of the wafer were rinsed with DIW (deionized water). The rinsed wafer was dried, and the dried wafer surface was again subjected to particle measurement and haze measurement. Next, the difference between the particle measurement values measured before and after the hydrofluoric acid treatment was determined, and this value was calculated as the particle increase. Further, the difference between the measured haze values measured before and after Example 1 and Comparative Examples 1 and 2 was determined, and this value was calculated as the haze increase. Table 1 shows the results.
[0017]
[Table 1]
Figure 2004327878
[0018]
As is clear from Table 1, in Comparative Examples 1 and 2, the measurement results showed a large amount of particle increase and haze increase. On the other hand, in Example 1, the particle increase amount and the haze increase amount were reduced, and in particular, the haze increase amount measured as an index of the surface roughness value was significantly reduced. From this, it is understood that the generation of particles is suppressed by performing Step 12.
[0019]
【The invention's effect】
As described above, the method for cleaning a silicon wafer of the present invention comprises the steps of: (a) immersing the silicon wafer in an aqueous solution containing hydrofluoric acid and a surfactant to remove oxide films on the front and back surfaces of the wafer; (C) washing the front and back surfaces of the wafer by immersing the wafer from which water has been removed in an aqueous solution of dissolved ozone, and the characteristic configuration thereof is characterized by an oxide film removing step (a) and cleaning of dissolved ozone water. The method further comprises a step (b) of washing the front and back surfaces of the wafer by immersing the wafer in an aqueous solution containing a surfactant between the step (c). Hydrofluoric acid adheres to the wafer surface after performing the oxide film removal step, and in the present invention, by performing the surfactant aqueous solution cleaning step, the hydrofluoric acid attached to the wafer surface can be effectively treated with the surfactant. Remove. As a result, it is possible to suppress the reaction that occurs when both hydrofluoric acid and ozone, which have been generated conventionally, are present, and it is possible to remove particle contamination generated from the back surface and the end surface of the wafer.
[Brief description of the drawings]
FIG. 1 is a view showing each step of a method for cleaning a silicon wafer of the present invention.
FIG. 2 is a diagram showing a treatment process using a dissolved ozone aqueous solution.
FIG. 3 is a diagram showing another processing step using a dissolved ozone aqueous solution.
FIG. 4 is a view showing each step of a conventional silicon wafer cleaning method.
FIG. 5 is a view showing each step of another conventional silicon wafer cleaning method.
[Explanation of symbols]
11 Aqueous solution containing hydrofluoric acid and surfactant 12 Silicon wafer 12a Wafer front and back 13 Aqueous solution containing surfactant 14 Dissolved ozone aqueous solution

Claims (4)

フッ酸及び界面活性剤をそれぞれ含む水溶液(11)にシリコンウェーハ(12)を浸漬させて前記ウェーハ表裏面(12a)の酸化膜を除去する工程(a)と、
前記酸化膜を除去したウェーハ(12)を溶存オゾン水溶液(14)に浸漬させて前記ウェーハ表裏面(12a)を洗浄する工程(c)と
を含むシリコンウェーハの洗浄方法において、
前記酸化膜除去工程(a)と前記溶存オゾン水洗浄工程(c)との間に前記ウェーハ(12)を界面活性剤を含む水溶液(13)に浸漬させて前記ウェーハ表裏面(12a)を洗浄する工程(b)を更に含む
ことを特徴とするシリコンウェーハの洗浄方法。
(A) immersing the silicon wafer (12) in an aqueous solution (11) containing hydrofluoric acid and a surfactant to remove an oxide film on the front and back surfaces of the wafer (12a);
A step (c) of immersing the wafer (12) from which the oxide film has been removed in a dissolved ozone aqueous solution (14) to clean the front and back surfaces (12a) of the wafer.
The wafer (12) is immersed in an aqueous solution (13) containing a surfactant between the oxide film removing step (a) and the dissolved ozone water cleaning step (c) to clean the front and back surfaces of the wafer (12a). A method of cleaning a silicon wafer, further comprising a step (b) of performing cleaning.
界面活性剤水溶液洗浄工程(b)における界面活性剤の含有量が1ppm〜2000ppmである請求項1記載の洗浄方法。The cleaning method according to claim 1, wherein the surfactant content in the surfactant aqueous solution cleaning step (b) is 1 ppm to 2000 ppm. 溶存オゾン水洗浄工程(c)におけるオゾン濃度が1ppm以上である請求項1記載の洗浄方法。The cleaning method according to claim 1, wherein the ozone concentration in the dissolved ozone water cleaning step (c) is 1 ppm or more. 酸化膜除去工程(a)におけるフッ酸濃度が0.01〜1.0重量%であって、界面活性剤の含有量が1ppm〜2000ppmである請求項1記載の洗浄方法。The cleaning method according to claim 1, wherein the hydrofluoric acid concentration in the oxide film removing step (a) is 0.01 to 1.0 wt%, and the content of the surfactant is 1 ppm to 2000 ppm.
JP2003123169A 2003-04-28 2003-04-28 Method of washing silicon wafer Pending JP2004327878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123169A JP2004327878A (en) 2003-04-28 2003-04-28 Method of washing silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123169A JP2004327878A (en) 2003-04-28 2003-04-28 Method of washing silicon wafer

Publications (1)

Publication Number Publication Date
JP2004327878A true JP2004327878A (en) 2004-11-18

Family

ID=33501136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123169A Pending JP2004327878A (en) 2003-04-28 2003-04-28 Method of washing silicon wafer

Country Status (1)

Country Link
JP (1) JP2004327878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109427543A (en) * 2017-08-31 2019-03-05 胜高股份有限公司 The washing methods of silicon wafer
JP2020107677A (en) * 2018-12-26 2020-07-09 株式会社Sumco Silicon wafer batch cleaning method and silicon wafer production method using the same, and method for decision of silicon wafer cleaning condition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109427543A (en) * 2017-08-31 2019-03-05 胜高股份有限公司 The washing methods of silicon wafer
JP2020107677A (en) * 2018-12-26 2020-07-09 株式会社Sumco Silicon wafer batch cleaning method and silicon wafer production method using the same, and method for decision of silicon wafer cleaning condition
JP7003904B2 (en) 2018-12-26 2022-01-21 株式会社Sumco A method for batch-type cleaning of silicon wafers, a method for manufacturing silicon wafers using the cleaning method, and a method for determining cleaning conditions for silicon wafers.

Similar Documents

Publication Publication Date Title
JP2787788B2 (en) Residue removal method
US5837662A (en) Post-lapping cleaning process for silicon wafers
JP3154814B2 (en) Semiconductor wafer cleaning method and cleaning apparatus
JP2010109384A (en) Method of removing metal in scrubber
EP0718873A2 (en) Cleaning process for hydrophobic silicon wafers
KR100437429B1 (en) Cleaning water for electronic material and cleaning method of electronic material
US5964953A (en) Post-etching alkaline treatment process
JP6575643B2 (en) Silicon wafer manufacturing method
WO2021220590A1 (en) Semiconductor wafer cleaning method
JP3957268B2 (en) Semiconductor substrate cleaning method
JPH07183264A (en) Method of washing semiconductor substrate
JP3528534B2 (en) Cleaning method of silicon wafer
US6530381B1 (en) Process for the wet-chemical surface treatment of a semiconductor wafer
JP4933071B2 (en) Cleaning method of silicon wafer
JP6529715B2 (en) Method of manufacturing silicon wafer
JP2004327878A (en) Method of washing silicon wafer
JP4857738B2 (en) Semiconductor wafer cleaning method and manufacturing method
JPH0831781A (en) Washing chemicals
EP1132951A1 (en) Process of cleaning silicon prior to formation of the gate oxide
JP2001326209A (en) Method for treating surface of silicon substrate
JP2008153272A (en) Cleaning method and cleaning liquid composition for semiconductor manufacturing equipment parts
JP2001217215A (en) Composition and method for treating surface of semiconductor substrate
JP3669419B2 (en) Semiconductor substrate cleaning method
JP3397117B2 (en) Cleaning water and cleaning method for electronic materials
JP6405618B2 (en) Silicon wafer manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Effective date: 20080407

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A02