[go: up one dir, main page]

JP2004323987A - Water resistant non-woven sheet - Google Patents

Water resistant non-woven sheet Download PDF

Info

Publication number
JP2004323987A
JP2004323987A JP2003116503A JP2003116503A JP2004323987A JP 2004323987 A JP2004323987 A JP 2004323987A JP 2003116503 A JP2003116503 A JP 2003116503A JP 2003116503 A JP2003116503 A JP 2003116503A JP 2004323987 A JP2004323987 A JP 2004323987A
Authority
JP
Japan
Prior art keywords
water
nonwoven sheet
nonwoven fabric
resistant
resistant nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003116503A
Other languages
Japanese (ja)
Inventor
Sumihito Kiyooka
純人 清岡
Naoki Ishii
直樹 石井
Nobuo Shinya
信夫 新屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2003116503A priority Critical patent/JP2004323987A/en
Publication of JP2004323987A publication Critical patent/JP2004323987A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-resistant nonwoven sheet having water resistance, air permeability, water repellency and suppleness and drapeability which are conventionally difficult to possess in combination and suitable for medical disposable uses such as a gown for surgery, a drape, a sheet and a covering cloth. <P>SOLUTION: The water-resistant nonwoven sheet is characterized as follows. The water-resistant nonwoven sheet is composed of a nonwoven fabric containing ultrafine fibers having 0.05-0.9 dtex fineness and a binder resin is applied to the nonwoven fabric. The average pore size of the water-resistant nonwoven sheet is 15-50 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐水性不織シートに関するものであり、より詳細には耐水性および通気性に富み、かつドレープ性、撥水性に優れた耐水性不織シートに関する。本発明の耐水性不織シートは、特にメディカル用途として有用である。
【0002】
【従来の技術】
従来、手術用ガウン、ドレープ、シーツ、覆布等のメディカル用途向けのディスポーザブル製品に用いられる不織布として、種々のものが提案されている。例えば、ポリエステル等の合成繊維からなる短繊維ウエブとパルプシートを積層し、水流絡合により交絡した積層不織布が提案されている(特許文献1参照)。
また、ポリエステルスパンボンド不織布とセルロース短繊維ウエブを積層し、水流絡合により交絡した積層不織布が提案されている(特許文献2参照)。
しかしながら、前者の積層不織布は、耐水性についてはある程度満足するが、通気性に乏しく、しかもペーパーライクでドレープ性に欠けるため着心地が悪く、繊維屑(リント)の発生、脱落が生ずるという問題があった。
また、後者の積層不織布は、通気性が高くなりリント発生についても改善はされているものの、一般にセルロース繊維が太いため高密度の交絡状態が得難く、十分な耐水性が得られず、また強度、耐磨耗性についても満足できる性能ではなかった。
【0003】
また、メルトブローン法によって製造される平均繊維径が数μm以下の極細繊維不織布とスパンボンド法により得られる長繊維不織布とを積層し、熱接着等によって一体化し、さらに加熱プレス処理して少なくとも繊維の一部を溶融させた積層不織布が提案されている(特許文献3参照)。
しかしながら、このような積層不織布は通気性を著しく欠き、柔軟性、ドレープ性に劣るため良好な着用感が得られないという問題点が指摘されていた。
上記課題を解決するために、特定の繊維径と空隙率を有するメルトブローン不織布を含む積層不織布が提案されているが(特許文献4参照)、かかる積層不織布も依然として柔軟性、ドレープ性について改善されておらず、良好な着用感を与えるものではなかった。また、使用時に積層した不織布が剥離するという問題点も指摘されていた。
【0004】
一方、分割型複合繊維からなるウエブを高圧水流処理して、分割された極細繊維を緻密に交絡させて耐水性を備えた不織布を得ようとする試みもなされており、例えば、ポリオレフィン系分割性複合繊維からなるウエブを高圧水流処理し、極細化した極細繊維層の片面にポリオレフィン系スパンボンド不織布を積層し、水流絡合によって両者を交絡後、さらに熱プレスによって極細繊維の一部の成分を微細フィルム化した撥水性不織布が提案されている(特許文献5参照)。
しかしながら、かかる不織布は極細繊維を高密度に存在させ、この層と一部微細フィルム化した層により耐水性を発現させようとするものであるが、このように極細繊維を高密度に絡合させることは、不織布の通気性を阻害する傾向にあり、耐水性と通気性の両方を十分に満足させることは容易ではない。また、このような不織布は柔軟性に乏しく、ドレープ性を要求される分野には適さない。
このように相反する物性である耐水性と通気性を十分に満足し、かつ優れたドレープ性を兼ね備えた耐水性不織シートは未だ提案されていないのが現状であった。
【0005】
【特許文献1】
特開昭59−94659号公報
【特許文献2】
特開平4−333652号公報
【特許文献3】
特開平6−128852号公報
【特許文献4】
特開平11−247061号公報
【特許文献5】
特開平11−247058号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、従来両立することが困難であった耐水性、通気性を兼ね備え、かつ撥水性、柔軟性およびドレープ性に優れ、手術用ガウン、ドレープ、シーツ、覆布等のメディカル用のディスポーザブル製品に適した耐水性不織シートを提供することにある。
【0007】
【課題を解決するための手段】
すなわち本発明は、繊度が0.05〜0.9dtexの極細繊維を含む不織布からなり、該不織布にはバインダー樹脂が付着してなる耐水性不織シートであって、該耐水性不織シートの平均ポアサイズが15〜50μmであることを特徴とする耐水性不織シートである。
【0008】
【発明の実施の形態】
本発明の耐水性不織布シートは、繊度が0.05〜0.9dtexの極細繊維を含む不織布から構成され、かつ該不織布にバインダー樹脂を付着させる点に特徴を有するものであり、かかる構成とすることで耐水性、通気性を兼ね備えるとともにドレープ性に優れた耐水性不織布シートが得られる。
該極細繊維としては、直紡糸式繊維や繊維断面において2種以上のポリマー成分が複合された分割型複合繊維を水流等の高圧流体処理、擦過、叩解、揉み処理等により各成分に分割したり、または海島状に配置された海島型複合繊維の一成分を溶解除去することによって得られる極細繊維を用いることができる。中でも本発明においては、高密度に絡合された不織布が得られることから分割型複合繊維を用いることが好ましい。
【0009】
該極細繊維を形成し得る分割型複合繊維の断面形状としては、例えば図1の(a)〜(d)に示されるように複数成分が断面において放射状に貼り合わされた形状や少なくとも2成分が互いに順次積層された状態に貼り合わされた形状のものを用いることができる。
各ポリマー成分の組合せとしては、相溶性、溶融粘度、また特定の溶剤に対する溶解性等の相対的バランスを考慮して選択される。例えば、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル系ポリマー、ポリエチレン、ポリプロピレン等のポリオレフィン系ポリマー、ナイロン6、ナイロン66、ナイロン12等のポリアミド系ポリマー、ポリスチレン系ポリマー、ポリビニルアルコール系ポリマー、エチレン−ビニルアルコール系共重合体ポリマー、あるいはこれらに第三成分を共重合もしくはブレンドしたものから選択され、組み合わされる。具体的な例としては、ポリアミド/ポリエステル、エチレン−ビニルアルコール系共重合体/ポリエステル、ポリエステル/ポリオレフィン、ポリアミド/ポリオレフィン、ポリアミド/ポリスチレン、ポリエステル/変性ポリエステル(例えば、アルカリ可溶性であるナトリウムスルホイソフタル酸共重合ポリエステル等)、ポリビニルアルコール/他の熱可塑性ポリマー等が挙げられる。
【0010】
また、海島型複合繊維としては、例えば図1の(e)〜(f)に示すように断面において2またはそれ以上の成分が海成分と島成分を構成している。これらの繊維は水あるいは特定の有機溶剤等に溶解するポリマーを一般には海成分とし、同溶剤等に溶解しないポリマーを島成分として、複合繊維から溶解成分を溶解除去して島成分により極細繊維を形成させるものであり、ポリアミド/ポリスチレン、ポリエステル/各種アルカリ可溶変性ポリエステル、熱可塑性ポリビニルアルコール/他の熱可塑性ポリマー等の組合せが選択される。
【0011】
上記の複合繊維より得られる極細繊維の単繊維繊度は、既に述べたように耐水性と通気性を兼備した製品を得るため、0.05〜0.9dtexであることが重要である。0.05dtex未満では得られる耐水性不織シートの密度が高くなりすぎて通気性が損なわれる。一方、0.9dtexを超えると十分な耐水性が得られない。後述するバインダー樹脂の付与と組み合わせて、望ましい耐水性と通気性を容易に設定可能な点から繊度は0.1〜0.5dtexが好ましい。
【0012】
本発明の耐水性不織シートは、上記したような極細繊維を含むものであるが、優れた耐水性および柔軟性を得る観点から極細繊維を80%以上含むことが好ましく、極細繊維100%から構成されていることが特に好ましい。なお、本発明に用いる極細繊維以外の他の繊維としては、特に限定されず、種々の合成繊維、天然繊維を用いることができる。
【0013】
本発明の耐水性不織シートは、前記複合繊維を含むウエブに対して、高圧水流等の高圧流体にて噴射処理するかニードルパンチ等の機械的処理によって該複合繊維を分割極細化するとともに絡合させることによって準備することができる。この場合、ウエブは乾式法、湿式法により準備できるが、繊度が極端に小さいときは湿式法が好ましい。しかしながら、一般には、前記複合繊維からなるランダムウエブ、カードウエブを必要に応じて積層し、これに高圧流体処理やニードルパンチ処理を行うことによって、繊維を絡合すると同時に複合繊維を構成する各成分を分割し極細繊維化を行うのが効率的である。なお、溶解成分の除去により極細繊維を形成する海島型複合繊維を使用する場合には、該複合繊維をウエブとし絡合処理した後、水、溶剤等による溶解成分の抽出を行ってもよい。
【0014】
特に本発明においては、高圧水流による交絡処理を採用することが好ましい。この方法は、一般に分割型複合繊維を絡ませると同時に該複合繊維から極細繊維を分割形成するのに十分なエネルギーを与え易いからである。通常、メッシュ上に支持されたウエブに対して数回(数段)にわたり水流を噴射して繊維を絡合するが、その水流の圧力等の条件は、ウエブの目付、厚さに応じて適宜設定すればよく、特に水圧20〜200kg/cmの範囲が好ましい。また、水流絡合処理はウエブの両面に少なくとも2段以上の水流処理を行ってもよい。この場合の条件についても、繊維の交絡の程度、分割の度合により決定すればよい。さらに、水流噴射ノズルの形状、配列数も目的とする見掛け密度、厚さあるいは交絡度合に応じて選択すればよい。
【0015】
本発明においては、極細繊維が一定の交絡状態を形成し、かつ適度な緻密性を有していることが望ましい。より良好な柔軟性を維持するためには、不織布原反の厚さ0.25〜0.50mm、見掛け密度0.15〜0.30g/cmとなるよう構成することが好ましい。さらに本発明では、該不織布に付与されるバインダー樹脂の付着量・付着状態との兼ね合いによって、好ましい耐水性、通気性およびドレープ性を兼ね備えた最終製品とするものであるが、0.15g/cm未満、厚さが0.25mm未満では繊維同士の緻密な重なりが少なく、十分な耐水性が奏されない場合がある。
一方、見掛け密度が0.30g/cmを超えたり、厚さが0.50mmを超えると通気性を満足しなくなる可能性があり、ドレープ性、着用性の低下を招く場合がある。
【0016】
一般に不織布の見掛け密度を高くし、さらに構成繊維の交絡度を大きくすると耐水性は得られるが、逆に通気性が損なわれ、製品が硬くなりドレープ性に欠ける問題が生じ、交絡処理により繊維が脆化してリント発生の原因となることがある。
しかしながら、本発明の耐水性不織シートは、見掛け密度、交絡度等を若干低く抑え、該シートに付与するバインダー樹脂によって繊維を固定すると共に耐水性を補助し、通気性を維持させつつリントフリー性を発揮させることができる。
【0017】
本発明では、前記のようにして得た不織布に対して、バインダー樹脂を付与し、前記シートを構成する繊維の絡合構造内に存在させることによって、最終製品の目的とする耐水性、通気性、ドレープ性、リントフリー性を満足させるものである。用いられるバインダー樹脂としては、ポリウレタン、アクリル、アクリル酸エステル、ポリビニルアルコール、酢酸ビニル−ブタジエンゴム、エチレン−酢酸ビニル系共重合体、オレフィン系樹脂等等が挙げられるが、中でもポリウレタン、アクリル酸エステル樹脂が好ましい。
不織布に対する樹脂の付着量は2〜30g/mが好ましく、より好ましくは5〜20g/mである。付着量が2g/m未満では、耐水圧の向上効果に劣り、さらにはリントフリー効果、形態安定性等に劣る。また、付着量が30g/mを超えると、製品が硬くなってしまいドレープ性が阻害され、通気性が極端に低下し好ましくない。
【0018】
該バインダー樹脂は、水性エマルジョンまたは溶剤溶液の状態で準備されるが、不織布に対する付着量を抑え、特に不織布内部への多量の浸透を抑えるために、プリント法、パッド法、スプレー(シャワー)方式、ローラータッチ方式等の方法により行うことが望ましい。またバインダー樹脂の付着状態は、厚み方向に均一に付着していても良いが、不織シートの断面において表面側(両面の場合は双方の表面側)に偏在する方が、柔軟性、ドレープ性に富み、また表面摩擦強度を高めることができる。このような付着状態を制御するために、処理方法および乾燥条件により樹脂の移動状態を制御して形成する必要があるが、このような点からパッド法、プリント法が特に好ましい。
また、本発明においてはバインダー樹脂を付着させるため、この樹脂に着色剤等を混合して耐水性不織シートを同時に着色することができるというメリットも有する。例えば、メディカルガウン、シーツ等に用いる場合には、血液に対してマスキングとなる濃青色や緑色に着色すればよい。
【0019】
本発明の耐水性不織シートは、優れた耐水性、通気性を維持しながら柔軟性、形態安定性を有するという点から、該シートを構成する極細繊維が適度に交絡していることが重要である。本発明においては、かかる交絡度の指標として、平均ポアサイズを用いることができ、上記した目的を達成するためには、該シートの平均ポアサイズが15〜50μmであることが極めて重要である。平均ポアサイズが15μm未満であると、耐水性不織シートの通気度や柔軟性が維持できない。一方、平均ポアサイズが50μmを超えると、耐水性が劣るものとなってしまう。より優れた耐水性、通気性を維持する観点から平均ポアサイズは22〜45μmが好ましく、25〜45μmが特に好ましい。
【0020】
本発明の耐水性不織シートは、上記バインダー樹脂の付着に加えて、撥水剤処理を施してもよい。かかる撥水剤としてはフッ素系撥水剤、シリコン系撥水剤等が使用され、その付与方法は、浸漬法、塗布法、スプレー法等が採用可能であり、その付着量は0.3〜8g/mが好ましい。
また、帯電防止剤、難燃剤、柔軟剤、その他目的に応じた加工剤等を必要に応じバインダー樹脂加工時や撥水処理加工時に併用して付与してもよい。
【0021】
本発明の耐水性不織シートは、耐水圧150mmHO以上が好ましく、より好ましくは200〜500mmHOとすることで、耐水性とともに撥水性を備え、バクテリアバリア性も満足させる。また、該耐水性不織シートは15cm/cm・sec以上、好ましくは30〜100cm/cm・secの通気性を有するのが好ましい。また、本発明の耐水性不織シートは、メディカルガウン等とした際の着用時における快適性、あるいはドレープとした際に被覆対象物への追従性などの点から剛軟度は20〜120gが好ましく、より好ましくは30〜100gであり、さらに好ましくは40〜70gである。
【0022】
本発明の耐水性不織シートは、優れた耐水性、柔軟性を有することから、メディカル用途向けのディスポーザブル製品、特に手術用ガウン、ドレープ、シーツ、覆布等の用途として有用である。
【0023】
【実施例】
以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、本実施例における各物性値は、以下の方法により測定した。
【0024】
(目付)
30cm角に切り出した試料を4枚重ねて質量を測定し、1枚あたりの目付(g/m)を求めた。
【0025】
(厚み)
MITUTOYOデジタル測圧器(大栄科学精器製作所製)を用い、12g/cmの荷重下で測定した。30cm角に切り出した試料を4枚重ね、任意の4個所について測定した厚みの平均値を1/4にすることにより試料1枚相当の厚み(mm)を算出した。
【0026】
(見掛け密度)
目付を厚みで割った値を見掛け密度(g/cm)とした。
【0027】
(平均ポアサイズ)
Capillary Flow Porometer/Model No.:CFP−34RTE8A−3−6−L4(Porous Material inc.社製)を用いて以下の条件で評価した。
試料測定部位;φ12.7mm
試験方法;WetUp−DryUpモード、パラメータ/標準、試液/POROFIL(16.5dynes/cm)、濡らし時間30分
試料は、シートの任意の10箇所よりφ30mmのサイズに切り出し、これらの測定値の平均値を平均ポアサイズとした。
【0028】
(耐水圧)
JIS L1092A法(低水圧法)の静水圧法に準じて測定した。15cm角に切り出した試料4枚を耐水面に水が当たるように装置に取り付け、加圧速度60cm/分で加圧し、試料上に3個所水滴が出現した点での水位を測定した。
【0029】
(通気度)
JIS L1096フラジール法に準じて測定した。
【0030】
(剛軟度)
JIS L1096ハンドルオメータ法に準じて測定した。
試料として、タテ21.5cm×ヨコ15cmの大きさに切り出したものを3枚採取し、スロット巾15.7mmに設定した試験機で試料のヨコ方向に平行な方向で試料中央部に荷重をかけ測定した。各試料ごとに、同一位置で表裏3回ずつ計6回測定し、その平均値を評価値とした。3枚の試料の評価値を平均し、剛軟度とした。
【0031】
実施例1
ナイロン6とポリエチレンテレフタレートが図1の(c)のように交互に層状積層された断面形状を有する分割型複合繊維(クラレ社製「WRAMP」、3.8dtex×51mm)からなる目付60g/mのカードウエブを準備し、次いで水流絡合処理を行って該複合繊維を各成分に分割するとともに繊維を交絡させ、不織布を製造した。該不織布を構成する極細繊維は、繊度0.3dtexの極細繊維であり、該不織布の見掛け密度は0.15g/cm、厚さは0.41mmであった。
なお、水流絡合処理の条件は以下の条件とした。
噴射ノズル:孔径0.10mm、配列間隔0.6mm、列数1
1回目:表面2段処理(水圧:20〜60kg/cm
2回目:裏面3段処理(水圧:40〜150kg/cm
3回目:表面2段処理(水圧:40〜150kg/cm
次に、得られた不織布に対して、エマルジョン型アクリル酸エステル樹脂(日本カーバイド社製「ニカゾール」;固形分50質量%)をパッド法により付着量が10g/mになるように塗布し、乾燥後、さらにフッ素系撥水剤(明成化学工業社製「アサヒガード」;固形分18質量%)をパッド法により付着量が1.5g/mとなるように塗布後、乾燥して耐水性不織シートを得た。
【0032】
実施例2
ポリエチレンテレフタレートとナイロン6が図1の(a)に示されるように8分割された複合繊維(3.8dtex×51mm)からなる目付70g/mのランダムウエブを作製し、水流絡合処理を行って該複合繊維を各成分に分割するとともに繊維を交絡させ不織布を得た。該不織布を構成する極細繊維は平均0.48dtexの極細繊維であり、該不織布の見掛け密度は0.15g/cm、厚さは0.46mmであった。
なお、水流絡合処理は実施例1と同様の条件にて行った。
次に得られた不織布に対して、ポリウレタン溶液(大日本インキ化学工業社製「ハイドラン」;固形分50質量%)を不織布の両面にパッド法により付着量が6g/mになるように塗布し、乾燥後、さらにフッ素系撥水剤(明成化学工業社製「アサヒガード」;固形分18質量%)をスプレー法により付着量が2g/mになるように塗布後、乾燥して耐水性不織シートを得た。
【0033】
実施例3
海島比率が50/50であり、熱可塑性ポリビニルアルコールを海成分としポリエチレンテレフタレートを島成分とする島数24の海島型複合繊維(4.7dtex×51mm)からなる目付130g/mのカードウエブを準備し、水流絡合処理を行って繊維を交絡させ、不織布を得た。次いで、これを熱水にて10分間処理し、ポリビニルアルコールを溶解除去した。さらに、再度水流絡合処理を行い、乾燥させた。
該不織布を構成する複合繊維の島成分から形成された繊維は平均0.1dtexのポリエチレンテレフタレートの極細繊維であり、該不織布の見掛け密度は0.2g/cm、厚さは0.33mmであった。
なお、水流絡合処理の条件は以下の条件とした。
噴射ノズル:孔径0.10mm、配列間隔0.6mm、列数1
1回目:表面2段処理(水圧:30〜80kg/cm
2回目:裏面3段処理(水圧:60〜170kg/cm
3回目:表面2段処理(水圧:60〜170kg/cm
噴射ノズル:孔径0.08mm、配列間隔0.6mm、列数1
4回目:表面2段処理(水圧:40〜80kg/cm
5回目:裏面2段処理(水圧:40〜80kg/cm
得られた不織布に対して、実施例1と同様にバインダー樹脂付与および撥水処理を行ってバインダー樹脂付着量が3g/m、撥水剤付着量が1g/mである耐水性不織シートを得た。
【0034】
実施例4
エチレン−ビニルアルコール系共重合体およびポリエチレンテレフタレートからなり、図1の(c)に示した断面形状を有する分割型複合繊維(3.8dtex×51mm)を用いて、実施例1と同様に処理して不織布を準備した。得られた不織布は、目付70g/mであり、該不織布を構成する極細繊維は平均0.35dtexの極細繊維であった。また、該不織布の見掛け密度は0.16g/cm、厚さは0.43mmであった。
得られた不織布に対して、実施例1と同様にバインダー樹脂付与および撥水処理を行ってバインダー樹脂付着量が4g/m、撥水剤付着量が1.3g/mである耐水性不織シートを得た。
【0035】
比較例1
実施例1で得られた不織布にアクリル酸エステル樹脂付与および撥水剤処理を施さずに耐水性不織シートを得た。
【0036】
比較例2
ポリエチレンテレフタレート繊維(1.4dtex×38mm)を用いてウエブを準備し、実施例1と同様にして不織布(見掛け密度0.11g/cm、厚さ0.63mm)を製造し、次いで実施例1と同様にバインダー樹脂付与および撥水加工して耐水性不織シートを得た。
【0037】
比較例3
海島比率が50/50であり、熱可塑性ポリビニルアルコールを海成分としポリエチレンテレフタレートを島成分とする島数37の図1の(e)に示されるタイプの海島型複合繊維(3.3dtex×51mm)からなる目付130g/mのカードウエブを準備し、実施例3と同様に処理して不織布(平均繊度0.04dtex、見掛け密度0.31g/cm、厚さ0.21mm)を製造し、次いで実施例1と同様にバインダー樹脂付与および撥水加工して耐水性不織シートを得た。
【0038】
上記実施例および比較例で得られた耐水性不織シートの詳細を表1に示す。
【0039】
【表1】

Figure 2004323987
【0040】
【発明の効果】
本発明により、従来併せもつことが困難であった耐水性、通気性と撥水性および柔軟性、ドレープ性、良好な着用性を有し、手術用ガウン、ドレープ、シーツ、覆布等のメディカル用のディスポーザブル用途に適した耐水性不織シートを得ることができる。
【0041】
【図面の簡単な説明】
【図1】本発明に用いることのできる分割型複合繊維の一例を示す断面模式図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water-resistant nonwoven sheet, and more particularly, to a water-resistant nonwoven sheet having excellent water resistance and breathability, and excellent drape and water repellency. The water-resistant nonwoven sheet of the present invention is particularly useful for medical applications.
[0002]
[Prior art]
BACKGROUND ART Conventionally, various nonwoven fabrics have been proposed as nonwoven fabrics used for disposable products for medical applications such as surgical gowns, drapes, sheets, and cloths. For example, there has been proposed a laminated nonwoven fabric in which a staple fiber web made of synthetic fibers such as polyester and a pulp sheet are laminated and entangled by hydroentanglement (see Patent Document 1).
Also, a laminated nonwoven fabric in which a polyester spunbond nonwoven fabric and a cellulose short fiber web are laminated and entangled by hydroentanglement has been proposed (see Patent Document 2).
However, although the former laminated nonwoven fabric has a certain degree of water resistance, it has poor air permeability and lacks drape properties in a paper-like manner, so it is not comfortable to wear, and there is a problem that fiber waste (lint) occurs and falls off. there were.
In addition, although the latter laminated nonwoven fabric has improved air permeability and improved lint generation, it is generally difficult to obtain a high-density entangled state due to the thick cellulose fiber, sufficient water resistance cannot be obtained, and Also, the wear resistance was not satisfactory.
[0003]
In addition, the average fiber diameter produced by the melt blown method is laminated with a microfiber nonwoven fabric of several μm or less and a long-fiber nonwoven fabric obtained by a spunbond method, integrated by heat bonding, etc. A laminated nonwoven fabric partially melted has been proposed (see Patent Document 3).
However, it has been pointed out that such a laminated nonwoven fabric has a remarkable lack of air permeability and is inferior in flexibility and drapability, so that a good wearing feeling cannot be obtained.
In order to solve the above problems, a laminated nonwoven fabric including a melt-blown nonwoven fabric having a specific fiber diameter and a porosity has been proposed (see Patent Document 4). However, such a laminated nonwoven fabric still has improved flexibility and drapability. It did not give a good wearing feeling. In addition, a problem has been pointed out that the laminated nonwoven fabric peels off during use.
[0004]
On the other hand, an attempt has been made to obtain a nonwoven fabric having water resistance by subjecting a web composed of splittable conjugate fibers to high-pressure water-flow treatment and densely entangled the divided ultrafine fibers. A web composed of composite fibers is subjected to high-pressure water flow treatment, a polyolefin-based spunbond nonwoven fabric is laminated on one surface of the ultrafine fiber layer, and after entanglement of both by water entanglement, a part of the components of the ultrafine fiber is further pressed by hot pressing. A water-repellent nonwoven fabric formed into a fine film has been proposed (see Patent Document 5).
However, such nonwoven fabrics are intended to have ultrafine fibers present at a high density and to exhibit water resistance by this layer and a layer formed into a partly fine film. This tends to impair the air permeability of the nonwoven fabric, and it is not easy to sufficiently satisfy both the water resistance and the air permeability. Further, such a nonwoven fabric has poor flexibility and is not suitable for a field requiring drapeability.
At present, a water-resistant nonwoven sheet which sufficiently satisfies the conflicting properties of water resistance and air permeability and has excellent drapability has not yet been proposed.
[0005]
[Patent Document 1]
JP-A-59-94659 [Patent Document 2]
JP-A-4-333652 [Patent Document 3]
JP-A-6-128852 [Patent Document 4]
Japanese Patent Application Laid-Open No. H11-247061 [Patent Document 5]
JP-A-11-247058
[Problems to be solved by the invention]
An object of the present invention is to provide a combination of water resistance, air permeability, and water repellency, excellent in flexibility and drapability, which have conventionally been difficult to achieve compatibility, and for medical gowns such as surgical gowns, drapes, sheets, and cloths. An object of the present invention is to provide a water-resistant nonwoven sheet suitable for disposable products.
[0007]
[Means for Solving the Problems]
That is, the present invention is a water-resistant nonwoven sheet comprising a nonwoven fabric containing ultrafine fibers having a fineness of 0.05 to 0.9 dtex, and a binder resin adhered to the nonwoven fabric. A water-resistant nonwoven sheet having an average pore size of 15 to 50 µm.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The water-resistant nonwoven fabric sheet of the present invention is composed of a nonwoven fabric containing fine fibers having a fineness of 0.05 to 0.9 dtex, and is characterized in that a binder resin is attached to the nonwoven fabric. Thus, a water-resistant nonwoven fabric sheet having both water resistance and air permeability and having excellent drapability can be obtained.
As the ultrafine fiber, a straight-spun fiber or a splittable conjugate fiber in which two or more polymer components are compounded in a fiber cross section is divided into components by high-pressure fluid treatment such as water flow, abrasion, beating, kneading treatment, or the like. Alternatively, an ultrafine fiber obtained by dissolving and removing one component of a sea-island type composite fiber arranged in a sea-island shape can be used. Among them, in the present invention, it is preferable to use splittable composite fibers because a nonwoven fabric entangled with high density can be obtained.
[0009]
As the cross-sectional shape of the splittable conjugate fiber that can form the ultrafine fiber, for example, as shown in FIG. 1A to FIG. It is possible to use one having a shape that is laminated in a state of being sequentially laminated.
The combination of each polymer component is selected in consideration of the relative balance of compatibility, melt viscosity, solubility in a specific solvent, and the like. For example, polyester polymers such as polyethylene terephthalate and polybutylene terephthalate, polyolefin polymers such as polyethylene and polypropylene, polyamide polymers such as nylon 6, nylon 66, and nylon 12, polystyrene polymers, polyvinyl alcohol polymers, and ethylene-vinyl alcohol It is selected from a system-based copolymer polymer, or a copolymer or blend of these with a third component, and is combined. Specific examples include polyamide / polyester, ethylene-vinyl alcohol copolymer / polyester, polyester / polyolefin, polyamide / polyolefin, polyamide / polystyrene, polyester / modified polyester (for example, alkali-soluble sodium sulfoisophthalic acid copolymer). Polymerized polyester), polyvinyl alcohol / other thermoplastic polymers, and the like.
[0010]
Further, as the sea-island composite fiber, for example, as shown in FIGS. 1E to 1F, two or more components constitute a sea component and an island component in a cross section. These fibers are generally made of a polymer that is soluble in water or a specific organic solvent, etc., as a sea component, and a polymer that is not soluble in the same solvent, etc., as an island component. A combination of polyamide / polystyrene, polyester / various alkali-soluble modified polyester, thermoplastic polyvinyl alcohol / other thermoplastic polymer, etc. is selected.
[0011]
It is important that the fineness of the single fiber of the ultrafine fiber obtained from the conjugate fiber is 0.05 to 0.9 dtex in order to obtain a product having both water resistance and air permeability as described above. If it is less than 0.05 dtex, the density of the obtained water-resistant nonwoven sheet becomes too high, and the air permeability is impaired. On the other hand, if it exceeds 0.9 dtex, sufficient water resistance cannot be obtained. The fineness is preferably 0.1 to 0.5 dtex from the viewpoint that desirable water resistance and air permeability can be easily set in combination with the application of a binder resin described later.
[0012]
The water-resistant nonwoven sheet of the present invention contains the fine fibers as described above, and preferably contains 80% or more of the fine fibers from the viewpoint of obtaining excellent water resistance and flexibility, and is composed of 100% of the fine fibers. Is particularly preferred. The fibers other than the ultrafine fibers used in the present invention are not particularly limited, and various synthetic fibers and natural fibers can be used.
[0013]
The water-resistant nonwoven sheet of the present invention is obtained by jetting a web containing the composite fiber with a high-pressure fluid such as a high-pressure water stream, or by mechanically processing the needle with a needle punch or the like to split the composite fiber into ultrafine and entangle. Can be prepared by combining them. In this case, the web can be prepared by a dry method or a wet method, but when the fineness is extremely small, the wet method is preferable. However, in general, a random web and a card web made of the above-mentioned conjugate fiber are laminated as necessary, and a high-pressure fluid treatment or a needle punching treatment is performed on this, thereby entanglement of the fiber and simultaneous formation of each component constituting the conjugate fiber. It is efficient to divide the fibers into ultrafine fibers. When sea-island composite fibers that form ultrafine fibers by removing dissolved components are used, the composite fibers may be entangled with a web, and then the dissolved components may be extracted with water, a solvent, or the like.
[0014]
In particular, in the present invention, it is preferable to employ a confounding treatment using a high-pressure water flow. This method is because, generally, it is easy to entangle the splittable conjugate fiber and at the same time to apply sufficient energy to split and form the ultrafine fiber from the conjugate fiber. Usually, a water flow is jetted several times (several stages) to the web supported on the mesh to entangle the fibers. Conditions such as the pressure of the water flow are appropriately determined according to the basis weight and thickness of the web. The pressure may be set, and a water pressure in the range of 20 to 200 kg / cm 2 is particularly preferable. In addition, the water entanglement treatment may be carried out on at least two stages of water treatment on both sides of the web. The conditions in this case may also be determined based on the degree of fiber entanglement and the degree of division. Furthermore, the shape and the number of arrangements of the water jet nozzles may be selected according to the target apparent density, thickness, or degree of confounding.
[0015]
In the present invention, it is desirable that the ultrafine fibers form a certain entangled state and have an appropriate denseness. In order to maintain better flexibility, it is preferable that the raw nonwoven fabric has a thickness of 0.25 to 0.50 mm and an apparent density of 0.15 to 0.30 g / cm 3 . Further, in the present invention, a final product having preferable water resistance, air permeability and drapability is obtained by taking into account the amount and state of adhesion of the binder resin applied to the nonwoven fabric. When the thickness is less than 3 and the thickness is less than 0.25 mm, the fibers do not have a dense overlap, and sufficient water resistance may not be exhibited.
On the other hand, if the apparent density exceeds 0.30 g / cm 3 or the thickness exceeds 0.50 mm, there is a possibility that the air permeability may not be satisfied, and drapeability and wearability may be reduced.
[0016]
In general, increasing the apparent density of the nonwoven fabric and increasing the degree of entanglement of the constituent fibers provide water resistance, but on the other hand, the air permeability is impaired, the product becomes hard and the drape property is lacking. It may become brittle and cause lint.
However, the water-resistant nonwoven sheet of the present invention has a slightly lower apparent density, degree of entanglement, etc., fixes fibers with a binder resin applied to the sheet, assists water resistance, and maintains lint-free while maintaining air permeability. Ability can be exhibited.
[0017]
In the present invention, a binder resin is applied to the nonwoven fabric obtained as described above, and the nonwoven fabric is present in the entangled structure of the fibers constituting the sheet. , Drape property and lint-free property are satisfied. Examples of the binder resin used include polyurethane, acrylic, acrylate, polyvinyl alcohol, vinyl acetate-butadiene rubber, ethylene-vinyl acetate copolymer, olefin resin, and the like. Among them, polyurethane, acrylate resin Is preferred.
The amount of the resin adhered to the nonwoven fabric is preferably 2 to 30 g / m 2 , and more preferably 5 to 20 g / m 2 . When the amount of adhesion is less than 2 g / m 2 , the effect of improving the water pressure resistance is poor, and further, the lint-free effect, shape stability, and the like are poor. On the other hand, if the amount exceeds 30 g / m 2 , the product becomes hard and the drape property is impaired.
[0018]
The binder resin is prepared in the form of an aqueous emulsion or a solvent solution. In order to suppress the amount of adhesion to the nonwoven fabric, and particularly to suppress a large amount of penetration into the inside of the nonwoven fabric, a printing method, a pad method, a spray (shower) method, It is desirable to carry out by a method such as a roller touch method. Although the binder resin may be attached uniformly in the thickness direction, it is more flexible and drapeable to be unevenly distributed on the surface side (in the case of both sides, both surface sides) in the cross section of the nonwoven sheet. And the surface frictional strength can be increased. In order to control such an adhered state, it is necessary to form the resin by controlling the moving state of the resin according to a processing method and drying conditions. From such a point, the pad method and the printing method are particularly preferable.
Further, in the present invention, since a binder resin is adhered, there is also an advantage that a colorant or the like is mixed with the resin so that the water-resistant nonwoven sheet can be colored simultaneously. For example, when used for medical gowns, sheets, and the like, it may be colored deep blue or green, which is a masking of blood.
[0019]
Since the water-resistant nonwoven sheet of the present invention has excellent water resistance, flexibility, and form stability while maintaining excellent air permeability, it is important that the ultrafine fibers constituting the sheet are appropriately entangled. It is. In the present invention, the average pore size can be used as an index of the degree of confounding, and in order to achieve the above-mentioned object, it is extremely important that the average pore size of the sheet is 15 to 50 μm. If the average pore size is less than 15 μm, the water-resistant nonwoven sheet cannot maintain air permeability and flexibility. On the other hand, if the average pore size exceeds 50 μm, the water resistance becomes poor. From the viewpoint of maintaining better water resistance and air permeability, the average pore size is preferably from 22 to 45 µm, and particularly preferably from 25 to 45 µm.
[0020]
The water-resistant nonwoven sheet of the present invention may be subjected to a water repellent treatment in addition to the adhesion of the binder resin. As such a water repellent, a fluorine-based water repellent, a silicon-based water repellent, or the like is used, and as a method for applying the water repellent, an immersion method, a coating method, a spray method, or the like can be adopted, and the adhesion amount is 0.3 to 8 g / m 2 is preferred.
Further, an antistatic agent, a flame retardant, a softener, a processing agent for other purposes, or the like may be added in combination with a binder resin or a water-repellent treatment as required.
[0021]
Waterproof nonwoven sheet of the present invention, the water pressure 150mmH 2 O or more, more preferably by a 200~500mmH 2 O, with a water-repellent with water-resistant, bacterial barrier properties also satisfy. Further, it is preferable that the water-resistant nonwoven sheet has a gas permeability of 15 cm 3 / cm 2 · sec or more, preferably 30 to 100 cm 3 / cm 2 · sec. In addition, the water-resistant nonwoven sheet of the present invention has a softness of 20 to 120 g from the viewpoint of comfort when worn when used as a medical gown or the like, or compliance with an object to be coated when used as a drape. Preferably, it is 30-100 g, more preferably, 40-70 g.
[0022]
Since the water-resistant nonwoven sheet of the present invention has excellent water resistance and flexibility, it is useful as a disposable product for medical use, particularly as a surgical gown, drape, sheet, covering cloth and the like.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. In addition, each physical property value in this example was measured by the following method.
[0024]
(Weight)
Four samples cut into 30 cm squares were stacked and the mass was measured to determine the basis weight (g / m 2 ) per sheet.
[0025]
(Thickness)
The measurement was performed under a load of 12 g / cm 2 using a MITUTOYO digital pressure gauge (manufactured by Daiei Kagaku Seiki Seisakusho). Four samples cut into 30 cm squares were stacked, and the thickness (mm) equivalent to one sample was calculated by reducing the average value of the thickness measured at any four locations to 1/4.
[0026]
(Apparent density)
The value obtained by dividing the basis weight by the thickness was defined as an apparent density (g / cm 3 ).
[0027]
(Average pore size)
Capillary Flow Porometer / Model No. : Evaluated under the following conditions using CFP-34RTE8A-3-6-L4 (manufactured by Porous Material Inc.).
Sample measurement site; φ12.7mm
Test method: WetUp-DryUp mode, parameter / standard, reagent solution / POROFIL (16.5 dynes / cm), wetting time 30 minutes The sample is cut out into a size of φ30 mm from any 10 places on the sheet, and the average value of these measured values Was taken as the average pore size.
[0028]
(Water pressure resistance)
It measured according to the hydrostatic method of JIS L1092A method (low water pressure method). Four samples cut into 15 cm squares were attached to the apparatus so that water was applied to the water-resistant surface, pressurized at a pressurizing speed of 60 cm / min, and the water level at the point where three water droplets appeared on the sample was measured.
[0029]
(Air permeability)
It was measured according to JIS L1096 Frazier method.
[0030]
(Rigidity)
The measurement was performed according to JIS L1096 handle ometer method.
As a sample, three pieces cut out to a size of 21.5 cm (length) × 15 cm (width) are sampled, and a load is applied to the center of the sample in a direction parallel to the width direction of the sample using a testing machine set to a slot width of 15.7 mm. It was measured. For each sample, three measurements were made at the same position, three times on the front and back, a total of six times, and the average value was used as the evaluation value. The evaluation values of the three samples were averaged to obtain a bending resistance.
[0031]
Example 1
As shown in FIG. 1 (c), nylon 6 and polyethylene terephthalate have a sectional weight of 60 g / m 2 made of a splittable conjugate fiber (“WRAMP” manufactured by Kuraray Co., Ltd., 3.8 dtex × 51 mm) having a sectional shape alternately layered. Was prepared and then subjected to a hydroentanglement treatment to divide the conjugate fiber into components and entangle the fibers to produce a nonwoven fabric. The ultrafine fibers constituting the nonwoven fabric were ultrafine fibers having a fineness of 0.3 dtex, and the apparent density of the nonwoven fabric was 0.15 g / cm 3 and the thickness was 0.41 mm.
The conditions of the water entanglement treatment were as follows.
Injection nozzle: hole diameter 0.10mm, arrangement interval 0.6mm, number of rows 1
First time: Two-step surface treatment (water pressure: 20 to 60 kg / cm 2 )
2nd time: back surface three-stage treatment (water pressure: 40 to 150 kg / cm 2 )
Third time: surface two-step treatment (water pressure: 40 to 150 kg / cm 2 )
Next, an emulsion type acrylate resin (“Nicazole” manufactured by Nippon Carbide Co., Ltd .; solid content: 50% by mass) is applied to the obtained nonwoven fabric by a pad method so that the adhesion amount becomes 10 g / m 2 . after drying, a fluorine-based water-repellent agent; after coating the (manufactured by Meisei chemical Works, Ltd. "Asahi guard" solids 18 wt%) so that the amount deposited by the pad method is 1.5 g / m 2, and dried to water A nonwoven sheet was obtained.
[0032]
Example 2
As shown in FIG. 1A, a random web having a basis weight of 70 g / m 2 made of a composite fiber (3.8 dtex × 51 mm) obtained by dividing polyethylene terephthalate and nylon 6 into eight as shown in FIG. Thus, the conjugate fiber was divided into each component and the fibers were entangled to obtain a nonwoven fabric. The ultrafine fibers constituting the nonwoven fabric were ultrafine fibers having an average of 0.48 dtex, and the apparent density of the nonwoven fabric was 0.15 g / cm 3 and the thickness was 0.46 mm.
The water entanglement process was performed under the same conditions as in Example 1.
Relative Next, the resulting nonwoven fabric, polyurethane solution; applying (Dainippon Ink and Chemicals, Inc. "HYDRAN" solids 50 wt%) so that the amount deposited by the pad method on both surfaces of the nonwoven fabric is 6 g / m 2 and, after drying, a fluorine-based water-repellent agent; after coating the (manufactured by Meisei chemical Works, Ltd. "Asahi guard" solids 18 wt%) so that the amount deposited by the spray method is 2 g / m 2, and dried to water A nonwoven sheet was obtained.
[0033]
Example 3
Island ratio is 50/50, the card web having a basis weight 130 g / m 2 made of sea-island type composite fiber of the island number 24 to the polyethylene terephthalate with the island component was a thermoplastic polyvinyl alcohol with sea component (4.7dtex × 51mm) The fiber was entangled by preparing and performing a water entanglement treatment to obtain a nonwoven fabric. Next, this was treated with hot water for 10 minutes to dissolve and remove polyvinyl alcohol. Furthermore, a water entanglement process was performed again, and it was made to dry.
The fibers formed from the island components of the conjugate fibers constituting the nonwoven fabric are ultrafine fibers of polyethylene terephthalate having an average of 0.1 dtex, the apparent density of the nonwoven fabric is 0.2 g / cm 3 , and the thickness is 0.33 mm. Was.
The conditions of the water entanglement treatment were as follows.
Injection nozzle: hole diameter 0.10mm, arrangement interval 0.6mm, number of rows 1
First time: surface two-step treatment (water pressure: 30 to 80 kg / cm 2 )
2nd time: back surface three-stage treatment (water pressure: 60 to 170 kg / cm 2 )
Third time: Two-step surface treatment (water pressure: 60 to 170 kg / cm 2 )
Injection nozzle: hole diameter 0.08 mm, arrangement interval 0.6 mm, number of rows 1
4th time: surface two-step treatment (water pressure: 40 to 80 kg / cm 2 )
Fifth: Back surface two-stage treatment (water pressure: 40 to 80 kg / cm 2 )
The obtained nonwoven fabric was subjected to binder resin application and water repellent treatment in the same manner as in Example 1 to obtain a water-resistant nonwoven having a binder resin adhesion amount of 3 g / m 2 and a water repellent agent adhesion amount of 1 g / m 2. I got a sheet.
[0034]
Example 4
Using a splittable conjugate fiber (3.8 dtex × 51 mm) composed of an ethylene-vinyl alcohol copolymer and polyethylene terephthalate and having a cross-sectional shape shown in FIG. To prepare a nonwoven fabric. The obtained nonwoven fabric had a basis weight of 70 g / m 2 , and the ultrafine fibers constituting the nonwoven fabric were ultrafine fibers having an average of 0.35 dtex. The apparent density of the nonwoven fabric was 0.16 g / cm 3 , and the thickness was 0.43 mm.
The obtained nonwoven fabric was subjected to binder resin application and water repellency treatment in the same manner as in Example 1 to obtain a water resistance having a binder resin adhesion amount of 4 g / m 2 and a water repellent agent adhesion amount of 1.3 g / m 2 . A non-woven sheet was obtained.
[0035]
Comparative Example 1
A water-resistant nonwoven sheet was obtained without subjecting the nonwoven fabric obtained in Example 1 to acrylate resin treatment and water-repellent treatment.
[0036]
Comparative Example 2
A web was prepared using polyethylene terephthalate fiber (1.4 dtex × 38 mm), and a nonwoven fabric (apparent density 0.11 g / cm 3 , thickness 0.63 mm) was produced in the same manner as in Example 1. A water-resistant nonwoven sheet was obtained by applying a binder resin and performing a water-repellent treatment in the same manner as in the above.
[0037]
Comparative Example 3
A sea-island type composite fiber (3.3 dtex × 51 mm) of the type shown in FIG. 1 (e) having 37 islands having a sea-island ratio of 50/50 and having thermoplastic polyvinyl alcohol as a sea component and polyethylene terephthalate as an island component has 37 islands. A card web having a basis weight of 130 g / m 2 was prepared and treated in the same manner as in Example 3 to produce a nonwoven fabric (average fineness: 0.04 dtex, apparent density: 0.31 g / cm 3 , thickness: 0.21 mm). Then, a binder resin was applied and water repellent was applied in the same manner as in Example 1 to obtain a water-resistant nonwoven sheet.
[0038]
Table 1 shows details of the water-resistant nonwoven sheets obtained in the above Examples and Comparative Examples.
[0039]
[Table 1]
Figure 2004323987
[0040]
【The invention's effect】
According to the present invention, it has water resistance, air permeability and water repellency and flexibility, drapeability, and good wearability which have been difficult to combine conventionally, and is used for medical use such as surgical gowns, drapes, sheets, and cover cloths. A water-resistant nonwoven sheet suitable for disposable applications can be obtained.
[0041]
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a splittable conjugate fiber that can be used in the present invention.

Claims (8)

繊度が0.05〜0.9dtexの極細繊維を含む不織布からなり、該不織布にはバインダー樹脂が付着してなる耐水性不織シートであって、該耐水性不織シートの平均ポアサイズが15〜50μmであることを特徴とする耐水性不織シート。A water-resistant nonwoven sheet having a fineness of 0.05 to 0.9 dtex and containing a fine resin, and a binder resin adhered to the nonwoven fabric, wherein the average pore size of the water-resistant nonwoven sheet is 15 to A water-resistant nonwoven sheet having a thickness of 50 μm. 該耐水性不織シートの耐水圧が150mmHO以上、通気度が15cm/cm・sec以上である請求項1記載の耐水性不織シート。Resistant water pressure resistance of the aqueous nonwoven sheet 150mmH 2 O or more, water-resistant nonwoven sheet according to claim 1, wherein air permeability is 15cm 3 / cm 2 · sec or more. 該耐水性不織シートの剛軟度が20〜120gである請求項1または2に記載の耐水性不織シート。The water-resistant nonwoven sheet according to claim 1 or 2, wherein the water-resistant nonwoven sheet has a stiffness of 20 to 120 g. 該極細繊維の繊度が0.1〜0.5dtexである請求項1〜3のいずれか1項に記載の耐水性不織シート。The water-resistant nonwoven sheet according to any one of claims 1 to 3, wherein the fineness of the ultrafine fibers is 0.1 to 0.5 dtex. 該バインダー樹脂が2〜30g/m付着してなる請求項1〜4のいずれか1項に記載の耐水性不織シート。The water-resistant nonwoven sheet according to any one of claims 1 to 4, wherein the binder resin has 2 to 30 g / m2 attached thereto. 該耐水性不織シートに撥水剤が付着してなる請求項1〜5のいずれか1項に記載の耐水性不織シート。The water-resistant nonwoven sheet according to any one of claims 1 to 5, wherein a water-repellent agent is attached to the water-resistant nonwoven sheet. 請求項1〜6のいずれか1項に記載の耐水性不織シートを用いてなるメディカルガウン。A medical gown using the water-resistant nonwoven sheet according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載の耐水性不織シートを用いてなるドレープ。A drape using the water-resistant nonwoven sheet according to any one of claims 1 to 6.
JP2003116503A 2003-04-22 2003-04-22 Water resistant non-woven sheet Pending JP2004323987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116503A JP2004323987A (en) 2003-04-22 2003-04-22 Water resistant non-woven sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116503A JP2004323987A (en) 2003-04-22 2003-04-22 Water resistant non-woven sheet

Publications (1)

Publication Number Publication Date
JP2004323987A true JP2004323987A (en) 2004-11-18

Family

ID=33496682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116503A Pending JP2004323987A (en) 2003-04-22 2003-04-22 Water resistant non-woven sheet

Country Status (1)

Country Link
JP (1) JP2004323987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022402A (en) * 2008-07-15 2010-02-04 Achilles Corp Sewing structure for skin-integrated foam forming skin material
CN104674456A (en) * 2015-02-06 2015-06-03 北京大源非织造有限公司 Production method for water-repellent non-woven fabric
CN109629113A (en) * 2018-11-28 2019-04-16 上海工程技术大学 A kind of moisture-inhibiting nano-fiber material of super-hydrophobic waterproof and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369654A (en) * 1989-08-09 1991-03-26 Asahi Chem Ind Co Ltd sheet material
JPH0399790U (en) * 1990-01-30 1991-10-18
JPH04316653A (en) * 1991-04-12 1992-11-09 Mitsubishi Paper Mills Ltd Nonwoven fabric and production thereof
JPH05214650A (en) * 1992-01-31 1993-08-24 Mitsubishi Paper Mills Ltd Hydroentangled non-woven fabric with good texture and its manufacturing method
JPH0768686A (en) * 1993-08-31 1995-03-14 Unitika Ltd Laminated nonwoven structure
JPH07109654A (en) * 1993-10-06 1995-04-25 Mitsubishi Paper Mills Ltd Hydroentangled nonwoven fabric and its manufacturing method
JPH08170263A (en) * 1994-10-20 1996-07-02 Toyobo Co Ltd Nonwoven fabric and its production
JPH10251958A (en) * 1997-03-12 1998-09-22 Chisso Corp Bulky nonwoven fabric
JPH11247061A (en) * 1998-02-27 1999-09-14 Mitsui Chem Inc Nonwoven fabric for medical use
JP2003041471A (en) * 2001-07-25 2003-02-13 Kuraray Co Ltd Thermoplastic polyvinyl alcohol / olefin nonwoven fabric and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369654A (en) * 1989-08-09 1991-03-26 Asahi Chem Ind Co Ltd sheet material
JPH0399790U (en) * 1990-01-30 1991-10-18
JPH04316653A (en) * 1991-04-12 1992-11-09 Mitsubishi Paper Mills Ltd Nonwoven fabric and production thereof
JPH05214650A (en) * 1992-01-31 1993-08-24 Mitsubishi Paper Mills Ltd Hydroentangled non-woven fabric with good texture and its manufacturing method
JPH0768686A (en) * 1993-08-31 1995-03-14 Unitika Ltd Laminated nonwoven structure
JPH07109654A (en) * 1993-10-06 1995-04-25 Mitsubishi Paper Mills Ltd Hydroentangled nonwoven fabric and its manufacturing method
JPH08170263A (en) * 1994-10-20 1996-07-02 Toyobo Co Ltd Nonwoven fabric and its production
JPH10251958A (en) * 1997-03-12 1998-09-22 Chisso Corp Bulky nonwoven fabric
JPH11247061A (en) * 1998-02-27 1999-09-14 Mitsui Chem Inc Nonwoven fabric for medical use
JP2003041471A (en) * 2001-07-25 2003-02-13 Kuraray Co Ltd Thermoplastic polyvinyl alcohol / olefin nonwoven fabric and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022402A (en) * 2008-07-15 2010-02-04 Achilles Corp Sewing structure for skin-integrated foam forming skin material
CN104674456A (en) * 2015-02-06 2015-06-03 北京大源非织造有限公司 Production method for water-repellent non-woven fabric
CN109629113A (en) * 2018-11-28 2019-04-16 上海工程技术大学 A kind of moisture-inhibiting nano-fiber material of super-hydrophobic waterproof and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101087564B1 (en) Stretch laminated sheet
TWI354725B (en) Ultrafine short fiber nonwoven fabric, leather-lik
JP5324403B2 (en) Skin covering sheet for impregnating cosmetics, method for producing the same, and face mask using the same
JP2008526578A (en) Breathable composite sheet
JP4722222B2 (en) Cosmetic sheet and method for producing the same
WO2006016601A1 (en) Skin covering sheet for cosmetic preparation impregnation and process for producing the same, and face mask using said sheet
WO2006089619A1 (en) Cleansing sheets, manufacturing process and use thereof
JP5884733B2 (en) Laminated nonwoven fabric and its products
JP5272130B2 (en) Skin covering sheet for impregnating cosmetics, method for producing the same, and face mask using the same
JP2009225975A (en) Nonwoven fabric for heating implement, and heating implement using the same
JP4721788B2 (en) Laminated nonwoven fabric and method for producing the same
JP2005139594A (en) Non-woven fabric and method for producing the same
JP2001279570A (en) Composite nonwoven fabric and method for producing the same
KR102523950B1 (en) Hydroburied film-based composites
JP2004323987A (en) Water resistant non-woven sheet
JP4109438B2 (en) Surface material and wallpaper and method for producing the same
JP3277046B2 (en) Hydro-entangled non-woven fabric and method for producing the same
JP2007020787A (en) Nonwoven fabric for body warmer, and disposable body warmer
JP3990036B2 (en) Perforated nonwoven fabric
JP3559442B2 (en) Base fabric for patch and production method thereof
JP2003027360A (en) Laminated material of non-woven fabric
JPS6252076B2 (en)
JP2004100068A (en) Bulky composite nonwoven fabric
JP2989249B2 (en) High strength ultrafine fiber nonwoven fabric and method for producing the same
JPH07279020A (en) Entangled nonwoven fabric and adhesive interlining using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909