JP2004323345A - Carbon particles and method for producing the same - Google Patents
Carbon particles and method for producing the same Download PDFInfo
- Publication number
- JP2004323345A JP2004323345A JP2004111315A JP2004111315A JP2004323345A JP 2004323345 A JP2004323345 A JP 2004323345A JP 2004111315 A JP2004111315 A JP 2004111315A JP 2004111315 A JP2004111315 A JP 2004111315A JP 2004323345 A JP2004323345 A JP 2004323345A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- carbon particles
- thin film
- present
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 151
- 239000002245 particle Substances 0.000 title claims abstract description 113
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 101
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000010409 thin film Substances 0.000 claims abstract description 41
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 39
- 239000010439 graphite Substances 0.000 claims abstract description 39
- 229910003472 fullerene Inorganic materials 0.000 claims abstract description 33
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 15
- 239000001257 hydrogen Substances 0.000 claims abstract description 15
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 6
- 239000012298 atmosphere Substances 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 238000010030 laminating Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 10
- 239000002105 nanoparticle Substances 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 24
- 239000003575 carbonaceous material Substances 0.000 description 17
- 239000002994 raw material Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 6
- 238000001237 Raman spectrum Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 150000001721 carbon Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000002717 carbon nanostructure Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
【課題】機能性材料として有用なナノサイズの微細構造を有する新規な炭素粒子およびその製造方法を提供する。
【解決手段】粒子表面にグラファイト薄膜を有する炭素粒子、および、フラーレン類を水素雰囲気で加熱する上記の炭素粒子の製造方法。上記の炭素粒子の好ましい態様において、グラファイト薄膜はグラフェンシート構造が5〜50層積層して形成された薄膜であり、グラファイト薄膜の占有する空間の厚さは10〜1000nmであり、炭素粒子のBET表面積は50〜3000m2/gである。
【選択図】 なしA novel carbon particle having a nano-sized fine structure useful as a functional material and a method for producing the same are provided.
A method of producing carbon particles having a graphite thin film on the particle surface and heating the fullerenes in a hydrogen atmosphere. In a preferred embodiment of the above carbon particles, the graphite thin film is a thin film formed by stacking 5 to 50 graphene sheet structures, the thickness of the space occupied by the graphite thin film is 10 to 1000 nm, and the BET of the carbon particles is surface area is 50~3000m 2 / g.
[Selection diagram] None
Description
本発明は、炭素粒子およびその製造方法に関し、詳しくは、ナノサイズの微細構造を有する新規な炭素粒子およびその製造方法に関する。本発明の炭素粒子は、電界放出ディスプレー、リチウム2次電池のキャパシター等に使用する新規機能性材料として有用である。 The present invention relates to a carbon particle and a method for producing the same, and more particularly, to a novel carbon particle having a nano-sized microstructure and a method for producing the same. The carbon particles of the present invention are useful as novel functional materials used for field emission displays, capacitors of lithium secondary batteries, and the like.
近年、ナノサイズの新規炭素材料として、フラーレン、単層または多層のカーボンナノチューブ、カーボンナノホーンが報告され、更には、カーボンナノウォール(Carbon Nanowalls)も作製され(例えば、非特許文献1及び2参照)、注目を集めている。これらの新規炭素材料は、ナノ構造物質として、新規の電子材料、触媒、光材料などとしての応用が期待されている。 In recent years, fullerenes, single-walled or multi-walled carbon nanotubes, and carbon nanohorns have been reported as new nano-sized carbon materials, and furthermore, carbon nanowalls (Carbon Nanowalls) have also been produced (for example, see Non-Patent Documents 1 and 2). , Has attracted attention. These new carbon materials are expected to be applied as new electronic materials, catalysts, optical materials, etc. as nanostructured materials.
しかしながら、実際には、上記の新規炭素材料で未だ必要な性能が満たされていない分野もあり、更に、新規なナノ構造を有する炭素材料が提供されれば、その適用分野は大きく広がると考えられる。 However, in practice, there are fields where the required performance is not yet satisfied with the above-mentioned new carbon materials, and furthermore, if a carbon material having a new nanostructure is provided, the field of application will be greatly expanded. .
本発明は、上記実情に鑑みなされたものであり、その目的は、機能性材料として有用なナノサイズの微細構造を有する新規な炭素粒子およびその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel carbon particle having a nano-sized fine structure useful as a functional material and a method for producing the same.
本発明者らは、鋭意検討を重ねた結果、特定の条件でフラーレン類を処理することにより、これまで知られていないナノ構造を有する炭素材料が得られるとの知見を得、本発明を完成させた。 The present inventors have conducted intensive studies, and as a result, obtained the knowledge that by treating fullerenes under specific conditions, a carbon material having a nanostructure unknown until now can be obtained, and completed the present invention. I let it.
すなわち、本発明の第1の要旨は、粒子表面にグラファイト薄膜を有することを特徴とする炭素粒子に存し、本発明の第2の要旨は、フラーレン類を水素雰囲気で加熱することを特徴とする上記の炭素粒子の製造方法に存する。 That is, the first gist of the present invention resides in carbon particles having a graphite thin film on the particle surface, and the second gist of the present invention is characterized in that fullerenes are heated in a hydrogen atmosphere. The method for producing carbon particles described above.
本発明によれば、粒子表面を薄片状のグラファイトが被覆した、特異なナノ構造を有する炭素粒子が提供される。また、フラーレン類から、特別な装置を使用せずに簡便な方法により、当該炭素粒子を選択的に製造する方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the carbon particle which has a unique nanostructure which the particle surface coat | covered the flaky graphite is provided. Further, a method for selectively producing the carbon particles from fullerenes by a simple method without using a special device is provided.
以下、本発明を詳細に説明するが、本発明は、以下の実施態様に限定されるものではなく、その要旨の範囲内で種々変更して実施することが出来る。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist.
本発明の炭素粒子は、粒子表面にグラファイト薄膜を有する炭素粒子である。前述のカーボンナノウォールは、マイクロ波プラズマCVD(MPECVD)法でCH4とH2を処理することにより、基板の片面上にグラファイト薄膜を成長させたものである。これに対し、本発明の場合は炭素粒子の表面にグラファイト薄膜を成長させたものである。また、本発明の炭素粒子は、通常、ラマンスペクトルで2700cm-1付近にG'のピークが観察されること、220cm-1付近にピークが観察されないことから、本発明の炭素粒子におけるグラファイト薄膜は、前記の「Advanced Materials 2002,14,64」に記載のカーボンナノウォールと比較し、グラファイト構造に違いがある。本発明の炭素粒子は、基板上に生成している前記のカーボンナノウォールと比し、粒子状のまま種々の用途に使用できるため、工業的により有用である。また、特殊な装置を使用せずに大量製造が可能である。 The carbon particle of the present invention is a carbon particle having a graphite thin film on the particle surface. The above-mentioned carbon nanowall is obtained by growing a graphite thin film on one surface of a substrate by treating CH 4 and H 2 by a microwave plasma CVD (MPECVD) method. On the other hand, in the case of the present invention, a graphite thin film is grown on the surface of carbon particles. In addition, the carbon particles of the present invention usually show a G ′ peak near 2700 cm −1 in the Raman spectrum, and no peak near 220 cm −1. However, there is a difference in the graphite structure as compared with the carbon nanowall described in “Advanced Materials 2002, 14, 64”. The carbon particles of the present invention are more industrially useful because they can be used for various applications as they are in particle form as compared with the carbon nanowalls formed on the substrate. In addition, mass production is possible without using special equipment.
本発明の炭素粒子は、炭素を主成分とする。炭素を主成分とする限り、水酸基、カルボキシル基などの官能基を粒子表面に有していても、水などの低分子化合物を表面や細孔内に吸着していてもよい。具体的には、元素分析において、炭素の割合は、通常90重量%以上、好ましくは98重量%である。また、本発明の炭素粒子内部は、どの様な構造でもよく、内部までグラファイト薄膜で構成されていもよい。 The carbon particles of the present invention contain carbon as a main component. As long as carbon is the main component, a functional group such as a hydroxyl group or a carboxyl group may be present on the particle surface, or a low molecular compound such as water may be adsorbed on the surface or in the pores. Specifically, in elemental analysis, the proportion of carbon is usually 90% by weight or more, preferably 98% by weight. Further, the inside of the carbon particles of the present invention may have any structure, and the inside may be constituted by a graphite thin film.
本発明の炭素粒子の大きさは、その原料や製法によって異なるため一概に規定できないが、走査型電子顕微鏡(以下SEMと表記する)観察での球状粒子の粒子径(球状でない粒子の場合は長径)で、通常10nmから5cm、好ましくは100nmから0.5cmの範囲である。 The size of the carbon particles of the present invention cannot be specified unconditionally because it differs depending on the raw material and the production method. However, the particle size of the spherical particles observed by a scanning electron microscope (hereinafter referred to as SEM) ), Usually in the range of 10 nm to 5 cm, preferably 100 nm to 0.5 cm.
本発明の炭素粒子の表面のグラファイト薄膜は、SEMによって観察することが出来る。グラファイト薄膜は、好ましくは、炭素粒子の略全面を被覆している。このグラファイト薄膜は、粒子内部の炭素構造と化学的に結合していてもよく、また、単に炭素粒子上に物理的に付加していてもよい。但し、外力による剥離が起こり難いという観点からは、化学的に結合している方が好ましい。 The graphite thin film on the surface of the carbon particles of the present invention can be observed by SEM. The graphite thin film preferably covers substantially the entire surface of the carbon particles. This graphite thin film may be chemically bonded to the carbon structure inside the particles, or may be simply physically added on the carbon particles. However, from the viewpoint that peeling due to an external force is unlikely to occur, it is preferable that they are chemically bonded.
グラファイト薄膜の層構造は、本発明の炭素粒子を破砕したサンプルを透過型電子顕微鏡(以下TEMと表記する)で観察することにより、そのグラファイト薄膜の端面の形状から確認できる。それによると、グラファイト薄膜の層構造は、単一層(以下グラフェンシートと呼ぶ)のグラファイト構造が2層以上積層して形成された構造であり、その積層枚数は、通常5〜50層程度である。また、このグラファイト薄膜には、グラフェンシートが奇麗に直線になっている部分の他に、屈曲した部分やグラフェンシート層数が途中で変化して、表面に欠陥が出来ている部分も多く観察される。なお、本発明の炭素粒子において通常Ramanスペクトルで観察される2700cm-1付近のピークは、欠陥を有するグラファイト構造特有のピークであるとされており(例えば、Physical Review B,vol.61,p.4542(2000)参照)、上述のTEM観察の結果とよく整合する。 The layer structure of the graphite thin film can be confirmed from the shape of the end face of the graphite thin film by observing a sample obtained by crushing the carbon particles of the present invention with a transmission electron microscope (hereinafter referred to as TEM). According to this, the layer structure of a graphite thin film is a structure formed by laminating two or more single-layer (hereinafter, referred to as graphene sheets) graphite structures, and the number of layers is usually about 5 to 50 layers. . In addition, in this graphite thin film, besides the part where the graphene sheet is neatly straight, the bent part and the part where the number of graphene sheet layers changes in the middle and defects are formed on the surface are often observed. You. The peak near 2700 cm -1 normally observed in the Raman spectrum of the carbon particles of the present invention is considered to be a peak peculiar to a graphite structure having a defect (for example, Physical Review B, vol. 61, p. 4542 (2000)), which is in good agreement with the above-mentioned TEM observation results.
上記のグラファイト薄膜の厚さは、主にグラフェンシートの積層枚数により決定される。通常、この厚さは、無蒸着でのSEM又はTEM観察により確認され、通常1〜15nmである。また、グラファイト薄膜の大きさも、破砕サンプルのTEM観察により確認でき、グラファイト薄膜1枚の平面部分として、主として0.0005〜5μm2の薄膜が観察される。この様なグラファイト薄膜は、空間を有した状態で粒子表面に密集して存在している。炭素粒子表面をSEM観察すると、1μm四方の視野にグラファイト薄膜が通常50〜500枚観察される。炭素粒子上のグラファイト薄膜が占有する空間の厚さは、通常10〜1000nmである。 The thickness of the graphite thin film is mainly determined by the number of graphene sheets stacked. Usually, this thickness is confirmed by SEM or TEM observation without vapor deposition, and is usually 1 to 15 nm. The size of the graphite thin film can also be confirmed by TEM observation of the crushed sample, and a thin film of 0.0005 to 5 μm 2 is mainly observed as a plane portion of one graphite thin film. Such a graphite thin film exists densely on the particle surface with a space. When the surface of the carbon particles is observed by SEM, usually 50 to 500 graphite thin films are observed in a visual field of 1 μm square. The thickness of the space occupied by the graphite thin film on the carbon particles is usually 10 to 1000 nm.
本発明の炭素粒子は、その構造から容易に類推される様に、通常、高い比表面積を有する。具体的には、BET比表面積で、通常50〜3000m2/g、好ましくは100〜2000m2/gである。本発明の炭素粒子は、その構造から容易に類推される様に、通常、高い電気伝導性を示す。具体的には、体積抵抗率の値として、通常0.005〜1.0Ωcm、好ましくは0.01〜0.1Ωcmである。更に、本発明の炭素粒子は、1〜10nmに非常にシャープな分布の細孔を有する場合がある。 The carbon particles of the present invention usually have a high specific surface area, as easily inferred from their structure. Specifically, the BET specific surface area, normally 50~3000m 2 / g, preferably 100-2000 m 2 / g. The carbon particles of the present invention usually exhibit high electrical conductivity, as easily inferred from their structure. Specifically, the value of the volume resistivity is usually 0.005 to 1.0 Ωcm, preferably 0.01 to 0.1 Ωcm. Further, the carbon particles of the present invention may have very sharp distribution of pores in 1 to 10 nm.
本発明の炭素粒子は、フラーレン類を水素雰囲気で加熱することにより製造できる。反応条件は、通常、以下の通りである。 The carbon particles of the present invention can be produced by heating fullerenes in a hydrogen atmosphere. The reaction conditions are usually as follows.
水素分圧(室温:加熱前の初期圧)の下限は、通常1MPa、好ましくは3MPa、更に好ましくは5MPa、特に好ましくは10MPaであり、上限は、通常200MPa、好ましくは150MPa、更に好ましくは100MPa、特に好ましくは80MPaである。水素分圧が低すぎる場合は、反応が遅くなり、反応が進行しなくなることがある。一方、水素分圧が高すぎる場合は、十分な耐圧性を有する肉厚な反応容器が必要となる。なお、ここで使用する水素は、純粋な水素でなくても、本発明の炭素粒子の生成を妨げなければ、不活性ガス等で希釈された水素であってもよい。反応温度の下限は、通常520℃、好ましくは550℃であり、上限は、通常1000℃、好ましくは900℃、更に好ましくは800℃である。反応温度が低すぎる場合は反応が遅くなり、反応が進行しなくなることがある。一方、反応温度が高すぎる場合は、反応容器の劣化が激しくなるため高価な容器が必要となる。反応時間は、通常、数分から10時間、好ましくは10分から5時間である。反応時間が短すぎる場合はフラーレン類の炭化が不十分となり、長すぎる場合は製造効率が低下する。反応器の材質には、通常Fe−Ni−Cr合金が使用される。一般に高温で反応が行われるため、高温強度に優れた耐熱綱、特にSCH22及びSCH24が好適である。 The lower limit of the hydrogen partial pressure (room temperature: initial pressure before heating) is usually 1 MPa, preferably 3 MPa, more preferably 5 MPa, particularly preferably 10 MPa, and the upper limit is usually 200 MPa, preferably 150 MPa, more preferably 100 MPa, Particularly preferably, it is 80 MPa. If the hydrogen partial pressure is too low, the reaction may be slow and the reaction may not proceed. On the other hand, when the hydrogen partial pressure is too high, a thick reaction vessel having sufficient pressure resistance is required. The hydrogen used here is not limited to pure hydrogen, and may be hydrogen diluted with an inert gas or the like as long as the formation of the carbon particles of the present invention is not hindered. The lower limit of the reaction temperature is usually 520 ° C, preferably 550 ° C, and the upper limit is usually 1000 ° C, preferably 900 ° C, and more preferably 800 ° C. If the reaction temperature is too low, the reaction will be slow and the reaction may not proceed. On the other hand, when the reaction temperature is too high, an expensive container is required because the reaction container is greatly deteriorated. The reaction time is generally from several minutes to 10 hours, preferably from 10 minutes to 5 hours. If the reaction time is too short, carbonization of the fullerenes will be insufficient, and if it is too long, the production efficiency will decrease. As a material for the reactor, an Fe-Ni-Cr alloy is usually used. In general, since the reaction is performed at a high temperature, a heat-resistant steel having excellent high-temperature strength, particularly, SCH22 and SCH24 are preferable.
原料のフラーレン類は、炭素原子が球状またはラグビーボール状に配置して形成される閉殻状のフラーレン骨格を有するものをいう。具体的には、一般式Cn(nは通常60〜120の整数を表す)で表される炭素クラスター、その誘導体などである。炭素クラスターとしては、例えば、C60(所謂バックミンスター・フラーレン)、C70、C76、C78、C82、C84、C90、C94、C96及びより高次の炭素クラスターが挙げられる。これらは、単一であっても、2種類以上の混合物であってもよい。単一のものとしては、C60及びC70が生産の際に多く生成するので、入手の容易さから好適である。また、炭素クラスターの誘導体としては、上記の炭素クラスターの水素化体、水酸化体、エポキシ化体、アルキル化体、アリール化体などが挙げられる。それぞれ付加する基の数は特に限定されず、また、基の種類は1種類であっても複数種であってもよい。 The raw material fullerenes have a closed-shell fullerene skeleton formed by arranging carbon atoms in a spherical or rugby ball shape. Specifically, carbon clusters represented by the general formula C n (n usually represents an integer of 60 to 120), derivatives thereof, and the like. Examples of the carbon cluster include C 60 (so-called Buckminster fullerene), C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , C 94 , C 96 and higher carbon clusters. . These may be single or a mixture of two or more. As a single substance, C 60 and C 70 are produced in large quantities during production, and are therefore preferable from the viewpoint of easy availability. Examples of the derivative of the carbon cluster include a hydrogenated compound, a hydroxylated compound, an epoxidized compound, an alkylated compound, and an arylated compound of the carbon cluster. The number of groups to be added is not particularly limited, and the number of groups may be one or more.
反応の際の水素ガスの導入手順は、原料のフラーレン類と水素ガスが反応時に共存していれば、特に限定されず、反応前に予め反応器に水素ガスを導入して密閉しておいてもよいし、反応時に反応器に水素ガスを流通させてもよい。このうち前者が装置の簡便性から好ましい。 The procedure for introducing hydrogen gas during the reaction is not particularly limited as long as the raw material fullerenes and hydrogen gas coexist at the time of the reaction, and the hydrogen gas is introduced into the reactor in advance before the reaction and sealed. Alternatively, hydrogen gas may be passed through the reactor during the reaction. Of these, the former is preferred because of the simplicity of the device.
本発明の製造方法では、通常、フラーレン類は固体の状態で水素化処理される。原料のフラーレン類の粒子サイズは特に限定されないが、生成物である炭素粒子サイズは主としてフラーレン原料の粒子サイズによって制御される。従って、本発明のグラファイト薄膜を有する炭素粒子において、グラファイト薄膜の割合(単位重量あたりの表面積)が大きい炭素粒子を得るためには、より粒子サイズの小さいフラーレン類を使用するのが好ましい。フラーレン類の粒子サイズは、フラーレンを、メノウ乳鉢、ボールミル、ジェットミル等で微粉砕したり、晶析したりして制御してもよい。 In the production method of the present invention, usually, fullerenes are hydrotreated in a solid state. Although the particle size of the fullerenes as the raw material is not particularly limited, the carbon particle size as the product is mainly controlled by the particle size of the fullerene raw material. Therefore, in the carbon particles having a graphite thin film of the present invention, it is preferable to use fullerenes having a smaller particle size in order to obtain carbon particles having a large ratio (surface area per unit weight) of the graphite thin film. The particle size of the fullerenes may be controlled by finely pulverizing or crystallizing the fullerene with an agate mortar, a ball mill, a jet mill, or the like.
フラーレン類は、純粋でなくても、本発明の炭素粒子の生成を妨げなければ、他に液体または固体の有機物を含んでいてもよい。ここでの有機物の例としては、炭素材の他、ベンゼン、トルエン、n−ヘキサン等の一般の有機化合物が挙げられる。炭素、水素、酸素から成る有機物は、反応後に他の元素が炭素材に残らないので好ましい。 The fullerenes may not be pure, and may further contain a liquid or solid organic substance as long as they do not prevent the production of the carbon particles of the present invention. Examples of the organic substance here include general organic compounds such as benzene, toluene, and n-hexane, in addition to carbon materials. Organic substances composed of carbon, hydrogen and oxygen are preferable because other elements do not remain in the carbon material after the reaction.
薄膜の厚さ及びサイズ、粒子表面における薄膜の密度、粒子内の薄膜部分の厚さ、炭素粒子の比表面積、粒子サイズ等は、原料の性状や添加物の有無によって調節できる。本発明の製造方法で生成する炭素粒子の収率は、通常80%以上であり、好ましい反応条件では90%以上である。生成物中に原料のフラーレン類が残存していないことは、例えば、(1)トルエン中に生成物を分散させて超音波照射した際に、色やUV吸収の変化や液体クロマトグラフィー(HPLC)分析から、液相にフラーレン類が溶出しないこと、(2)生成物をIRで測定し、フラーレン類由来の吸収が観測されないこと等により、確認できる。 The thickness and size of the thin film, the density of the thin film on the particle surface, the thickness of the thin film portion within the particle, the specific surface area of the carbon particles, the particle size, and the like can be adjusted by the properties of the raw material and the presence or absence of additives. The yield of carbon particles produced by the production method of the present invention is usually 80% or more, and is 90% or more under preferable reaction conditions. The absence of the raw material fullerenes in the product can be caused by, for example, (1) changes in color and UV absorption and liquid chromatography (HPLC) when the product is dispersed in toluene and irradiated with ultrasonic waves. From analysis, it can be confirmed by the fact that fullerenes do not elute in the liquid phase, (2) the product is measured by IR, and no absorption derived from fullerenes is observed.
本発明の炭素材料は、通常、高い比表面積を有し、しかも、ナノレベルの厚さのグラファイト薄膜が粒子表面上に空間を占めて配置している特異な構造を有する。従って、本発明の炭素材料は、取り扱いが容易でグラファイト表面を必要とする各種の用途に広く適用できる有用な材料である。一方、前述の「Advanced Materials 2002,14,64」に記載のカーボンナノウォールは、基板上の一方の面にしかグラファイト薄膜が形成されていないため、たとえ、この表面を削り落として粒子にしたとしても、一方の面にしかグラファイト薄膜が形成された粒子にしかなり得ない。 The carbon material of the present invention generally has a high specific surface area, and has a unique structure in which a graphite thin film having a nano-level thickness occupies a space on the particle surface. Therefore, the carbon material of the present invention is a useful material that is easy to handle and can be widely applied to various uses requiring a graphite surface. On the other hand, the carbon nanowalls described in the above-mentioned “Advanced Materials 2002, 14, 64” have a graphite thin film formed only on one surface of the substrate. However, it is difficult to obtain particles having a graphite thin film formed on only one surface.
本発明の炭素材料の具体的な用途としては、例えば、高い比表面積を有することを活かしたガス吸収剤、グラファイト薄膜が有する欠陥や屈曲部位を活かした燃料電池、一般の化学工業で使用される担持触媒の担体、リチウムイオン電池のキャパシター等が挙げられる。また、本発明の炭素粒子を粉砕後に塗布することにより、基板上へのパターニングも可能である。更に、高密度なグラファイト端面を有する構造であることから、例えば、電界放出ディスプレイの材料としても有用である。更に、本発明の炭素材料は、特殊な製造装置が不要のため、大量サイズ(kgオーダー)で製造することも可能である。 Specific applications of the carbon material of the present invention include, for example, a gas absorbent utilizing a high specific surface area, a fuel cell utilizing a defect or a bent portion of a graphite thin film, and a general chemical industry. Carriers for supported catalysts, capacitors for lithium ion batteries and the like can be mentioned. Further, by applying the carbon particles of the present invention after pulverization, patterning on a substrate is also possible. Further, since the structure has a high-density graphite end face, it is useful, for example, as a material for a field emission display. Further, since the carbon material of the present invention does not require a special production apparatus, it can be produced in a large size (kg order).
以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
実施例1:
Fe−Ni−Cr合金製の内容積60mLの耐圧容器に、フロンティアカーボン社製C60フラーレン(粒子径20〜200μm)10.0gを入れ、水素ガスで3回置換した後、密閉して室温にて水素ガスで21MPaに加圧した。この反応器を600℃まで加熱し、そのまま2時間保持した。その後、反応器を冷却してから水素ガスをパージし、内容物を取り出した。黒色固体9.2gが得られた。この値は、純度100%のC60フラーレンから純度100%の炭素材料が得られたとした場合の収率で92%に相当する。
Example 1
In a pressure vessel of Fe-Ni-Cr alloy having a content volume of 60 mL, Frontier placed Carbon Co. C 60 fullerene (particle size 20 to 200 [mu] m) 10.0 g, was replaced three times with hydrogen gas, to room temperature and sealed And pressurized to 21 MPa with hydrogen gas. The reactor was heated to 600 ° C. and held there for 2 hours. Thereafter, the reactor was cooled and then purged with hydrogen gas to take out the contents. 9.2 g of a black solid were obtained. This value corresponds to 92% at a yield in the case of the 100% pure C 60 fullerene with 100% pure carbon material is obtained.
上記の生成物はトルエンに不溶であったことから、原料のC60フラーレンでないことが確認された。元素分析の結果、酸素は0.28重量%、水素は0.3重量%未満、炭素は98.1重量%であった。IR測定の結果、C60フラーレンに対応するピークも含め、一切、ピークが観測されなかったことから、上記の条件下で炭化が起こったと推察した。 Since the above product was insoluble in toluene, it was confirmed that the product was not C 60 fullerene as a raw material. As a result of elemental analysis, oxygen was 0.28% by weight, hydrogen was less than 0.3% by weight, and carbon was 98.1% by weight. Result of IR measurement, including peaks corresponding to C 60 fullerene, at all, since the peak was not observed was presumably carbide has occurred under the above conditions.
日本分光社製「NR1800(Fシングル/G4)」を使用し、励起波長Ar+514.5nm、ラマン照射直径100μmにて、Ramanスペクトルを測定した。この結果、それぞれのピークの大きさは測定位置により変化するが、何れにしても、1350cm-1(D)、1583cm-1(G)、2704cm-1(G')に大きな3本のピークが観測され、1617cm-1、2452cm-1(D”+D)、2935cm-1(D+G)、3243cm-1(2D’)に小さいピークが観測された。一方、公知の炭素ナノ構造には、220cm-1、1350cm-1、1583cm-1、1617cm-1にピークが観測されると記載されている(Advanced Materials 2002,14, 64)。両者を比較すると、本発明の炭素粒子は、220cm-1にピークがなく、2704cm-1にG'のピークがある。本発明の炭素粒子のBET比表面積の測定結果は、175m2/gであった。 Using "NR1800 (F single / G4)" manufactured by JASCO Corporation, a Raman spectrum was measured at an excitation wavelength of Ar + 514.5 nm and a Raman irradiation diameter of 100 [mu] m. As a result, the size of each peak varies depending on the measurement position, but in any case, three large peaks at 1350 cm -1 (D), 1583 cm -1 (G), and 2704 cm -1 (G ') Small peaks were observed at 1617 cm −1 , 2452 cm −1 (D ″ + D), 2935 cm −1 (D + G), and 3243 cm −1 (2D ′), whereas known carbon nanostructures had 220 cm − 1 , 1350 cm −1 , 1583 cm −1 , and 1617 cm −1 are described as being observed (Advanced Materials 2002, 14, 64.) In comparison, the carbon particles of the present invention have a peak of 220 cm −1 . There is no peak, and there is a G ′ peak at 2704 cm −1 .The measurement result of the BET specific surface area of the carbon particles of the present invention was 175 m 2 / g.
図1〜3に、本発明の炭素粒子の一例の図面代用SEM写真を示す。図1(倍率100倍)によると、粒子の直径は略50〜200μm程度である。図2は図1の拡大写真(倍率1万倍)である。図2によると、粒子表面の略全面が薄片で覆われていることが判る。図3は図1を更に拡大した写真(倍率3万倍)である。図3によると、密集している薄片の厚さは数nm〜数十nm程度であることが判る。 1 to 3 show SEM photographs as substitutes for drawings of an example of the carbon particles of the present invention. According to FIG. 1 (100 times magnification), the diameter of the particles is approximately 50 to 200 μm. FIG. 2 is an enlarged photograph (magnification: 10,000 times) of FIG. FIG. 2 shows that almost the entire surface of the particle is covered with the flakes. FIG. 3 is a photograph (magnification: 30,000) of FIG. 1 further enlarged. According to FIG. 3, it can be seen that the thickness of the dense flakes is about several nm to several tens nm.
図4〜6に、本発明の炭素粒子の一例の切断面における図面代用SEM写真を示す。図4(倍率500倍)に示す様に、粒子内部は基本的に凹凸が少なく、粒子表面とは異なる構造である。図5は切断面を拡大した写真(倍率5万倍)である。図5によれば、グラファイト薄膜が存在している部分の厚さは50〜200nm程度と思われる。図6は、図4の切断面の表面に見られる凹凸部分の凹部分を拡大した写真(倍率3000倍)であり、ここでもグラファイト薄膜により覆われた状態が観察されている。 4 to 6 show SEM photographs as substitutes for drawings on cut surfaces of an example of the carbon particles of the present invention. As shown in FIG. 4 (magnification: 500 times), the inside of the particle basically has few irregularities, and has a structure different from the particle surface. FIG. 5 is an enlarged photograph (magnification: 50,000) of the cut surface. According to FIG. 5, the thickness of the portion where the graphite thin film exists is considered to be about 50 to 200 nm. FIG. 6 is an enlarged photograph (magnification: 3000 times) of the concave portion of the concavo-convex portion seen on the surface of the cut surface in FIG. 4, and here, the state covered with the graphite thin film is also observed.
図7は、本発明の炭素粒子の表面を無蒸着状態で測定したSEM写真(倍率10万倍)である。図7から、グラファイト薄膜の最も薄い厚さは5nm程度であることが判る。 FIG. 7 is an SEM photograph (100,000 times magnification) of the surface of the carbon particles of the present invention measured in a non-evaporated state. FIG. 7 shows that the thinnest thickness of the graphite thin film is about 5 nm.
図8〜12に本発明の炭素粒子粉砕品の一例の図面代用TEM写真を示す。これらは、本発明の炭素粒子について更に微細な構造を確認するため、炭素粒子を粉砕してTEMにより観察した写真である。図8〜10では、粒子表面に多数の薄片が観察される。薄片の長さが50〜300nm程度のものが多い。図11は薄片が密集した部分を更に拡大した写真(倍率120万倍)である。図11により、薄片の端面と思われる、薄膜の積層した構造が確認され、このことから薄片がグラファイト構造であることが判る。グラフェンシートが5〜30層程度積層したグラファイト薄膜(厚さは3〜15nm)が多く観察される。図12に示す写真(倍率120万倍)は、炭素粒子内部の構造と思われるが、若干グラファイト構造が生長しつつあるものの、基本的にはアモルファス状である。 8 to 12 show TEM photographs instead of drawings of one example of the pulverized carbon particle product of the present invention. These are photographs in which the carbon particles were pulverized and observed with a TEM in order to confirm the finer structure of the carbon particles of the present invention. 8 to 10, a number of flakes are observed on the particle surface. Many flakes have a length of about 50 to 300 nm. FIG. 11 is a photograph (magnification: 1.2 million times) of a portion where the thin sections are densely further enlarged. FIG. 11 confirms a laminated structure of thin films, which is considered to be an end face of the flake, and it can be seen from this that the flake has a graphite structure. Many graphite thin films (thickness: 3 to 15 nm) in which about 5 to 30 graphene sheets are stacked are observed. The photograph (magnification: 1.2 million times) shown in FIG. 12 is considered to be the structure inside the carbon particles, but is basically amorphous although the graphite structure is growing slightly.
本発明の炭素粒子の体積抵抗率を測定したところ、0.039Ωcmという非常に小さい値を示し、この炭素粒子は高い導電性を示すことが判った。本発明の炭素粒子の粉末X線測定の結果を図13に示す。グラファイト薄片のサイズが小さいためと考えられるが、グラファイトに対応するピークは観測されない。また、本発明の炭素粒子の細孔分布を測定したところ、4.0nm付近にシャープな分布を有していた。 When the volume resistivity of the carbon particles of the present invention was measured, it showed a very small value of 0.039 Ωcm, indicating that the carbon particles exhibited high conductivity. FIG. 13 shows the result of powder X-ray measurement of the carbon particles of the present invention. This is probably due to the small size of the graphite flakes, but no peak corresponding to graphite was observed. In addition, when the pore distribution of the carbon particles of the present invention was measured, it had a sharp distribution around 4.0 nm.
実施例2:
実施例1において、C60の代わりに、C60、C70及びその他高次フラーレンの混合物(重量比で、C60:C70:その他高次フラーレン=62:23:15)であるフロンティアカーボン株式会社製のフラーレン混合物10.0gを使用した以外は、実施例1と同様に反応を行った。その結果、黒色生成物9.0gを得た。この値は、純度100%のフラーレン混合物から純度100%の炭素材料が得られたとした場合の収率で90%に相当する。この生成物は、トルエンに不溶であったことから、原料のフラーレン混合物でないことが確認された。図14及び図15に、この生成物の図面代用SEM写真を示す。実施例2で得られた炭素粒子は、実施例1の生成物に比して小さく、その表面は、実施例1の生成物と同様の構造ではあるが、実施例1で観測された薄片よりは小さい薄片が覆っていた。
Example 2:
In Example 1, in place of the C 60, (in a weight ratio, C 60: C 70: Other higher fullerenes = 62: 23: 15) C 60, C 70 and mixtures other higher fullerenes Frontier Carbon stock is The reaction was carried out in the same manner as in Example 1 except that 10.0 g of a fullerene mixture manufactured by the company was used. As a result, 9.0 g of a black product was obtained. This value corresponds to a yield of 90% assuming that a 100% pure carbon material was obtained from a 100% pure fullerene mixture. Since this product was insoluble in toluene, it was confirmed that the product was not a fullerene mixture as a raw material. 14 and 15 show SEM photographs as substitutes for drawings of this product. The carbon particles obtained in Example 2 are smaller than the product of Example 1, and the surface thereof has the same structure as that of the product of Example 1, but is smaller than the flakes observed in Example 1. Was covered by small flakes.
実施例1と同様にRamanスペクトルを測定した結果、1352cm-1(D)、1583cm-1(G)、2698cm-1(G')に大きな3本のピークが観測され、1615cm-1、2900cm-1(D+G)、3240cm-1(2D’)に小さいピークが観測された。BET比表面積は184cm-1、体積抵抗率は0.038Ωcmであり、何れも実施例1の炭素粒子と同程度の値を示した。 A result of measuring the same manner Raman spectrum as in Example 1, 1352cm -1 (D), 1583cm -1 (G), a large three peaks 2698cm -1 (G ') is observed, 1615cm -1, 2900cm - 1 (D + G), a small peak was observed at 3240 cm -1 (2D '). The BET specific surface area was 184 cm -1 , and the volume resistivity was 0.038 Ωcm, all of which showed the same value as the carbon particles of Example 1.
実施例3:
実施例1において使用したC60フラーレンをメノウ乳鉢で10分間粉砕したもの10.0gを原料とした以外は、実施例1と同様に反応を行った。その結果、黒色の生成物9.3gを得た。この値は、純度100%のC60フラーレンから純度100%の炭素材料が得られたとした場合の収率で93%に相当する。この生成物は、トルエンに不溶であったことから、原料のフラーレンではないことが確認された。実施例3で得られた炭素粒子は、実施例1の生成物に比して小さく、その表面は、実施例1の生成物と同様の構造およびサイズの薄片が覆っていた。
Example 3
The 10.0g those of C 60 fullerene was used was ground in an agate mortar for 10 minutes in Example 1 except that the raw material, the reaction was carried out in the same manner as in Example 1. As a result, 9.3 g of a black product was obtained. This value corresponds to 93% at a yield in the case of the 100% pure C 60 fullerene with 100% pure carbon material is obtained. Since this product was insoluble in toluene, it was confirmed that it was not fullerene as a raw material. The carbon particles obtained in Example 3 were smaller than the product of Example 1, and the surface thereof was covered with flakes having the same structure and size as the product of Example 1.
実施例1と同様にRamanスペクトルを測定した結果、1351cm-1(D)、1583cm-1(G)、2704cm-1(G')に大きな3本のピークが観測され、1615cm-1、2460cm-1(D”+D)、2940cm-1(D+G)、3243cm-1(2D’)に小さいピークが観測された。BET比表面積は316m2/gであり、実施例1の炭素粒子と比べて大きかった。このことは、炭素粒子の表面構造がBET比表面積に影響していると考えられる。 As a result of measuring the Raman spectrum in the same manner as in Example 1, three large peaks were observed at 1351 cm −1 (D), 1583 cm −1 (G), and 2704 cm −1 (G ′), and 1615 cm −1 and 2460 cm −. Small peaks were observed at 1 (D ″ + D), 2940 cm −1 (D + G), and 3243 cm −1 (2D ′). The BET specific surface area was 316 m 2 / g, which was larger than the carbon particles of Example 1. This is considered that the surface structure of the carbon particles affects the BET specific surface area.
実施例4:
実施例2において使用したフロンティアカーボン株式会社製のフラーレン混合物をメノウ乳鉢で10分間粉砕したもの10.0gを原料とした以外は、実施例1と同様に反応を行った。その結果、黒色の生成物9.7gを得た。この値は、純度100%のフラーレン混合物から純度100%の炭素材料が得られたとした場合の収率で97%に相当する。この生成物は、トルエンに不溶であったことから、原料のフラーレン混合物ではないことが確認された。実施例4で得られた炭素粒子は、実施例2の生成物に比して小さく、その表面は、実施例2の生成物と同様の構造及びサイズの薄片が覆っていた。BET比表面積は229m2/gであり、実施例2の炭素粒子と比べて大きかった。このことは、炭素粒子の表面構造がBET比表面積に影響していると考えられる。
Example 4:
The reaction was carried out in the same manner as in Example 1 except that 10.0 g of a fullerene mixture manufactured by Frontier Carbon Co., Ltd. used in Example 2 was pulverized with an agate mortar for 10 minutes as a raw material. As a result, 9.7 g of a black product was obtained. This value corresponds to a yield of 97% when a 100% pure carbon material is obtained from a 100% pure fullerene mixture. Since this product was insoluble in toluene, it was confirmed that it was not a fullerene mixture as a raw material. The carbon particles obtained in Example 4 were smaller than the product of Example 2, and the surface was covered with flakes having the same structure and size as the product of Example 2. The BET specific surface area was 229 m 2 / g, which was larger than the carbon particles of Example 2. This is considered that the surface structure of the carbon particles affects the BET specific surface area.
実施例5:
実施例2において、導入する水素分圧を10.5MPaとした以外は、実施例2と同様に反応を行った。その結果、黒色の生成物9.4gを得た。この値は、純度100%のフラーレン混合物から純度100%の炭素材料が得られたとした場合の収率で94%に相当する。この生成物は、トルエンに不溶であったことから、原料フラーレン混合物でないことが確認された。実施例5で得られた炭素粒子は、実施例2の生成物と同様の構造およびサイズの薄片が粒子表面を覆っていた。
Example 5:
The reaction was carried out in the same manner as in Example 2 except that the partial pressure of hydrogen to be introduced was changed to 10.5 MPa. As a result, 9.4 g of a black product was obtained. This value corresponds to a yield of 94% assuming that a 100% pure carbon material was obtained from a 100% pure fullerene mixture. Since this product was insoluble in toluene, it was confirmed that the product was not a raw material fullerene mixture. In the carbon particles obtained in Example 5, flakes having the same structure and size as the product of Example 2 covered the particle surface.
実施例6:
実施例2において、導入する水素分圧を3.5MPaとした以外は、実施例2と同様に反応を行った。その結果、黒色の生成物9.0gを得た。この値は、純度100%のフラーレン混合物から純度100%の炭素材料が得られたとした場合の収率で90%に相当する。この生成物は、トルエンに不溶であったことから、原料のフラーレン混合物でないことが確認された。実施例6で得られた炭素粒子は1辺が20〜40nm程度の微細な薄片が粒子表面を覆っていた。
Example 6:
The reaction was carried out in the same manner as in Example 2 except that the partial pressure of hydrogen introduced was changed to 3.5 MPa. As a result, 9.0 g of a black product was obtained. This value corresponds to a yield of 90% assuming that a 100% pure carbon material was obtained from a 100% pure fullerene mixture. Since this product was insoluble in toluene, it was confirmed that the product was not a fullerene mixture as a raw material. In the carbon particles obtained in Example 6, fine flakes having a side of about 20 to 40 nm covered the particle surface.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004111315A JP2004323345A (en) | 2003-04-07 | 2004-04-05 | Carbon particles and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003102964 | 2003-04-07 | ||
JP2004111315A JP2004323345A (en) | 2003-04-07 | 2004-04-05 | Carbon particles and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004323345A true JP2004323345A (en) | 2004-11-18 |
Family
ID=33512946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004111315A Withdrawn JP2004323345A (en) | 2003-04-07 | 2004-04-05 | Carbon particles and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004323345A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008214140A (en) * | 2007-03-05 | 2008-09-18 | National Institute For Materials Science | Flake-like nanocarbon material, method for producing the same, flake-like nanocarbon material composite, and electronic device using the same |
JP2008214139A (en) * | 2007-03-05 | 2008-09-18 | National Institute For Materials Science | Particulate nanocarbon material, production method thereof, particulate nanocarbon material composite, and electronic device using the same |
WO2010093035A1 (en) * | 2009-02-16 | 2010-08-19 | 株式会社村田製作所 | Conductive resin composition, process for producing electronic part using same, connecting method, connection structure, and electronic part |
US7790242B1 (en) | 2007-10-09 | 2010-09-07 | University Of Louisville Research Foundation, Inc. | Method for electrostatic deposition of graphene on a substrate |
WO2010123081A1 (en) * | 2009-04-24 | 2010-10-28 | トヨタ自動車株式会社 | Carbon material and method for producing same |
JP2013011017A (en) * | 2011-06-03 | 2013-01-17 | Semiconductor Energy Lab Co Ltd | Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same |
JP2013028525A (en) * | 2011-06-24 | 2013-02-07 | Semiconductor Energy Lab Co Ltd | Graphene, power storage device, and electric appliance |
JP2013051169A (en) * | 2011-08-31 | 2013-03-14 | Semiconductor Energy Lab Co Ltd | Power storage device and method of manufacturing power storage device |
KR101344493B1 (en) | 2007-12-17 | 2013-12-24 | 삼성전자주식회사 | Single crystalline graphene sheet and process for preparing the same |
JP2014516911A (en) * | 2011-06-14 | 2014-07-17 | アプライド グラフェン マテリアルズ ユーケー リミテッド | Method for producing graphene |
US9997334B1 (en) | 2017-02-09 | 2018-06-12 | Lyten, Inc. | Seedless particles with carbon allotropes |
US10428197B2 (en) | 2017-03-16 | 2019-10-01 | Lyten, Inc. | Carbon and elastomer integration |
US10502705B2 (en) | 2018-01-04 | 2019-12-10 | Lyten, Inc. | Resonant gas sensor |
US10756334B2 (en) | 2017-12-22 | 2020-08-25 | Lyten, Inc. | Structured composite materials |
US10920035B2 (en) | 2017-03-16 | 2021-02-16 | Lyten, Inc. | Tuning deformation hysteresis in tires using graphene |
US11296322B2 (en) | 2011-06-03 | 2022-04-05 | Semiconductor Energy Laboratory Co., Ltd. | Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same |
US11309545B2 (en) | 2019-10-25 | 2022-04-19 | Lyten, Inc. | Carbonaceous materials for lithium-sulfur batteries |
US11342561B2 (en) | 2019-10-25 | 2022-05-24 | Lyten, Inc. | Protective polymeric lattices for lithium anodes in lithium-sulfur batteries |
US11398622B2 (en) | 2019-10-25 | 2022-07-26 | Lyten, Inc. | Protective layer including tin fluoride disposed on a lithium anode in a lithium-sulfur battery |
US11489161B2 (en) | 2019-10-25 | 2022-11-01 | Lyten, Inc. | Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes |
US12126024B2 (en) | 2019-10-25 | 2024-10-22 | Lyten, Inc. | Battery including multiple protective layers |
-
2004
- 2004-04-05 JP JP2004111315A patent/JP2004323345A/en not_active Withdrawn
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008214139A (en) * | 2007-03-05 | 2008-09-18 | National Institute For Materials Science | Particulate nanocarbon material, production method thereof, particulate nanocarbon material composite, and electronic device using the same |
JP2008214140A (en) * | 2007-03-05 | 2008-09-18 | National Institute For Materials Science | Flake-like nanocarbon material, method for producing the same, flake-like nanocarbon material composite, and electronic device using the same |
US7790242B1 (en) | 2007-10-09 | 2010-09-07 | University Of Louisville Research Foundation, Inc. | Method for electrostatic deposition of graphene on a substrate |
KR101344493B1 (en) | 2007-12-17 | 2013-12-24 | 삼성전자주식회사 | Single crystalline graphene sheet and process for preparing the same |
WO2010093035A1 (en) * | 2009-02-16 | 2010-08-19 | 株式会社村田製作所 | Conductive resin composition, process for producing electronic part using same, connecting method, connection structure, and electronic part |
US9491868B2 (en) | 2009-02-16 | 2016-11-08 | Murata Manufacturing Co., Ltd. | Conductive resin composition, method for manufacturing electronic component using same, bonding method, bonding structure, and electronic component |
JP5561174B2 (en) * | 2009-02-16 | 2014-07-30 | 株式会社村田製作所 | Conductive resin composition, method of manufacturing electronic component using the same, bonding method, bonding structure, and electronic component |
US8865102B2 (en) | 2009-04-24 | 2014-10-21 | Toyota Jidosha Kabushiki Kaisha | Carbon material and method for producing same |
JP2010254513A (en) * | 2009-04-24 | 2010-11-11 | Toyota Motor Corp | Carbon material and manufacturing method thereof |
WO2010123081A1 (en) * | 2009-04-24 | 2010-10-28 | トヨタ自動車株式会社 | Carbon material and method for producing same |
JP2013011017A (en) * | 2011-06-03 | 2013-01-17 | Semiconductor Energy Lab Co Ltd | Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same |
US10644315B2 (en) | 2011-06-03 | 2020-05-05 | Semiconductor Energy Laboratory Co., Ltd. | Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same |
US12300820B2 (en) | 2011-06-03 | 2025-05-13 | Semiconductor Energy Laboratory Co., Ltd. | Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same |
US11699790B2 (en) | 2011-06-03 | 2023-07-11 | Semiconductor Energy Laboratory Co., Ltd. | Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same |
US11296322B2 (en) | 2011-06-03 | 2022-04-05 | Semiconductor Energy Laboratory Co., Ltd. | Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same |
JP2014516911A (en) * | 2011-06-14 | 2014-07-17 | アプライド グラフェン マテリアルズ ユーケー リミテッド | Method for producing graphene |
JP2013028525A (en) * | 2011-06-24 | 2013-02-07 | Semiconductor Energy Lab Co Ltd | Graphene, power storage device, and electric appliance |
JP2013051169A (en) * | 2011-08-31 | 2013-03-14 | Semiconductor Energy Lab Co Ltd | Power storage device and method of manufacturing power storage device |
US9997334B1 (en) | 2017-02-09 | 2018-06-12 | Lyten, Inc. | Seedless particles with carbon allotropes |
US11380521B2 (en) | 2017-02-09 | 2022-07-05 | Lyten, Inc. | Spherical carbon allotropes for lubricants |
US10373808B2 (en) | 2017-02-09 | 2019-08-06 | Lyten, Inc. | Seedless particles with carbon allotropes |
US10920035B2 (en) | 2017-03-16 | 2021-02-16 | Lyten, Inc. | Tuning deformation hysteresis in tires using graphene |
US11008436B2 (en) | 2017-03-16 | 2021-05-18 | Lyten, Inc. | Carbon and elastomer integration |
US10428197B2 (en) | 2017-03-16 | 2019-10-01 | Lyten, Inc. | Carbon and elastomer integration |
US10756334B2 (en) | 2017-12-22 | 2020-08-25 | Lyten, Inc. | Structured composite materials |
US10502705B2 (en) | 2018-01-04 | 2019-12-10 | Lyten, Inc. | Resonant gas sensor |
US11309545B2 (en) | 2019-10-25 | 2022-04-19 | Lyten, Inc. | Carbonaceous materials for lithium-sulfur batteries |
US11342561B2 (en) | 2019-10-25 | 2022-05-24 | Lyten, Inc. | Protective polymeric lattices for lithium anodes in lithium-sulfur batteries |
US11398622B2 (en) | 2019-10-25 | 2022-07-26 | Lyten, Inc. | Protective layer including tin fluoride disposed on a lithium anode in a lithium-sulfur battery |
US11489161B2 (en) | 2019-10-25 | 2022-11-01 | Lyten, Inc. | Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes |
US12126024B2 (en) | 2019-10-25 | 2024-10-22 | Lyten, Inc. | Battery including multiple protective layers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004323345A (en) | Carbon particles and method for producing the same | |
Liu et al. | Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments | |
Terrones et al. | Efficient route to large arrays of CN x nanofibers by pyrolysis of ferrocene/melamine mixtures | |
Wang et al. | Multifunctional graphene nanoplatelets/cellulose nanocrystals composite paper | |
Dhakate et al. | An approach to produce single and double layer graphene from re-exfoliation of expanded graphite | |
Raffaelle et al. | Carbon nanotubes for power applications | |
KR101883023B1 (en) | Functionalized carbon nanotubes exhibiting enhanced solubility and methods for making the same | |
US10787365B2 (en) | Expansion and exfoliation of graphite to form graphene | |
WO2011102473A1 (en) | Carbon material and method for producing same | |
Wang et al. | Intertwined Nanocarbon and Manganese Oxide Hybrid Foam for High‐Energy Supercapacitors | |
US20100072430A1 (en) | Compositions of carbon nanosheets and process to make the same | |
Tjong | Polymer composites with carbonaceous nanofillers: properties and applications | |
WO2004089821A1 (en) | Carbon particle and method for preparation thereof | |
Ma et al. | Spiers memorial lecture advances of carbon nanomaterials | |
El-shazly et al. | Reduced humic acid nanosheets and its uses as nanofiller | |
Alessandro et al. | Selective synthesis of turbostratic polyhedral carbon nano-onions by arc discharge in water | |
Gumfekar | Graphene-based materials for clean energy applications | |
Tiwari et al. | Direct synthesis of vertically interconnected 3-D graphitic nanosheets on hemispherical carbon particles by microwave plasma CVD | |
Yadav et al. | Carbon nanomaterials: fullerene to graphene | |
Suchea et al. | Carbon-based nanocomposites for EMI shielding: Recent advances | |
Chen et al. | High efficiency microwave digestion purification of multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition | |
Rajesh et al. | Lanthanum nickel alloy catalyzed growth of nitrogen-doped carbon nanotubes by chemical vapor deposition | |
Pantoja Suárez | Carbon nanotubes grown on stainless steel for supercapacitor applications | |
KR101173104B1 (en) | Carbon nanotube as a hydrogen storage medium | |
Singha et al. | Graphene, its Family and Potential Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070605 |