[go: up one dir, main page]

JP2004320431A - Flat antenna equipment - Google Patents

Flat antenna equipment Download PDF

Info

Publication number
JP2004320431A
JP2004320431A JP2003111355A JP2003111355A JP2004320431A JP 2004320431 A JP2004320431 A JP 2004320431A JP 2003111355 A JP2003111355 A JP 2003111355A JP 2003111355 A JP2003111355 A JP 2003111355A JP 2004320431 A JP2004320431 A JP 2004320431A
Authority
JP
Japan
Prior art keywords
substrate
circuit
antenna device
dielectric
planar antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003111355A
Other languages
Japanese (ja)
Other versions
JP4443851B2 (en
Inventor
Akihiko Hayashi
林  昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003111355A priority Critical patent/JP4443851B2/en
Publication of JP2004320431A publication Critical patent/JP2004320431A/en
Application granted granted Critical
Publication of JP4443851B2 publication Critical patent/JP4443851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide flat antenna equipment of which the development cost can be made low. <P>SOLUTION: The flat antenna equipment having a substrate 4 installed on one surface of a dielectric 1 has a recess 2 formed on the surface where the substrate 4 is installed, and is provided with a shield member 3 on the exposed surface of the recess 2. The substrate 4 has a circuit pattern 6a packaging circuits 7b provided on the installation surface to the dielectric 1 and has an outer radiation electrode 6b and an inner circuit grounded electrode 6a, which are connected in at least one position, provided on a surface opposite to the installation surface to the dielectric 1. The substrate 4 is installed on the dielectric 1 with a joining member like a detachable double-sided (adhesive) tape so that circuits 7b mounted on the substrate 4 through the circuit pattern 6a are stored in the recess 2 formed on the dielectric 1, and the shield member 3 and the circuit grounded electrode 6a are electrically connected at a prescribed pitch. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は平面アンテナ装置に関するものである。本発明による平面アンテナ装置は、例えば準マイクロ波を利用した衛星‐車両間通信用のGPS(グローバル・ポジショニング・システム)アンテナとして好適なものである。
【0002】
【従来の技術】
近年、車載用GPS(グローバル・ポジショニング・システム)用のアンテナとしては、マイクロストリップアンテナの利用が考えられ、その一種として平面アンテナ装置がある。
【0003】
以下に従来の平面アンテナ装置について説明する。図10は、特許文献1に記載されている平面アンテナ装置100の構成を示す断面図である。この平面アンテナ装置100は、誘電体101の上面に形成される導電性部材からなる放射電極部102と底面に形成される導電性部材からなる接地電極部104とを備える。誘電体101の底面の一部に段差部103(103a,103b)が形成され、この段差部103(103a,103b)には、放射電極部102と給電線路108によって電気的に接続されるものであって、回路素子106を搭載したプリント基板107からなる回路部105が収容される。更に、段差部103(103a,103b)を密閉するための蓋部109を備えている。
【0004】
【特許文献1】
特開平9−64636号公報
【0005】
【発明が解決しようとする課題】
しかしながら、図10に示す従来技術では、放射電極102を誘電体101の一方の面に直接形成するものであり、通常、導電性部材を放射電極部102として機能させるためには、導電性部材を誘電体101上に形成した後に、トリミングして共振周波数を使用する周波数に合わせるように導電性部材の大きさや形状等を調整する必要がある。この調整が失敗した場合は、導電性部材が誘電体101に固着されているため誘電体101等は破棄するしかなく、誘電体100は高価な部材であるため開発コストが高くなるという問題があった。
【0006】
本発明は上記問題点に鑑みてなされたもので、放射電極の大きさや形状等の調整が失敗した場合でも、誘電体を破棄することなく不具合を解消可能な構造を有する平面アンテナ装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、電波を受信するアンテナとして機能する放射電極部を有する平面アンテナ装置において、誘電体と、誘電体の一面に配置された基板と、基板上に設けられた導電性部材を備え、放射電極部を導電性部材より構成したことを特徴とするものである。
【0008】
これによれば、導電性部材からなる放射電極部を基板上に形成するため、放射電極部の大きさや形状等の調整を失敗した場合でも、高価な誘電体を破棄するのに比べ、放射電極部を形成する基板は安価であるため、開発コストを安くすることができる。
【0009】
また、請求項2に記載の発明では、基板は誘電体より取り外し可能な状態で前記誘電体の一面に配置されてなることを特徴とするものである。これによれば、放射電極部の大きさや形状等の調整を失敗した場合でも、導電性部材からなる放射電極部を形成した基板を取り外すことができるため、安価な基板を取り外して新たな基板で再度調整を行うことができる。
【0010】
また、請求項3記載の発明では、放射電極部により受信した電波を処理する回路部を有し、導電性部材における外側領域を放射電極部として設定すると共に、外側領域より内側の内側領域を回路部の回路接地電極部として設定することを特徴とするものである。これによれば、導電性部材の一部を回路接地電極部として使用するため、別途、回路部の接地電極を設ける必要がなくコストを安くすることができる。
【0011】
また、請求項4に記載の発明では、導電性部材における放射電極部と回路接地電極部を少なくとも一箇所で電気的に接続し、受信信号は、この回路接地電極部を介して外部へ出力するようにすればよい。
【0012】
また、請求項5に記載の発明では、外側領域は高周波電流の集中する箇所となる領域であることを特徴とするものである。これによれば、平面アンテナ装置として必要な箇所のみを放射電極部として使用し、平面アンテナ装置として必要ない箇所は回路接地電極部として使用するため、放射電極部のスペースを有効利用できる。
【0013】
また、請求項6に記載の発明では、回路部は基板の導電性部材を設けた面とは反対の面に設けられ、誘電体には凹部が設けられ、凹部に回路部が収納された状態で基板が誘電体の一面に設置されてなることを特徴とするものである。これによれば、放射電極部と回路接地電極部と回路接地電極部に電気的に接続された回路部とを備えた基板を誘電体に実装するだけで良いため製造が容易になる。
【0014】
また、請求項7に記載の発明では、凹部には第1シールド部材が形成され、第1シールド部材と回路接地電極部が回路部を取り囲むように所定のピッチで電気的に接続することを特徴とするものである。これによれば、回路部からの不要輻射を低減すると共に、回路部に対する干渉波を低減できる。
【0015】
また、請求項8に記載の発明では、基板は、熱可塑性樹脂からなることを特徴とするものである。これによれば、基板の厚みを0.3mm程度まで薄くできるため
また、請求項9に記載の発明では、基板は、熱可塑性樹脂からなる多層基板より構成されるものであって、多層基板に回路部が内蔵され、回路部は多層基板に設けられたビアホールを介して回路接地電極部と電気的に接続されることを特徴とするものである。これによれば、誘電体に実装する基板に回路部を配置できるため、高価な誘電体に凹部を設ける必要がない。
【0016】
また、請求項10に記載の発明では、多層基板には第2シールド部材が内蔵され、第2シールド部材と回路接地電極部が回路部を取り囲むように所定のピッチで電気的に接続することを特徴とするものである。これによれば、回路部からの不要輻射を低減すると共に、回路部に対する干渉波を低減できる。
【0017】
例えば、請求項11に示すように、受信信号は、誘電体の基板が設けられる一面とは反対の面に給電部材を備え、この給電部材を介して外部へ出力するようにすればよい。
【0018】
また、請求項12に記載の発明では、誘電体の側面側から内蔵される給電部材を備え、放射電極部の受信信号を給電部材を介して外部へ出力することを特徴とするものである。これによれば、誘電体内部であり放射電極部に平行に給電部材を備えることができ、平面アンテナ装置全体の厚みを給電部材の厚み分だけ薄くできる。
【0019】
【発明の実施の形態】
(第1実施形態)
以下、本発明の第1実施形態について、図1乃至図6を参照して説明する。図1は本発明の第1実施形態における平面アンテナ装置の斜視図である。図2は本発明の第1実施形態における平面アンテナ装置の断面図、図3は本発明の第1実施形態における平面アンテナ装置の表面側平面図、図4は本発明の第1実施形態における平面アンテナ装置の裏面側平面図、図5は本発明の第1実施形態における平面アンテナ装置の基板の断面図、図6は本発明の第1実施形態における回路ブロック図である。
【0020】
20は平面アンテナ装置である。平面アンテナ装置20は、アンテナ素子部30をレドーム19内に収納し、このアンテナ素子部30とレドーム19とをブラケット18に固定する。従って平面アンテナ装置は、ブラケット18を介して任意の場所に配置される。
【0021】
アンテナ素子部30は、シールド部材3(本発明における第1シールド部材),接地電極部10を有する誘電体1と電極部6(回路接地電極部6a(GND電極部とも称する)、放射電極部6b(アンテナ部とも称する)),回路部7(回路パターン部7a、回路部品7b)を有する基板4とからなる。
【0022】
誘電体1は、図2に示すように一面に凹部2が形成され、この凹部2の露出面に回路シールド用のシールド部材3を有し、この凹部2の形成面(表面)とは反対側の面(裏面)には接地電極部10を有する。更に、誘電体1及びシールド部材3には、回路パターン部7aと電気的に接続する給電ピン12を組込むための穴が形成されている。
【0023】
また、誘電体1の材料としては、好ましくは高周波特性が良好で低損失なPPS(ポリフェニレンサルファイド:誘電率εr=20)を用いることにより、波長短縮効果によりアンテナ素子部の小型化が可能となる。
【0024】
基板4は、図5に示すように表面側には、回路接地電極部6aと放射電極部6bとを有し、裏面側には、回路部7(回路パターン部7a、回路部品7b)を有する。この回路接地電極部6aと回路部7(回路パターン部7a、回路部品7b)とは、基板4に設けられたビアホール8を介して電気的に接続される。また、基板4にはシールド部材3を貫通するためのスリット5が設けられている。
【0025】
基板4の材質としては、ガラス繊維を含有するエポキシ樹脂を用いることが一般的であるが、好ましくは、液晶ポリマーなどの熱可塑性樹脂を用いると良い。これにより、基板の厚みを0.3mm程度まで薄くできる。
【0026】
電極部6は、外側にアンテナ電極として機能する放射電極部6bと、内側に回路GNDとして機能する回路接地電極部6aとを有し、この放射電極部6bと回路接地電極部6aとは少なくとも1箇所で接続されている。
【0027】
基板4における表面側には回路接地電極部6aが設けられ、裏面側には回路パターン部7aが設けられ、回路部7は、回路パターン部7aと、この回路パターン部7a上に実装された回路部品7bからなる。
【0028】
回路部品7bは、図6に示すように、第1,第2増幅器、アンテナ整合回路,バイパスフィルタ、ノイズフィルタ等からなる。第1,第2増幅器は、放射電極部6bで受信した衛星からの電波を増幅するものである。アンテナ整合回路は、第1増幅器とアンテナのインピーダンスが異なる場合、信号の伝送損失が生じるため、アンテナのインピーダンスを第1増幅器のインピーダンス(通常50Ω)に変換するための整合回路である。バイパスフィルタは、アンテナ装置にとっては必要な周波数以外の信号は、妨害,干渉等の悪影響を及ぼすものであり、その不必要な周波数の信号を除去するためのフィルタである。ノイズフィルタは、増幅器用の電源に重畳されているさまざまなノイズを除去するための回路である。
【0029】
ここで本発明の平面アンテナ装置20の製造方法に関して説明する。誘電体1に関しては、所定形状の金型内部に凹状の金属からなるシールド部材3と導電性部材からなる接地電極部10を所定位置に設置した状態で、すなわちシールド部材3と接地電極部10とをインサート成形するように射出成形されるものである。この際に、接地電極部10は、基板4に設けられる電極部6と略同じ大きさの部材を用い、外側端部が揃う位置に配置される。更に、誘電体1及びシールド部材3には、回路部7の回路パターン部7aと電気的に接続する給電ピン12を組込むための穴が射出成形時、もしくは射出成形後に形成される。
【0030】
基板4に関しては、まず、基板4の表面に形成される放射電極部6bの回路接地電極部6aと基板の裏面に形成される回路パターン部7aとを層間接続するためのビアホール8を設けると共に、基板4に形成される回路接地電極部6aと誘電体1に形成されるシールド部材3とを電気的に接続するためのスリット5を設ける。
【0031】
次に、基板4の表面側に回路接地電極部aと放射電極部6bとを形成する。この放射電極部6bは、外側部(放射電極部6b)と、この外側部(放射電極部6b)とは少なくとも1箇所で接続される内側部(回路接地電極部6a)とからなるパターンを有するように、銅などの導電性部材をエッチングなどでパターニングする。その後、酸化防止のためのニッケルもしくは錫メッキを施す。なお、ビアホール8には、回路接地電極部6aと放射電極部6bの形成前もしくは形成後に、層間接続材料を充填しておく。
【0032】
次に、基板4の裏面側の回路部7を形成する。すなわち、まず表面側の回路接地電極部6aに対向する位置において、銅などの導電性部材を所定の形状にエッチングなどでパターニングすることにより回路パターン部7aを形成する。その後、周知の技術であるバンプなどを所定の位置に形成し、回路部品7bを実装する。
【0033】
次に、各構成部品の組付けについて説明する。まず、基板4の裏面側に実装された回路部品7bを誘電体1の凹部2に収納するように誘電体1と基板4が取り外し可能な両面(粘着)テープなど接合部材にて誘電体1に基板4を設置する。この設置に関しては、誘電体1と基板4とが嵌合可能な構造を設け、両者を互いに固定するようにしてもよい。その際に、誘電体1の接地電極部10から給電ピン12を組込み、この給電ピン12と回路パターン部7aとを電気的に接続する。回路接地電極部6aと放射電極部6b側では、図3に示すように、誘電体1の凹部2内に形成されたシールド部材3を基板4に設けられたスリット5に貫通させ、シールド部材3と回路接地電極部6aとを所定のピッチで半田接続する(半田9)。所定のピッチとは使用波長の1/20波長であり、GPSの場合では約10mm間隔にてDC的な接続が必要である。
【0034】
また、回路接地電極部6aとシールド部材3との接続方法の変形例として、スリット5を形成する代わりに、基板にビアホールを設けるようにしても良い。この場合、シールド部材3を回路パターン部7aに接続すると共に、ビアホールにて回路接地電極部6aと回路パターン部7aとを層間接続する。
【0035】
ここで、基板4に形成された回路接地電極部6a及び放射電極部6bの形成位置について更に詳しく説明する。図11は、図10に示す従来技術のような放射電極部102の形状(ベタ状)と同様の放射電極を有する平面アンテナ装置を試験的に作成して調べた、高周波電流の分布を示すものである。この図からわかるように、高周波電流分布は放射電極の端部に集中しており、放射電極の中央付近にはほとんど存在していない。説明のために、この中央付近の高周波電流がほとんど存在していない内側の領域をAとし、高周波電流の集中する箇所を含む外側の領域をBとする。
【0036】
領域Aに関しては、高周波電流がほとんど存在しておらず、平面アンテナ装置の放射電極としては機能しない不要な領域であり、平面アンテナ装置の放射電極としては、高周波電流の集中する箇所を含む領域Bがあれば充分である。よって、本発明では、平面アンテナ装置の放射電極としては不要な領域Aを回路接地電極部6aとして用い、高周波電流の集中する箇所を含む領域Bのみを放射電極部6として用いる。
【0037】
このようにして形成されたアンテナ素子部30は、接地電極部10側にて、同軸給電線13の中心導体14と給電ピン12及び、同軸給電線13の外導体16と接地電極部10とを半田接続(半田17)する。この同軸給電線13と接続されたアンテナ素子部30は、樹脂製のレドーム19内に収納された状態でブラケット18に固定され、移動体などに搭載される。また、平面アンテナ装置20は放射電極部6で受信した電波を、ビアホール8を介して回路部品7bへ入力し、回路部品7bで増幅等の処理を施された信号を給電部材11(給電ピン12及び同軸給電線13)を介して出力する。
【0038】
このように、導電性部材からなる放射電極部6bを基板4上に形成し、基板4を誘電体1から取り外し可能な構造にて基板4を誘電体1に設置するため、放射電極部6bの大きさや形状等の調整を失敗した場合でも、基板4のみを取り換えるだけですむため、高価な誘電体を破棄するのに比べ、放射電極部6bを形成する基板は安価であるため、開発コストを安くすることができる。また、導電性部材の一部をGND部として使用するため、別途、回路部品のGNDを設ける必要がなくコストを安くすることができる。更に、平面アンテナ装置20として必要な箇所のみを放射電極部6bとして使用し、平面アンテナ装置として必要ない箇所は回路接地電極部6aとして使用するため、放射電極部6のスペースを有効利用できる。
【0039】
また、誘電体1の一面(基板4が実装される面)に基板4に搭載される回路部品7bを収納する凹部2設けることにより、基板4を誘電体1に実装するだけで平面アンテナ装置を形成できるため、別途回路用のGNDを形成する必要がなく製造工程数が低減できる。
【0040】
また、誘電体1に設けた凹部2に、回路部7を取り囲むようにシールド部材3を形成し、回路接地電極部6aと所定のピッチで電気的に接続することにより、回路部7からの不要輻射を低減すると共に、回路部7に対する干渉波を低減できる。
【0041】
また、シールド部材3に、凹部2の開口部側端部が基板4を貫通する貫通部を設けることにより、基板4を誘電体1に実装するだけで、シールド部材3の開口部側端部が基板4の回路接地電極部6aと電気的に接続できる状態になるため製造が容易になる。
【0042】
また、基板4として、熱可塑性樹脂を用いることにより、基板の厚みを0.3mm程度まで薄くできるため平面アンテナ装置全体としても薄型化ができる。
【0043】
(第2実施形態)
次に、本発明の第2実施形態について、図7及び図8を参照して説明する。なお、第1実施形態との共通部分についての詳しい説明は省略する。
【0044】
第1実施形態と本実施形態との相違点は、同軸給電線13の配置場所にある。第1実施形態における同軸給電線13は接地電極10とブラケット18との間に配置され、接地電極部10から放射電極6側に向かって給電ピン12を保持している。これに対して、本実施形態では、誘電体1の側面側から放射電極部と接地電極部との間に位置する部位に同軸給電線13を組込む構成としている。
このような本実施形態によれば、誘電体内部であり放射電極部に平行に給電部材を備えることができ、平面アンテナ装置全体の厚みを同軸給電線13の厚み分だけ薄くできる。
【0045】
(変形例)
変形例として、基板4を、熱可塑性樹脂からなる多層基板としてもよい。製造方法に関しては、複数の熱可塑性樹脂からなる樹脂フィルムを積層するものであり、樹脂フィルムに貫通孔を設けることによって回路部品7bを収納する空間部を形成する。この空間部の少なくとも1つの面に回路部品7bが電気的に接続される回路パターン7aを形成し、樹脂フィルムを積層する際に回路部品7bを空間部に配置すると共に、空間部の開口部側(上面)にも樹脂フィルムを積層する。また、積層された樹脂フィルムの最上部の表面側には、回路接地電極部6a及び放射電極部6bを形成し、回路接地電極部6aと回路パターン7aはビアホールにて電気的に接続できるようにしておく。更に、回路部品7bの配置された空間部の周囲を囲うようにビアホール及び導電性パターンを形成し、ビアホールに関しては回路接地電極部6aに達するように形成しておく。
【0046】
このような空間部に回路部品7bを配置しつつ積層された樹脂フィルムを積層後加圧しつつ加熱して相互に接着することによって、回路パターン部7aは回路接地電極部6a及び回路部品7bと電気的に接続される。更に、回路部品7bの配置された空間部の周囲を囲うように形成されたビアホールと導電性パターンも相互に電気的に接続され、回路接地電極部6aと所定のピッチで半田接続することによってシールド部材(本発明における第2シールド部材)となる。なお、シールド部材に関しては、ビアホールと導電性パターンとで構成されるもの以外でも、所定形状の導電性部材を樹脂フィルムを貫通させて形成するものであっても良い。
【0047】
このように熱可塑性樹脂からなる多層基板に空間部を設け、その空間部内に回路部品7bを設ける共に、空間部の周囲をシールド部材で囲うことによって、高価な誘電体1に凹部2を設ける必要がなくなる。
【0048】
なお、本発明における平面アンテナ装置のアンテナ単品指向性を図9に示す。図9bから明らかなように、天頂方向(Z方向)において所望の+4dBicを得ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における平面アンテナ装置の斜視図である。
【図2】本発明の第1実施形態における平面アンテナ装置の断面図である。
【図3】本発明の第1実施形態における平面アンテナ装置の表面側平面図である。
【図4】本発明の第1実施形態における平面アンテナ装置の裏面側平面図である。
【図5】本発明の第1実施形態における平面アンテナ装置の基板の断面図である。
【図6】本発明における平面アンテナ装置の回路ブロック図である。
【図7】本発明の第2実施形態における平面アンテナ装置の斜視図である。
【図8】本発明の第2実施形態における平面アンテナ装置の断面図である。
【図9】本発明における平面アンテナ装置の指向性の説明図である。
【図10】従来技術における平面アンテナ装置の断面図である。
【図11】従来技術における放射電極と同形状の平面アンテナ装置における高周波電流分布図である。
【符号の説明】
1 誘電体、2 凹部、3 シールド部材、4 基板、5 スリット、6 放射電極部、6a 回路接地電極部、6b 放射電極部、7 回路部、7a 回路パターン部、7b 回路部品、8 ビアホール、9 半田接続部、10 接地電極、11 給電部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a planar antenna device. The planar antenna device according to the present invention is suitable as a GPS (global positioning system) antenna for satellite-vehicle communication using quasi-microwaves, for example.
[0002]
[Prior art]
2. Description of the Related Art In recent years, as an antenna for a GPS (Global Positioning System) for a vehicle, a microstrip antenna is considered to be used.
[0003]
Hereinafter, a conventional planar antenna device will be described. FIG. 10 is a cross-sectional view showing the configuration of the planar antenna device 100 described in Patent Document 1. The planar antenna device 100 includes a radiation electrode section 102 made of a conductive member formed on an upper surface of a dielectric 101 and a ground electrode section 104 made of a conductive member formed on a bottom surface. A step 103 (103a, 103b) is formed on a part of the bottom surface of the dielectric 101, and the step 103 (103a, 103b) is electrically connected to the radiation electrode 102 and the feed line 108. In addition, a circuit section 105 including a printed circuit board 107 on which a circuit element 106 is mounted is accommodated. Further, a lid 109 for sealing the step portion 103 (103a, 103b) is provided.
[0004]
[Patent Document 1]
JP-A-9-64636 [0005]
[Problems to be solved by the invention]
However, in the prior art shown in FIG. 10, the radiation electrode 102 is formed directly on one surface of the dielectric 101, and usually, in order for the conductive member to function as the radiation electrode unit 102, the conductive member is After being formed on the dielectric 101, it is necessary to trim and adjust the size and shape of the conductive member so as to match the resonance frequency to the frequency to be used. If this adjustment fails, the dielectric member 101 and the like must be discarded because the conductive member is fixed to the dielectric member 101, and the dielectric member 100 is an expensive member, which increases the development cost. Was.
[0006]
The present invention has been made in view of the above problems, and provides a planar antenna device having a structure capable of solving a problem without discarding a dielectric even when adjustment of the size or shape of a radiation electrode or the like fails. It is intended for that purpose.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a flat antenna device having a radiation electrode portion functioning as an antenna for receiving a radio wave, a dielectric, a substrate disposed on one surface of the dielectric, It is characterized by comprising a conductive member provided thereon, and the radiation electrode portion being formed of a conductive member.
[0008]
According to this, since the radiation electrode portion made of a conductive member is formed on the substrate, even if the adjustment of the size or shape of the radiation electrode portion fails, compared to discarding the expensive dielectric material, Since the substrate forming the portion is inexpensive, the development cost can be reduced.
[0009]
According to a second aspect of the present invention, the substrate is disposed on one surface of the dielectric so as to be detachable from the dielectric. According to this, even if the adjustment of the size, shape, etc. of the radiation electrode portion fails, the substrate on which the radiation electrode portion made of a conductive member is formed can be removed. The adjustment can be performed again.
[0010]
Further, according to the third aspect of the present invention, there is provided a circuit unit for processing a radio wave received by the radiation electrode unit, the outer region of the conductive member is set as the radiation electrode unit, and the inner region inside the outer region is set as a circuit. It is set as a circuit ground electrode part of the section. According to this, since a part of the conductive member is used as the circuit ground electrode portion, it is not necessary to separately provide a ground electrode of the circuit portion, and the cost can be reduced.
[0011]
According to the fourth aspect of the present invention, the radiation electrode section and the circuit ground electrode section of the conductive member are electrically connected at at least one place, and a reception signal is output to the outside via the circuit ground electrode section. What should I do?
[0012]
In the invention according to claim 5, the outer region is a region where a high-frequency current is concentrated. According to this, only the portion required for the planar antenna device is used as the radiation electrode portion, and the portion not required for the planar antenna device is used as the circuit ground electrode portion, so that the space of the radiation electrode portion can be effectively used.
[0013]
In the invention according to claim 6, the circuit portion is provided on the surface of the substrate opposite to the surface on which the conductive member is provided, the dielectric is provided with a concave portion, and the circuit portion is housed in the concave portion. Wherein the substrate is disposed on one surface of the dielectric. According to this, the substrate having the radiation electrode section, the circuit ground electrode section, and the circuit section electrically connected to the circuit ground electrode section only needs to be mounted on the dielectric, thereby facilitating the manufacture.
[0014]
Further, in the invention according to claim 7, a first shield member is formed in the concave portion, and the first shield member and the circuit ground electrode portion are electrically connected at a predetermined pitch so as to surround the circuit portion. It is assumed that. According to this, unnecessary radiation from the circuit unit can be reduced, and interference waves to the circuit unit can be reduced.
[0015]
Further, in the invention according to claim 8, the substrate is made of a thermoplastic resin. According to this, since the thickness of the substrate can be reduced to about 0.3 mm, in the invention according to claim 9, the substrate is constituted by a multilayer substrate made of a thermoplastic resin. A circuit portion is built in, and the circuit portion is electrically connected to a circuit ground electrode portion through a via hole provided in the multilayer substrate. According to this, since the circuit portion can be arranged on the substrate mounted on the dielectric, there is no need to provide a concave portion in the expensive dielectric.
[0016]
According to the tenth aspect of the present invention, the second shield member is incorporated in the multilayer substrate, and the second shield member and the circuit ground electrode portion are electrically connected at a predetermined pitch so as to surround the circuit portion. It is a feature. According to this, unnecessary radiation from the circuit unit can be reduced, and interference waves to the circuit unit can be reduced.
[0017]
For example, as set forth in claim 11, a power supply member may be provided on a surface opposite to the surface on which the dielectric substrate is provided, and may be output to the outside via the power supply member.
[0018]
According to a twelfth aspect of the present invention, there is provided a power supply member built in from the side surface of the dielectric, and a reception signal of the radiation electrode unit is output to the outside via the power supply member. According to this, the feed member can be provided inside the dielectric and parallel to the radiation electrode portion, and the thickness of the entire planar antenna device can be reduced by the thickness of the feed member.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of the planar antenna device according to the first embodiment of the present invention. 2 is a sectional view of the planar antenna device according to the first embodiment of the present invention, FIG. 3 is a front plan view of the planar antenna device according to the first embodiment of the present invention, and FIG. 4 is a plan view of the planar antenna device according to the first embodiment of the present invention. FIG. 5 is a cross-sectional view of a substrate of the planar antenna device according to the first embodiment of the present invention, and FIG. 6 is a circuit block diagram according to the first embodiment of the present invention.
[0020]
Reference numeral 20 denotes a planar antenna device. In the planar antenna device 20, the antenna element unit 30 is housed in the radome 19, and the antenna element unit 30 and the radome 19 are fixed to the bracket 18. Therefore, the planar antenna device is arranged at an arbitrary position via the bracket 18.
[0021]
The antenna element section 30 includes a shield member 3 (a first shield member in the present invention), a dielectric 1 having a ground electrode section 10, an electrode section 6 (a circuit ground electrode section 6a (also referred to as a GND electrode section), and a radiation electrode section 6b). (Also referred to as an antenna section)) and a substrate 4 having a circuit section 7 (circuit pattern section 7a, circuit component 7b).
[0022]
As shown in FIG. 2, the dielectric 1 has a concave portion 2 formed on one surface, and has a shield member 3 for circuit shielding on an exposed surface of the concave portion 2, and is opposite to a surface (surface) on which the concave portion 2 is formed. (Rear surface) has a ground electrode portion 10. Further, the dielectric 1 and the shield member 3 are formed with holes for incorporating the power supply pins 12 electrically connected to the circuit pattern portion 7a.
[0023]
Further, as the material of the dielectric 1, preferably, PPS (polyphenylene sulfide: dielectric constant εr = 20) having good high-frequency characteristics and low loss is used, so that the antenna element can be reduced in size due to a wavelength shortening effect. .
[0024]
As shown in FIG. 5, the substrate 4 has a circuit ground electrode portion 6a and a radiation electrode portion 6b on the front surface side, and has a circuit portion 7 (a circuit pattern portion 7a and a circuit component 7b) on the back surface side. . The circuit ground electrode section 6a and the circuit section 7 (circuit pattern section 7a, circuit component 7b) are electrically connected via via holes 8 provided in the substrate 4. Further, a slit 5 for penetrating the shield member 3 is provided in the substrate 4.
[0025]
As a material of the substrate 4, an epoxy resin containing glass fiber is generally used, but a thermoplastic resin such as a liquid crystal polymer is preferably used. Thereby, the thickness of the substrate can be reduced to about 0.3 mm.
[0026]
The electrode portion 6 has a radiation electrode portion 6b functioning as an antenna electrode on the outside, and a circuit ground electrode portion 6a functioning as a circuit GND on the inside, and the radiation electrode portion 6b and the circuit ground electrode portion 6a are at least one. Connected at the point.
[0027]
A circuit ground electrode portion 6a is provided on the front side of the substrate 4 and a circuit pattern portion 7a is provided on the back side. The circuit portion 7 includes a circuit pattern portion 7a and a circuit mounted on the circuit pattern portion 7a. It consists of a part 7b.
[0028]
As shown in FIG. 6, the circuit component 7b includes first and second amplifiers, an antenna matching circuit, a bypass filter, a noise filter, and the like. The first and second amplifiers amplify radio waves from satellites received by the radiation electrode unit 6b. The antenna matching circuit is a matching circuit for converting the impedance of the antenna into the impedance of the first amplifier (usually 50Ω) because a signal transmission loss occurs when the impedance of the first amplifier and the antenna are different. The bypass filter is a filter for removing a signal of an unnecessary frequency because a signal other than a frequency necessary for the antenna device has an adverse effect such as interference or interference. The noise filter is a circuit for removing various noises superimposed on the power supply for the amplifier.
[0029]
Here, a method for manufacturing the planar antenna device 20 of the present invention will be described. With respect to the dielectric 1, a shield member 3 made of a concave metal and a ground electrode portion 10 made of a conductive member are installed at predetermined positions inside a mold having a predetermined shape, that is, the shield member 3 and the ground electrode portion 10 Is injection molded so as to perform insert molding. At this time, the ground electrode unit 10 uses a member having substantially the same size as the electrode unit 6 provided on the substrate 4 and is arranged at a position where the outer ends are aligned. Further, holes for incorporating the power supply pins 12 electrically connected to the circuit pattern portion 7a of the circuit portion 7 are formed in the dielectric 1 and the shield member 3 during or after the injection molding.
[0030]
Regarding the substrate 4, first, a via hole 8 for interlayer connection between the circuit ground electrode portion 6a of the radiation electrode portion 6b formed on the surface of the substrate 4 and the circuit pattern portion 7a formed on the back surface of the substrate 4 is provided. A slit 5 for electrically connecting a circuit ground electrode portion 6a formed on the substrate 4 and the shield member 3 formed on the dielectric 1 is provided.
[0031]
Next, a circuit ground electrode portion a and a radiation electrode portion 6b are formed on the front surface side of the substrate 4. The radiation electrode portion 6b has a pattern including an outer portion (radiation electrode portion 6b) and an inner portion (circuit ground electrode portion 6a) connected to the outer portion (radiation electrode portion 6b) at at least one place. As described above, a conductive member such as copper is patterned by etching or the like. Thereafter, nickel or tin plating for oxidation prevention is performed. The via hole 8 is filled with an interlayer connection material before or after the formation of the circuit ground electrode portion 6a and the radiation electrode portion 6b.
[0032]
Next, the circuit section 7 on the back surface side of the substrate 4 is formed. That is, first, at a position facing the circuit ground electrode portion 6a on the front surface side, a circuit member 7a is formed by patterning a conductive member such as copper into a predetermined shape by etching or the like. Thereafter, a bump or the like, which is a well-known technique, is formed at a predetermined position, and the circuit component 7b is mounted.
[0033]
Next, the assembly of each component will be described. First, the dielectric component 1 and the substrate 4 are attached to the dielectric 1 by a bonding member such as a removable double-sided (adhesive) tape so that the circuit component 7b mounted on the back surface side of the substrate 4 is housed in the concave portion 2 of the dielectric 1. The substrate 4 is set. Regarding this installation, a structure in which the dielectric 1 and the substrate 4 can be fitted may be provided, and the two may be fixed to each other. At this time, a power supply pin 12 is assembled from the ground electrode portion 10 of the dielectric 1, and the power supply pin 12 and the circuit pattern portion 7a are electrically connected. On the circuit ground electrode portion 6a and the radiation electrode portion 6b side, as shown in FIG. 3, the shield member 3 formed in the concave portion 2 of the dielectric 1 is passed through the slit 5 provided in the substrate 4, and the shield member 3 And the circuit ground electrode portion 6a are soldered at a predetermined pitch (solder 9). The predetermined pitch is 1/20 wavelength of the used wavelength, and in the case of GPS, DC connection is required at intervals of about 10 mm.
[0034]
As a modification of the method of connecting the circuit ground electrode portion 6a and the shield member 3, a via hole may be provided in the substrate instead of forming the slit 5. In this case, the shield member 3 is connected to the circuit pattern portion 7a, and the circuit ground electrode portion 6a and the circuit pattern portion 7a are interlayer-connected by via holes.
[0035]
Here, the formation positions of the circuit ground electrode portion 6a and the radiation electrode portion 6b formed on the substrate 4 will be described in more detail. FIG. 11 shows a distribution of a high-frequency current obtained by experimentally preparing and examining a planar antenna device having a radiation electrode having the same shape (solid shape) of the radiation electrode portion 102 as the conventional technique shown in FIG. It is. As can be seen from this figure, the high-frequency current distribution is concentrated at the end of the radiation electrode, and hardly exists near the center of the radiation electrode. For the sake of explanation, the inner region near the center where the high-frequency current hardly exists is denoted by A, and the outer region including the portion where the high-frequency current is concentrated is denoted by B.
[0036]
The area A is an unnecessary area where the high-frequency current hardly exists and does not function as the radiation electrode of the planar antenna device. The area B including the portion where the high-frequency current is concentrated is used as the radiation electrode of the planar antenna apparatus. Is enough. Therefore, in the present invention, the area A unnecessary as the radiation electrode of the planar antenna device is used as the circuit ground electrode section 6a, and only the area B including the portion where the high-frequency current is concentrated is used as the radiation electrode section 6.
[0037]
The antenna element unit 30 formed in this manner connects the center conductor 14 of the coaxial feed line 13 and the feed pin 12 and the outer conductor 16 of the coaxial feed line 13 and the ground electrode unit 10 on the ground electrode unit 10 side. Solder connection (solder 17). The antenna element unit 30 connected to the coaxial feed line 13 is fixed to the bracket 18 while being housed in the resin radome 19, and is mounted on a moving body or the like. Further, the planar antenna device 20 inputs a radio wave received by the radiation electrode unit 6 to the circuit component 7b through the via hole 8, and transmits a signal subjected to processing such as amplification by the circuit component 7b to the power supply member 11 (the power supply pin 12). And output via a coaxial feed line 13).
[0038]
As described above, the radiation electrode portion 6b made of a conductive member is formed on the substrate 4, and the substrate 4 is placed on the dielectric 1 in a structure in which the substrate 4 can be detached from the dielectric 1. Even if the adjustment of the size and shape is unsuccessful, only the substrate 4 needs to be replaced. Therefore, compared to discarding an expensive dielectric, the substrate forming the radiation electrode portion 6b is inexpensive. Can be cheaper. In addition, since a part of the conductive member is used as the GND portion, it is not necessary to separately provide a GND of a circuit component, and the cost can be reduced. Furthermore, only the portion required for the planar antenna device 20 is used as the radiation electrode portion 6b, and the portion not required for the planar antenna device is used as the circuit ground electrode portion 6a, so that the space of the radiation electrode portion 6 can be effectively used.
[0039]
Further, by providing the concave portion 2 for accommodating the circuit component 7b mounted on the substrate 4 on one surface of the dielectric 1 (the surface on which the substrate 4 is mounted), the planar antenna device can be realized by simply mounting the substrate 4 on the dielectric 1. Since it can be formed, it is not necessary to separately form a GND for a circuit, and the number of manufacturing steps can be reduced.
[0040]
Further, the shield member 3 is formed in the concave portion 2 provided in the dielectric 1 so as to surround the circuit portion 7 and is electrically connected to the circuit ground electrode portion 6a at a predetermined pitch, so that unnecessary portions from the circuit portion 7 can be obtained. Radiation can be reduced, and interference waves to the circuit section 7 can be reduced.
[0041]
In addition, by providing the shield member 3 with a penetrating portion in which the opening-side end of the concave portion 2 penetrates the substrate 4, the opening-side end of the shield member 3 can be formed only by mounting the substrate 4 on the dielectric 1. Since it can be electrically connected to the circuit ground electrode portion 6a of the substrate 4, manufacturing becomes easy.
[0042]
Further, by using a thermoplastic resin as the substrate 4, the thickness of the substrate can be reduced to about 0.3 mm, so that the overall planar antenna device can be made thin.
[0043]
(2nd Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. Note that a detailed description of common parts with the first embodiment will be omitted.
[0044]
The difference between the first embodiment and the present embodiment lies in the location of the coaxial feed line 13. The coaxial power supply line 13 in the first embodiment is disposed between the ground electrode 10 and the bracket 18, and holds the power supply pin 12 from the ground electrode unit 10 toward the radiation electrode 6. On the other hand, in the present embodiment, the coaxial power supply line 13 is incorporated into a portion located between the radiation electrode unit and the ground electrode unit from the side surface of the dielectric 1.
According to the present embodiment, a feeder member can be provided inside the dielectric and parallel to the radiation electrode portion, and the overall thickness of the planar antenna device can be reduced by the thickness of the coaxial feeder 13.
[0045]
(Modification)
As a modification, the substrate 4 may be a multilayer substrate made of a thermoplastic resin. Regarding the manufacturing method, a resin film made of a plurality of thermoplastic resins is laminated, and a through hole is provided in the resin film to form a space for accommodating the circuit component 7b. A circuit pattern 7a to which the circuit component 7b is electrically connected is formed on at least one surface of the space, and when the resin film is laminated, the circuit component 7b is arranged in the space and the opening side of the space is opened. A resin film is also laminated on the (upper surface). A circuit ground electrode portion 6a and a radiation electrode portion 6b are formed on the uppermost surface side of the laminated resin film so that the circuit ground electrode portion 6a and the circuit pattern 7a can be electrically connected to each other through a via hole. Keep it. Further, a via hole and a conductive pattern are formed so as to surround the space where the circuit component 7b is arranged, and the via hole is formed so as to reach the circuit ground electrode portion 6a.
[0046]
The circuit pattern portion 7a is electrically connected to the circuit ground electrode portion 6a and the circuit component 7b by arranging the resin films laminated while placing the circuit component 7b in such a space and then heating the resin film while applying pressure and bonding them together. Connected. Further, a via hole formed so as to surround the periphery of the space where the circuit component 7b is arranged and the conductive pattern are also electrically connected to each other, and are shielded by soldering with a predetermined pitch to the circuit ground electrode 6a. The member (the second shield member in the present invention). In addition, as for the shield member, a conductive member having a predetermined shape may be formed by penetrating the resin film other than the one formed by the via hole and the conductive pattern.
[0047]
As described above, it is necessary to provide the concave portion 2 in the expensive dielectric 1 by providing the space portion on the multilayer substrate made of the thermoplastic resin, providing the circuit component 7b in the space portion, and surrounding the space portion with the shield member. Disappears.
[0048]
FIG. 9 shows the directivity of a single antenna of the planar antenna device according to the present invention. As is clear from FIG. 9B, a desired +4 dBic can be obtained in the zenith direction (Z direction).
[Brief description of the drawings]
FIG. 1 is a perspective view of a planar antenna device according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the planar antenna device according to the first embodiment of the present invention.
FIG. 3 is a front side plan view of the planar antenna device according to the first embodiment of the present invention.
FIG. 4 is a rear side plan view of the planar antenna device according to the first embodiment of the present invention.
FIG. 5 is a sectional view of a substrate of the planar antenna device according to the first embodiment of the present invention.
FIG. 6 is a circuit block diagram of the planar antenna device according to the present invention.
FIG. 7 is a perspective view of a planar antenna device according to a second embodiment of the present invention.
FIG. 8 is a sectional view of a planar antenna device according to a second embodiment of the present invention.
FIG. 9 is an explanatory diagram of directivity of the planar antenna device according to the present invention.
FIG. 10 is a cross-sectional view of a planar antenna device according to the related art.
FIG. 11 is a diagram illustrating a high-frequency current distribution in a planar antenna device having the same shape as a radiation electrode according to the related art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dielectric, 2 recessed parts, 3 shield members, 4 substrates, 5 slits, 6 radiation electrode portions, 6a circuit ground electrode portions, 6b radiation electrode portions, 7 circuit portions, 7a circuit pattern portions, 7b circuit components, 8 via holes, 9 Solder connection part, 10 ground electrode, 11 power supply member

Claims (12)

電波を受信するアンテナとして機能する放射電極部を有する平面アンテナ装置において、
誘電体と、該誘電体の一面に設置された基板と、該基板上に設けられた導電性部材を備え、
前記放射電極部を前記導電性部材より構成したことを特徴とする平面アンテナ装置。
In a planar antenna device having a radiation electrode portion functioning as an antenna for receiving radio waves,
A dielectric, a substrate provided on one surface of the dielectric, and a conductive member provided on the substrate,
The planar antenna device, wherein the radiation electrode portion is formed of the conductive member.
前記基板は前記誘電体より取り外し可能な状態で前記誘電体の前記一面に配置されてなることを特徴とする請求項1に記載の平面アンテナ装置。The planar antenna device according to claim 1, wherein the substrate is disposed on the one surface of the dielectric so as to be detachable from the dielectric. 前記放射電極部により受信した電波を処理する回路部を有し、
前記導電性部材における外側領域を前記放射電極部として設定すると共に、該外側領域より内側の内側領域を前記回路部の回路接地電極部として設定することを特徴とする請求項1又は請求項2に記載の平面アンテナ装置。
Having a circuit unit for processing radio waves received by the radiation electrode unit,
3. The method according to claim 1, wherein an outer region of the conductive member is set as the radiation electrode portion, and an inner region inside the outer region is set as a circuit ground electrode portion of the circuit portion. The planar antenna device according to any one of the preceding claims.
前記導電性部材における前記放射電極部と前記回路接地電極部を少なくとも一箇所で電気的に接続することを特徴とする請求項3に記載の平面アンテナ装置。The planar antenna device according to claim 3, wherein the radiation electrode section and the circuit ground electrode section of the conductive member are electrically connected at at least one place. 前記外側領域は高周波電流の集中する箇所となる領域であることを特徴とする請求項3又は請求項4に記載の平面アンテナ装置。The planar antenna device according to claim 3, wherein the outer region is a region where a high-frequency current is concentrated. 前記回路部は前記基板の前記導電性部材を設けた面とは反対の面に設けられ、
前記誘電体には凹部が設けられ、該凹部に前記回路部が収納された状態で前記基板が前記誘電体の前記一面に設置されてなることを特徴とする請求項3乃至請求項5のいずれかに記載の平面アンテナ装置。
The circuit unit is provided on a surface of the substrate opposite to a surface on which the conductive member is provided,
6. The dielectric body according to claim 3, wherein a concave part is provided in the dielectric body, and the substrate is set on the one surface of the dielectric body in a state where the circuit part is housed in the concave part. A planar antenna device according to any one of the above.
前記凹部には第1シールド部材が形成され、該第1シールド部材と前記回路接地電極部が前記回路部を取り囲むように所定のピッチで電気的に接続することを特徴とする請求項6に記載の平面アンテナ装置。7. The device according to claim 6, wherein a first shield member is formed in the concave portion, and the first shield member and the circuit ground electrode portion are electrically connected at a predetermined pitch so as to surround the circuit portion. Flat antenna device. 前記基板は、熱可塑性樹脂からなることを特徴とする請求項1乃至請求項7のいずれかに記載の平面アンテナ装置。The planar antenna device according to claim 1, wherein the substrate is made of a thermoplastic resin. 前記基板は、熱可塑性樹脂からなる多層基板より構成されるものであって、
該多層基板に前記回路部が内蔵され、該回路部は前記多層基板に設けられたビアホールを介して前記回路接地電極部と電気的に接続されることを特徴とする請求項1乃至請求項5のいずれかに記載の平面アンテナ装置。
The substrate is configured by a multilayer substrate made of a thermoplastic resin,
6. The circuit unit according to claim 1, wherein the circuit unit is built in the multilayer substrate, and the circuit unit is electrically connected to the circuit ground electrode unit via a via hole provided in the multilayer substrate. The planar antenna device according to any one of the above.
前記多層基板には第2シールド部材が内蔵され、該第2シールド部材と前記回路接地電極部が前記回路部を取り囲むように所定のピッチで電気的に接続することを特徴とする請求項9に記載の平面アンテナ装置。10. The multi-layer substrate according to claim 9, wherein a second shield member is built in, and the second shield member and the circuit ground electrode portion are electrically connected at a predetermined pitch so as to surround the circuit portion. The planar antenna device according to any one of the preceding claims. 前記誘電体の前記基板が設けられる前記一面とは反対の面に給電部材を備え、
前記放射電極部の受信信号を前記給電部材を介して外部へ出力することを特徴とする請求項1乃至請求項10のいずれかに記載の平面アンテナ装置。
A power supply member is provided on a surface opposite to the one surface on which the substrate of the dielectric is provided,
The planar antenna device according to any one of claims 1 to 10, wherein a reception signal of the radiation electrode unit is output to the outside via the power supply member.
前記誘電体の側面側から内蔵される給電部材を備え、
前記放射電極部の受信信号を前記給電部材を介して外部へ出力することを特徴とする請求項1乃至請求項10のいずれかに記載の平面アンテナ装置。
A power supply member built in from the side of the dielectric,
The planar antenna device according to any one of claims 1 to 10, wherein a reception signal of the radiation electrode unit is output to the outside via the power supply member.
JP2003111355A 2003-04-16 2003-04-16 Planar antenna device Expired - Fee Related JP4443851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111355A JP4443851B2 (en) 2003-04-16 2003-04-16 Planar antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111355A JP4443851B2 (en) 2003-04-16 2003-04-16 Planar antenna device

Publications (2)

Publication Number Publication Date
JP2004320431A true JP2004320431A (en) 2004-11-11
JP4443851B2 JP4443851B2 (en) 2010-03-31

Family

ID=33471932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111355A Expired - Fee Related JP4443851B2 (en) 2003-04-16 2003-04-16 Planar antenna device

Country Status (1)

Country Link
JP (1) JP4443851B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059633A1 (en) * 2004-12-01 2006-06-08 Omron Corporation Antenna
JP4688071B2 (en) * 2007-03-23 2011-05-25 株式会社村田製作所 ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE
KR101092752B1 (en) 2010-12-01 2011-12-09 한국항공우주산업 주식회사 Conformal Antenna Structure for Improving Input Impedance
WO2019189008A1 (en) * 2018-03-30 2019-10-03 株式会社フジクラ Antenna
US10461403B2 (en) 2014-10-07 2019-10-29 Denso Corporation Antenna device
WO2022038847A1 (en) * 2020-08-19 2022-02-24 株式会社村田製作所 Antenna module and connection structure
US11411314B2 (en) * 2018-03-30 2022-08-09 Murata Manufacturing Co., Ltd. Antenna module and communication apparatus equipped therewith

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059633A1 (en) * 2004-12-01 2006-06-08 Omron Corporation Antenna
JP4688071B2 (en) * 2007-03-23 2011-05-25 株式会社村田製作所 ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE
KR101092752B1 (en) 2010-12-01 2011-12-09 한국항공우주산업 주식회사 Conformal Antenna Structure for Improving Input Impedance
US10461403B2 (en) 2014-10-07 2019-10-29 Denso Corporation Antenna device
WO2019189008A1 (en) * 2018-03-30 2019-10-03 株式会社フジクラ Antenna
JP2019179957A (en) * 2018-03-30 2019-10-17 株式会社フジクラ antenna
US11342676B2 (en) 2018-03-30 2022-05-24 Fujikura Ltd. Antenna
US11411314B2 (en) * 2018-03-30 2022-08-09 Murata Manufacturing Co., Ltd. Antenna module and communication apparatus equipped therewith
WO2022038847A1 (en) * 2020-08-19 2022-02-24 株式会社村田製作所 Antenna module and connection structure

Also Published As

Publication number Publication date
JP4443851B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP3976473B2 (en) High frequency circuit and module and communication device using the same
US7236070B2 (en) Electronic component module and manufacturing method thereof
JP3863464B2 (en) Filter built-in antenna
JP4786579B2 (en) High frequency module
US11133594B2 (en) System and method with multilayer laminated waveguide antenna
US7915715B2 (en) System and method to provide RF shielding for a MEMS microphone package
CN103703610B (en) Wireless module
JP2006191077A (en) Wave guide-printed wiring board (pwb) interconnection
WO2001041256A1 (en) An antenna assembly and a method of mounting an antenna assembly
US11018434B2 (en) Antenna apparatus, and manufacturing method
JP2008244289A (en) Electromagnetic shielding structure
US20200058998A1 (en) Patch antenna feed
JP4443851B2 (en) Planar antenna device
US7236065B2 (en) Integrated RF-front end having an adjustable antenna
JP2008193204A (en) Antenna device
EP1727237B1 (en) Planar antenna device
JP7234017B2 (en) multilayer circuit board
JP2005051576A (en) Antenna device
JPH1117063A (en) Circuit board for mounting semiconductor chip, package for storing semiconductor chip, and semiconductor device
JP4268855B2 (en) Antenna device
JPH06177629A (en) Surface mount type printed antenna
JP4186166B2 (en) High frequency circuit module and communication device
JP2006262218A (en) Antenna substrate, electronic circuit package, and communication system
JP2018182362A (en) Antenna device
JP2004201145A (en) Module with antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071225

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees