[go: up one dir, main page]

JP2004319610A - Image sensor - Google Patents

Image sensor Download PDF

Info

Publication number
JP2004319610A
JP2004319610A JP2003108564A JP2003108564A JP2004319610A JP 2004319610 A JP2004319610 A JP 2004319610A JP 2003108564 A JP2003108564 A JP 2003108564A JP 2003108564 A JP2003108564 A JP 2003108564A JP 2004319610 A JP2004319610 A JP 2004319610A
Authority
JP
Japan
Prior art keywords
light
primary color
filter
color light
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108564A
Other languages
Japanese (ja)
Inventor
Masanori Funaki
正紀 舟木
Tadao Shinya
忠雄 新屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003108564A priority Critical patent/JP2004319610A/en
Publication of JP2004319610A publication Critical patent/JP2004319610A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that colors are mixed in an image sensor performing photoelectric conversion of a primary color light having a wavelength selected by one kind of color filter, and a problem that slanting light or misregistration occurs in an image sensor where spectral characteristics of a desired primary color light are enhanced by more than one kind of filter. <P>SOLUTION: Photoelectric conversion areas 12B, 12G and 12R of pixels for respective primary color lights are formed in a silicon substrate 11 at such depths as corresponding to the light absorption characteristics of silicon in the wavelength region of an incident primary color light by utilizing the light absorption characteristics of the silicon substrate 11 such that the spectral characteristics for the incident primary color light become identical substantially. Wavelength selectivity of a light incident to the pixel of each primary color light can thereby be enhanced and since one kind of color filter 14B, 14G or 14R is employed for each primary color light, problems of slanting light and misregistration can be solved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はイメージセンサに係り、特にフォトダイオードを用いたカラーのイメージセンサに関する。
【0002】
【従来の技術】
CCD(電荷転送素子)やCMOSイメージャなどの半導体を用いて、カラーのイメージセンサを作るときには、画素毎にR(赤)、G(緑)、B(青)の3原色光のうち各原色光透過用フィルタの配置を、例えば図4に示すように、互いに異なる原色光透過用フィルタが隣接するような所謂市松パターンに設定し、露光マスクなどを用いてフィルタを印刷、配置することにより構成する。
【0003】
しかしながら、このような原色光透過用フィルタの分光特性は、例えば、特許文献1に記載されているように、所定値以上の分光透過率が得られる波長領域がかなり広がった特性であり、B透過用フィルタとG透過用フィルタの間、及びG透過用フィルタとR透過用フィルタの間は所定値以上の分光透過率が得られる波長領域がかなり重なっている。この結果、各色が交じり合う混色を起こし、カラー信号の劣化を引き起こしている。
【0004】
そこで、このような混色を避けるために、上記の特許文献1記載の発明のように、図5において、分光特性が点線Iで示される第1のフィルタと、分光特性が一点鎖線IIで示される第2のフィルタとを組み合わせて、実線IIIで示すような特定の波長に急峻なピークを持つような合成されたフィルタを設計する方法が考えられる。
【0005】
【特許文献1】
特開平9−127408号公報(図34、図37)
【0006】
【発明が解決しようとする課題】
上記特許文献1記載の従来のイメージセンサでは、カラーのイメージセンサを構成する場合は、図6に示すように、シリコン基板1上に形成されたB用画素2B、G用画素2G、R用画素2Rの各上方に、配線層及び層間膜3を介して第1のB用フィルタ5B、第1のG用フィルタ5G、第1のR用フィルタ5Rを設け、更にそれらの上方に層間膜4を介して第2のB用フィルタ7B、第2のG用フィルタ7G、第2のR用フィルタ7Rを設け保護膜6で被覆する構成とされる。
【0007】
ここで、上記の第1のB用フィルタ5Bと第2のB用フィルタ7Bとは、B用画素2Bに対して垂直方向に整列して配置されており、互いに異なる2種類の分光特性を有し、点線IVで示す垂直方向の経路で入射する正常な光に対しては前述した青色光の波長に対して急峻なピークを持つような合成されたフィルタ特性を付与する。
【0008】
同様に、上記の第1のG用フィルタ5Gと第2のG用フィルタ7Gとは、G用画素2Gに対して垂直方向に整列して配置されており、互いに異なる2種類の分光特性を有し、それらを組み合わせると緑色光の波長に対して急峻なピークを持つような合成フィルタ特性を有し、上記の第1のR用フィルタ5Rと第2のR用フィルタ7Rとは、R用画素2Rに対して垂直方向に整列して配置されており、互いに異なる2種類の分光特性を有し、それらを組み合わせると赤色光の波長に対して急峻なピークを持つような合成フィルタ特性を有する。
【0009】
しかしながら、図6に示した構造の従来のイメージセンサでは、同図に一点鎖線Vで示すように、B用画素2Bに斜めに光が入射した場合、本来通過すべきB用フィルタ7BではなくG用フィルタ7Gを光が通過しているため、青色光の波長に対して急峻なピークを持つように合成されたフィルタ特性が得られず、B用画素2Bにとっては無駄な波長域の光が入射し、B用画素2Bにより得られるB信号にノイズが発生し、S/Nが劣化する。これは、他のG用画素2G、R用画素2Rに斜めに光が入射した場合も同様である。
【0010】
また、従来のイメージセンサでは、2種類のフィルタ間やフィルタと画素間の位置ずれがあると、一方のフィルタしか通過しない光があり、分光特性が劣化し、撮像して得られる原色信号の劣化などの不具合が生じる。
【0011】
本発明は上記の点に鑑みなされたもので、従来とは別の原理に基づいて、より波長選択性の高く混色の少ない分光特性を高めたイメージセンサを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は上記の目的を達成するため、入射光から第1の色フィルタにより波長選択された第1の原色光を光電変換する第1の原色光用画素と、入射光から第2の色フィルタにより波長選択された第2の原色光を光電変換する第2の原色光用画素と、入射光から第3の色フィルタにより波長選択された第3の原色光を光電変換する第3の原色光用画素とが、二次元マトリクス状又は一次元直線状に複数配列されたイメージセンサにおいて、第1の原色光用画素、第2の原色光用画素及び第3の原色光用画素のそれぞれは、入射する原色光に対する分光特性が互いに略同一となるように、入射する原色光の波長領域におけるシリコンの光吸収特性に応じた深さでシリコン基板に形成されてなる構成としたものである。
【0013】
この発明では、シリコンの光吸収特性が3つの原色光の各波長領域に応じて各々所定の光吸収特性を持つことを利用し、各原色光用画素のそれぞれを、入射する原色光に対する分光特性が互いに略同一となるように、入射する原色光の波長領域におけるシリコンの光吸収特性に応じた深さでシリコン基板に形成するようにしたため、各原色光用画素に入射する光の波長選択性を向上でき、また、シリコン基板表面に対して斜め方向から入射する光に対しても、一つの色フィルタを透過した光とすることができる。
【0014】
【発明の実施の形態】
次に、本発明の一実施の形態について図面と共に説明する。図1は本発明になるイメージセンサの一実施の形態の構造断面図を示す。同図において、シリコン基板11には、水平方向(基板表面に対して平行方向)の互いに異なる位置に、B用光電変換領域12Bと、G用光電変換領域12Gと、R用光電変換領域12Rとが互いに異なる深さで形成されている。
【0015】
ここで、後述する理由により、B用光電変換領域12Bは、シリコン基板11の表面から深さD1で形成され、G用光電変換領域12Gは、シリコン基板11の表面から深さD1〜(D1+D2)の範囲内に形成されている。また、R用光電変換領域12Rは、シリコン基板11の表面から深さ(D1+D2)〜(D1+D2+D3)の範囲内に形成されている。
【0016】
上記のB用光電変換領域12Bと、G用光電変換領域12Gと、R用光電変換領域12Rとが形成されたシリコン基板11上には、配線層及び層間膜13が形成され、更にその配線層及び層間膜13上に、B用フィルタ14B、G用フィルタ14G及びR用フィルタ14Rが、それぞれ対応するB用光電変換領域12B、G用光電変換領域12G及びR用光電変換領域12Rと垂直方向に整列するように配置形成されている。B用フィルタ14Bは、入射光から青色光を波長選択するフィルタであり、G用フィルタ14Gは、入射光から緑色光を波長選択するフィルタであり、R用フィルタ14Rは、入射光から赤色光を波長選択するフィルタであり、これらは共通の透光性の保護膜15により被覆されて保護される。
【0017】
ここで、本実施の形態は、3つの原色光の各フィルタ、すなわちB用フィルタ14B、G用フィルタ14G及びR用フィルタ14Rと共に、シリコン基板11の光吸収特性を利用して、各原色光用のフィルタの分光特性を向上させるようにした点に特徴がある。
【0018】
すなわち、シリコンの光吸収特性は、図2にSiで示す特性であることが文献(米津宏雄著,「光通信素子光学」,工学図書,p.323)により既に知られている。縦軸が吸収係数、横軸が波長を示す図2のシリコンの光吸収特性Siから、入射光が波長毎にどの程度シリコン基板に入るかが分かる。そこで、本実施の形態では、このシリコンの光吸収特性を利用し、各原色光用のフォトダイオードに波長選択性を持たせるようにしたものである。
【0019】
ここで、通常、イメージセンサのフォトダイオード(光電変換領域)の特性は、R,G,Bの画素で同じであるので、図2では3原色光の波長領域のうち、波長0.45μm付近を中心とする青色光波長領域の吸収係数が最も大きく、波長0.64μm付近を中心とする赤色光波長領域の吸収係数が最も小さく、波長0.53μm付近を中心とする緑色光波長領域の吸収係数がそれらの中間であることを示していることに鑑み、図1に示すように、シリコン基板11において吸収係数が最も大きな青色光が入射するB用光電変換領域12Bを最も浅く形成し、吸収係数が最も小さな赤色光が入射するR用光電変換領域12Rを一番深く形成し、G用光電変換領域12Gはその中間の深さで形成する。
【0020】
深さの値はR,G,Bのピーク波長をどこにとるかによるが、図1では例えば、D1は0〜0.5μm、D2は0.5〜1.2μm、D3は1.2〜3.0μmなどのように設定してある。
【0021】
これにより、本実施の形態によれば、B用光電変換領域12BにはB用フィルタ14B及びシリコン基板11の光吸収特性との組合せにより、青色光の波長に対して急峻なピークを持つようなフィルタ特性が付与された青色光が入射して光電変換される。同様に、G用光電変換領域12GにはG用フィルタ14G及びシリコン基板11の光吸収特性との組合せにより、緑色光の波長に対して急峻なピークを持つようなフィルタ特性が付与された緑色光が入射して光電変換され、R用光電変換領域12RにはR用フィルタ14R及びシリコン基板11の光吸収特性との組合せにより、赤色光の波長に対して急峻なピークを持つようなフィルタ特性が付与された赤色光が入射して光電変換される。
【0022】
従って、本実施の形態によれば、各原色光用画素に入射する光の波長選択性が向上するため、1種類の原色光選択用フィルタを使用した従来のイメージセンサと比較して混色の影響を低減できる。また、図1に示すように、本実施の形態では、原色光選択用フィルタは1層のみであるため、斜め入射光は異なる複数の原色光選択用フィルタを通過して光電変換領域に入射することはなく、斜め入射光の問題を解決でき、また、位置ずれの問題も生じない。
【0023】
次に、本実施の形態のイメージセンサの製造方法について、図3の各工程での素子断面図と共に説明する。同図中、図1と同一構成部分には同一符号を付してある。通常、CCD、CMOSイメージャなどではP型基板にN型の光電変換領域を設けることが多い。そこで、図1のイメージセンサを実現するには、図3のようにN型の不純物とP型の不純物の注入を行い、N型の深さを調整する。図3の構成は、N型層に光電変換で発生した電荷をN−MOSFETで別の拡散層に移動させる、CCDやCMOSイメージャでよく行う構成である。
【0024】
まず、図3(A)に示すように、P型シリコン基板11上全面にゲート酸化膜24を被覆し、その上に全面に例えば多結晶ポリシリコンを形成した後、ゲート電極25、25、25となる多結晶ポリシリコンとその下の酸化膜24を除いて、多結晶ポリシリコン及び酸化膜24をエッチング除去する。その後、イオン注入によってP型シリコン基板11に深さD1のN型拡散層21、深さ(D1+D2)のN型拡散層21、深さ(D1+D2+D3)のN型拡散層21をそれぞれ形成し、また、同一深さのN型拡散層(又はCCD転送路)22、22、22を形成する。ここで、異なる深さのN型拡散層21、21、21は、注入エネルギーと注入量、熱拡散時間、熱拡散温度などを調整することにより、既知の方法で容易に所望の深さに形成することができる。
【0025】
続いて、図3(B)に示すように、N型拡散層21、21の表面にシリコン基板11よりも高濃度のP型不純物をイオン注入してP拡散領域26、26を形成する。ここで、P型不純物の注入エネルギーと注入量、熱拡散時間、熱拡散温度などを調整することにより、既知の方法でP拡散領域26、26をそれぞれ深さD1、(D1+D2)で形成することができる。
【0026】
そして、図3(C)に示すように、シリコン基板11上に配線層と層間膜13を被覆し、その上のN型拡散層21、21、21に対応した位置にB用フィルタ14B、G用フィルタ14G、R用フィルタ14Rを公知の方法で形成し、最後に保護膜15で被覆してイメージセンサの製造を完了する。ここで、N型拡散層21、21、21は、図1に示したB用光電変換領域12B、G用光電変換領域12G、R用光電変換領域12Rに相当し、P型シリコン基板11とフォトダイオードを構成している。このようにして、各原色の画素はより波長選択性が増し、混色の影響を減らすことが可能な本実施の形態のイメージセンサを製造できる。
【0027】
なお、本発明は、3原色光を別々に光電変換する3種類の画素を、図4に示したような二次元マトリクス状に配置した構成のイメージセンサ、及び一次元直線状に配置した構成のイメージセンサのいずれにも適用できることは勿論である。
【0028】
【発明の効果】
以上説明したように、本発明によれば、各原色光用画素のそれぞれを、入射する原色光に対する分光特性が互いに略同一となるように、入射する原色光の波長領域におけるシリコンの光吸収特性に応じた深さでシリコン基板に形成することにより、各原色光用画素に入射する光の波長選択性を向上したため、混色の影響を低減でき、また、各原色光用画素に入射する原色光を波長選択する色フィルタは1種類であるため、2種類以上の色フィルタの合成分光特性により所望の原色光を得る従来のイメージセンサのような、斜め入射光や色フィルタの位置ずれによる原色信号のS/Nの劣化などの問題が発生しないようにできる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の構造断面図である。
【図2】シリコンの光吸収特性の説明図である。
【図3】本発明の一実施の形態の製造方法を説明する各工程での素子断面図である。
【図4】イメージセンサの各原色光透過用フィルタの配置説明図である。
【図5】2つのフィルタの各分光特性図とそれらを合成した分光特性図である。
【図6】従来のイメージセンサの構造断面図及び課題説明図である。
【符号の説明】
11 P型シリコン基板
12B B用光電変換領域
12G G用光電変換領域
12R R用光電変換領域
13 配線層及び層間膜
14B B用フィルタ
14G G用フィルタ
14R R用フィルタ
15 保護膜
21、21、21 N型拡散層
22、22、22 拡散層又はCCD転送路
25、25、25 ゲート電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an image sensor, and more particularly, to a color image sensor using a photodiode.
[0002]
[Prior art]
When a color image sensor is manufactured using a semiconductor such as a CCD (charge transfer device) or a CMOS imager, each primary color light of R (red), G (green), and B (blue) is provided for each pixel. For example, as shown in FIG. 4, the transmission filters are arranged in a so-called checkerboard pattern in which different primary color light transmission filters are adjacent to each other, and the filters are printed and arranged using an exposure mask or the like. .
[0003]
However, the spectral characteristic of such a filter for transmitting primary color light is a characteristic in which the wavelength region where a spectral transmittance equal to or higher than a predetermined value is obtained is considerably widened, as described in Patent Document 1, for example. The wavelength regions in which spectral transmittances equal to or higher than a predetermined value are obtained overlap considerably between the G filter and the G transmission filter and between the G transmission filter and the R transmission filter. As a result, color mixing in which each color mixes occurs, causing deterioration of the color signal.
[0004]
Therefore, in order to avoid such color mixing, as in the invention described in Patent Document 1, in FIG. 5, the first filter whose spectral characteristic is indicated by a dotted line I, and the spectral characteristic is indicated by a one-dot chain line II. A method of designing a combined filter having a steep peak at a specific wavelength as shown by a solid line III by combining the second filter and the second filter is conceivable.
[0005]
[Patent Document 1]
JP-A-9-127408 (FIGS. 34 and 37)
[0006]
[Problems to be solved by the invention]
In the conventional image sensor described in Patent Document 1, when a color image sensor is configured, as shown in FIG. 6, a B pixel 2B, a G pixel 2G, and an R pixel formed on a silicon substrate 1 are formed. A first B filter 5B, a first G filter 5G, and a first R filter 5R are provided above each of the 2Rs via a wiring layer and an interlayer film 3, and an interlayer film 4 is further provided thereon. The second filter 7B for B, the second filter 7G for G, and the second filter 7R for R are provided through the protective film 6.
[0007]
Here, the first B filter 5B and the second B filter 7B are arranged in the vertical direction with respect to the B pixel 2B and have two types of spectral characteristics different from each other. Then, for the normal light incident on the vertical path indicated by the dotted line IV, a combined filter characteristic having a steep peak with respect to the wavelength of the blue light described above is given.
[0008]
Similarly, the first G filter 5G and the second G filter 7G are arranged in the vertical direction with respect to the G pixel 2G and have two types of spectral characteristics different from each other. Then, when they are combined, they have a synthetic filter characteristic having a steep peak with respect to the wavelength of green light, and the first R filter 5R and the second R filter 7R are provided with an R pixel. It is arranged in the vertical direction with respect to 2R, has two kinds of different spectral characteristics from each other, and has a combined filter characteristic having a sharp peak with respect to the wavelength of red light when they are combined.
[0009]
However, in the conventional image sensor having the structure shown in FIG. 6, when light is obliquely incident on the B pixel 2B as shown by a dashed line V in FIG. Since the light passes through the filter 7G for B, a filter characteristic synthesized so as to have a steep peak with respect to the wavelength of blue light cannot be obtained, and light in a useless wavelength range enters the B pixel 2B. However, noise occurs in the B signal obtained by the B pixel 2B, and the S / N deteriorates. The same applies to the case where light is obliquely incident on the other G pixels 2G and R pixels 2R.
[0010]
Further, in the conventional image sensor, if there is a positional shift between two types of filters or between a filter and a pixel, there is light that passes through only one of the filters, and the spectral characteristics are deteriorated, and the primary color signal obtained by imaging is deteriorated. Such troubles occur.
[0011]
The present invention has been made in view of the above points, and has as its object to provide an image sensor having higher spectral selectivity and higher spectral characteristics with less color mixing based on a principle different from the conventional one.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a first primary color light pixel for photoelectrically converting a first primary color light wavelength-selected by a first color filter from incident light, and a second color filter from incident light. A second primary color light pixel that photoelectrically converts the second primary color light whose wavelength has been selected according to the above, and a third primary color light that photoelectrically converts the third primary color light whose wavelength has been selected by the third color filter from the incident light. In an image sensor in which a plurality of pixels are arranged in a two-dimensional matrix or a one-dimensional straight line, each of a first primary color light pixel, a second primary color light pixel, and a third primary color light pixel is The semiconductor device is formed on the silicon substrate at a depth corresponding to the light absorption characteristic of silicon in the wavelength region of the incident primary color light so that the spectral characteristics of the incident primary color light are substantially the same.
[0013]
The present invention utilizes the fact that the light absorption characteristic of silicon has a predetermined light absorption characteristic in accordance with each wavelength region of the three primary color lights, and each of the pixels for the primary color light is converted into a spectral characteristic with respect to the incident primary color light. Are formed on the silicon substrate at a depth corresponding to the light absorption characteristics of silicon in the wavelength region of the incident primary color light so that the wavelengths are substantially the same as each other. In addition, even light incident obliquely on the surface of the silicon substrate can be converted into light transmitted through one color filter.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a structural sectional view of an embodiment of an image sensor according to the present invention. In the figure, on a silicon substrate 11, B photoelectric conversion regions 12B, G photoelectric conversion regions 12G, and R photoelectric conversion regions 12R are provided at different positions in the horizontal direction (parallel to the substrate surface). Are formed at different depths from each other.
[0015]
Here, the photoelectric conversion region 12B for B is formed at a depth D1 from the surface of the silicon substrate 11 and the photoelectric conversion region 12G for G is formed at a depth D1 to (D1 + D2) from the surface of the silicon substrate 11 for a reason to be described later. Are formed within the range. The R photoelectric conversion region 12R is formed in a range from the depth (D1 + D2) to (D1 + D2 + D3) from the surface of the silicon substrate 11.
[0016]
A wiring layer and an interlayer film 13 are formed on the silicon substrate 11 on which the B photoelectric conversion region 12B, the G photoelectric conversion region 12G, and the R photoelectric conversion region 12R are formed. On the interlayer film 13, the B filter 14B, the G filter 14G, and the R filter 14R are respectively perpendicular to the corresponding B photoelectric conversion region 12B, G photoelectric conversion region 12G, and R photoelectric conversion region 12R. They are arranged and formed so as to be aligned. The B filter 14B is a filter that selects blue light from the incident light, the G filter 14G is a filter that selects green light from the incident light, and the R filter 14R is a filter that selects red light from the incident light. These are filters for selecting wavelengths, which are covered and protected by a common light-transmitting protective film 15.
[0017]
In this embodiment, the three primary color light filters, that is, the B filter 14B, the G filter 14G, and the R filter 14R are used together with the three primary color light filters to utilize the light absorption characteristics of the silicon substrate 11. The feature is that the spectral characteristics of the filter are improved.
[0018]
That is, it is already known from the literature (Hiroo Yonezu, “Optical Communication Device Optics”, Engineering Books, p. 323) that the light absorption characteristics of silicon are the characteristics indicated by Si in FIG. From the light absorption characteristics Si of silicon in FIG. 2 in which the vertical axis indicates the absorption coefficient and the horizontal axis indicates the wavelength, it can be understood how much incident light enters the silicon substrate for each wavelength. Thus, in the present embodiment, the photodiode for each primary color light has wavelength selectivity by utilizing the light absorption characteristics of silicon.
[0019]
Here, since the characteristics of the photodiode (photoelectric conversion region) of the image sensor are usually the same for the R, G, and B pixels, in FIG. The absorption coefficient in the blue light wavelength region at the center is the largest, the absorption coefficient in the red light wavelength region around the wavelength of 0.64 μm is the smallest, and the absorption coefficient in the green light wavelength region around the wavelength of 0.53 μm. 1, the photoelectric conversion region 12B for blue light having the largest absorption coefficient is formed on the silicon substrate 11 as shown in FIG. Is formed at the deepest, and the G photoelectric conversion region 12G is formed at an intermediate depth.
[0020]
The value of the depth depends on where the peak wavelengths of R, G, and B are taken. In FIG. 1, for example, D1 is 0 to 0.5 μm, D2 is 0.5 to 1.2 μm, and D3 is 1.2 to 3 μm. It is set such as 0.0 μm.
[0021]
Thus, according to the present embodiment, the B photoelectric conversion region 12B has a sharp peak with respect to the wavelength of blue light due to the combination with the B filter 14B and the light absorption characteristics of the silicon substrate 11. Blue light to which filter characteristics have been imparted is incident and photoelectrically converted. Similarly, the G photoelectric conversion region 12G is provided with a green light having a filter characteristic having a steep peak with respect to the wavelength of the green light by a combination of the G filter 14G and the light absorption characteristics of the silicon substrate 11. Is incident and photoelectrically converted, and the R photoelectric conversion region 12R has a filter characteristic having a steep peak with respect to the wavelength of red light due to a combination with the R filter 14R and the light absorption characteristics of the silicon substrate 11. The applied red light is incident and photoelectrically converted.
[0022]
Therefore, according to the present embodiment, the wavelength selectivity of the light incident on each primary color light pixel is improved, so that the influence of color mixing is higher than that of a conventional image sensor using one type of primary color light selection filter. Can be reduced. Further, as shown in FIG. 1, in the present embodiment, the primary color light selection filter has only one layer, so that obliquely incident light passes through a plurality of different primary color light selection filters and enters the photoelectric conversion region. Therefore, the problem of obliquely incident light can be solved, and the problem of displacement does not occur.
[0023]
Next, a method for manufacturing the image sensor according to the present embodiment will be described with reference to element cross-sectional views in each step of FIG. In the figure, the same components as those in FIG. 1 are denoted by the same reference numerals. Usually, an N-type photoelectric conversion region is often provided on a P-type substrate in a CCD, a CMOS imager, or the like. Therefore, in order to realize the image sensor of FIG. 1, an N-type impurity and a P-type impurity are implanted as shown in FIG. 3 to adjust the N-type depth. The configuration shown in FIG. 3 is a configuration often used in a CCD or CMOS imager in which charges generated by photoelectric conversion in an N-type layer are moved to another diffusion layer by an N-MOSFET.
[0024]
First, as shown in FIG. 3A, a gate oxide film 24 is coated on the entire surface of the P-type silicon substrate 11 and, for example, polycrystalline polysilicon is formed on the entire surface thereof, and then the gate electrodes 25 1 and 25 2 are formed. , except with the polycrystalline silicon to be 25 3 oxide film 24 thereunder, polycrystalline polysilicon and oxide film 24 is removed by etching. Thereafter, respectively an N-type diffusion layer 21 3 of the N-type diffusion layer 21 2, the depth of the N-type diffusion layer 21 1, the depth of the depth D1 on the P-type silicon substrate 11 (D1 + D2) (D1 + D2 + D3) by ion implantation and, also, the same depth of the N type diffusion layer (or CCD transfer path) 22 1, 22 to form a 2, 22 3. Here, the N-type diffusion layers 21 1 , 21 2 , and 21 3 having different depths can be easily formed at a desired depth by a known method by adjusting the implantation energy and the implantation amount, the thermal diffusion time, the thermal diffusion temperature, and the like. Can be formed.
[0025]
Subsequently, as shown in FIG. 3 (B), a P-type impurity having a higher concentration than the silicon substrate 11 is ion-implanted into the surfaces of the N-type diffusion layers 21 2 and 21 3 to form P + diffusion regions 26 1 and 26 2. To form Here, the implantation energy and implantation amount of P-type impurity, the thermal diffusion time, by adjusting the thermal diffusion temperature, P + diffusion region 26 in a known manner 1, 26 2 each depth D1, in (D1 + D2) Can be formed.
[0026]
Then, as shown in FIG. 3 (C), B filter to cover the wiring layer and the interlayer film 13 on a silicon substrate 11, corresponding to the N-type diffusion layer 21 1 of the above, 21 2, 21 3 position The filter 14B, the filter 14G for G, and the filter 14R for R are formed by a known method, and finally covered with the protective film 15, thereby completing the manufacture of the image sensor. Here, the N-type diffusion layers 21 1 , 21 2 , and 21 3 correspond to the B photoelectric conversion region 12B, the G photoelectric conversion region 12G, and the R photoelectric conversion region 12R shown in FIG. 11 and a photodiode. In this way, it is possible to manufacture the image sensor according to the present embodiment in which the pixels of each primary color have more wavelength selectivity and can reduce the influence of color mixing.
[0027]
It should be noted that the present invention provides an image sensor having a configuration in which three types of pixels for separately performing photoelectric conversion of three primary color lights are arranged in a two-dimensional matrix as shown in FIG. Of course, it can be applied to any of the image sensors.
[0028]
【The invention's effect】
As described above, according to the present invention, the light absorption characteristics of silicon in the wavelength region of incident primary color light are set so that each of the pixels for primary color light has substantially the same spectral characteristic with respect to the incident primary color light. By forming on the silicon substrate at a depth corresponding to the wavelength, the wavelength selectivity of light incident on each primary color light pixel is improved, so that the influence of color mixing can be reduced, and the primary color light incident on each primary color light pixel can be reduced. Since there is only one type of color filter for selecting the wavelength, a primary color signal due to oblique incident light or a positional shift of the color filter as in a conventional image sensor that obtains a desired primary color light by a combined spectral characteristic of two or more types of color filters. The problem such as deterioration of S / N can be prevented.
[Brief description of the drawings]
FIG. 1 is a structural sectional view of an embodiment of the present invention.
FIG. 2 is an explanatory diagram of light absorption characteristics of silicon.
FIG. 3 is a cross-sectional view of an element in each step for explaining a manufacturing method according to an embodiment of the present invention.
FIG. 4 is a diagram illustrating the arrangement of filters for transmitting primary color light of the image sensor.
FIG. 5 is a spectral characteristic diagram of each of two filters and a spectral characteristic diagram obtained by combining them;
FIG. 6 is a structural sectional view and a problem explanatory view of a conventional image sensor.
[Explanation of symbols]
11 P-type silicon substrate 12B B photoelectric conversion region 12G G photoelectric conversion region 12R R photoelectric conversion region 13 Wiring layer and interlayer film 14B B filter 14G G filter 14R R filter 15 Protective films 21 1 , 21 2 , 21 3 N-type diffusion layer 22 1, 22 2, 22 3 diffusion layer or the CCD transfer paths 25 1, 25 2, 25 3 gate electrode

Claims (1)

入射光から第1の色フィルタにより波長選択された第1の原色光を光電変換する第1の原色光用画素と、入射光から第2の色フィルタにより波長選択された第2の原色光を光電変換する第2の原色光用画素と、入射光から第3の色フィルタにより波長選択された第3の原色光を光電変換する第3の原色光用画素とが、二次元マトリクス状又は一次元直線状に複数配列されたイメージセンサにおいて、
前記第1の原色光用画素、前記第2の原色光用画素及び前記第3の原色光用画素のそれぞれは、入射する原色光に対する分光特性が互いに略同一となるように、入射する原色光の波長領域におけるシリコンの光吸収特性に応じた深さでシリコン基板に形成されてなることを特徴とするイメージセンサ。
A first primary color light pixel that photoelectrically converts the first primary color light wavelength-selected by the first color filter from the incident light, and a second primary color light wavelength-selected by the second color filter from the incident light A second primary color light pixel for photoelectrically converting and a third primary color light pixel for photoelectrically converting the third primary color light whose wavelength has been selected by the third color filter from the incident light are two-dimensional matrix or primary. In image sensors arranged in a plurality of original linear shapes,
Each of the first primary color light pixel, the second primary color light pixel, and the third primary color light pixel has incident primary color light such that spectral characteristics with respect to the incident primary color light are substantially the same. An image sensor formed on a silicon substrate at a depth corresponding to the light absorption characteristics of silicon in the wavelength region described above.
JP2003108564A 2003-04-14 2003-04-14 Image sensor Pending JP2004319610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108564A JP2004319610A (en) 2003-04-14 2003-04-14 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108564A JP2004319610A (en) 2003-04-14 2003-04-14 Image sensor

Publications (1)

Publication Number Publication Date
JP2004319610A true JP2004319610A (en) 2004-11-11

Family

ID=33469986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108564A Pending JP2004319610A (en) 2003-04-14 2003-04-14 Image sensor

Country Status (1)

Country Link
JP (1) JP2004319610A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227749A (en) * 2006-02-24 2007-09-06 Seiko Instruments Inc Semiconductor device, and method of manufacturing semiconductor device
KR100800310B1 (en) * 2006-02-16 2008-02-01 마루엘에스아이 주식회사 Optical sensing element capable of detecting visible light and infrared light and its manufacturing method
JP2008113171A (en) * 2006-10-30 2008-05-15 Fujifilm Corp Imaging device
JP2008235753A (en) * 2007-03-23 2008-10-02 Sony Corp Solid imaging apparatus and method of manufacturing the same
CN100563018C (en) * 2006-05-09 2009-11-25 台湾积体电路制造股份有限公司 Backside illuminated sensor and method of forming the same
US7638852B2 (en) 2006-05-09 2009-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making wafer structure for backside illuminated color image sensor
CN100590879C (en) * 2006-05-09 2010-02-17 台湾积体电路制造股份有限公司 Backside light sensing device and method for forming backside light sensing device
US7791170B2 (en) 2006-07-10 2010-09-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a deep junction for electrical crosstalk reduction of an image sensor
JP2011003622A (en) * 2009-06-17 2011-01-06 Nikon Corp Imaging element
US7999342B2 (en) 2007-09-24 2011-08-16 Taiwan Semiconductor Manufacturing Company, Ltd Image sensor element for backside-illuminated sensor
US8436443B2 (en) 2006-09-29 2013-05-07 Taiwan Semiconductor Manufacturing Company, Ltd. Backside depletion for backside illuminated image sensors
US8704277B2 (en) 2006-05-09 2014-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Spectrally efficient photodiode for backside illuminated sensor
CN104701331A (en) * 2013-12-09 2015-06-10 株式会社东芝 Solid-state imaging device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100800310B1 (en) * 2006-02-16 2008-02-01 마루엘에스아이 주식회사 Optical sensing element capable of detecting visible light and infrared light and its manufacturing method
JP2007227749A (en) * 2006-02-24 2007-09-06 Seiko Instruments Inc Semiconductor device, and method of manufacturing semiconductor device
US8704277B2 (en) 2006-05-09 2014-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Spectrally efficient photodiode for backside illuminated sensor
US8525286B2 (en) 2006-05-09 2013-09-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making wafer structure for backside illuminated color image sensor
CN100563018C (en) * 2006-05-09 2009-11-25 台湾积体电路制造股份有限公司 Backside illuminated sensor and method of forming the same
US7638852B2 (en) 2006-05-09 2009-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making wafer structure for backside illuminated color image sensor
CN100590879C (en) * 2006-05-09 2010-02-17 台湾积体电路制造股份有限公司 Backside light sensing device and method for forming backside light sensing device
US7994032B2 (en) 2006-07-10 2011-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making deep junction for electrical crosstalk reduction of an image sensor
US7791170B2 (en) 2006-07-10 2010-09-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a deep junction for electrical crosstalk reduction of an image sensor
US8436443B2 (en) 2006-09-29 2013-05-07 Taiwan Semiconductor Manufacturing Company, Ltd. Backside depletion for backside illuminated image sensors
US8759141B2 (en) 2006-09-29 2014-06-24 Taiwan Semiconductor Manufacturing Company, Ltd. Backside depletion for backside illuminated image sensors
JP2008113171A (en) * 2006-10-30 2008-05-15 Fujifilm Corp Imaging device
JP2008235753A (en) * 2007-03-23 2008-10-02 Sony Corp Solid imaging apparatus and method of manufacturing the same
US7999342B2 (en) 2007-09-24 2011-08-16 Taiwan Semiconductor Manufacturing Company, Ltd Image sensor element for backside-illuminated sensor
US8324002B2 (en) 2007-09-24 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensor element for backside-illuminated sensor
JP2011003622A (en) * 2009-06-17 2011-01-06 Nikon Corp Imaging element
CN104701331A (en) * 2013-12-09 2015-06-10 株式会社东芝 Solid-state imaging device

Similar Documents

Publication Publication Date Title
KR102686988B1 (en) Solid-state imaging devices and electronic devices
US8409907B2 (en) Method for manufacturing information aquiring semiconductor device
JP3899432B2 (en) Color image sensor and manufacturing method thereof
JP6130221B2 (en) Solid-state imaging device and electronic device
CN103137638B (en) Solid-state imaging device and its manufacture method, electronic installation and the synthetic for solid-state imaging device
JP5649990B2 (en) Color filter, solid-state imaging device, liquid crystal display device, and electronic information device
US20090021629A1 (en) Solid state imaging device
JP2012074521A (en) Manufacturing method of solid-state image pickup device, solid-state image pickup device, and electronic equipment
JP2008092247A (en) Solid-state image sensor
JP2004319610A (en) Image sensor
JP2006210701A (en) Solid-state imaging device and manufacturing method thereof
JP2010282992A (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JPWO2014021130A1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
KR20140085656A (en) Image sensor and method for fabricating the same
CN101201539B (en) Pattern mask for forming microlens, image sensor and fabricating method thereof
US7504681B2 (en) Image sensor and method for fabricating the same
JP2009049117A (en) Color filter forming method for solid-state image sensor, solid-state image sensor, and pattern mask set for solid-state image sensor
JP2007294552A (en) Solid-state imaging device
JP2006310343A (en) Color solid-state imaging device
JP2019134186A (en) Solid state image sensor
US20140285691A1 (en) Solid state imaging device
JP6316902B2 (en) Solid-state imaging device and electronic device
JP6607275B2 (en) Solid-state imaging device and electronic device
JP2011243785A (en) Solid state imaging device
JP2007208051A (en) Solid-state imaging device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309