[go: up one dir, main page]

JP2004316958A - Heat energy supply method - Google Patents

Heat energy supply method Download PDF

Info

Publication number
JP2004316958A
JP2004316958A JP2003107905A JP2003107905A JP2004316958A JP 2004316958 A JP2004316958 A JP 2004316958A JP 2003107905 A JP2003107905 A JP 2003107905A JP 2003107905 A JP2003107905 A JP 2003107905A JP 2004316958 A JP2004316958 A JP 2004316958A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage unit
main
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107905A
Other languages
Japanese (ja)
Inventor
Shusuke Narutomi
修輔 成富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003107905A priority Critical patent/JP2004316958A/en
Publication of JP2004316958A publication Critical patent/JP2004316958A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0026Particular heat storage apparatus the heat storage material being enclosed in mobile containers for transporting thermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively use exhaust heat regardless of a width of a heat using side space. <P>SOLUTION: This heat energy supply method accumulates heat energy provided from a heat source as latent heat in a main heat accumulating unit 1 for storing a heat accumulator 11; carries the main heat accumulating unit 1 to a first heat consumer; accumulates a part of the latent heat accumulated in the main heat accumulating unit 1 as the latent heat in a sub-heat accumulating unit 4-1 for storing the heat accumulator arranged in the first heat consumer. Next, successively carries the main heat accumulating unit 1 to a heat consumer on and after a second heat consumer; and successively accumulates a part of the latent heat accumulated in the main heat accumulating unit 1 to the sub-heat accumulating unit arranged in the heat consumer on and after the second heat consumer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱発生源から排出される熱エネルギーを潜熱として蓄熱して、複数の需要先に供給する熱エネルギー供給方法に関する。
【0002】
【従来の技術】
従来から、セメント、アルムニウム精錬、製鉄、アンモニアなどの製造プラントでは、製品価格に占めるエネルギーコストの比率が高いので(50〜20%程度)、排熱を回収し、その熱エネルギーを冷暖房、給湯、発電などに再利用することが行われている。この他にもゴミ処理施設や下水処理施設などの排熱で地中に埋設された水道管を温め(土壌を蓄熱源として利用)、各家庭に25〜40℃のぬるま湯を供給することや、年間を通じて水温が10℃以下と安定している深層水を球根の冷蔵保存や夏季のハウス冷房に利用することが検討されている。排熱を回収し再利用するためには、熱エネルギーの需要に応じて安定して供給することが必要となるので、回収量と需要量に対する季節や時間に対する変動に対応できる蓄熱システムが必要とされる。そこで、蓄熱容量が大きくかつ一定の温度レベルで用途に応じて利用することができるという利点をもつ潜熱蓄熱システムが注目されている。現在実用化が検討されている潜熱蓄熱システムは、熱発生源と熱需要側とを配管で接続するので、熱発生源と熱需要側とが例えば数Km以下の近距離である場合には有用であるが、熱需要側が熱発生源から遠距離の場合には、配管途中での熱損失が多くなりまた配管工事費が増大するという欠点がある。そこで、熱需要側が熱発生源から例えば10〜30Km程度離れている場合には、熱発生源から放出された熱エネルギーを蓄熱体に潜熱として蓄積し、この蓄熱体を熱需要側に車両で運搬し、熱需要側でその潜熱を冷暖房に利用することが提案されている。例えば特許文献1には、氷結反応を促す薬剤を混合溶解させた水溶液を密封したカプセル形熱交換器に潜熱を蓄積し、このカプセル形熱交換器をクレーンでトラックに積み込み、目的地まで輸送した後トラックから積み込降ろしたカプセル形熱交換器に伝熱流体を流通することにより、潜熱蓄熱した熱エネルギーを回収することが記載されている。特許文献2には、排熱発生施設に設けられた熱供給装置に複数の潜熱蓄熱容器を配設し、各蓄熱容器に伝熱媒体を流入させて潜熱を蓄熱し、需要側から要求を受けた時にその容器を熱供給装置から外して車両で熱需要施設に運搬し、そこで熱交換器を介して熱需要装置に接続し、伝熱媒体を蓄熱容器と熱交換器の間に循環させることにより、潜熱放熱による熱を利用することが記載されている。また特許文献3には、離島地域での電力需要増大に応えるために、深層低温海水を汲み上げてその冷熱を、コンテナ内に詰め込まれた潜熱蓄熱体に蓄熱し、このコンテナをトラックで需要基地に移送し、そこでコンテナをトラックから需要基地の架台に移し、コンテナと冷熱供給対象物とを配管接続した後伝熱媒体を循環させることにより、潜熱蓄熱体を融解させて、冷熱を取り出すことが記載されている。特許文献4には、蓄冷材が収容されたバッチをトレーラー上に載せ、この蓄冷材に熱交換器を介して冷海水の熱エネルギーを蓄熱し、バッチを冷熱必要箇所に運搬し、そこで例えば冷房設備に配管接続することにより、冷熱を再利用することが記載されている。
【0003】
【特許文献1】
特開平4−253194号公報(第2−3頁、図1、図6)
【特許文献2】
特開2000−310432号公報(第4−7頁、図1、図2、図5)
【特許文献3】
特開平10−253103号公報(第2−5頁、図1)
【特許文献4】
特開平11−94314号公報(第2頁、図1)
【0004】
【発明が解決しようとする課題】
しかしながら従来の蓄熱潜熱システムによれば、次のような問題がある。特許文献1に記載された熱エネルギーの輸送方法によれば、クレーンによりカプセル型熱交換器の積み下ろしを行うので、人家の密集している都市部や道路の狭い地域では、クレーンによる作業スペースを確保できない場合が多く、排熱を利用できる施設が限定されるという問題がある。特許文献2に記載された熱搬送方法においても、熱需要施設に運ばれてきた潜熱蓄熱容器をクレーンなどの移送手段で車両から積み下ろして、熱需要装置に接続するので、特許文献1と同様に排熱を利用できる施設が限定されるという問題がある。特許文献3に記載された冷熱供給方法においても、需要基地まで輸送された潜熱蓄熱体が充填されたコンテナを、トラックの荷台と同じ高さの架台に移動させ、そこで需要側の配管設備に接続するので、需要側に架台を設置できる広いスペースがないと実施できず、特許文献1及び特許文献2と同様に排熱を利用できる施設が限定されるという問題がある。特許文献4に記載された運搬システムは、蓄冷材が収容されたバッチをトレーラー上に載せた状態で冷房設備に配管接続するので、バッチの積み下ろし作業は不要となるが、バッチを直接冷房設備に配管接続するので、供給された潜熱を長時間保持できないという不便を伴う。
【0005】
従って本発明の目的は、熱需要側のスペースの広狭によらず排熱を有効利用することが可能な熱エネルギー供給方法を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本願第一の発明は、熱源から得た熱エネルギーを蓄熱体を収容する主蓄熱ユニットに潜熱として蓄熱し、前記主蓄熱ユニットを熱需要先に搬送し、前記主蓄熱ユニットに蓄熱した潜熱を熱需要先に設けた蓄熱体を収容する副蓄熱ユニットに潜熱として蓄熱することを特徴とする熱エネルギー供給方法である。
【0007】
上記目的を達成するために、本願第二の発明は、熱源から得た熱エネルギーを蓄熱体を収容する主蓄熱ユニットに潜熱として蓄熱し、前記主蓄熱ユニットを第1の熱需要先に搬送し、前記主蓄熱ユニットに蓄熱した潜熱の一部を第1の熱需要先に設けた蓄熱体を収容する副蓄熱ユニットに潜熱として蓄熱し、次いで前記主蓄熱ユニットを第2以降の熱需要先に順次搬送し前記主蓄熱ユニットに蓄熱した潜熱の一部を第2以降の熱需要先に設けた副蓄熱ユニットに順次蓄熱することを特徴とする熱エネルギー供給方法である。本発明によれば主蓄熱ユニットへの一度の蓄熱で複数の熱需要先への熱エネルギーの供給が可能になる。
【0008】
上記目的を達成するために、本願第三の発明は、潜熱を蓄熱する蓄熱体を収容しかつ電伝熱媒体の流路を有する蓄熱容器と前記伝熱媒体を流動させる管路を含む主蓄熱ユニットを第1の熱需要先に搬送し、その需要先で潜熱を蓄熱する蓄熱体を収容しかつ伝熱媒体の流路を含む配管部材を有する蓄熱容器と前記伝熱媒体を流動させる管路を含む副蓄熱ユニットに配管接続し、前記主蓄熱ユニットに蓄熱された潜熱の一部を前記副蓄熱ユニットに放出し、主蓄熱ユニットを第2の需要先に搬送し、その需要先で潜熱を蓄熱する蓄熱体を収容しかつ伝熱媒体の流路を有する蓄熱容器と前記伝熱媒体を流動させる管路を含む副蓄熱ユニットに配管接続し、前記主蓄熱ユニットに蓄熱された潜熱の一部を副蓄熱ユニットに放出し、前記主蓄熱ユニットに蓄熱された潜熱の全てが放出されるまでこの工程を繰り返すことを特徴とする熱エネルギー供給方法である。
【0009】
上記の発明において、前記蓄熱体は、所定の温度で相変化を起こす蓄熱材が充填された複数の蓄熱カプセルからなることが好ましい。
【0010】
上記の発明において、前記主蓄熱ユニットで使用される蓄熱カプセルは、前記副熱ユニットで使用される蓄熱カプセルよりも高い融解温度を有する蓄熱材が充填されていることが好ましい。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
図1は本発明の熱エネルギー供給方法を実施するための排熱側の装置構成を示す概略図、図2は本発明の熱エネルギー供給方法を実施するための熱需要側の装置構成を示す概略図、図3は本発明で使用される蓄熱槽の概略断面図、図4は本発明の熱エネルギー供給方法を実施するための需要側の装置構成の一例を示す概略図、図5は本発明の熱エネルギー供給方法が適用される需要側の装置構成の他の例を示す概略図である。図2〜図5において、図1と同一部分は同一の参照符号で示す。
【0012】
排熱側で発生する排熱を蓄積する装置は図1に示すように構成されている。すなわち図1において、1は排熱発生源2から排出される排熱を、熱交換器3を介して一時的に保存する主蓄熱ユニットであり、主蓄熱ユニット1は、車両Tの荷台に積み込まれた蓄熱槽10と、蓄熱槽10と熱交換器3を接続する配管部材100とを備えている。配管部材100は、排熱を蓄熱槽10に流入させる流入管101と排熱を蓄熱槽10から流出させる流出管102と、流出管102の途中で分岐するバイパス管103と、流入管101の入口に設けられた流体継手104aと、流出管22の出口側に設けられた流体継手104bと、流出管102の途中に設けられた循環ポンプ105及びバルブ(二方弁、以下のバルブも同様)106aと、バイパス管27の途中に設けられたバルブ106bを有する。排熱発生源2は配管21を介して熱交換器3に接続され、配管21の途中に伝熱流体S1を循環させるポンプ22が設置されている。熱交換器3には、配管21を流れる伝熱流体と熱交換される伝熱流体S2が流動する配管31が接続され、その途中に伝熱流体S2を循環させる循環ポンプ32が設置されている。
【0013】
排熱を利用する需要側は図2に示すように構成されている。複数の需要側には各々、図2に示すように副蓄熱ユニット4(4−1、4−2……4−n)が設置されている。副蓄熱ユニット4は、蓄熱槽10よりも熱容量の小さい副蓄熱槽40と配管部材400を有する。配管部材400は、流体継手104bと利用機器に接続される管路401aと、管路401aと副蓄熱槽40とを接続する管路401bを有するとともに、流体継手104aと利用機器に接続される管路402aと、管路402aと副蓄熱槽40とを接続する管路402bとを有する。また管路402aと管路401aには各々バルブ403a、403b及びバルブ403c、404dが設けられている。
【0014】
上記主蓄熱槽10及び副蓄熱槽40は、図3に示すように構成される。主蓄熱槽10は、蓄熱カプセル11を収容する容器12と、容器12内を区画する仕切板13a、13b、13cとを有し、容器12内には伝熱流体を流入させる流入管101と伝熱流体を流出させる流出管102が差し込まれている。需要者側の副蓄熱槽40は蓄熱槽10から流出する熱の一部を蓄えるために、主蓄熱槽10よりも小容量であるが、内部構造は、図3に示すように図1と同様に構成されている。すなわち、蓄熱槽40は、蓄熱カプセル41を収容する容器42と、容器42内を区画する仕切板43a、43b、43cとを有し、容器42内には伝熱流体を流入させる流入管401bと伝熱流体を流出させる流出管402bが差し込まれている。
【0015】
本発明では、蓄熱カプセルとしては、例えば飽和温度(融点、凝固点)で固体(液体)から液体(固体)への相変化を起こす物質(相変化物質)からなり、相変化の際に潜熱を蓄積又は放熱する蓄熱材を樹脂製球状体に充填したものを用い得る。この種蓄熱材は、凝固(融解)潜熱が大きくかつ安全で安価な材料が選定され、例えば、無機物、パラフィン類や脂肪酸などの有機物、無機水和塩、溶融塩を用いることができる。無機物としては、氷(融点0℃、融解熱335kJ/kg)、パラフィン類としてはn−パラフィン(融点−4〜100℃)、脂肪酸としては1−デカノール(融点6℃)が使用される。無機水和塩は、中低温域用蓄熱材として使用され、具体的な材料としてはNaSO・10HO/NaCl/NHCl(融点13℃、融解熱180kJ/kg)、CaCl・6HO(融点29℃、融解熱191kJ/kg)、NaSO・10HO(融点32.4℃、融解熱245kJ/kg)、NaHPO・12HO(融点36℃、融解熱279kJ/kg)、Na・5HO(融点48℃、融解熱205kJ/kg)、NaCHCOO・3HO(融点58℃、融解熱251kJ/kg)、Ba(OH)・8HO(融点78℃、融解熱293kJ/kg)、Mg(NO・6HO(融点89℃、融解熱160kJ/kg)、KAl(SO・12HO(融点91℃、融解熱232kJ/kg)、MgCl・6HO(融点117℃、融解熱171kJ/kg)、NaCl/MgCl・6HO(融点450℃、融解熱406kJ/kg)を用い得る。溶融塩は、高温域で使用され、NaOH−KOH(50−50)(融点170℃、融解熱231kJ/kg)、LiOH−NaOH(30−70)(融点210℃、融解熱362kJ/kg)、NaOH−NaNO(73−27)(融点237℃、融解熱294kJ/kg)、NaOH−NaNO(81.5−18.5)(融点257℃、融解熱292kJ/kg)を用い得る。上記の蓄熱材の内では、床暖房に実用化が検討されているCaCl・6HO及びNa・5HO、石油脱硫の副産物で安価に入手できるNaSO・10HO、ソーラーシステムへの適用が検討されているNaHPO・12HO、給湯ビルの空調や床暖房に実用化が可能とされているNa・5HO、比較的安価で炭素鋼でも耐食性が良好なNaOH−NaNO、給湯装置への適用が検討されているMgCl・6HOを使用することが好ましい。上記蓄熱材を使用する場合、無機水和塩は、蓄熱密度が大きく熱伝導率も高いという利点を有するが、過冷却と相分離(融解しない固相が生じる現象)が生じ易く、特に蓄熱材の過冷却があると凝固温度以下でも液状で熱利用ができなくなり、また放熱時の運転制御の障害となるので、過冷却状態の進行を阻止するために、蓄熱材の結晶の小片を投入するか又は、系内の一箇所を特別に冷却して固相を早く出現させることが好ましい。有機物は、蓄熱密度は氷よりも小さいが、過冷却と相分離がないので、取り扱いが容易である。また溶融塩は、融点が高く腐食性が強いので、家庭用に使用する場合にはその用途に注意を要する。本発明において、蓄熱カプセルの形状に制限はなく、球状、筒状、扁平状等種々の形状のものを使用できるが、伝熱面積を大きくできる扁平状が好適である。
【0016】
伝熱媒体として使用される流体は、低温域にまたがって使用される場合は、相変化が生じない液体を使用すればよい。例えばエチレングリコールやポリプロピレングリコールなどのグリコール系水溶液や、CaCl水溶液やNaCl水溶液などの塩化物系水溶液を使用すればよい。この種水溶液は、濃度によって凝固温度が異なるので、用途に応じて濃度を調整すればよい。例えばエチレングリコール水溶液は、濃度が濃くなると凝固温度が下がり、濃度が8.4%の時の凝固温度は−4℃で、濃度が46.4%の時の凝固温度は−33℃を示す。CaCl水溶液は、ある濃度までは濃度が濃くなると凝固温度が下がり、それ以降は凝固温度が上がり、濃度が2.5%の時の凝固温度は−1.2℃で、濃度が29.9%の時の凝固温度は−55℃、濃度が31.2%の時の凝固温度は−41.6℃を示す。NaCl水溶液も、ある濃度までは濃度が濃くなると凝固温度が下がり、それ以降は凝固温度が上がり、濃度が2.9%の時の凝固温度は−1.8℃で、濃度が23.1%の時の凝固温度は−21.2℃、濃度が23.1%の時の凝固温度は−21.2℃を示す。
【0017】
上記構成によれば、次の手順で排熱が複数の需要先に供給される。図1に示すように車両Tの荷台に積み込まれた主蓄熱槽10を、熱交換器3を介して排熱発生源2に接続した後バルブ106aを開き、ポンプ22、32を作動することにより、排熱発生源3から発生した熱は例えば温水として、配管21を循環し、熱交換器32で配管ユニット21を循環する流体と熱交換され、次いで蓄熱槽10に蓄積される。蓄熱槽10に所定量の排熱が蓄積され後、配管ユニット100を配管31から取り外し、主蓄熱ユニット1を車両Tで最初の目的地まで運搬する。図2に示すように主蓄熱ユニット1を副蓄熱ユニット4に接続した後、バルブ403c、403a、106aを開き、バルブ403d、403b、106bを閉じた状態でポンプ105を作動することにより、蓄熱槽10内の伝熱媒体を蓄熱槽40に流入させて、蓄熱槽11内の熱の一部(例えば20%)を蓄熱槽41に蓄える。次に主蓄熱ユニット1を副蓄熱ユニット4から切り離し、次の目的地まで主蓄熱ユニット1を車両Tで運搬し、そこで上記と同様の作業を行うことにより、蓄熱槽10内の熱の一部(例えば30%)を蓄熱槽40に蓄える。この作業を繰り返すことにより、主蓄熱槽10内の熱の全てを各副蓄熱槽40に分配した後、車両Tが排熱発生源に引き返し、そこで再び主蓄熱槽10に排熱を蓄えればよい。上記の供給過程においては、主蓄熱槽10から副蓄熱槽40への伝熱媒体の循環流通の途中で熱損失が生ずるので、伝熱媒体の温度は蓄熱カプセル11に充填された蓄熱体の融点よりも低下する。その温度が蓄熱カプセル41に充填された蓄熱体の融点と等しい時に最も高い熱効率が得られる。従って主蓄熱槽10の内部に収容される蓄熱カプセル11は、副蓄熱槽40の内部に収容される蓄熱カプセル41よりも融解温度が高い蓄熱材を充填することが好ましく、3〜6℃高くすることがより好ましい。
【0018】
熱需要側は、例えば図4及び図5に示す機器構成とすることができる。図4に示す機器構成によれば、副蓄熱ユニット4−1は、温水タンク5を介して暖房パネル6に接続されているので、バルブ403a、403cを閉じた状態でバルブ403b、403dを開き、ポンプ405、61を作動することにより、排熱を室内の暖房に利用することができる。また図5に示す機器構成によれば、副蓄熱槽40を、温水タンク5を介して給湯栓7a、7b及び浴槽8に接続されているので、バルブ62a、62b、62cを開き、ポンプ61を作動することにより、入浴に利用することができる。図4及び図5において、50は温水タンク5に給水するための水栓である。
【0019】
【発明の効果】
以上に記述の如く本発明によれば、排熱を蓄える主蓄熱槽を需要側に設けた複数の副蓄熱槽に順次接続して供給するので、排熱が蓄えられた蓄熱槽を車両から積み下ろす作業が不要となり、熱利用側のスペースの広狭によらず排熱を有効利用することが可能となる。
【図面の簡単な説明】
【図1】本発明の熱エネルギー供給方法を実施するための排熱側の装置構成を示す概略図である。
【図2】本発明の熱エネルギー供給方法を実施するための熱需要側の装置構成を示す概略図である。
【図3】本発明で使用される蓄熱槽の概略断面図である。
【図4】本発明の熱エネルギー供給方法を実施するための需要側の装置構成の一例を示す概略図である。
【図5】本発明の熱エネルギー供給方法が適用される需要側の装置構成の他の例を示す概略図である。
【符号の説明】
1:主蓄熱ユニット、10:主蓄熱槽、11:蓄熱カプセル、12:容器、
13a、13b、13c:仕切り
100:配管ユニット、101:流入管、102:流出管、
103:バイパス管、104a、104b:流体継手、105:ポンプ、
106a、106b:バルブ、2:排熱発生源、21:配管、
22:ポンプ、3:熱交換器、31:配管、32:ポンプ
4、4−1、4−2……4−n:副蓄熱ユニット、40:副蓄熱槽、
41:蓄熱カプセル、42:容器、43a、43b、43c:仕切り
400:配管ユニット、401a、401b、402a、401b:管路、
403a、403b、403c:バルブ
5:温水タンク、50:水栓、6:暖房パネル、61:ポンプ、
62a、62b、62c:バルブ、7a、7b:給湯栓、8:浴槽、T:車両
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal energy supply method for storing thermal energy discharged from a heat generation source as latent heat and supplying the latent energy to a plurality of customers.
[0002]
[Prior art]
Conventionally, in a plant for manufacturing cement, aluminum refining, iron making, and ammonia, the ratio of energy cost to the product price is high (about 50 to 20%), so waste heat is recovered and the heat energy is used for cooling, heating, hot water, It is being reused for power generation. In addition to this, wastewater from garbage treatment facilities and sewage treatment facilities heats water pipes buried underground (using soil as a heat storage source), and supplies lukewarm water at 25 to 40 ° C to each household. The use of deep water, whose water temperature is stable at 10 ° C. or lower throughout the year, for refrigerated storage of bulbs and for house cooling in summer is being studied. In order to recover and reuse waste heat, it is necessary to provide a stable supply of heat energy according to the demand, so a heat storage system that can respond to seasonal and time variations in the amount of recovered and demanded energy is needed. Is done. Therefore, a latent heat storage system that has an advantage that the heat storage capacity is large and can be used at a constant temperature level depending on the application has been attracting attention. The latent heat storage system currently being considered for practical use connects the heat generation source and the heat demand side with piping, so it is useful when the heat generation source and the heat demand side are at a short distance of, for example, several km or less. However, when the heat demand side is far from the heat generation source, there is a drawback that heat loss in the middle of the piping increases and the cost of piping work increases. Therefore, when the heat demand side is distant from the heat generation source by, for example, about 10 to 30 km, the heat energy released from the heat generation source is stored as latent heat in the heat storage body, and the heat storage body is transported by vehicle to the heat demand side. However, it has been proposed to use the latent heat for cooling and heating on the heat demand side. For example, in Patent Document 1, latent heat is accumulated in a sealed heat exchanger in which an aqueous solution in which an agent for promoting a freezing reaction is mixed and dissolved is sealed, and the capsule heat exchanger is loaded on a truck by a crane and transported to a destination. It is described that heat energy stored by latent heat storage is recovered by flowing a heat transfer fluid through a capsule heat exchanger loaded and unloaded from a rear truck. Patent Document 2 discloses that a plurality of latent heat storage containers are arranged in a heat supply device provided in a waste heat generation facility, a heat transfer medium flows into each heat storage container to store latent heat, and a request is received from a demand side. When the container is removed from the heat supply device and transported to the heat demand facility by vehicle, it is connected to the heat demand device via a heat exchanger, and the heat transfer medium is circulated between the heat storage container and the heat exchanger. Discloses that heat generated by latent heat radiation is used. Patent Document 3 also discloses that in order to respond to an increase in power demand in remote island areas, deep low-temperature seawater is pumped up and its cold heat is stored in a latent heat storage unit packed in a container, and this container is used as a truck by a demand base. Transfer, where the container is transferred from the truck to the cradle of the demand base, the piping is connected to the container and the cold heat supply target, and then the heat transfer medium is circulated to melt the latent heat storage medium and extract the cold heat. Have been. In Patent Document 4, a batch containing a cold storage material is placed on a trailer, the heat energy of the cold seawater is stored in the cold storage material via a heat exchanger, and the batch is transported to a location requiring cold heat. It is described that cold heat can be reused by connecting piping to equipment.
[0003]
[Patent Document 1]
JP-A-4-253194 (pages 2-3, FIGS. 1 and 6)
[Patent Document 2]
JP-A-2000-310432 (pages 4-7, FIGS. 1, 2, and 5)
[Patent Document 3]
JP-A-10-253103 (page 2-5, FIG. 1)
[Patent Document 4]
JP-A-11-94314 (page 2, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, the conventional heat storage latent heat system has the following problems. According to the method for transporting heat energy described in Patent Literature 1, the loading and unloading of the capsule heat exchanger is performed by a crane, so that a work space by the crane is secured in a densely populated urban area or a narrow road. In many cases, facilities that can use waste heat are limited. Also in the heat transfer method described in Patent Document 2, the latent heat storage container carried to the heat demand facility is unloaded from the vehicle by a transfer means such as a crane and connected to the heat demand device. There is a problem that facilities that can use exhaust heat are limited. In the cold heat supply method described in Patent Literature 3, the container filled with the latent heat storage material transported to the demand base is moved to a gantry having the same height as a truck bed, where it is connected to a demand side piping facility. Therefore, the method cannot be implemented unless there is a large space for installing a gantry on the demand side, and there is a problem that facilities capable of using exhaust heat are limited as in Patent Literature 1 and Patent Literature 2. In the transport system described in Patent Document 4, the batch containing the cold storage material is connected to the cooling equipment with the batch placed on the trailer, so that the loading and unloading of the batch becomes unnecessary, but the batch is directly transferred to the cooling equipment. Since the pipes are connected, there is an inconvenience that the supplied latent heat cannot be held for a long time.
[0005]
Accordingly, an object of the present invention is to provide a thermal energy supply method capable of effectively using exhaust heat regardless of the size of a space on the heat demand side.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the first invention of the present application stores heat energy obtained from a heat source as latent heat in a main heat storage unit accommodating a heat storage body, transports the main heat storage unit to a heat demand destination, and A thermal energy supply method characterized in that latent heat stored in a heat storage unit is stored as latent heat in a sub heat storage unit that stores a heat storage body provided at a heat demand destination.
[0007]
In order to achieve the above object, the second invention of the present application stores heat energy obtained from a heat source as latent heat in a main heat storage unit that houses a heat storage body, and transports the main heat storage unit to a first heat demand destination. A part of the latent heat stored in the main heat storage unit is stored as latent heat in a sub heat storage unit that stores a heat storage body provided in a first heat demand destination, and then the main heat storage unit is transferred to a second or subsequent heat demand destination. A thermal energy supply method characterized in that a part of the latent heat that is sequentially conveyed and stored in the main heat storage unit is sequentially stored in a sub heat storage unit provided in a second or subsequent heat demand destination. According to the present invention, it is possible to supply heat energy to a plurality of heat demand destinations by storing heat once in the main heat storage unit.
[0008]
In order to achieve the above object, a third invention of the present application is directed to a main heat storage device that includes a heat storage container containing a heat storage body for storing latent heat and having a flow path for an electric heat transfer medium, and a pipe for flowing the heat transfer medium. A heat storage container that transports the unit to a first heat demand destination, stores a heat storage body that stores latent heat at the demand heat source, and has a pipe member including a flow path of a heat transfer medium, and a pipeline that flows the heat transfer medium A pipe is connected to a sub heat storage unit including, and a part of the latent heat stored in the main heat storage unit is released to the sub heat storage unit, the main heat storage unit is transported to a second demand destination, and the latent heat is discharged at the demand destination. A part of the latent heat stored in the main heat storage unit, which is pipe-connected to a heat storage container that contains a heat storage body for storing heat and has a flow path for the heat transfer medium and a sub heat storage unit that includes a conduit for flowing the heat transfer medium. To the sub heat storage unit, and the main heat storage unit All heat storage latent heat is a heat energy supply method characterized by repeating this step until released.
[0009]
In the above invention, it is preferable that the heat storage body includes a plurality of heat storage capsules filled with a heat storage material that undergoes a phase change at a predetermined temperature.
[0010]
In the above invention, the heat storage capsule used in the main heat storage unit is preferably filled with a heat storage material having a higher melting temperature than the heat storage capsule used in the sub heat unit.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing the configuration of a device on the exhaust heat side for carrying out the heat energy supply method of the present invention, and FIG. FIG. 3 is a schematic cross-sectional view of a heat storage tank used in the present invention. FIG. 4 is a schematic view showing an example of an apparatus configuration on the demand side for implementing the thermal energy supply method of the present invention. FIG. FIG. 9 is a schematic diagram showing another example of a demand-side device configuration to which the thermal energy supply method of the present invention is applied. 2 to 5, the same parts as those in FIG. 1 are denoted by the same reference numerals.
[0012]
An apparatus for accumulating exhaust heat generated on the exhaust heat side is configured as shown in FIG. That is, in FIG. 1, reference numeral 1 denotes a main heat storage unit that temporarily stores exhaust heat discharged from the exhaust heat generation source 2 via the heat exchanger 3, and the main heat storage unit 1 is loaded on a bed of the vehicle T. A heat storage tank 10 is provided, and a piping member 100 connecting the heat storage tank 10 and the heat exchanger 3 is provided. The piping member 100 includes an inflow pipe 101 that allows exhaust heat to flow into the heat storage tank 10, an outflow pipe 102 that discharges exhaust heat from the heat storage tank 10, a bypass pipe 103 that branches in the middle of the outflow pipe 102, and an inlet of the inflow pipe 101. , A fluid coupling 104b provided on the outlet side of the outflow pipe 22, and a circulation pump 105 and a valve (two-way valve, the same applies to the following valves) 106a provided in the middle of the outflow pipe 102. And a valve 106b provided in the middle of the bypass pipe 27. The exhaust heat generation source 2 is connected to the heat exchanger 3 via a pipe 21, and a pump 22 for circulating the heat transfer fluid S <b> 1 is installed in the pipe 21. The heat exchanger 3 is connected to a pipe 31 through which a heat transfer fluid S2 that exchanges heat with the heat transfer fluid flowing through the pipe 21 flows, and a circulation pump 32 that circulates the heat transfer fluid S2 is installed on the way. .
[0013]
The demand side using the exhaust heat is configured as shown in FIG. Each of the plurality of demand sides is provided with a sub heat storage unit 4 (4-1, 4-2,..., 4-n) as shown in FIG. The sub heat storage unit 4 includes a sub heat storage tank 40 having a smaller heat capacity than the heat storage tank 10 and a pipe member 400. The pipe member 400 has a pipe 401a connected to the fluid coupling 104b and the usage equipment, a pipe 401b connecting the pipe 401a and the sub heat storage tank 40, and a pipe connected to the fluid coupling 104a and the usage equipment. It has a path 402a and a pipe 402b connecting the pipe 402a and the sub heat storage tank 40. Further, the pipe 402a and the pipe 401a are provided with valves 403a and 403b and valves 403c and 404d, respectively.
[0014]
The main heat storage tank 10 and the sub heat storage tank 40 are configured as shown in FIG. The main heat storage tank 10 has a container 12 for accommodating a heat storage capsule 11, and partition plates 13a, 13b, and 13c for partitioning the inside of the container 12, and the inside of the container 12 is connected to an inflow pipe 101 through which a heat transfer fluid flows. An outlet pipe 102 for discharging the thermal fluid is inserted. The auxiliary heat storage tank 40 on the consumer side has a smaller capacity than the main heat storage tank 10 to store a part of the heat flowing out of the heat storage tank 10, but has an internal structure similar to that of FIG. 1 as shown in FIG. Is configured. That is, the heat storage tank 40 has a container 42 that accommodates the heat storage capsule 41, and partition plates 43a, 43b, and 43c that partition the inside of the container 42, and an inflow pipe 401b that allows a heat transfer fluid to flow into the container 42. An outflow pipe 402b through which the heat transfer fluid flows out is inserted.
[0015]
In the present invention, the heat storage capsule is made of, for example, a substance (phase change substance) that undergoes a phase change from a solid (liquid) to a liquid (solid) at a saturation temperature (melting point, freezing point), and accumulates latent heat during the phase change. Alternatively, a material in which a heat storage material that dissipates heat is filled in a resin spherical body may be used. As this kind of heat storage material, a safe and inexpensive material having a large latent heat of solidification (melting) is selected, and for example, inorganic materials, organic materials such as paraffins and fatty acids, inorganic hydrated salts, and molten salts can be used. Ice (melting point 0 ° C., heat of melting 335 kJ / kg) is used as the inorganic substance, n-paraffin (melting point −4 to 100 ° C.) as the paraffin, and 1-decanol (melting point 6 ° C.) as the fatty acid. The inorganic hydrate salt is used as a heat storage material for a medium to low temperature range, and specific materials include Na 2 SO 4 .10H 2 O / NaCl / NH 4 Cl (melting point 13 ° C., heat of fusion 180 kJ / kg), CaCl 2 · 6H 2 O (melting point 29 ° C., a heat of fusion 191kJ / kg), Na 2 SO 4 · 10H 2 O ( mp 32.4 ° C., a heat of fusion 245kJ / kg), Na 2 HPO 4 · 12H 2 O ( melting point 36 ° C. , Heat of fusion 279 kJ / kg), Na 2 S 2 O 3 .5H 2 O (melting point 48 ° C., heat of fusion 205 kJ / kg), NaCH 3 COO 3 H 2 O (melting point 58 ° C., heat of fusion 251 kJ / kg), Ba (OH) 2 · 8H 2 O ( melting point 78 ° C., a heat of fusion 293kJ / kg), Mg (NO 3) 2 · 6H 2 O ( melting point 89 ° C., a heat of fusion 160kJ / kg), KAl (SO 4) 2 · 12H 2 O Mp 91 ° C., a heat of fusion 232kJ / kg), MgCl 2 · 6H 2 O ( melting point 117 ° C., a heat of fusion 171kJ / kg), NaCl / MgCl · 6H 2 O ( melting point 450 ° C., can be used heat of fusion 406kJ / kg) . The molten salt is used in a high temperature range, and includes NaOH-KOH (50-50) (melting point 170 ° C, heat of fusion 231 kJ / kg), LiOH-NaOH (30-70) (melting point 210 ° C, heat of fusion 362 kJ / kg), NaOH-NaNO 2 (73-27) (mp 237 ° C., a heat of fusion 294kJ / kg), NaOH-NaNO 3 (81.5-18.5) ( mp 257 ° C., a heat of fusion 292kJ / kg) may be used. Among the above heat storage materials, CaCl 2 .6H 2 O and Na 2 S 2 O 3 .5H 2 O, which are being considered for practical use in floor heating, and Na 2 SO 4. 10H 2 O, Na 2 HPO 4 .12H 2 O which is being considered for application to solar systems, Na 2 S 2 O 3 .5H 2 O which can be practically used for air conditioning and floor heating of hot water supply buildings, It is preferable to use NaOH-NaNO 2 , which is relatively inexpensive and has good corrosion resistance even with carbon steel, and MgCl 2 .6H 2 O which is being considered for application to a hot water supply device. When the above-mentioned heat storage material is used, the inorganic hydrated salt has an advantage that the heat storage density is large and the thermal conductivity is high, but it is easy for supercooling and phase separation (a phenomenon in which a solid phase that does not melt is generated) to occur. If there is supercooling, it will be impossible to use heat because it is liquid even below the solidification temperature, and it will be an obstacle to operation control at the time of heat radiation.To prevent the progress of the supercooling state, throw in small pieces of crystal of heat storage material Alternatively, it is preferable that one portion in the system is specifically cooled so that the solid phase appears earlier. Organic materials have a lower heat storage density than ice, but are easy to handle because they do not undergo supercooling and phase separation. Further, since the molten salt has a high melting point and a high corrosiveness, attention must be paid to its use when used for home use. In the present invention, the shape of the heat storage capsule is not limited, and various shapes such as a spherical shape, a cylindrical shape, and a flat shape can be used, but a flat shape having a large heat transfer area is preferable.
[0016]
When the fluid used as the heat transfer medium is used over a low temperature range, a liquid that does not cause a phase change may be used. For example, a glycol-based aqueous solution such as ethylene glycol or polypropylene glycol, or a chloride-based aqueous solution such as a CaCl 2 aqueous solution or an NaCl aqueous solution may be used. Since the coagulation temperature varies depending on the concentration of the seed aqueous solution, the concentration may be adjusted according to the application. For example, when the concentration of an ethylene glycol aqueous solution increases, the coagulation temperature decreases. When the concentration is 8.4%, the coagulation temperature is −4 ° C., and when the concentration is 46.4%, the coagulation temperature is −33 ° C. When the CaCl 2 aqueous solution is concentrated to a certain concentration, the coagulation temperature decreases as the concentration increases, and thereafter the coagulation temperature increases. When the concentration is 2.5%, the coagulation temperature is −1.2 ° C. and the concentration is 29.9. %, The coagulation temperature is -55 ° C, and when the concentration is 31.2%, the coagulation temperature is -41.6 ° C. The NaCl aqueous solution also has a solidification temperature that decreases when the concentration is increased up to a certain concentration, and thereafter increases. When the concentration is 2.9%, the solidification temperature is -1.8 ° C and the concentration is 23.1%. At a concentration of 23.1%, and a coagulation temperature at a concentration of 23.1% is -21.2 ° C.
[0017]
According to the above configuration, waste heat is supplied to a plurality of demand destinations in the following procedure. By connecting the main heat storage tank 10 loaded on the bed of the vehicle T to the exhaust heat generation source 2 via the heat exchanger 3 as shown in FIG. 1, the valve 106a is opened, and the pumps 22 and 32 are operated. The heat generated from the exhaust heat generation source 3 circulates through the pipe 21 as hot water, for example, and exchanges heat with the fluid circulating through the pipe unit 21 by the heat exchanger 32, and then is stored in the heat storage tank 10. After a predetermined amount of exhaust heat is accumulated in the heat storage tank 10, the pipe unit 100 is removed from the pipe 31, and the main heat storage unit 1 is transported by the vehicle T to the first destination. As shown in FIG. 2, after connecting the main heat storage unit 1 to the sub heat storage unit 4, the valves 403c, 403a, and 106a are opened, and the pump 105 is operated in a state where the valves 403d, 403b, and 106b are closed. The heat transfer medium in 10 is caused to flow into the heat storage tank 40, and a part (for example, 20%) of the heat in the heat storage tank 11 is stored in the heat storage tank 41. Next, the main heat storage unit 1 is separated from the sub heat storage unit 4 and the main heat storage unit 1 is transported by the vehicle T to the next destination, and the same operation as above is performed there, thereby performing a part of the heat in the heat storage tank 10. (For example, 30%) is stored in the heat storage tank 40. By repeating this operation, after all of the heat in the main heat storage tank 10 is distributed to each sub heat storage tank 40, the vehicle T returns to the exhaust heat generation source, where the heat is stored again in the main heat storage tank 10. Good. In the above-described supply process, heat loss occurs during the circulation of the heat transfer medium from the main heat storage tank 10 to the sub heat storage tank 40, and the temperature of the heat transfer medium is determined by the melting point of the heat storage medium filled in the heat storage capsule 11. Lower than. The highest thermal efficiency is obtained when the temperature is equal to the melting point of the heat storage element filled in the heat storage capsule 41. Therefore, the heat storage capsule 11 housed inside the main heat storage tank 10 is preferably filled with a heat storage material whose melting temperature is higher than that of the heat storage capsule 41 housed inside the sub-heat storage tank 40, and the temperature is raised by 3 to 6 ° C. Is more preferable.
[0018]
On the heat demand side, for example, the equipment configuration shown in FIGS. 4 and 5 can be used. According to the device configuration shown in FIG. 4, since the sub heat storage unit 4-1 is connected to the heating panel 6 via the hot water tank 5, the valves 403b and 403d are opened with the valves 403a and 403c closed, By operating the pumps 405 and 61, the exhaust heat can be used for indoor heating. Further, according to the device configuration shown in FIG. 5, since the sub heat storage tank 40 is connected to the hot water taps 7a, 7b and the bathtub 8 via the hot water tank 5, the valves 62a, 62b, 62c are opened, and the pump 61 is turned on. By operating, it can be used for bathing. 4 and 5, reference numeral 50 denotes a faucet for supplying water to the hot water tank 5.
[0019]
【The invention's effect】
As described above, according to the present invention, since the main heat storage tank for storing the exhaust heat is sequentially connected to the plurality of sub heat storage tanks provided on the demand side and supplied, the heat storage tank in which the exhaust heat is stored is loaded from the vehicle. The lowering operation is not required, and the exhaust heat can be effectively used regardless of the size of the space on the heat utilization side.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of an apparatus on a heat exhaust side for implementing a thermal energy supply method of the present invention.
FIG. 2 is a schematic diagram showing a configuration of an apparatus on a heat demand side for implementing a thermal energy supply method of the present invention.
FIG. 3 is a schematic sectional view of a heat storage tank used in the present invention.
FIG. 4 is a schematic diagram showing an example of a demand-side device configuration for implementing the thermal energy supply method of the present invention.
FIG. 5 is a schematic diagram showing another example of a demand side device configuration to which the thermal energy supply method of the present invention is applied.
[Explanation of symbols]
1: Main heat storage unit, 10: Main heat storage tank, 11: Heat storage capsule, 12: Container,
13a, 13b, 13c: partition 100: piping unit, 101: inflow pipe, 102: outflow pipe,
103: bypass pipe, 104a, 104b: fluid coupling, 105: pump,
106a, 106b: valve, 2: exhaust heat generation source, 21: piping,
22: pump, 3: heat exchanger, 31: piping, 32: pump 4, 4-1, 4-2... 4-n: sub heat storage unit, 40: sub heat storage tank,
41: thermal storage capsule, 42: container, 43a, 43b, 43c: partition 400: piping unit, 401a, 401b, 402a, 401b: pipeline
403a, 403b, 403c: valve 5: hot water tank, 50: faucet, 6: heating panel, 61: pump,
62a, 62b, 62c: valve, 7a, 7b: hot water tap, 8: bathtub, T: vehicle

Claims (5)

熱源から得た熱エネルギーを蓄熱体を収容する主蓄熱ユニットに潜熱として蓄熱し、前記主蓄熱ユニットを熱需要先に搬送し、前記主蓄熱ユニットに蓄熱した潜熱を熱需要先に設けた蓄熱体を収容する副蓄熱ユニットに潜熱として蓄熱することを特徴とする熱エネルギー供給方法。A heat storage element in which heat energy obtained from a heat source is stored as latent heat in a main heat storage unit accommodating a heat storage body, the main heat storage unit is transported to a heat demand destination, and the latent heat stored in the main heat storage unit is provided in a heat demand destination. A heat energy supply method characterized by storing heat as latent heat in a sub-heat storage unit accommodating heat. 熱源から得た熱エネルギーを蓄熱体を収容する主蓄熱ユニットに潜熱として蓄熱し、前記主蓄熱ユニットを第1の熱需要先に搬送し、前記主蓄熱ユニットに蓄熱した潜熱の一部を第1の熱需要先に設けた蓄熱体を収容する副蓄熱ユニットに潜熱として蓄熱し、次いで前記主蓄熱ユニットを第2以降の熱需要先に順次搬送し前記主蓄熱ユニットに蓄熱した潜熱の一部を第2以降の熱需要先に設けた副蓄熱ユニットに順次蓄熱することを特徴とする熱エネルギー供給方法。The heat energy obtained from the heat source is stored as latent heat in a main heat storage unit accommodating a heat storage body, the main heat storage unit is transported to a first heat demand destination, and a part of the latent heat stored in the main heat storage unit is stored in a first heat storage unit. Heat is stored as latent heat in a sub heat storage unit that accommodates a heat storage body provided at a heat demand destination, and then a part of the latent heat stored in the main heat storage unit by sequentially transporting the main heat storage unit to a second or subsequent heat demand destination. A heat energy supply method, wherein heat is sequentially stored in a sub heat storage unit provided at a second or subsequent heat demand destination. 潜熱を蓄熱する蓄熱体を収容しかつ伝熱媒体の流路を有する蓄熱容器と前記伝熱媒体を流動させる管路を含む主蓄熱ユニットを第1の熱需要先に搬送し、その需要先で潜熱を蓄熱する蓄熱体を収容しかつ伝熱媒体の流路を含む配管部材を有する蓄熱容器と前記伝熱媒体を流動させる管路を含む副蓄熱ユニットに配管接続し、前記主蓄熱ユニットに蓄熱された潜熱の一部を前記副蓄熱ユニットに放出し、主蓄熱ユニットを第2の需要先に搬送し、その需要先で潜熱を蓄熱する蓄熱体を収容しかつ伝熱媒体の流路を有する蓄熱容器と前記伝熱媒体を流動させる管路を含む副蓄熱ユニットに配管接続し、前記主蓄熱ユニットに蓄熱された潜熱の一部を副蓄熱ユニットに放出し、前記主蓄熱ユニットに蓄熱された潜熱の全てが放出されるまでこの工程を繰り返すことを特徴とする熱エネルギー供給方法。A main heat storage unit containing a heat storage medium for storing latent heat and including a heat storage container having a flow path of a heat transfer medium and a pipe for flowing the heat transfer medium is transported to a first heat demand destination, where the heat demand is stored. A pipe is connected to a heat storage container that contains a heat storage body that stores latent heat and has a pipe member that includes a flow path for a heat transfer medium, and a sub heat storage unit that includes a pipe through which the heat transfer medium flows, and stores heat in the main heat storage unit. A part of the latent heat is released to the sub heat storage unit, the main heat storage unit is transported to a second demand destination, and a heat storage medium that stores latent heat at the demand destination is accommodated therein, and a flow path of a heat transfer medium is provided. A pipe was connected to a sub-storage unit including a heat storage container and a pipe for flowing the heat transfer medium, a part of the latent heat stored in the main storage unit was released to the sub-storage unit, and the heat was stored in the main storage unit. This process until all of the latent heat is released Heat energy supply method and repeating. 前記蓄熱体は、所定の温度で相変化を起こす蓄熱材が充填された複数の蓄熱カプセルからなることを特徴とする請求項1乃至3の何れかに記載の熱エネルギー供給方法。4. The thermal energy supply method according to claim 1, wherein the heat storage body includes a plurality of heat storage capsules filled with a heat storage material that undergoes a phase change at a predetermined temperature. 前記主蓄熱ユニットで使用される蓄熱カプセルは、前記副熱ユニットで使用される蓄熱カプセルよりも高い融解温度を有する蓄熱材が充填されていることを特徴とする請求項4に記載の熱エネルギー供給方法。The thermal energy supply according to claim 4, wherein the heat storage capsule used in the main heat storage unit is filled with a heat storage material having a higher melting temperature than the heat storage capsule used in the sub heat unit. Method.
JP2003107905A 2003-04-11 2003-04-11 Heat energy supply method Pending JP2004316958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107905A JP2004316958A (en) 2003-04-11 2003-04-11 Heat energy supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107905A JP2004316958A (en) 2003-04-11 2003-04-11 Heat energy supply method

Publications (1)

Publication Number Publication Date
JP2004316958A true JP2004316958A (en) 2004-11-11

Family

ID=33469613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107905A Pending JP2004316958A (en) 2003-04-11 2003-04-11 Heat energy supply method

Country Status (1)

Country Link
JP (1) JP2004316958A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111045A1 (en) * 2005-04-20 2006-10-26 Starford International Holdings Limited Movable heat recovery and storage device
JP2007040645A (en) * 2005-08-05 2007-02-15 Kobe Steel Ltd Heat storage unit and method of operating same
JP2007064614A (en) * 2005-08-03 2007-03-15 Kobelco Eco-Solutions Co Ltd Heat storage method and system for heat storage device
JP2007239697A (en) * 2006-03-10 2007-09-20 Kobe Univ High-temperature cooling device using latent heat transport inorganic hydrate slurry
JP2008180438A (en) * 2007-01-24 2008-08-07 Kobelco Eco-Solutions Co Ltd Heat transport system
CN102322760A (en) * 2011-10-19 2012-01-18 路生吉 Intelligent on-vehicle mobile type phase-change heat storage and supply system
JP4896964B2 (en) * 2005-04-27 2012-03-14 三機工業株式会社 Latent heat storage unit
WO2024069736A1 (en) * 2022-09-27 2024-04-04 北海道電力株式会社 Carnot battery and energy storage system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111045A1 (en) * 2005-04-20 2006-10-26 Starford International Holdings Limited Movable heat recovery and storage device
JP4896964B2 (en) * 2005-04-27 2012-03-14 三機工業株式会社 Latent heat storage unit
JP2007064614A (en) * 2005-08-03 2007-03-15 Kobelco Eco-Solutions Co Ltd Heat storage method and system for heat storage device
JP2007040645A (en) * 2005-08-05 2007-02-15 Kobe Steel Ltd Heat storage unit and method of operating same
JP2007239697A (en) * 2006-03-10 2007-09-20 Kobe Univ High-temperature cooling device using latent heat transport inorganic hydrate slurry
JP2008180438A (en) * 2007-01-24 2008-08-07 Kobelco Eco-Solutions Co Ltd Heat transport system
CN102322760A (en) * 2011-10-19 2012-01-18 路生吉 Intelligent on-vehicle mobile type phase-change heat storage and supply system
CN102322760B (en) * 2011-10-19 2013-01-02 路生吉 Intelligent on-vehicle mobile type phase-change heat storage and supply system
WO2024069736A1 (en) * 2022-09-27 2024-04-04 北海道電力株式会社 Carnot battery and energy storage system

Similar Documents

Publication Publication Date Title
JP4326155B2 (en) Chemical heat pump
JP2001504208A (en) Apparatus and process for storing thermal energy
JP2007533440A (en) Sterilization system
US9446969B1 (en) Solar driven water purification and transportation system
US4466478A (en) Method and apparatus in storing heat
JP2004316958A (en) Heat energy supply method
CN109405391A (en) Fill cool equipment and the cold supply system including the equipment
CN103209928A (en) Water treatment system and water treatment method
Dincer et al. Thermal energy storage (TES)
CN101354223A (en) Energy-saving apparatus
JP2007263419A (en) Exhaust heat recovering system from industrial waste water
EP0053497B1 (en) Solar assisted heating system
JP2009236368A (en) Absorption chiller/heater
EP0353992A2 (en) Methods of heat transfer and apparatus therefor
JPH06347183A (en) Heat utilizing system in fine quality attaining process
JPH09264991A (en) Spent fuel thermal energy transport device
JP2004108761A (en) Heat storage tank, heat storage system and heating or cooling method
JP2001330278A (en) Radiant cooling method
JPH10288484A (en) Method and facility for storing/extracting thermal energy
EP1361404A2 (en) An accumulator tank
JPH1082537A (en) Heat accumulating device
JPH01285727A (en) Regional cooling system
JP3118616B2 (en) Cooling or cooling / heating device
JP2005257173A (en) Heat supply system using thermal effluent, and its supply method
JP2608317B2 (en) Cooling method