JP2004314041A - Magnetized cobalt fluidized bed catalyst for hydrogenation reaction and method for using the catalyst - Google Patents
Magnetized cobalt fluidized bed catalyst for hydrogenation reaction and method for using the catalyst Download PDFInfo
- Publication number
- JP2004314041A JP2004314041A JP2003330007A JP2003330007A JP2004314041A JP 2004314041 A JP2004314041 A JP 2004314041A JP 2003330007 A JP2003330007 A JP 2003330007A JP 2003330007 A JP2003330007 A JP 2003330007A JP 2004314041 A JP2004314041 A JP 2004314041A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- cobalt
- fluidized bed
- hydrogenation reaction
- magnetized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 115
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 77
- 239000010941 cobalt Substances 0.000 title claims abstract description 77
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000002245 particle Substances 0.000 claims abstract description 32
- 239000007791 liquid phase Substances 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 239000013078 crystal Substances 0.000 claims abstract description 12
- 230000004907 flux Effects 0.000 claims abstract description 7
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 6
- 238000004062 sedimentation Methods 0.000 claims description 17
- 238000000926 separation method Methods 0.000 claims description 9
- 230000003197 catalytic effect Effects 0.000 abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 230000002829 reductive effect Effects 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 description 26
- 239000002184 metal Substances 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005406 washing Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 150000001868 cobalt Chemical class 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- SUSQOBVLVYHIEX-UHFFFAOYSA-N phenylacetonitrile Chemical compound N#CCC1=CC=CC=C1 SUSQOBVLVYHIEX-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000007868 Raney catalyst Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- BLJNPOIVYYWHMA-UHFFFAOYSA-N alumane;cobalt Chemical compound [AlH3].[Co] BLJNPOIVYYWHMA-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000001728 carbonyl compounds Chemical class 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 238000007327 hydrogenolysis reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、着磁した水素化反応用コバルト流動床触媒及びその使用方法に関するものである。更に詳しく述べるならば、本発明は実用上十分高い触媒活性を有し、かつ液相水素化反応系における触媒の沈降性が良好で分離や回収が容易な着磁した水素化反応用コバルト流動床触媒、及びその使用方法に関するものである。 The present invention relates to a magnetized cobalt fluidized bed catalyst for hydrogenation reaction and a method for using the same. More specifically, the present invention is a magnetized cobalt fluidized bed for hydrogenation reaction which has sufficiently high catalytic activity for practical use, has good sedimentation of the catalyst in a liquid phase hydrogenation reaction system, and is easy to separate and recover. The present invention relates to a catalyst and a method for using the same.
久保松照夫、小松信一郎著、「ラネー触媒」(共立出版,1971、非特許文献1)には、触媒作用を有する金属(A金属)例えばニッケル、コバルト、銅、鉄、銀、パラジウムなどと、溶出される金属 (B金属) 例えばアルミニウム、珪素、亜鉛、マグネシウムとの合金(ラネー合金)から、侵食剤例えば水、アルカリ、酸など(通常、アルカリが使用される)を用いて、前記溶出される金属(B金属)を溶出させる工程(以後展開工程と記す)により得られ、スポンジ状形態を有する活性金属を主成分とする触媒すなわちスポンジ金属触媒が詳しく記載されている。スポンジコバルト触媒とは前記A金属がコバルトである場合のスポンジ触媒を意味する。 Teruo Kubo and Shinichiro Komatsu, "Raney catalyst" (Kyoritsu Shuppan, 1971, Non-Patent Document 1) include a metal having a catalytic action (metal A) such as nickel, cobalt, copper, iron, silver, palladium, etc. Metals to be eluted (metal B) For example, from an alloy with aluminum, silicon, zinc, and magnesium (Raney alloy), using an erosion agent, for example, water, an alkali, an acid, etc. (usually, an alkali is used). A catalyst containing a sponge-like active metal as a main component, that is, a sponge metal catalyst obtained by a step of eluting a metal (B metal) (hereinafter referred to as a developing step) is described in detail. The sponge cobalt catalyst means a sponge catalyst when the metal A is cobalt.
一般的には、スポンジ金属触媒は、A金属およびB金属から少なくとも一種類を選択してなる合金末(以下、母合金と称する)を、水酸化ナトリウム水溶液に投入し、所定温度で所定時間、加熱攪拌してB金属の少なくとも一部分を溶出させ水洗することにより製造され、水中に保存される。
スポンジ金属触媒製造時の水洗は、展開工程で溶出した金属および過剰のアルカリを除去するために3〜20回程度行われるが、触媒粒子の沈降性が悪いと、水洗排水中に触媒が混入することがある。水洗排水中の触媒を除去するため、ろ過器、沈降槽等の付帯設備を必要としたり、触媒の沈降に長時間を要するため操作が煩雑になり、コストアップにも繋がるという問題点があった。
Generally, a sponge metal catalyst is obtained by charging an alloy powder (hereinafter, referred to as a master alloy) selected from at least one of A metal and B metal into an aqueous solution of sodium hydroxide, at a predetermined temperature for a predetermined time, Manufactured by heating and stirring to elute at least a part of the B metal and washing with water, and stored in water.
The water washing at the time of producing the sponge metal catalyst is performed about 3 to 20 times to remove the metal and excess alkali eluted in the developing step. However, if the sedimentation of the catalyst particles is poor, the catalyst is mixed into the washing water. Sometimes. In order to remove the catalyst in the washing wastewater, additional equipment such as a filter and a sedimentation tank was required, and the operation was complicated due to the long time required for the sedimentation of the catalyst, leading to an increase in cost. .
液相反応に使用したコバルト流動床触媒は、沈降分離、ろ過分離、遠心分離、磁気による捕捉あるいはこれらを組合わせるなどの方法により液相から分離される。この場合上記方法の各々において、沈降分離槽、ろ過機、遠心分離機、着磁装置(電磁石あるいは永久磁石)などを必要とする。分離回収した触媒を再利用する場合、ろ過分離法や遠心分離法では、触媒の回収・再利用に多大な労力を必要とするので工業的に有利な方法とは言えない。コバルト流動床触媒などの沈降速度が速い場合には、沈降分離法を用いることが実用上好ましい。
しかし、従来のコバルト流動床触媒を、重力のみにより沈降分離するためには長時間を要することがあり、触媒の粒度が細かい場合及び液相が高粘度の場合には分離効率が大幅に低下して、工業的には実施し難いことがあった。
The cobalt fluidized bed catalyst used in the liquid phase reaction is separated from the liquid phase by a method such as sedimentation separation, filtration separation, centrifugation, magnetic capture, or a combination thereof. In this case, each of the above methods requires a sedimentation tank, a filter, a centrifuge, a magnetizing device (electromagnet or permanent magnet), and the like. When the separated and recovered catalyst is reused, the filtration separation method or the centrifugal separation method is not industrially advantageous because a large amount of labor is required for the recovery and reuse of the catalyst. When the sedimentation speed of a cobalt fluidized bed catalyst or the like is high, it is practically preferable to use the sedimentation separation method.
However, it may take a long time to settle and separate the conventional cobalt fluidized bed catalyst only by gravity, and when the catalyst particle size is small and the liquid phase has a high viscosity, the separation efficiency is greatly reduced. Therefore, it was sometimes difficult to implement it industrially.
また、コバルト流動床触媒を分離回収、再利用するために、重力とともに、これらの触媒に磁場を印加する方法が知られている。特公昭39−9865号公報(特許文献1)には、反応液中の大部分の磁性金属流動床触媒を重力により分離し、さらに磁場中を通過させて残存する触媒を捕捉し、磁場の消去によって着磁を解除して反応器に回収する接触連続反応方法が開示されている。特公昭45−20884号公報(特許文献2)には、反応器の下流に、冷却装置、及び壁面の少なくとも一部に電磁石を作用させた分離器、並びにスラリーポンプ又は気体インジェクターを設置して、液中に懸濁したニッケル触媒を分離回収し使用する連続接触反応装置が提案されている。 Further, a method of applying a magnetic field to these catalysts together with gravity in order to separate and recover and reuse the cobalt fluidized bed catalyst is known. Japanese Patent Publication No. 39-9865 (Patent Document 1) discloses that most of a magnetic metal fluidized bed catalyst in a reaction solution is separated by gravity, and further passed through a magnetic field to capture the remaining catalyst and to eliminate the magnetic field. A contact continuous reaction method in which the magnetization is released and recovered in a reactor is disclosed. In Japanese Patent Publication No. 45-20884 (Patent Document 2), a cooling device, a separator in which an electromagnet is applied to at least a part of a wall surface, a slurry pump or a gas injector are installed downstream of the reactor. There has been proposed a continuous contacting reactor in which a nickel catalyst suspended in a liquid is separated and recovered and used.
磁性金属流動床触媒に磁場を印加して液相から分離する方法は、磁場を印加するべき磁性金属触媒及び、それが懸濁している液相の粘度によっては、実用上満足できる程度に沈降時間を短縮できないことがあり、さらに、磁場を印加するために大掛かりな特別な装置、設備を必要とするなどの問題点があった。
さらに、スポンジ金属触媒の種類によっては、保存中に固結して反応槽などへの仕込が困難になることがあった。
The method of applying a magnetic field to the magnetic metal fluidized bed catalyst to separate it from the liquid phase depends on the magnetic metal catalyst to be applied with the magnetic field and the viscosity of the liquid phase in which the magnetic field is suspended, and the sedimentation time becomes practically satisfactory. May not be shortened, and there is a problem that a large-scale special device and equipment are required for applying a magnetic field.
Furthermore, depending on the type of the sponge metal catalyst, it may be hardened during storage and may be difficult to be charged into a reaction tank or the like.
本発明は、実用上十分に高い触媒活性を有し、かつ、沈降性に優れ、特別な装置がなくとも分離、回収、再利用が容易であって、さらに、繰返し利用しても沈降性の低下が少なく、保存中に固結することのない又は少ない、着磁した水素化反応用コバルト流動床触媒及びその使用方法を提供しようとするものである。 The present invention has a sufficiently high catalytic activity for practical use, and has excellent sedimentation properties, and can be easily separated, recovered and reused without special equipment. An object of the present invention is to provide a magnetized hydrogenated cobalt fluidized bed catalyst for hydrogenation reaction, which has a small decrease and does not or hardly solidify during storage, and a method of using the same.
本発明の着磁した水素化反応用コバルト流動床触媒はX線回折法により測定された結晶格子面(111)におけるコバルト結晶子径が2.0〜10.0nmのコバルト粒子から選ばれた少なくとも1種からなり、かつ0.1×10-4〜30Tの磁束密度を有する磁場の印加により着磁している水素化反応用コバルト流動床触媒粒子からなることを特徴とするものである。
本発明の着磁した水素化反応用コバルト流動床触媒において、前記コバルト粒子の結晶格子面(111)におけるコバルト結晶子径が3.0〜10.0nmであることが好ましい。
本発明の着磁した水素化反応用コバルト流動床触媒において、前記コバルト粒子の少なくとも1種がスポンジ状の形態を有することが好ましい。
本発明の着磁した水素化反応用コバルト流動床触媒の使用方法は、前記本発明の着磁した水素化反応用コバルト流動床触媒を流動床における液相水素化反応に使用し、当該液相水素化反応の終了後に前記触媒を、液相水素化反応系中を沈降させて分離することを含むものである。
The magnetized cobalt fluidized bed catalyst for hydrogenation reaction of the present invention is at least selected from cobalt particles having a cobalt crystallite diameter of 2.0 to 10.0 nm at a crystal lattice plane (111) measured by an X-ray diffraction method. It is characterized by being composed of one type of fluidized cobalt fluidized bed catalyst particles for hydrogenation reaction and magnetized by application of a magnetic field having a magnetic flux density of 0.1 × 10 −4 to 30 T.
In the magnetized cobalt fluidized bed catalyst for hydrogenation reaction of the present invention, the cobalt particles preferably have a cobalt crystallite diameter of 3.0 to 10.0 nm on a crystal lattice plane (111).
In the magnetized cobalt fluidized bed catalyst for hydrogenation reaction of the present invention, it is preferable that at least one of the cobalt particles has a sponge-like form.
The method of using the magnetized cobalt fluidized bed catalyst for hydrogenation reaction of the present invention comprises using the magnetized cobalt fluidized bed catalyst for hydrogenation reaction of the present invention in a liquid phase hydrogenation reaction in a fluidized bed. After completion of the hydrogenation reaction, the catalyst is settled and separated in a liquid phase hydrogenation reaction system.
本発明の着磁した水素化反応用コバルト流動床触媒は液相水素化反応に対する触媒活性も実用上十分高く、またその液相反応において、反応終了後の触媒の分離、回収が容易で、かつこれをくりかえし再利用しても触媒の分離性や活性の低下が少ないので、液相水素化反応用流動床触媒として、高い生産効率で経済的に目的物質を製造することができるという優れた実用的効果を有している。 The magnetized fluidized bed catalyst for hydrogenation reaction of the present invention has sufficiently high catalytic activity for liquid-phase hydrogenation reaction in practical use, and in the liquid-phase reaction, separation and recovery of the catalyst after completion of the reaction are easy, and Excellent practical use as a fluidized-bed catalyst for liquid-phase hydrogenation reaction, which can economically produce the target substance with high production efficiency because the catalyst has little decrease in the separability and activity even if it is reused repeatedly. Has a positive effect.
これまで、着磁した水素化反応用コバルト流動床触媒の存在下に液相水素化反応を実施した例、及び該触媒を沈降分離した後に繰返し液相水素化反応に利用した例は知られていない。本発明者らは、鋭意研究を重ねた結果、触媒作用を有するコバルトの結晶子径が特定の範囲にある粉粒状コバルト触媒に、特定の範囲にある磁束密度の磁場を印加することにより着磁させた水素化反応用コバルト流動床触媒を液相反応に使用した場合、該触媒が沈降性に優れ、特別な装置がなくとも分離、回収、再利用が容易で、かつ触媒活性も実用上十分に高く、さらに繰返し利用しても沈降性の低下が少ないことを見出し、本発明を完成するに至った。 Heretofore, there have been known examples in which a liquid-phase hydrogenation reaction was carried out in the presence of a magnetized cobalt fluidized bed catalyst for hydrogenation reaction, and examples in which the catalyst was sedimented and separated and then repeatedly used in a liquid-phase hydrogenation reaction. Absent. The present inventors have conducted intensive studies and found that, by applying a magnetic field having a magnetic flux density within a specific range to a particulate cobalt catalyst having a catalytic crystallite diameter of cobalt within a specific range. When the hydrogenated cobalt fluidized bed catalyst for hydrogenation reaction is used in a liquid phase reaction, the catalyst has excellent sedimentation properties, and can be easily separated, recovered and reused without special equipment, and the catalyst activity is practically sufficient. And found that the sedimentation was not significantly reduced even after repeated use, and completed the present invention.
本発明におけるコバルト流動床触媒とは、形状が粉体、微粒子、フレークなどで、主とした触媒作用がコバルトにより発現する固体触媒を指す。コバルト流動床触媒としては、コバルトをスポンジ状にした無担体のスポンジコバルト触媒や触媒作用を有するコバルトを多孔質担体に担持したコバルト担持型流動床触媒などが含まれる。スポンジコバルト触媒は下記に示すスポンジ金属触媒の一種である。 The cobalt fluidized bed catalyst in the present invention refers to a solid catalyst in which the shape is powder, fine particles, flakes, or the like, and the main catalytic action is exhibited by cobalt. Examples of the fluidized-bed cobalt catalyst include a sponge-free sponge-shaped cobalt-free sponge-cobalt catalyst and a cobalt-supported fluidized-bed catalyst in which cobalt having catalytic activity is supported on a porous carrier. The sponge cobalt catalyst is one of the following sponge metal catalysts.
本発明の着磁した水素化反応用コバルト流動床触媒は、X線回折法における結晶格子面(111)におけるコバルト結晶子径が特定の範囲にあるコバルト粒子からなる水素化反応用流動床触媒用コバルト粒子に、磁束密度が特定の範囲にある磁場を印加して着磁させることにより製造できる。
また本発明の、磁場を印加する流動床触媒用コバルト粒子としては、前記記載のスポンジコバルト触媒粒子、及びコバルト担持型流動床触媒粒子などが挙げられる。
The magnetized fluidized bed catalyst for hydrogenation reaction of the present invention is a fluidized bed catalyst for hydrogenation reaction comprising cobalt particles having a cobalt crystallite diameter in a crystal lattice plane (111) in a specific range in X-ray diffraction. It can be manufactured by applying a magnetic field having a magnetic flux density within a specific range to the cobalt particles to magnetize them.
In addition, examples of the cobalt particles for a fluidized bed catalyst to which a magnetic field is applied according to the present invention include the above-described sponge cobalt catalyst particles and cobalt-supported fluidized bed catalyst particles.
本発明に用いられるコバルト粒子の結晶格子面(111)におけるコバルト結晶子径は2.0〜10.0nmであり、好ましくは3.0〜10.0nmである。結晶格子面(111)におけるコバルト結晶子径が2.0nm未満の場合は、得られる触媒粒子における沈降性向上効果が不十分であり、またそれが、10.0nmを越えると、得られる触媒粒子の触媒活性が大きく低下するので好ましくない。 The cobalt crystallite diameter at the crystal lattice plane (111) of the cobalt particles used in the present invention is 2.0 to 10.0 nm, and preferably 3.0 to 10.0 nm. When the cobalt crystallite diameter at the crystal lattice plane (111) is less than 2.0 nm, the effect of improving the sedimentation property of the obtained catalyst particles is insufficient, and when it exceeds 10.0 nm, the obtained catalyst particles This is not preferred because the catalytic activity of the compound greatly decreases.
結晶格子面(111)におけるコバルト結晶子径が2.0〜10.0nmであるコバルト流動床触媒粒子は、その結晶子径が2.0nm未満のニッケル流動床触媒粒子を、水及び/又は有機溶媒中において、40℃以上で加熱攪拌することによっても製造することができる。上記加熱撹拌温度が40℃未満では、結晶子径の成長が極めて遅いので実用的ではない。 Cobalt fluidized bed catalyst particles having a crystallite diameter of 2.0 to 10.0 nm on the crystal lattice plane (111) are prepared by adding nickel fluidized bed catalyst particles having a crystallite diameter of less than 2.0 nm to water and / or organic fluid. It can also be produced by heating and stirring at 40 ° C. or higher in a solvent. If the heating and stirring temperature is lower than 40 ° C., the growth of the crystallite diameter is extremely slow, which is not practical.
本発明の、磁場を印加すべきスポンジコバルト触媒粒子の製造方法について説明する。
スポンジコバルト触媒の原料となる母合金としては、コバルト−アルミニウム合金などが例示できる。また、コバルト流動床触媒粒子には、触媒の活性、反応の選択性あるいは触媒の耐久性を向上させることなどを目的とする副成分金属が塩として添加されていてもよい。
The method of the present invention for producing sponge cobalt catalyst particles to which a magnetic field is to be applied will be described.
As a mother alloy used as a raw material of the sponge cobalt catalyst, a cobalt-aluminum alloy can be exemplified. The cobalt fluidized bed catalyst particles may be added as a salt with a secondary component metal for the purpose of improving the activity of the catalyst, the selectivity of the reaction or the durability of the catalyst.
格子面(111)におけるコバルト結晶子径が2.0〜10.0nmであるスポンジコバルト触媒は、前記“ラネー触媒”(共立出版,1971、非特許文献1)などに記載されている方法により製造できる。その一例を下記に示す。
触媒作用を有するA金属としてコバルトを含有する母合金を、その質量の0.5〜5質量倍の、濃度5〜50重量%のアルカリ水溶液中に添加して、40〜120℃の温度で展開後、水洗することによりコバルト触媒粒子を製造できる。スポンジコバルト触媒を製造するための展開温度および時間は、好ましくは、40〜100℃で0.5〜2時間、さらに好ましくは60〜80℃で0.5〜1時間である。展開温度が40℃未満の場合は、金属結晶子の成長が極めて遅いことがあり、またそれが100℃を越えると、得られる触媒の活性が不十分になることがある。
A sponge cobalt catalyst having a cobalt crystallite diameter in the lattice plane (111) of 2.0 to 10.0 nm is produced by a method described in the aforementioned “Raney catalyst” (Kyoritsu Shuppan, 1971, Non-Patent Document 1) or the like. it can. An example is shown below.
A master alloy containing cobalt as an A metal having a catalytic action is added to an alkaline aqueous solution having a concentration of 5 to 50% by weight and having a concentration of 0.5 to 5 times the mass thereof, and developed at a temperature of 40 to 120 ° C. Thereafter, by washing with water, cobalt catalyst particles can be produced. The developing temperature and time for producing the sponge cobalt catalyst are preferably 0.5 to 2 hours at 40 to 100 ° C, more preferably 0.5 to 1 hour at 60 to 80 ° C. If the developing temperature is lower than 40 ° C., the growth of metal crystallites may be extremely slow. If it exceeds 100 ° C., the activity of the resulting catalyst may be insufficient.
また、スポンジコバルト触媒のコバルトの結晶子径は、それぞれ母合金中のコバルトと他の金属との比率によって影響され、同一の展開条件では、合金中のコバルト金属の比率が低い程、結晶子径が大きくなる。 In addition, the crystallite size of cobalt of the sponge cobalt catalyst is affected by the ratio of cobalt to the other metal in the master alloy, and under the same development conditions, the lower the ratio of cobalt metal in the alloy, the smaller the crystallite size. Becomes larger.
本発明の、磁場を印加すべきコバルト担持型流動床触媒粒子の製造方法について説明する。
コバルトを担持する担体としては、珪藻土、軽石、酸性白土、アルミナ、シリカなどを用いることができる。
The method of the present invention for producing cobalt-carrying fluidized bed catalyst particles to which a magnetic field is to be applied will be described.
Diatomaceous earth, pumice, acid clay, alumina, silica and the like can be used as a carrier for supporting cobalt.
印加する磁場の磁束密度は、0.1×10-4〜3.0Tであり、0.1×10-1〜1.0Tであることが好ましい。磁場の印加装置には電磁石あるいは永久磁石が用いられる。好ましくは電磁石が用いられる。電磁石に流す電流は直流でもよく、又交流でもよい。磁場の印加方法にも特に限定はないが、結晶格子面(111)におけるコバルト結晶子径が、2.0〜10.0nm、好ましくは3.0〜10.0nmのコバルト流動床触媒粒子を、水中あるいは液相反応混合液中に分散させ、ポンプにより、配管内を通って反応器中に移送される際に、予め配管に磁場形成しておき、該配管を通過する触媒粒子に着磁させる方法を用いることが好ましい。また、磁場を印加するコバルト流動床触媒は、液相水素化反応に使用後に回収された触媒であってもよい。 The magnetic flux density of the applied magnetic field is 0.1 × 10 −4 to 3.0 T, and preferably 0.1 × 10 −1 to 1.0 T. An electromagnet or a permanent magnet is used as a magnetic field applying device. Preferably, an electromagnet is used. The current flowing through the electromagnet may be DC or AC. There is no particular limitation on the method of applying the magnetic field, but the cobalt crystallite diameter at the crystal lattice plane (111) is 2.0 to 10.0 nm, preferably 3.0 to 10.0 nm. Dispersed in water or in a liquid phase reaction mixture, and when transferred into a reactor through a pipe by a pump, a magnetic field is formed in the pipe in advance, and the catalyst particles passing through the pipe are magnetized. Preferably, a method is used. Further, the cobalt fluidized bed catalyst to which a magnetic field is applied may be a catalyst recovered after use in a liquid phase hydrogenation reaction.
本発明の着磁した水素化反応用コバルト流動床触媒が使用される化学反応は液相水素化反応であり、例えば、オレフィンの水素化、芳香族化合物の水素化、アルデヒド及びケトンなどのカルボニル化合物のアルコールへの水素化、オキシム、イミン、ニトリル及びニトロ化合物のアミンへの水素化、カルボニル化合物のアミンへの還元アミノ化、ハロゲン化炭化水素の加水素分解、ベンジル化合物の加水素分解、硫黄化合物の脱硫などの液相水素化反応に用いられる。具体的に好適な反応としては、グルコースなど糖の水素化;油脂の水素化(硬化、部分硬化);高級脂肪酸、高級脂肪酸エステルおよび高級アルコールの脱臭、脱色、安定性の向上などを目的とする水素化反応などの液相反応が挙げられる。また、本発明の着磁した水素化反応用コバルト流動床触媒はその使用後に急速に凝集沈降し、容易に分離回収することができるので、触媒を分離除去すべき液相の粘度が高い場合、及び触媒を繰返し利用する場合に、特に有利に使用される。 The chemical reaction in which the magnetized cobalt fluidized bed catalyst for hydrogenation reaction of the present invention is used is a liquid phase hydrogenation reaction, for example, hydrogenation of olefins, hydrogenation of aromatic compounds, carbonyl compounds such as aldehydes and ketones. Of oximes, imines, nitriles and nitro compounds to amines, reductive amination of carbonyl compounds to amines, hydrogenolysis of halogenated hydrocarbons, hydrogenolysis of benzyl compounds, sulfur compounds It is used for liquid phase hydrogenation such as desulfurization. Specific preferred reactions include hydrogenation of sugars such as glucose; hydrogenation of oils and fats (curing, partial curing); and deodorization, decolorization, and improvement of stability of higher fatty acids, higher fatty acid esters and higher alcohols. A liquid phase reaction such as a hydrogenation reaction may be mentioned. Further, since the magnetized hydrogenated cobalt fluidized bed catalyst for hydrogenation reaction of the present invention rapidly flocculates and sediments after its use and can be easily separated and recovered, when the viscosity of the liquid phase from which the catalyst is to be separated and removed is high, And when the catalyst is repeatedly used.
実施例
下記実施例により本発明の着磁した磁性金属流動床触媒及びその使用方法を説明する。
EXAMPLES The following examples illustrate the magnetized magnetic metal fluidized bed catalysts of the present invention and methods of using the same.
(1)結晶格子面(111)における結晶子のサイズは、X線回折法により算出した。X線回折の測定条件は、下記の通りであった。
X線 :Cu Kα1/40KV/40mA
カウンター :シンチレーションカウンター
ゴニオメーター :RINT2000縦型ゴニオメーター
アタッチメント :標準試料ホルダー
フィルター :無し
カウンターモノクロメーター :全自動モノクロメーター
発散スリット :1deg.
散乱スリット :1deg.
受光スリット :0.15mm
走査モード :連続
スキャンスピード :2.000°/min
スキャンステップ :0.010°/min
走査軸 :2θ/θ
θオフセット :0.000°
固定角 :0.000°
波長 :1.5405620
装置定数 :Cauchy関数近似
結晶子の大きさ:Cauchy関数近似
K値リスト :0.94 hkl半価幅
面指数hkl :(111)
(2)液相反応に使用した後の水素化反応用コバルト流動床触媒の沈降性は、下記のようにして評価した。すなわち反応終了後、反応液を200mlのメスシリンダーに移し、触媒が均一に分散するように上下に振り、30分静置後、上澄み液を抜き取り、残った触媒の重量から沈降率(%)=(沈降回収された触媒の質量)/(反応に供した触媒の全質量)×100を算出した。沈降率が大きいほど、該触媒の沈降性がよい。
(1) The crystallite size at the crystal lattice plane (111) was calculated by the X-ray diffraction method. The measurement conditions of X-ray diffraction were as follows.
X-ray: Cu K α1 / 40 KV / 40 mA
Counter: Scintillation counter Goniometer: RINT2000 vertical goniometer Attachment: Standard sample holder Filter: None Counter monochromator: Fully automatic monochromator Divergence slit: 1 deg.
Scattering slit: 1 deg.
Light receiving slit: 0.15mm
Scanning mode: continuous Scanning speed: 2.000 ° / min
Scan step: 0.010 ° / min
Scanning axis: 2θ / θ
θ offset: 0.000 °
Fixed angle: 0.000 °
Wavelength: 1.5405620
Apparatus constant: Cauchy function approximation Crystallite size: Cauchy function approximation K value list: 0.94 hkl half width width Surface index hkl: (111)
(2) The sedimentation of the cobalt fluidized bed catalyst for hydrogenation reaction after use in the liquid phase reaction was evaluated as follows. That is, after the completion of the reaction, the reaction solution was transferred to a 200-ml measuring cylinder, shaken up and down so that the catalyst was uniformly dispersed, allowed to stand for 30 minutes, and then the supernatant was removed. (Mass of precipitated and recovered catalyst) / (total mass of catalyst used for reaction) × 100 was calculated. The greater the sedimentation rate, the better the sedimentation of the catalyst.
実施例1(触媒Aの製造)
コバルト−アルミニウム(Co:Al=50:50)の合金粉末50gを25%水酸化ナトリウム水溶液300g中に仕込みこの混合液を70℃、2時間展開した。この展開液中に300gの水を添加し、この混合物を10分間攪拌後、5分静置して触媒粒子を沈降させ、この混合液をデカンテーションにより上澄み液を除去する操作を1サイクルとして7回繰返した。得られたスポンジコバルト触媒粒子を分析した結果、Co含有率95.5%、Al含有率4.5%、平均粒子径:30μm、結晶子格子面(111)におけるコバルト結晶子径:3.8nmであった。得られたスポンジコバルト触媒粒子に磁束密度0.15Tの磁場を印加することにより着磁したスポンジコバルト触媒Aを製造した。
Example 1 (Production of catalyst A)
50 g of cobalt-aluminum (Co: Al = 50: 50) alloy powder was charged into 300 g of a 25% aqueous sodium hydroxide solution, and the mixture was developed at 70 ° C. for 2 hours. 300 g of water was added to the developing solution, the mixture was stirred for 10 minutes, and then allowed to stand for 5 minutes to settle the catalyst particles, and the operation of removing the supernatant by decantation was performed as one cycle. Repeated times. As a result of analyzing the obtained sponge cobalt catalyst particles, the Co content was 95.5%, the Al content was 4.5%, the average particle diameter was 30 μm, and the cobalt crystallite diameter at the crystallite lattice plane (111) was 3.8 nm. Met. A magnetized sponge cobalt catalyst A was produced by applying a magnetic field having a magnetic flux density of 0.15 T to the obtained sponge cobalt catalyst particles.
比較例1(触媒Bの製造)
磁場を印加しなかったこと以外は実施例1と同様に処理して、Co含有率92.3%、Al含有率7.7%、平均粒子径:20μm、結晶子格子面(111)におけるコバルト結晶子径:3.7nmの、未着磁のスポンジコバルト触媒Bを製造した。
Comparative Example 1 (Production of catalyst B)
Except that no magnetic field was applied, the same treatment as in Example 1 was carried out to obtain a Co content of 92.3%, an Al content of 7.7%, an average particle diameter of 20 μm, and a cobalt in the crystallite lattice plane (111). Unmagnetized sponge cobalt catalyst B having a crystallite diameter of 3.7 nm was produced.
実施例2(触媒Aの使用)
着磁したスポンジコバルト触媒A1.2gと、ベンジルシアナイド175g、メタノール32g、アンモニア水(28%)28.7gを500ml電磁攪拌式オートクレーブに仕込み、オートクレーブ中の空気を充分に水素により置換した後、反応系の水素圧を6MPaまで加圧し、温度140℃まで加熱して水素添加反応を行った。水素吸収は1.5時間で終了した。触媒の沈降率は99%であった。
Example 2 (use of catalyst A)
A magnetized sponge cobalt catalyst A (1.2 g), benzyl cyanide (175 g), methanol (32 g), and ammonia water (28%) (28.7 g) were charged into a 500 ml electromagnetically stirred autoclave, and the air in the autoclave was sufficiently replaced with hydrogen. The hydrogen pressure of the reaction system was increased to 6 MPa, and heated to a temperature of 140 ° C. to perform a hydrogenation reaction. Hydrogen absorption was completed in 1.5 hours. The sedimentation rate of the catalyst was 99%.
比較例2
触媒をスポンジコバルト触媒Bに変更したことを除き、それ以外は実施例2と同様にしてベンジルシアナイドの水素添加反応を行った。水素吸収は1.6時間で終了した。触媒の沈降率は40%であった。
Comparative Example 2
A benzyl cyanide hydrogenation reaction was carried out in the same manner as in Example 2 except that the catalyst was changed to sponge cobalt catalyst B. Hydrogen absorption was completed in 1.6 hours. The settling rate of the catalyst was 40%.
実施例2及び比較例2におけるベンジルシアナイドの水素化に用いられた触媒の柱状、並びに使用後の触媒粒子の沈降率及び反応完了に要した時間を表1に示す。 Table 1 shows the columnar shape of the catalyst used in the hydrogenation of benzyl cyanide in Example 2 and Comparative Example 2, the settling rate of the catalyst particles after use, and the time required for completing the reaction.
本発明の着磁した水素化反応用コバルト流動床触媒は液相水素化反応に対する触媒活性が実用上十分高く、またその液相反応において、反応終了後の触媒の分離、回収が容易で、かつこれを繰返し再利用しても触媒の分離性や活性の低下が少ないので、液相水素化反応用流動床触媒として、高い生産効率で経済的に目的物質を製造する目的に好適である。 The magnetized fluidized bed catalyst for hydrogenation reaction of the present invention has a sufficiently high catalytic activity for liquid-phase hydrogenation reaction in practical use, and in the liquid-phase reaction, separation and recovery of the catalyst after completion of the reaction are easy, and Even if this is repeatedly reused, the decrease in the separability and activity of the catalyst is small, so that it is suitable as a fluidized bed catalyst for a liquid phase hydrogenation reaction for the purpose of economically producing the target substance with high production efficiency.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003330007A JP4535704B2 (en) | 2003-09-22 | 2003-09-22 | Magnetized cobalt fluidized bed catalyst for hydrogenation reaction and method of using the catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003330007A JP4535704B2 (en) | 2003-09-22 | 2003-09-22 | Magnetized cobalt fluidized bed catalyst for hydrogenation reaction and method of using the catalyst |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003114704A Division JP3501796B1 (en) | 2003-04-18 | 2003-04-18 | Magnetized nickel fluidized bed catalyst for hydrogenation and method of using this catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004314041A true JP2004314041A (en) | 2004-11-11 |
JP4535704B2 JP4535704B2 (en) | 2010-09-01 |
Family
ID=33475599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003330007A Expired - Fee Related JP4535704B2 (en) | 2003-09-22 | 2003-09-22 | Magnetized cobalt fluidized bed catalyst for hydrogenation reaction and method of using the catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4535704B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254337A (en) * | 2006-03-22 | 2007-10-04 | Air Water Inc | Method for producing 9,9-bis(aminoalkyl)fluorene compound |
CN112871170A (en) * | 2019-11-29 | 2021-06-01 | 肖松涛 | Catalyst, preparation method and application thereof |
WO2024169274A1 (en) * | 2023-02-17 | 2024-08-22 | 江苏鑫华半导体科技股份有限公司 | Hydrogenation treatment method for silicon tetrachloride |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4947246A (en) * | 1972-09-08 | 1974-05-07 | ||
JPS55111836A (en) * | 1978-12-21 | 1980-08-28 | Ici Ltd | Chemical method that use magnetic solid catalyst |
-
2003
- 2003-09-22 JP JP2003330007A patent/JP4535704B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4947246A (en) * | 1972-09-08 | 1974-05-07 | ||
JPS55111836A (en) * | 1978-12-21 | 1980-08-28 | Ici Ltd | Chemical method that use magnetic solid catalyst |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254337A (en) * | 2006-03-22 | 2007-10-04 | Air Water Inc | Method for producing 9,9-bis(aminoalkyl)fluorene compound |
CN112871170A (en) * | 2019-11-29 | 2021-06-01 | 肖松涛 | Catalyst, preparation method and application thereof |
WO2024169274A1 (en) * | 2023-02-17 | 2024-08-22 | 江苏鑫华半导体科技股份有限公司 | Hydrogenation treatment method for silicon tetrachloride |
Also Published As
Publication number | Publication date |
---|---|
JP4535704B2 (en) | 2010-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5358040B1 (en) | Cleaning method of red mud containing goethite | |
EP0014802B1 (en) | Liquid phase chemical process with separation of catalyst particles by magnetic flocculation | |
US9659678B2 (en) | Method for removing cesium ions from water | |
CN1829787A (en) | Acid treatment of a fischer-tropsch derived hydrocarbon stream | |
JP3501796B1 (en) | Magnetized nickel fluidized bed catalyst for hydrogenation and method of using this catalyst | |
JP4535704B2 (en) | Magnetized cobalt fluidized bed catalyst for hydrogenation reaction and method of using the catalyst | |
JP2012187507A (en) | Device and method for water treatment | |
JP5254338B2 (en) | Method and apparatus for producing cycloolefin | |
JP2011036746A (en) | Flocculant, sewage clarifying method using the flocculant and water purifying device using the flocculant | |
JP4881317B2 (en) | Improved settling rate, settling density control of metal catalysts and improved performance by using flocculants | |
JP6849967B2 (en) | How to separate activated carbon | |
JP2010167391A (en) | Particle aggregate and method for producing particle aggregate | |
Whitesides et al. | Magnetic filtration of small heterogeneous catalyst particles. Preparation of ferrimagnetic catalyst supports | |
JP2004057954A (en) | Water treatment catalyst and water treatment method | |
JP2012050952A (en) | Method of regenerating denitration waste catalyst | |
US8137565B2 (en) | Naphthenic acid removal and conversion | |
JP2000334451A (en) | Physicochemical treatment of nitrogen-containing waste water | |
TWI640477B (en) | Method of synthesizing homogeneous granular basic cupric carbonate and copper oxide by using fluidized-bed crystallization technology | |
AU2016238725B2 (en) | Treatment of degraded oxime metal extractants in process organic solutions | |
JP2014171976A (en) | Water treatment apparatus and water treatment method | |
JP2577978B2 (en) | Reactivation method of platinum group metal supported catalyst | |
CA2824456A1 (en) | Method of separating off magnetizable catalyst particles by means of magnetic filters | |
JP6123284B2 (en) | Noble metal ion desorbing agent and noble metal recovery method | |
JP5529015B2 (en) | Method for removing azide from wastewater | |
JP4699622B2 (en) | Method for separating boron-containing solution from R (rare earth) -Fe-B magnet alloy sludge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100615 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4535704 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |