[go: up one dir, main page]

JP2004312877A - Canned linear motor armature and canned linear motor - Google Patents

Canned linear motor armature and canned linear motor Download PDF

Info

Publication number
JP2004312877A
JP2004312877A JP2003102995A JP2003102995A JP2004312877A JP 2004312877 A JP2004312877 A JP 2004312877A JP 2003102995 A JP2003102995 A JP 2003102995A JP 2003102995 A JP2003102995 A JP 2003102995A JP 2004312877 A JP2004312877 A JP 2004312877A
Authority
JP
Japan
Prior art keywords
armature
winding
linear motor
canned linear
fixing frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102995A
Other languages
Japanese (ja)
Other versions
JP2004312877A5 (en
Inventor
Toru Shikayama
透 鹿山
Yoshiyuki Nagamatsu
良之 永松
Mamoru Takagi
護 高木
Mitsuhiro Matsuzaki
光洋 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003102995A priority Critical patent/JP2004312877A/en
Priority to PCT/JP2004/004929 priority patent/WO2004091079A1/en
Priority to TW93109602A priority patent/TWI271019B/en
Publication of JP2004312877A publication Critical patent/JP2004312877A/en
Publication of JP2004312877A5 publication Critical patent/JP2004312877A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a canned linear motor armature that enables cooling by using water having extremely high cooling performance achieved by improving the insulation resistance reliability of an armature winding with respect to cooling, and further can suppress the amount of can deformation to a magnetic clearance between a moving member and a stator, and to provide a canned linear motor. <P>SOLUTION: In the canned linear motor armature, both side faces of the armature winding 18 are fixed so as to be sandwiched by two winding fixing frames 4 in the longitudinal direction, and a cooling medium path 5 is formed in a space formed between a can 3 and the winding fixing frame 4. A sealing material 24 is arranged in a gap between a box 2 and the winding fixing frame 4 so that a cooling medium flowing to the cooling medium path 5 does not leak out to the armature winding 18 sandwiched by the two winding fixing frames 4, and the armature winding 18 is not immersed in the cooling medium. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置や工作機のテーブル送りに使われると共に、リニアモータ本体の低温度上昇が要求されるキャンド・リニアモータ電機子およびキャンド・リニアモータに関するものである。
【0002】
【従来の技術】
従来、半導体製造装置や工作機のテーブル送りに用いられると共に、リニアモータ本体の低温度上昇が要求されるキャンド・リニアモータとして、例えば特許文献1、特許文献2に開示されたものがある。このうち、特許文献1のリニアモータについて、以下、図を用いて説明する。
【0003】
【特許文献1】
特開2002−27730号公報
【特許文献2】
特開2000−4572号公報
【0004】
図5は従来技術を示すキャンド・リニアモータの全体斜視図である。図5において、10は固定子、11は筐体、12はキャン、13はボルトねじ、14は押え板、15は端子台、16は冷媒供給口、17は冷媒排出口、25は可動子、26は界磁ヨーク支持部材、27は界磁ヨーク、28は永久磁石である。一方の可動子25は、平板状の二つの界磁ヨーク27と、各界磁ヨーク27の表面に取付けた永久磁石28と、二つの界磁ヨーク27の間に挿入されると共に全体で合計4個の界磁ヨーク支持部材26とから構成され、両端が開口した中空空間部を有している。そして、上記永久磁石28は界磁ヨーク27上に交互に極性が異なるように複数の磁石を隣り合わせに並べて配置したものとなっている。なお、可動子25は、図示しないスライダとガイドレールからなるリニアガイド等によって支持されている。
また、他方の固定子10は、可動子25の中空空間部内に可動子25の永久磁石28と磁気的空隙を介して対向するように電機子が配置されており、詳細は以下の図6で述べる。
図6は、図5のA−A線に沿う本発明におけるキャンド・リニアモータの正断面図である。また、図7は図6のキャン12を除いた固定子内部の構造を示している。図6および図7において、固定子10は、内部を中空とする額縁状を有した金属製の筐体11と、該筐体11の中空部分を覆うために筐体11の外形を象った板状のキャン12と、該キャン12を筐体11に固定するためのボルトねじ13と、該ボルトねじ13の通し穴を有し、キャン12を均等な荷重でもって押えるための押え板14と、筐体11の中空内に配置された電機子を構成する3相の電機子巻線18と、電機子巻線18を固定している巻線固定枠19と、筐体11とキャン12の縁より少し大き目に象られたOリング21と、巻線固定枠19と筐体11を固定するためのボルトねじ23とより構成されている。キャン12および巻線固定枠19の材質は樹脂製を採用しており、ここでは熱硬化性樹脂である例えばエポキシ樹脂や熱可塑性樹脂である例えばポリフェニレンサルファイド(PPS)を使用している。筐体11の空洞部の形状は、電機子巻線18の外周を囲うように象られている。電機子巻線18は平板状に形成された巻線固定枠19の両面に配置されている。電機子巻線18と一体になった巻線固定枠19は、筐体11の中空内に配置され、ボルトねじ23で筐体11と固定される。筐体11の表裏の縁には、周回した溝が設けられており、そこにOリング21が配置される。そして、筐体11に蓋をするようにキャン12が筐体11の表裏に配置される。キャン12の上から筐体11の縁に沿って押え板14が敷かれ、ボルトねじ13にて締め付けられ、キャン12と筐体11は固定される。電機子巻線18は、集中巻コイルを3相分用意した複数のコイル群で構成され、巻線固定枠19の左右両側に貼り付けられている。電機子巻線18への電力供給は、筐体11に取り付けられた端子台15から行われる。端子台15と電機子巻線18はリード線(図示しない)で各々電気的に接続されている。また、冷媒は筐体11に設けた冷媒供給口16より供給され、冷媒排出口17より排出される。その間に、冷媒は電機子巻線18とキャン12の間にある冷媒通路20を流れ、発熱する電機子巻線18を冷却する。
このように構成されたキャンド・リニアモータは、可動子25と固定子10の電気的相対位置に応じた所定の電流を電機子巻線18に流すことにより、永久磁石28の作る磁界と作用して可動子25に推力が発生し、可動子10は図5の矢印で示す進行方向に移動することとなる。この際、銅損によって発熱した電機子巻線18は冷媒通路20を流れる冷媒により冷却されるので、キャン12の表面温度上昇を抑えることができる。
【0005】
【発明が解決しようとする課題】
ところが従来技術におけるキャンド・リニアモータは、冷媒通路20を通る冷媒が電機子巻線18の表面を流れることにより、以下のような問題が起きた。
(1)一般に電機子巻線18を構成する導線には絶縁のための被覆層を有するエナメル線を使用するが、巻線作業時や電機子巻線固定時に起こる導線と他物体間との接触により、導線の被服層には微小なキズ(ピンホール)が生じる。導電率の大きい冷媒、例えば導電率が1(μS/m)を超える純水や水を使用した場合、大きなピンホール箇所から絶縁破壊が生じた。さらに、ピンホールの穴径や深さが微小なものであっても、電機子巻線18にかかる推力の反作用や温度上昇などの外的ストレスによって、ピンホールが大きくなるように進行し、絶縁破壊が生じた。
(2)導電率の小さい冷媒(例えば住友3M製ハイドロフルエーテル(HFE):導電率2×13(μS/m))を使用した場合、上記(1)の問題を防ぐことができるが、導電率の大きい冷媒である水に比べ冷却能力が低く、キャン12表面の温度上昇を低減することができなかった。HFEの熱伝導率は0.07(W/(m・k))であるのに対し、水は約8倍の0.6(W/(m・k))である。HFEの動粘性係数は4×17(m/sec)であるのに対し、水は約2倍の1×16(m/sec)である。HFEは水に比べ、動粘性係数が小さいので冷媒の乱れの大きさを表すレイノルズ数を大きくすることができるが、熱伝導率が圧倒的に小さい。この結果、HFEの電機子巻線と冷媒間の熱伝達率は水に比べ小さくなる。HFEは水に対し、電機子巻線から冷媒への熱移動量が少なく、キャン12表面への熱移動量が多くなり、キャン表面温度上昇が高くなる。
(3)導電率の小さい冷媒(HFE)を使用した上で水に匹敵する冷却能力を確保するために、キャン12の厚さを薄くして冷媒通路20の断面積を大きくしようとすると、冷媒通路20を通過する冷媒の圧力によってキャン12の変形(空隙へのキャンの膨らみ量)が大きくなり、冷媒流量を下げなければならなかった。その結果、キャン12の温度上昇を低減することができなかった。
本発明は、上記問題を解決するためになされたものであり、冷媒に対する電機子巻線の耐絶縁信頼性を高めることで冷却能力の極めて高い水による冷却を可能とし、さらには、可動子と固定子の磁気的空隙へのキャン変形量を抑えることができるキャンド・リニアモータ電機子およびキャンド・リニアモータを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題を解決するため、請求項1記載の発明は平板状に成形された複数のコイル群よりなる電機子巻線と、前記電機子巻線を額縁状に囲むように設けた金属製の筐体と、前記筐体の両開口部を密閉するキャンと、を具備したキャンド・リニアモータ電機子において、前記電機子巻線の両側面を長手方向に向かって二つの巻線固定枠で挟み込むように固定してあり、前記キャンと前記巻線固定枠との間に形成される空間内に冷媒通路を設けてあり、前記筐体と前記巻線固定枠との間隙にシール材を設けたものである。
上記手段により、電機子巻線と冷媒との接触を全く無くすことができる。つまり、導電率の低い冷媒である水を使用したり、あるいは、電機子巻線の導線にピンホールが生じていたとしても、巻線固定枠によって電機子巻線が水と隔離されるため、水による絶縁破壊を防ぐことができる。それから、冷媒を水にすることにより冷却能力が高まるので、キャン表面の温度上昇を低減することができる。
また、請求項2記載の発明は、請求項1記載のキャンド・リニアモータ電機子において、前記キャンを予め湾曲させて、前記キャンの湾曲した凸面同士を互いに前記巻線固定枠に対向するよう配置したものである。
上記手段により、冷媒の圧力による可動子に対向した空隙へのキャンの膨らみ量が小さくなるため、冷媒流量を増加することができ、請求項1記載の構成よりも、さらにキャン表面の温度上昇を低減できる。
また、請求項3の発明は、キャンド・リニアモータに係るものであって、請求項1または2に記載のキャンド・リニアモータの電機子と、前記電機子と磁気的空隙を介して対向配置されると共に交互に極性が異なる複数の永久磁石を隣り合わせて並べて配置した界磁ヨークとを備え、前記電機子と前記界磁ヨークの何れか一方を固定子に、他方を可動子として、前記界磁ヨークと前記電機子を相対的に走行するようにしたものである。
上記手段により、電機子巻線の冷媒に対する耐絶縁性が高く、冷却能力の高い水を冷媒として使用することでキャン表面温度 上昇の小さい電機子が得られ、これに界磁ヨークを対向配置させることで発熱のないキャンド・リニアモータを得ることができる。
【0007】
【発明の実施の形態】
以下、本発明の具体的実施例を図に基づいて説明する。
(第1実施例)
図1は本発明の第1実施例を示すキャンド・リニアモータの斜視図、図2は図1のA−A線に沿う本発明におけるキャンド・リニアモータの正断面図、図3は図2のキャンを除いた固定子の内部構造を示す側面図である。なお、本発明の構成要素が従来技術と同じものについては同一符号を付してその説明を省略し、異なる点のみ説明する。また、可動子25の構造は、従来技術と全く同じである。
図において、1は固定子、2は筐体、3はキャン、4は巻線固定枠、5は冷媒通路、6はボルトねじ、22は巻線固定枠支持部材、24はシール材である。
本発明の特徴は以下のとおりである。
すなわち、電機子巻線18の両側面を長手方向に向かって二つの巻線固定枠4で挟み込むように固定してあり、キャン3と巻線固定枠4との間に形成される空間内に冷媒通路5を設けた点である。
また、筐体2と巻線固定枠4との間隙には、冷媒通路5に流す冷媒が二つの巻線固定枠4で挟み込んだ電機子巻線18に漏出し、電機子巻線18が浸水しないようにシール材24を設けるようになっている。
また、電機子巻線18の上下部には二つの巻線固定枠4の上下端部と筐体2の内周側を支持固定するための巻線固定枠支持部材22が挿設されている。上記の筐体2と巻線固定枠支持部材22はボルトねじ6を筐体2に設けた通し孔に通した後、巻線固定枠支持部材22の雌ネジにねじ込むことで固定される。そして、上記のキャン3と筐体2はボルトねじ13をキャン3に設けた通し孔に通した後、筐体2の雌ネジにねじ込むことで固定されるようになっている。なお、通し孔および雌ネジの矢視は省略している。
このような構成において、電機子巻線18のコイル構成は従来技術と同じであるため、従来技術同様、本発明のキャンド・リニアモータも可動子25と固定子1の電気的相対位置に応じた所定の電流を電機子巻線18に流すことにより、永久磁石28の作る磁界と作用して可動子に推力が発生する。この際、冷媒がキャン3と巻線固定枠4の間に設けられた冷媒通路5を流れ、発熱する電機子巻線18を冷却する。
したがって、本発明の第1実施例は、電機子巻線18の両側面を長手方向に向かって二つの巻線固定枠4で挟み込むように固定し、キャン3と巻線固定枠4との間に形成される空間内に冷媒通路5を設けた構成、また、筐体2と巻線固定枠4との間隙にシール材24を設ける構成にしたので、従来技術で問題となっていた冷媒と電機子巻線18の接触を無くすことができる。つまり、導電率の低い冷媒である水を使用したとしても、巻線固定枠4とシール材24によって電機子巻線18が水と隔離されるため、電機子巻線18の絶縁破壊を防ぐことができる。そして、冷媒を水にすることにより冷却能力が高まるので、キャン3の表面の温度上昇を低減することができる。
【0008】
(第2実施例)
次に本発明の第2実施例について説明する。
図4は、本発明の第2実施例を示すキャンド・リニアモータの固定子の正断面図である。
第2実施例が第1実施例と異なる点は、第1実施例のキャン3が直線状の板であったのに対して、キャンを予め湾曲させて、キャンの湾曲した凸面同士を互いに巻線固定枠4に対向するよう配置したものである。図4において、3aは予め湾曲させたキャン、5aは湾曲したキャン3aと巻線固定枠4との間の空間部に形成された冷媒通路を示している。すなわち、キャン3aは、冷媒通路5aに冷媒が流れていないとき、その中央部が巻線固定枠4側に対してわずかに接触しない程度に湾曲した形状に形成されている。冷媒通路5aに冷媒が流れると、キャン3aはその冷媒による圧力によって中央部が外側(巻線固定枠4と反対側)に張り出すように変形する。
したがって、このようにキャン3aを予め湾曲させた形状としたので、第1実施例を凌ぐ効果として、冷媒の流量による可動子に対向する空隙へのキャン変形を抑えることができる。また、第1実施例よりも冷媒流量を増加でき、温度上昇をより低減することが可能となる。
【0009】
なお、以上の実施例では、固定子に電機子巻線、可動子に界磁とした永久磁石を持つ構造で説明したが、固定子に永久磁石、可動子に電機子巻線を持つ逆の構造としても良い。
また、可動子の形状を口の字形としたが、凹形や片側に永久磁石を並べるだけの構造としても、本発明が成り立つことは言うまでもない。
【0010】
【発明の効果】
以上に説明した本発明の実施例におけるキャンド・リニアモータにより、以下のような効果がある。
(1)本発明の第1実施例は、電機子巻線の両側面を長手方向に向かって二つの巻線固定枠で挟み込むように固定し、キャンと巻線固定枠との間に形成される空間内に冷媒通路を設けた構成、また、筐体と巻線固定枠との間隙にシール材を設ける構成にしたため、従来技術で問題となっていた冷媒と電機子巻線の接触を無くすことができる。つまり、導電率の低い冷媒である水を使用したとしても、巻線固定枠とシール材によって電機子巻線が水と隔離されるため、電機子巻線の絶縁破壊を防ぐことができる。そして、冷媒を水にすることにより冷却能力が高まるので、キャンの表面の温度上昇を低減することができる。
(2)本発明の第2実施例は、キャン3aを予め湾曲させた形状としたため、第1実施例を凌ぐ効果として、冷媒の流量による可動子に対向する空隙へのキャン変形を抑えることができる。また、第1実施例よりも冷媒流量を増加でき、温度上昇をより低減することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示すキャンド・リニアモータの全体斜視図
【図2】図1のA−A線に沿うキャンド・リニアモータの正断面図
【図3】図2のキャンを取り除いた固定子内部の構造を示す側面図
【図4】本発明の第2実施例を示すキャンド・リニアモータの固定子の正断面図
【図5】従来技術を示すキャンド・リニアモータの全体斜視図
【図6】図5のA−A線に沿うキャンド・リニアモータの正断面図
【図7】図6のキャンを取り除いた固定子内部の構造を示す側面図
【符号の説明】
1、10 固定子
2、11 筐体
3、3a、12 キャン
4、19 巻線固定枠
5、5a、20 冷媒通路
6、23 ボルトねじ
13 ボルトねじ
14 押え板
15 端子台
16 冷媒供給口
17 冷媒排出口
18 電機子巻線
21 Oリング
22 巻線固定枠支持部材
24 シール材
25 可動子
26 界磁ヨーク支持部材
27 界磁ヨーク
28 永久磁石
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a canned linear motor armature and a canned linear motor which are used for a table feed of a semiconductor manufacturing apparatus or a machine tool and require a low temperature rise of a linear motor body.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, canned linear motors which are used for feeding a table of a semiconductor manufacturing apparatus or a machine tool and require a low temperature rise of a linear motor body are disclosed in, for example, Patent Documents 1 and 2. The linear motor disclosed in Patent Document 1 will be described below with reference to the drawings.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-27730 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-4572
FIG. 5 is an overall perspective view of a canned linear motor showing the prior art. In FIG. 5, 10 is a stator, 11 is a housing, 12 is a can, 13 is a bolt screw, 14 is a holding plate, 15 is a terminal block, 16 is a refrigerant supply port, 17 is a refrigerant discharge port, 25 is a mover, 26 is a field yoke support member, 27 is a field yoke, and 28 is a permanent magnet. One mover 25 is inserted between the two field yokes 27 and two field yokes 27, two permanent magnets 28 attached to the surface of each field yoke 27, and a total of four And has a hollow space with both ends open. The permanent magnet 28 has a plurality of magnets arranged side by side on the field yoke 27 so that the polarities thereof are alternately different. Note that the mover 25 is supported by a linear guide or the like (not shown) including a slider and a guide rail.
The armature of the other stator 10 is disposed in the hollow space of the mover 25 so as to face the permanent magnet 28 of the mover 25 via a magnetic gap. State.
FIG. 6 is a front sectional view of the canned linear motor according to the present invention, taken along line AA of FIG. FIG. 7 shows the internal structure of the stator excluding the can 12 of FIG. 6 and 7, the stator 10 has a framed metal housing 11 having a hollow inside, and an outer shape of the housing 11 for covering a hollow portion of the housing 11. A plate-shaped can 12, a bolt screw 13 for fixing the can 12 to the housing 11, and a holding plate 14 having a through hole for the bolt screw 13 for holding the can 12 with an even load. A three-phase armature winding 18 constituting an armature disposed in the hollow of the housing 11, a winding fixing frame 19 for fixing the armature winding 18, and the housing 11 and the can 12. It comprises an O-ring 21 slightly larger than the edge, and a bolt screw 23 for fixing the winding fixing frame 19 and the housing 11. The material of the can 12 and the winding fixing frame 19 is made of resin. Here, for example, a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyphenylene sulfide (PPS) is used. The shape of the hollow portion of the housing 11 is formed so as to surround the outer periphery of the armature winding 18. The armature windings 18 are arranged on both sides of a winding fixing frame 19 formed in a flat shape. The winding fixing frame 19 integrated with the armature winding 18 is disposed in the hollow of the housing 11 and is fixed to the housing 11 with a bolt screw 23. A circumferential groove is provided at the front and back edges of the housing 11, and the O-ring 21 is disposed therein. The can 12 is arranged on the front and back of the housing 11 so as to cover the housing 11. A holding plate 14 is laid from above the can 12 along the edge of the housing 11, and is tightened with the bolt screw 13, so that the can 12 and the housing 11 are fixed. The armature winding 18 is composed of a plurality of coil groups prepared for three phases of concentrated winding coils, and is attached to both left and right sides of the winding fixing frame 19. Power is supplied to the armature winding 18 from a terminal block 15 attached to the housing 11. The terminal block 15 and the armature winding 18 are electrically connected by lead wires (not shown). The refrigerant is supplied from a refrigerant supply port 16 provided in the housing 11 and discharged from a refrigerant discharge port 17. In the meantime, the refrigerant flows through the refrigerant passage 20 between the armature winding 18 and the can 12 to cool the heat generating armature winding 18.
The canned linear motor configured as described above acts on the magnetic field generated by the permanent magnet 28 by flowing a predetermined current according to the electrical relative position of the mover 25 and the stator 10 to the armature winding 18. As a result, a thrust is generated in the mover 25, and the mover 10 moves in the traveling direction indicated by the arrow in FIG. At this time, the armature winding 18 that has generated heat due to the copper loss is cooled by the refrigerant flowing through the refrigerant passage 20, so that the surface temperature of the can 12 can be suppressed from rising.
[0005]
[Problems to be solved by the invention]
However, in the canned linear motor according to the related art, the following problem occurs because the refrigerant passing through the refrigerant passage 20 flows on the surface of the armature winding 18.
(1) In general, an enameled wire having a coating layer for insulation is used for the conductive wire constituting the armature winding 18. However, contact between the conductive wire and another object which occurs at the time of winding work or fixing of the armature winding is performed. As a result, fine scratches (pinholes) occur in the coating layer of the conductor. When a refrigerant having a high conductivity, for example, pure water or water having a conductivity of more than 1 (μS / m) was used, dielectric breakdown occurred from a large pinhole. Furthermore, even if the diameter and depth of the pinhole are very small, the pinhole is advanced so that the pinhole becomes large due to external stress such as reaction of thrust applied to the armature winding 18 and temperature rise. Destruction has occurred.
(2) When a refrigerant having a small electric conductivity (for example, hydrofluorether (HFE) manufactured by Sumitomo 3M: electric conductivity 2 × 13 (μS / m)) is used, the problem (1) can be prevented. The cooling capacity was lower than that of water, which is a refrigerant having a high rate, and the temperature rise on the surface of the can 12 could not be reduced. The thermal conductivity of HFE is 0.07 (W / (mk)), while that of water is about 8 times (0.6 (W / (mk))). The kinematic viscosity coefficient of HFE is 4 × 17 (m 2 / sec), while that of water is about twice that of 1 × 16 (m 2 / sec). HFE has a smaller kinematic viscosity coefficient than water, and therefore can increase the Reynolds number indicating the degree of turbulence of the refrigerant, but has a significantly lower thermal conductivity. As a result, the heat transfer coefficient between the armature winding of the HFE and the refrigerant is smaller than that of water. In HFE, the amount of heat transferred from the armature windings to the refrigerant with respect to water is small, the amount of heat transferred to the surface of the can 12 is large, and the temperature rise of the can surface is high.
(3) In order to increase the cross-sectional area of the coolant passage 20 by reducing the thickness of the can 12 in order to secure a cooling capacity comparable to water after using a coolant (HFE) having a small conductivity, Due to the pressure of the refrigerant passing through the passage 20, the deformation of the can 12 (the amount of expansion of the can into the gap) increases, and the flow rate of the refrigerant has to be reduced. As a result, the rise in temperature of the can 12 could not be reduced.
The present invention has been made in order to solve the above-described problem, and enables cooling with extremely high cooling capacity water by increasing the insulation resistance of the armature winding with respect to the refrigerant. An object of the present invention is to provide a canned linear motor armature and a canned linear motor that can suppress the amount of can deformation of a stator into a magnetic gap.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 provides an armature winding composed of a plurality of coil groups formed in a flat plate shape, and a metal housing provided so as to surround the armature winding in a frame shape. In a canned linear motor armature having a body and a can for sealing both openings of the housing, both side surfaces of the armature winding are sandwiched between two winding fixing frames in the longitudinal direction. Wherein a coolant passage is provided in a space formed between the can and the winding fixing frame, and a sealant is provided in a gap between the housing and the winding fixing frame. It is.
By the above means, contact between the armature winding and the refrigerant can be completely eliminated. In other words, when using water, which is a low-conductivity refrigerant, or even if a pinhole is formed in the conductor of the armature winding, the armature winding is isolated from the water by the winding fixing frame, Insulation breakdown due to water can be prevented. Then, since the cooling capacity is increased by changing the coolant to water, the rise in the temperature of the can surface can be reduced.
According to a second aspect of the invention, in the canned linear motor armature according to the first aspect, the can is curved in advance, and the curved convex surfaces of the can are arranged so as to face each other to the winding fixing frame. It was done.
According to the above-mentioned means, since the amount of expansion of the can into the gap facing the mover due to the pressure of the refrigerant is reduced, the flow rate of the refrigerant can be increased, and the temperature of the can surface can be further increased as compared with the configuration according to claim 1. Can be reduced.
According to a third aspect of the present invention, there is provided a canned linear motor, wherein the armature of the canned linear motor according to the first or second aspect is opposed to the armature via a magnetic gap. And a field yoke in which a plurality of permanent magnets having different polarities are alternately arranged side by side, and one of the armature and the field yoke is used as a stator, and the other is used as a mover. The yoke and the armature run relatively.
By the above means, an armature having a high insulation resistance against the refrigerant of the armature winding and a high cooling capacity is used as the refrigerant to obtain an armature with a small rise in the can surface temperature, and the field yoke is arranged facing the armature. As a result, a canned linear motor that does not generate heat can be obtained.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a perspective view of a canned linear motor showing a first embodiment of the present invention, FIG. 2 is a front sectional view of the canned linear motor of the present invention along the line AA in FIG. 1, and FIG. It is a side view which shows the internal structure of the stator except the can. The components of the present invention that are the same as those of the prior art are denoted by the same reference numerals, description thereof will be omitted, and only different points will be described. The structure of the mover 25 is exactly the same as that of the prior art.
In the figure, 1 is a stator, 2 is a housing, 3 is a can, 4 is a winding fixing frame, 5 is a refrigerant passage, 6 is a bolt screw, 22 is a winding fixing frame support member, and 24 is a sealing material.
The features of the present invention are as follows.
That is, both side surfaces of the armature winding 18 are fixed so as to be sandwiched between the two winding fixing frames 4 in the longitudinal direction, and are provided in a space formed between the can 3 and the winding fixing frame 4. This is the point where the refrigerant passage 5 is provided.
In the gap between the housing 2 and the winding fixed frame 4, the refrigerant flowing through the refrigerant passage 5 leaks to the armature winding 18 sandwiched between the two winding fixed frames 4, and the armature winding 18 is flooded. The sealing member 24 is provided so as not to be disturbed.
Further, a winding fixing frame supporting member 22 for supporting and fixing the upper and lower ends of the two winding fixing frames 4 and the inner peripheral side of the housing 2 is inserted into the upper and lower portions of the armature winding 18. . The housing 2 and the winding fixing frame support member 22 are fixed by passing the bolt screw 6 through a through hole provided in the housing 2 and then screwing into the female screw of the winding fixing frame supporting member 22. The can 3 and the housing 2 are fixed by passing a bolt screw 13 through a through hole provided in the can 3 and then screwing into a female screw of the housing 2. The through holes and the internal threads are not shown in the arrows.
In such a configuration, since the coil configuration of the armature winding 18 is the same as that of the prior art, the canned linear motor of the present invention also corresponds to the electrical relative position of the mover 25 and the stator 1 as in the prior art. When a predetermined current is passed through the armature winding 18, it acts on the magnetic field generated by the permanent magnet 28 to generate thrust on the mover. At this time, the refrigerant flows through the refrigerant passage 5 provided between the can 3 and the winding fixing frame 4 to cool the armature winding 18 that generates heat.
Therefore, in the first embodiment of the present invention, both side surfaces of the armature winding 18 are fixed in such a manner as to be sandwiched between the two winding fixing frames 4 in the longitudinal direction. And the seal member 24 is provided in the gap between the housing 2 and the winding fixing frame 4. The contact of the armature winding 18 can be eliminated. That is, even if water, which is a refrigerant having a low conductivity, is used, the armature winding 18 is isolated from the water by the winding fixing frame 4 and the sealing material 24, so that the dielectric breakdown of the armature winding 18 is prevented. Can be. Since the cooling capacity is increased by changing the coolant to water, the rise in the temperature of the surface of the can 3 can be reduced.
[0008]
(Second embodiment)
Next, a second embodiment of the present invention will be described.
FIG. 4 is a front sectional view of a stator of a canned linear motor according to a second embodiment of the present invention.
The difference between the second embodiment and the first embodiment is that, while the can 3 of the first embodiment is a straight plate, the can is curved in advance, and the curved convex surfaces of the can are wound around each other. It is arranged so as to face the line fixing frame 4. In FIG. 4, reference numeral 3a denotes a pre-curved can, and 5a denotes a refrigerant passage formed in a space between the curved can 3a and the winding fixing frame 4. That is, when the refrigerant is not flowing through the refrigerant passage 5a, the can 3a is formed in a curved shape such that the central portion thereof does not slightly contact the winding fixing frame 4 side. When the refrigerant flows through the refrigerant passage 5a, the can 3a is deformed by the pressure of the refrigerant so that the central portion projects outward (opposite to the winding fixing frame 4).
Therefore, since the can 3a is formed into a curved shape in advance, it is possible to suppress the deformation of the can 3a to the gap facing the mover due to the flow rate of the refrigerant, as an effect exceeding the first embodiment. Further, the flow rate of the refrigerant can be increased as compared with the first embodiment, and the temperature rise can be further reduced.
[0009]
In the above embodiment, the structure in which the stator has the armature winding and the mover has the permanent magnet as the magnetic field has been described, but the stator has the permanent magnet and the mover has the armature winding. It is good also as a structure.
Further, although the shape of the mover is a mouth shape, it goes without saying that the present invention is also applicable to a concave shape or a structure in which permanent magnets are simply arranged on one side.
[0010]
【The invention's effect】
The following effects are obtained by the canned linear motor according to the embodiment of the present invention described above.
(1) In the first embodiment of the present invention, both side surfaces of the armature winding are fixed so as to be sandwiched between two winding fixing frames in the longitudinal direction, and are formed between the can and the winding fixing frame. The structure in which the refrigerant passage is provided in the space that is provided, and the structure in which the sealing material is provided in the gap between the housing and the winding fixing frame eliminates the contact between the refrigerant and the armature winding, which has been a problem in the prior art. be able to. In other words, even if water, which is a refrigerant having low conductivity, is used, the armature winding is isolated from the water by the winding fixing frame and the sealing material, so that the dielectric breakdown of the armature winding can be prevented. Since the cooling capacity is increased by changing the coolant to water, a rise in the temperature of the surface of the can can be reduced.
(2) In the second embodiment of the present invention, since the can 3a has a curved shape in advance, as an effect exceeding the first embodiment, it is possible to suppress the can deformation into the gap facing the mover due to the flow rate of the refrigerant. it can. Further, the flow rate of the refrigerant can be increased as compared with the first embodiment, and the temperature rise can be further reduced.
[Brief description of the drawings]
FIG. 1 is an overall perspective view of a canned linear motor showing a first embodiment of the present invention; FIG. 2 is a front sectional view of the canned linear motor taken along the line AA in FIG. 1 FIG. FIG. 4 is a side view showing the internal structure of the stator from which the stator is removed. FIG. 4 is a front sectional view of the stator of the canned linear motor according to the second embodiment of the present invention. FIG. FIG. 6 is a front sectional view of the canned linear motor taken along the line AA in FIG. 5. FIG. 7 is a side view showing the internal structure of the stator with the can removed from FIG.
1, 10 Stator 2, 11 Housing 3, 3a, 12 Can 4, 19 Winding fixing frame 5, 5a, 20 Refrigerant passage 6, 23 Bolt screw 13 Bolt screw 14 Holding plate 15 Terminal block 16 Refrigerant supply port 17 Refrigerant Discharge port 18 Armature winding 21 O-ring 22 Winding fixed frame support member 24 Seal material 25 Movable element 26 Field yoke support member 27 Field yoke 28 Permanent magnet

Claims (3)

平板状に成形された複数のコイル群よりなる電機子巻線と、前記電機子巻線を額縁状に囲むように設けた金属製の筐体と、前記筐体の両開口部を密閉するキャンと、を具備したキャンド・リニアモータ電機子において、
前記電機子巻線の両側面を長手方向に向かって二つの巻線固定枠で挟み込むように固定してあり、
前記キャンと前記巻線固定枠との間に形成される空間内に冷媒通路を設けてあり、
前記筐体と前記巻線固定枠との間隙にシール材を設けたことを特徴とするキャンド・リニアモータ電機子。
An armature winding composed of a plurality of coil groups formed in a flat plate shape, a metal housing provided to surround the armature winding in a frame shape, and a canister for sealing both openings of the housing. And a canned linear motor armature comprising:
It is fixed so that both side surfaces of the armature winding are sandwiched between two winding fixing frames in the longitudinal direction,
A refrigerant passage is provided in a space formed between the can and the winding fixing frame,
A canned linear motor armature, wherein a seal member is provided in a gap between the housing and the winding fixing frame.
前記キャンを予め湾曲させて、前記キャンの湾曲した凸面同士を互いに前記巻線固定枠に対向するよう配置したことを特徴とする請求項1記載のキャンド・リニアモータ電機子。The armature according to claim 1, wherein the can is curved in advance, and the curved convex surfaces of the can are arranged so as to face each other to the winding fixing frame. 請求項1または2に記載のキャンド・リニアモータ電機子と、前記電機子と磁気的空隙を介して対向配置されると共に交互に極性が異なる複数の永久磁石を隣り合わせて並べて配置した界磁ヨークとを備え、前記電機子と前記界磁ヨークの何れか一方を固定子に、他方を可動子として、前記界磁ヨークと前記電機子を相対的に走行するようにしたことを特徴とするキャンド・リニアモータ。A canned linear motor armature according to claim 1 or 2, and a field yoke which is arranged opposite to the armature via a magnetic gap and in which a plurality of permanent magnets having different polarities are arranged side by side. Wherein one of the armature and the field yoke serves as a stator and the other serves as a mover, and the field yoke and the armature run relatively to each other. Linear motor.
JP2003102995A 2003-04-07 2003-04-07 Canned linear motor armature and canned linear motor Pending JP2004312877A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003102995A JP2004312877A (en) 2003-04-07 2003-04-07 Canned linear motor armature and canned linear motor
PCT/JP2004/004929 WO2004091079A1 (en) 2003-04-07 2004-04-05 Canned linear motor armature and canned linear motor
TW93109602A TWI271019B (en) 2003-04-07 2004-04-07 Can type linear motor armature and can type linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102995A JP2004312877A (en) 2003-04-07 2003-04-07 Canned linear motor armature and canned linear motor

Publications (2)

Publication Number Publication Date
JP2004312877A true JP2004312877A (en) 2004-11-04
JP2004312877A5 JP2004312877A5 (en) 2006-05-25

Family

ID=33466276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102995A Pending JP2004312877A (en) 2003-04-07 2003-04-07 Canned linear motor armature and canned linear motor

Country Status (1)

Country Link
JP (1) JP2004312877A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336765A (en) * 2006-06-19 2007-12-27 Yaskawa Electric Corp Armature for refrigerant-cooling linear motor, and refrigerant-cooling linear motor
DE112006002862T5 (en) 2005-10-18 2008-11-13 Kabushiki Kaisha Yaskawa Denki, Kitakyushu Canned linear motor armature and canned linear motor
JP2010016935A (en) * 2008-07-01 2010-01-21 Sumitomo Heavy Ind Ltd Linear motor
JP2010074978A (en) * 2008-09-19 2010-04-02 Yaskawa Electric Corp Canned linear motor armature and canned linear motor, and table feed apparatus using them
JP2010213546A (en) * 2009-03-12 2010-09-24 Yaskawa Electric Corp Canned linear motor armature and canned linear motor
US7936096B2 (en) 2007-06-13 2011-05-03 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor
US7939973B2 (en) 2005-04-12 2011-05-10 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor
TWI589105B (en) * 2016-07-18 2017-06-21 大銀微系統股份有限公司 Heat transfer mechanism of motor primary
JP2020174518A (en) * 2019-04-12 2020-10-22 直得科技股▲ふん▼有限公司 Linear motor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939973B2 (en) 2005-04-12 2011-05-10 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor
DE112006002862T5 (en) 2005-10-18 2008-11-13 Kabushiki Kaisha Yaskawa Denki, Kitakyushu Canned linear motor armature and canned linear motor
US7635929B2 (en) 2005-10-18 2009-12-22 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor
JP2007336765A (en) * 2006-06-19 2007-12-27 Yaskawa Electric Corp Armature for refrigerant-cooling linear motor, and refrigerant-cooling linear motor
US7936096B2 (en) 2007-06-13 2011-05-03 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor
JP2010016935A (en) * 2008-07-01 2010-01-21 Sumitomo Heavy Ind Ltd Linear motor
JP2010074978A (en) * 2008-09-19 2010-04-02 Yaskawa Electric Corp Canned linear motor armature and canned linear motor, and table feed apparatus using them
JP2010213546A (en) * 2009-03-12 2010-09-24 Yaskawa Electric Corp Canned linear motor armature and canned linear motor
TWI589105B (en) * 2016-07-18 2017-06-21 大銀微系統股份有限公司 Heat transfer mechanism of motor primary
JP2020174518A (en) * 2019-04-12 2020-10-22 直得科技股▲ふん▼有限公司 Linear motor device

Similar Documents

Publication Publication Date Title
JP4636019B2 (en) Canned linear motor armature and canned linear motor
RU2707883C1 (en) Stator for electric rotating machine
US7635929B2 (en) Canned linear motor armature and canned linear motor
TW366327B (en) Production of phosgene
JP4699961B2 (en) Rotating electrical machine coil and manufacturing method thereof, and rotating electrical machine and manufacturing method thereof
KR20050058328A (en) Coreless linear motor
CN105308832A (en) Liquid cooled stator for high efficiency machine
TWI271019B (en) Can type linear motor armature and can type linear motor
JP2023127496A (en) Rotary electric machine stator
JP2004312877A (en) Canned linear motor armature and canned linear motor
KR20100105413A (en) Armature of canned linear motor and canned linear motor
TWI342097B (en)
CN117424363A (en) Stator assembly, motor and electric drive assembly
WO2017187296A1 (en) Cooling device for electric machines
JP2007336765A (en) Armature for refrigerant-cooling linear motor, and refrigerant-cooling linear motor
JP2007159286A (en) Linear motor
JP2007159286A5 (en)
JP2004512792A (en) Stratified iron core
JP2005137105A (en) Canned linear motor armature and canned linear motor
JP5369573B2 (en) CAND / LINEAR MOTOR ARMATURE, CAND / LINEAR MOTOR AND TABLE FEEDING DEVICE USING THE SAME
JP7461435B2 (en) Linear motor
EP3902117A1 (en) Rotating electric machine
JP2022038695A (en) Armature for linear motor, and heat sink structure of armature for linear motor
JPH0670484U (en) Canned linear motor stator
CN102668338A (en) Rotating electric machine

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A02 Decision of refusal

Effective date: 20091104

Free format text: JAPANESE INTERMEDIATE CODE: A02