[go: up one dir, main page]

JP2004312288A - Dielectric resonator, dielectric filter, composite dielectric filter, and communication apparatus - Google Patents

Dielectric resonator, dielectric filter, composite dielectric filter, and communication apparatus Download PDF

Info

Publication number
JP2004312288A
JP2004312288A JP2003101986A JP2003101986A JP2004312288A JP 2004312288 A JP2004312288 A JP 2004312288A JP 2003101986 A JP2003101986 A JP 2003101986A JP 2003101986 A JP2003101986 A JP 2003101986A JP 2004312288 A JP2004312288 A JP 2004312288A
Authority
JP
Japan
Prior art keywords
dielectric
dielectric resonator
resonance
mode
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003101986A
Other languages
Japanese (ja)
Other versions
JP4059126B2 (en
Inventor
Masamichi Ando
正道 安藤
Hiroyuki Fujino
浩幸 藤野
Munenori Tsutsumi
宗則 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003101986A priority Critical patent/JP4059126B2/en
Publication of JP2004312288A publication Critical patent/JP2004312288A/en
Application granted granted Critical
Publication of JP4059126B2 publication Critical patent/JP4059126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric resonator wherein two resonance modes are coupled with a prescribed coupling amount and respective resonance frequencies have differences, and to provide a dielectric filter employing the dielectric resonator to obtain a desired filter characteristic, a composite dielectric filter and a small-sized low cost communication apparatus employing them. <P>SOLUTION: The dielectric resonator is characterized in that a hole 15 is formed in a position different from both a first virtual plane VS1 including two ridges in parallel with each other and in a diagonal positional relation and a second virtual plane VS2 including the two other ridges in parallel with the two ridges and in a diagonal positional relation. Further, the dielectric resonator is characterized in that the coupling coefficient of the two resonance modes depends on a distance D between the center (o) of the dielectric resonator and the hole 15, and a difference between the resonance frequencies of the two resonance modes is decided depending on deviation (d) from the virtual plane VS2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、多重モードで動作する誘電体共振器、それを備えた誘電体フィルタ、複合誘電体フィルタおよび通信装置に関するものである。
【0002】
【従来の技術】
従来、1個の誘電体ブロックを複数の共振モードで共振させるようにした多重モードの誘電体共振器が用いられている(例えば特許文献1)。
特許文献1の誘電体共振器は、略直方体形状の誘電体ブロックの稜部の少なくとも一部に斜平面を設けて2つの共振モード同士を結合させるようにしている。
【0003】
【特許文献1】
特開2002−151906公報
【0004】
【発明が解決しようとする課題】
ところが、特許文献1に示されている誘電体共振器の構造では、生じる3つの共振モードのうち、所定の2つの共振モード同士を結合させた際、誘電体部分の削除に伴ってその2つの共振モードの共振周波数が上昇する。すなわち結合量と共振周波数とが連動してしまい、両者を独立して定めることができなかった。
【0005】
また、その誘電体共振器の実際の使用状態では、他の共振器との結合条件やキャビティの形状によって、結合する2つの共振周波数を異ならせることも必要となる。しかし特許文献1に示されている誘電体共振器では、上記斜平面の拡大に伴って、結合する2つの共振モードの共振周波数は共に上昇方向に変化するので、2つの共振モードの共振周波数が共に上昇して、両者に差が生じない。そのため、誘電体フィルタを構成した場合に所望のフィルタ特性を高い自由度の下で設計・製造できない。さらに、その誘電体フィルタや複合誘電体フィルタを用いた通信装置を小型・低コストに構成できない。
【0006】
そこで、この発明の目的は、上述の問題を解消して、結合量と共振周波数とを独立して定められるようにした誘電体共振器を提供することにある。
【0007】
またこの発明の他の目的は、2つの共振モードを所定の結合量で結合させるとともに、それぞれの共振周波数に差をもたせるようにした誘電体共振器およびそれによる所望のフィルタ特性を得るようにした誘電体フィルタ、複合誘電体フィルタおよびそれらを備えた小型低コストな通信装置を提供することにある。
【0008】
【課題を解決するための手段】
この発明は、キャビティ内に配置される、全体が略直方体形状をなすTE01δ多重モードの誘電体共振器において、誘電体共振器の互いに平行且つ対角位置関係にある2つの稜を含む第1の仮想面と、その2つの稜とは異なる互いに平行且つ対角位置関係にある他の2つの稜を含む第2の仮想面のいずれからも異なった位置に穴を設けたことを特徴としている。
【0009】
このように互いに平行且つ対角位置関係にある2つの稜を含む第1・第2の仮想面から異なった位置に穴を設ければ、第1・第2の仮想面の交差する位置からずれた位置に穴が存在することになるので、2つの共振モードによる2つの結合モードの周波数に差が生じて2つの共振モード同士が結合する。また、結合する2つの共振モードの電界ベクトルが通る部分についての実効誘電率に差が生じて、その2つの共振モードの共振周波数に差が生じる。
【0010】
また、この発明は、キャビティ内に配置される、全体が略直方体形状をなすTE01δ多重モードの誘電体共振器において、誘電体共振器の面に、該面の中央部から離れ且つ該面に含まれる稜から離れた位置を通り、所定深さで前記稜に対して略平行に延びる溝を設けたことを特徴としている。
【0011】
このように誘電体共振器外面の中央部から離れた位置で、その面に含まれる稜に対して平行に延びる溝は、2つの共振モードによる2つの結合モードの周波数に差を生じさせるので、2つの共振モード間同士が結合する。また、結合する2つの共振モードの電界ベクトルに対する実効誘電率に差が生じて、2つの共振モードの共振周波数を異ならせることができる。
【0012】
また、この発明は、上記誘電体共振器と、その誘電体共振器に外部結合する外部結合手段とを備えた誘電体フィルタを構成すること、およびその誘電体フィルタを複数組備えた複合誘電体フィルタを構成することを特徴としている。
【0013】
また、この発明は、上記誘電体フィルタまたは複合誘電体フィルタを高周波回路部に備えて通信装置を構成することを特徴としている。
【0014】
【発明の実施の形態】
第1の実施形態に係る誘電体共振器について図1〜図6を基に説明する。
図1はキャビティ内に配置する誘電体共振器の基本形と、それを備えた誘電体共振器装置の主要部の構成を示す分解斜視図である。この例では、誘電体コア10をキャビティ1の内部に配置して誘電体共振器装置を構成している。誘電体コア10の外形は略立方体形状を成している。この誘電体コア10は支持板3に接合している。支持板3としては低誘電率で且つ誘電体コア10と線膨張係数が近似しているセラミック板を用いる。誘電体コア10は支持板3に対して接着剤により接着するか、ガラスグレースの焼付けによって接合する。
【0015】
キャビティ1は金属の成型体であり、その内面は略直方体形状を成している。このキャビティの内外面に銀電極などの導体膜を形成している。キャビティ1の内底面には4つの支持柱2を配置し、この支持柱2を介して上記支持板3を支持するようにしている。キャビティ1の上部開口面にはカバーを取り付ける。
【0016】
このようにして、キャビティ1の中央部に誘電体共振器10を配置する。図中ループ状の記号は、この誘電体共振器10に生じる3つの共振モードの電界分布の形を象徴している。すなわちx軸に垂直な面に沿って電界が回るTE01δxモード、y軸に垂直な面に沿って電界が回るTE01δyモード、z軸に垂直な面に沿って電界が回るTE01δzモードの3つの共振モードが生じる。勿論これらの共振モードの高次共振モードも生じるが、ここでは基本モードを利用する。
【0017】
図2〜図4は上記3つの共振モードの電磁界分布の例を示している。図2はTE01δxモード、図3はTE01δyモード、図4はTE01δzモードについてそれぞれ示している。これらの図中の実線の矢印は電気力線、破線の矢印は磁力線をそれぞれ表している。なお、図1の場合と同様にこれらの図についてもキャビティは省略している。
【0018】
図1〜図4に示した例では、誘電体共振器10が立方体形状であるとすると、3つの共振モードの電磁界分布は互いに直交しているので、それらは独立している。また、3つの共振モードの共振周波数はそれぞれ等しい。この3つの共振モードのうち2つの共振モードを結合させるためには次のように構成する。
【0019】
図5の(A)はTE01δxモードとTE01δyモードの電界の回る方向を面で表している。また(B)はこの2つの共振モードの結合モードであるTE01δx+yモード(偶モード)とTE01δx−yモード(奇モード)の電界の回る方向について示している。
【0020】
図6は2つの共振モードを所定の結合量で結合させ、且つそれぞれの共振周波数を所定値に定めた誘電体共振器の斜視図である。誘電体共振器10の互いに平行且つ対角位置関係にある2つの稜E1,E3を含む第1の仮想面VS1と、稜E1,E3に平行で互いに対角位置関係にある他の2つの稜E2,E4を含む第2の仮想面VS2の何れからも異なった位置に穴15を設けている。この例では、穴15は4つの稜E1〜E4に平行な方向に延びる断面円形の有底穴を形成している。
【0021】
図7は図6に示した誘電体共振器10の上面図である。(A),(B)に示した矢印は結合させるべき2つの共振モード(TE01δxモード,TE01δyモード)の電界ベクトル(ループ)の向きを表している。このように、穴15を2つの仮想面VS1,VS2の交差位置からずれた位置に設けると、図5の(B)に示したように、2つの結合モードTE01δx+yモードとTE01δx−yモードの電界に対して不均衡な摂動が生じて、上記2つの共振モード同士が結合する。
【0022】
仮に穴15を(A)に示すように仮想面VS2の位置に設けた場合には、この穴15はTE01δxモードとTE01δyモードの電界に対して等量に作用するため、この2つの共振モードの共振周波数は等しく上昇する。
【0023】
一方、図7の(B)に示したように、穴15を仮想面VS2からずれた位置に設けると、2つの共振モードの電界に対する影響度に差が生じる。この例では穴15はTE01δyモードの電界強度の比較的低い部分に存在し、TE01δxモードの電界強度の比較的高い部分に存在するので、TE01δxモードの電界に対する実効誘電率が低下し、TE01δxモードの共振周波数がTE01δyモードの共振周波数より相対的に高くなる。
【0024】
図7の(C)は穴15の位置を2つの仮想面に対する位置関係で示している。穴15が誘電体共振器10の中心(2つの仮想面VS1,VS2の交差する直線)oから仮想面VS2に沿った方向の距離Dが大きくなるほど、2つの結合モードの周波数差が大きくなるので結合量が増大する。また、その仮想面VS2からのずれ量dが大きくなるほど、2つの共振モードの共振周波数の差が大きくなる。更に、穴15の内径および深さにより定まる容積が大きくなるほど、上記作用が顕著となる。従って穴15の位置と大きさによって、2つの共振モードの共振周波数と結合量を任意に定めることができる。
【0025】
次に、第2の実施形態に係る誘電体共振器について図8・図9を基に説明する。
図8は誘電体共振器の斜視図である。第1の実施形態で示した誘電体共振器と異なり、2つの穴15,15′を設けている。
【0026】
図9はこの誘電体共振器の上面図である。2つの穴15,15′を図9の(A)に示すように仮想面VS2の位置に設けた場合には、この穴15,15′はTE01δxモードとTE01δyモードの電界に対して等量に作用するため、この2つの共振モードの共振周波数は等しく上昇する。
【0027】
一方、図9の(B)に示したように、穴15,15′が仮想面VS2からずれた位置に設けると、2つの共振モードの電界に対する影響度に差が生じる。この例では穴15,15′はTE01δyモードの電界強度の比較的低い部分に存在し、TE01δxモードの電界強度の比較的高い部分に存在するので、TE01δxモードの共振周波数がTE01δyモードの共振周波数より相対的に高くなる。
【0028】
図9の(C)は、穴15,15′の位置を2つの仮想面に対する位置関係で示している。穴15,15′が誘電体共振器10の中心(2つの仮想面VS1,S2の交差する直線)oから仮想面VS2に沿った方向の距離D,D′が大きくなるほど、2つの結合モードの周波数差が大きくなるので結合量が増大する。また、その仮想面VS2からのずれ量d,d′が大きくなるほど、2つの共振モードの共振周波数の差が大きくなる。更に、穴15,15′の内径および深さにより定まる容積が大きくなるほど、上記作用が顕著となる。従って穴15,15′の位置と大きさによって、2つの共振モードの共振周波数と結合量を任意に定めることができる。
【0029】
このように2つの穴15,15′を設けるようにすれば、例えば結合量と共振周波数の調整時の第1段階で穴15を所定位置に所定深さだけ設け、誘電体共振器の特性を測定した後、所定の特性値からのずれ分を補正するために、もう一方の穴15′を所定位置に所定深さ分だけ設けるようにすれば、粗調整と微調整を組み合わせて、短時間に特性調整が完了する。
【0030】
図10は第3の実施形態に係る誘電体共振器の斜視図である。第1・第2の実施形態では、3つの共振モードのうち2つの共振モードについて結合量と共振周波数を定める例について示したが、第2と第3の共振モードについても結合量と共振周波数の調整を行うためには、図10に示すように、誘電体共振器10の直交する2つの外面にそれぞれ穴を設ければよい。図10に示す例では、穴15,15′によってTE01δxモードとTE01δyモードの結合量とそれぞれの共振周波数を定め、穴16,16′によってTE01δxモードとTE01δzモードの結合量とそれぞれの共振周波数を定めることができる。
【0031】
図11は第4の実施形態に係る誘電体共振器の上面図である。この例では粗調整のために穴15a,15a′を設け、微調整のために穴15b,15b′を設ける。微調整用の穴15b,15b′は粗調整用の穴15a,15a′近傍の仮想面VS2とは異なった、直交するもう1つの仮想面VS1の近傍に設ける。例えば穴を設ける前の2つの共振モードの結合量が0(結合係数k=0%)、2つの共振モードの共振周波数がf1,f2であったとして、穴15a,15a′を設けたことにより結合量(例えば結合係数k′=2%)になり、共振周波数がそれぞれf1′,f2′に変化したなら、その後、所定の結合量(例えば結合係数k″=1%)に下げるために、微調整用の穴15b,15b′を設ける。これにより2つの共振周波数もf1″,f2″に変化する。したがって、この微調整時の共振周波数の変化分を見越して、上記f1″,f2″が目標の共振周波数となるように、且つ結合係数k″が目標の結合係数となるように微調整用の穴15b,15b′の位置と大きさを定めるようにすればよい。
【0032】
なお、このように対角位置の関係に各穴を設けることによって、調整範囲が広くなるだけでなく、調整量を増しても、誘電体共振器10の構造上の対称性が大きく崩れず、スプリアスモードの発生が抑えられる効果がある。
【0033】
次に、第5の実施形態に係る誘電体共振器について図12・図13を基に説明する。
図12は誘電体共振器の斜視図である。(A)の例では、誘電体共振器10の所定の面の中央部oから離れた位置で、且つ稜E4に対して平行に延びるように所定深さの溝11を設けている。(B)に示す例では、同様にして2つの溝11,11′を設けている。
【0034】
図13はこの誘電体共振器の結合させるべき2つの共振モードの電界分布と溝との位置関係を示す上面図である。このように溝11,11′を所定面の中央部から離れた位置で且つ稜に対して平行に延びるように設けたことにより、2つの共振モード(TE01δxモード,TE01δyモード)による2つの結合モードの周波数に差が生じて2つの共振モード同士が結合する。また、結合する2つの共振モードの電界ベクトルが通る部分についての実効誘電率に差が生じて、その2つの共振モードの共振周波数に差が生じる。
【0035】
溝11,11′の位置を図13の(C)に示すように、稜E1,E3からの距離S,S′で表すと、この距離S,S′を小さくするほど2つの結合モードの電界に対する摂動が大きくなって結合量が増す。またS,S′を大きくするほど2つの共振モードの電界に対する影響の差が大きくなって共振周波数の差が大きくなる。また、溝11,11′の幅と深さの比によっても結合量と共振周波数差に与える影響が変化する。
【0036】
このように溝11,11′の位置によって結合量と2つの共振周波数の差が共に変化するので両者を完全に独立に定めることはできないが、溝11,11′の幅と深さも合わせて調整することによって、ある程度の自由度で2つの共振モードの共振周波数とその結合量を定めることができる。例えば、溝11を粗調整のために設け、溝11′を微調整のために設ければ、2つの共振モードの共振周波数とその結合量をさらに高精度に定めることができる。
【0037】
また、微調用の溝を、11″で示すように仮想面VS1境として11′とは反対面側に設ければ、2つの共振モードの共振周波数差の変化を減少方向に作用させることができる。
【0038】
図13の(D)に示す例は、粗調整用として溝11a,11a′を設け、微調整のために溝11b,11b′を設ける。微調整用の溝11b,11b′は粗調整用の溝11a,11a′近傍の仮想面VS1とは異なった、直交するもう1つの仮想面VS2の近傍に設ける。このように対角位置の関係に各溝を設けることによって、調整範囲が広くなるだけでなく、調整量を増しても、誘電体共振器10の構造上の対称性が大きく崩れず、スプリアスモードの発生が抑えられる効果がある。
【0039】
次に、第6の実施形態に係る誘電体フィルタの構成を図14を基に説明する。図14はキャビティ内における誘電体共振器およびそれに結合する結合ループとの位置関係を示している。この誘電体共振器10は図10に示した誘電体共振器と同一である。図中キャビティは省略している。結合ループKy,Kzはそれぞれの一端を、キャビティに取り付けた同軸コネクタの中心導体に接続していて、他端をキャビティの内面にそれぞれ接続している。結合ループKyはそのループ面をx−z面に向けている。結合ループKzはそのループ面をx−y面に向けている。従って結合ループKyはTE01δyモードに磁界結合し、結合ループKzはTE01δzモードに磁界結合する。
【0040】
図10を用いて既に説明したように、TE01δxモードはTE01δyモードと結合し、同時にTE01δzモードとも結合するので、2つの結合ループKy,Kz間に、TE01δyモード共振器→TE01δxモード共振器→TE01δzモード共振器の順に結合した3つの共振器が等価的に存在する。これにより3段の共振器から成る帯域通過フィルタ特性を有するフィルタを構成することができる。
【0041】
次に、第7の実施形態に係る複合誘電体フィルタおよび通信装置の構成を図15に示す。
ここで、デュプレクサは送信フィルタと受信フィルタとから構成している。この送信フィルタと受信フィルタは、いずれも、前述した構成のフィルタである。送信フィルタの出力ポートと受信フィルタの入力ポートとの間は、送信信号が受信フィルタ側へ回り込まないように、また、受信信号が送信フィルタ側へ回り込まないように、位相調整を行っている。このデュプレクサの送信信号入力ポートには送信回路を、受信信号出力ポートには受信回路をそれぞれ接続している。また、アンテナポートにはアンテナを接続している。このようにして、この発明に係る誘電体共振器を備えた通信装置を構成する。
【0042】
【発明の効果】
この発明によれば、互いに平行且つ対角位置関係にある、略直方体形状の誘電体共振器の2つの稜を含む第1・第2の仮想面から異なった位置に穴を設けたことにより、2つの共振モード同士を結合させ、且つその2つの共振モードの共振周波数に差をもたせることができる。
【0043】
また、この発明によれば、誘電体共振器外面の中央部から離れ且つ該面に含まれる稜から離れた位置を通り、所定深さで前記稜に対して平行に延びる溝を形成したことにより、2つの共振モード同士を結合させ、且つその2つの共振モードの共振周波数に差をもたせることができる。
【0044】
また、この発明によれば、上記の誘電体共振器装置と、それに外部結合する外部結合手段を備えて、所望のフィルタ特性を有する誘電体フィルタおよび複合誘電体フィルタが容易に得られる。
【0045】
また、この発明によれば、上記誘電体フィルタまたは複合誘電体フィルタを高周波回路部に備えて、小型・低コストな通信装置を構成することができる。
【図面の簡単な説明】
【図1】第1の実施形態に係る誘電体共振器の基本的な構造を示す斜視図
【図2】TE01δxモードの電磁界分布を示す図
【図3】TE01δyモードの電磁界分布を示す図
【図4】TE01δzモードの電磁界分布を示す図
【図5】2つの共振モードとその結合モードの電界の向きを示す図
【図6】誘電体共振器の斜視図
【図7】結合させる2つの共振モードの電界分布と穴の位置関係を示す図
【図8】第2の実施形態に係る誘電体共振器の斜視図
【図9】2つの共振モードとその結合モードの電界の向きを示す図
【図10】第3の実施形態に係る誘電体共振器の斜視図
【図11】第4の実施形態に係る誘電体共振器の結合させる2つの共振モードの電界分布と穴の位置関係を示す図
【図12】第5の実施形態に係る誘電体共振器の斜視図
【図13】2つの共振モードとその結合モードの電界の向きを示す図
【図14】第6の実施形態に係る誘電体フィルタの主要部の構成を示す斜視図
【図15】第7の実施形態に係る複合誘電体フィルタおよび通信装置の構成を示す図
【符号の説明】
10−誘電体共振器
11,11′,11a,11a′,11b,11b′−溝
15,15′,15a,15a′,15b,15b′−穴
VS1,VS2−仮想面
E1,E2,E3,E4−稜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dielectric resonator operating in multiple modes, a dielectric filter including the same, a composite dielectric filter, and a communication device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a multi-mode dielectric resonator in which one dielectric block resonates in a plurality of resonance modes has been used (for example, Patent Document 1).
In the dielectric resonator disclosed in Patent Literature 1, an inclined plane is provided on at least a part of a ridge portion of a substantially rectangular parallelepiped dielectric block so that two resonance modes are coupled to each other.
[0003]
[Patent Document 1]
JP 2002-151906 A
[Problems to be solved by the invention]
However, in the structure of the dielectric resonator disclosed in Patent Literature 1, when two predetermined resonance modes are coupled to each other among the three resonance modes that occur, the two resonance modes are deleted along with the removal of the dielectric portion. The resonance frequency of the resonance mode increases. That is, the coupling amount and the resonance frequency are linked, and it is not possible to determine both independently.
[0005]
Further, in the actual use state of the dielectric resonator, it is necessary to make two resonance frequencies to be coupled different depending on the coupling condition with another resonator and the shape of the cavity. However, in the dielectric resonator disclosed in Patent Literature 1, the resonance frequencies of the two resonance modes to be coupled both change in the ascending direction with the enlargement of the oblique plane. Both rise and there is no difference between them. Therefore, when a dielectric filter is configured, desired filter characteristics cannot be designed and manufactured with a high degree of freedom. Furthermore, a communication device using the dielectric filter or the composite dielectric filter cannot be configured to be small and low-cost.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a dielectric resonator which solves the above-mentioned problem and allows the coupling amount and the resonance frequency to be determined independently.
[0007]
Another object of the present invention is to provide a dielectric resonator in which two resonance modes are coupled with a predetermined amount of coupling and have a difference in their respective resonance frequencies, and a desired filter characteristic is obtained by using the dielectric resonator. It is an object of the present invention to provide a dielectric filter, a composite dielectric filter, and a small and low-cost communication device including the same.
[0008]
[Means for Solving the Problems]
According to the present invention, there is provided a TE01δ multimode dielectric resonator having a substantially rectangular parallelepiped shape, which is disposed in a cavity, and includes a first ridge including two ridges which are parallel to each other and have a diagonal positional relationship with each other. It is characterized in that holes are provided at positions different from both the virtual plane and the second virtual plane including the other two parallel and diagonal positional relations different from each other.
[0009]
If holes are provided at different positions from the first and second imaginary planes including the two ridges which are parallel to each other and are in a diagonal positional relationship as described above, deviation from the position where the first and second imaginary planes intersect will occur. Since there is a hole at the position where the two resonance modes are located, a difference occurs between the frequencies of the two coupling modes due to the two resonance modes, and the two resonance modes are coupled to each other. In addition, a difference occurs in the effective permittivity of a portion where the electric field vector of the two coupled resonance modes passes, and a difference occurs in the resonance frequency of the two resonance modes.
[0010]
Further, the present invention provides a TE01δ multi-mode dielectric resonator which is disposed in a cavity and has a substantially rectangular parallelepiped shape as a whole. The dielectric resonator has a surface which is separated from a central portion of the surface and included in the surface. And a groove extending at a predetermined depth substantially parallel to the ridge and passing through a position away from the ridge.
[0011]
As described above, the groove extending parallel to the ridge included in the dielectric resonator at a position away from the central portion of the outer surface of the dielectric resonator causes a difference in the frequency of the two coupling modes due to the two resonance modes. The two resonance modes are coupled to each other. Further, a difference occurs in the effective permittivity of the two coupled resonance modes with respect to the electric field vector, so that the two resonance modes can have different resonance frequencies.
[0012]
Also, the present invention provides a dielectric filter including the above-described dielectric resonator and external coupling means externally coupled to the dielectric resonator, and a composite dielectric including a plurality of sets of the dielectric filter. It is characterized by constituting a filter.
[0013]
Further, the present invention is characterized in that a communication device is configured by providing the above-described dielectric filter or composite dielectric filter in a high-frequency circuit unit.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
A dielectric resonator according to a first embodiment will be described with reference to FIGS.
FIG. 1 is an exploded perspective view showing a basic configuration of a dielectric resonator disposed in a cavity and a configuration of a main part of a dielectric resonator device including the same. In this example, the dielectric core 10 is arranged inside the cavity 1 to constitute a dielectric resonator device. The outer shape of the dielectric core 10 has a substantially cubic shape. This dielectric core 10 is joined to the support plate 3. As the support plate 3, a ceramic plate having a low dielectric constant and a linear expansion coefficient similar to that of the dielectric core 10 is used. The dielectric core 10 is bonded to the support plate 3 with an adhesive or bonded by baking glass grace.
[0015]
The cavity 1 is a metal molded body, and its inner surface has a substantially rectangular parallelepiped shape. A conductor film such as a silver electrode is formed on the inner and outer surfaces of the cavity. Four support columns 2 are arranged on the inner bottom surface of the cavity 1, and the support plate 3 is supported via the support columns 2. A cover is attached to the upper opening surface of the cavity 1.
[0016]
Thus, the dielectric resonator 10 is arranged at the center of the cavity 1. In the figure, a loop symbol symbolizes the shape of the electric field distribution of the three resonance modes generated in the dielectric resonator 10. That is, three resonance modes of a TE01δx mode in which an electric field rotates along a plane perpendicular to the x-axis, a TE01δy mode in which an electric field rotates along a plane perpendicular to the y-axis, and a TE01δz mode in which an electric field rotates along a plane perpendicular to the z-axis. Occurs. Of course, higher-order resonance modes of these resonance modes also occur, but here, the fundamental mode is used.
[0017]
2 to 4 show examples of the electromagnetic field distribution of the above three resonance modes. 2 shows the TE01δx mode, FIG. 3 shows the TE01δy mode, and FIG. 4 shows the TE01δz mode. In these figures, solid arrows represent lines of electric force, and broken arrows represent lines of magnetic force. The cavities are omitted in these figures as in the case of FIG.
[0018]
In the examples shown in FIGS. 1 to 4, if the dielectric resonator 10 has a cubic shape, the electromagnetic field distributions of the three resonance modes are orthogonal to each other, so that they are independent. The resonance frequencies of the three resonance modes are equal. The following configuration is used to couple two resonance modes out of the three resonance modes.
[0019]
FIG. 5A shows the directions in which the electric fields of the TE01δx mode and the TE01δy mode rotate in a plane. (B) shows the directions in which the electric fields of the TE01δx + y mode (even mode) and the TE01δx-y mode (odd mode), which are coupling modes of the two resonance modes, rotate.
[0020]
FIG. 6 is a perspective view of a dielectric resonator in which two resonance modes are coupled with a predetermined coupling amount and the respective resonance frequencies are set to predetermined values. A first virtual surface VS1 including two edges E1 and E3 parallel and diagonal to each other of the dielectric resonator 10 and another two edges parallel to the edges E1 and E3 and in a diagonal relationship to each other. The holes 15 are provided at different positions from any of the second virtual planes VS2 including E2 and E4. In this example, the hole 15 forms a bottomed hole having a circular cross section extending in a direction parallel to the four ridges E1 to E4.
[0021]
FIG. 7 is a top view of the dielectric resonator 10 shown in FIG. Arrows shown in (A) and (B) indicate directions of electric field vectors (loops) of two resonance modes (TE01δx mode and TE01δy mode) to be coupled. When the hole 15 is provided at a position shifted from the intersection of the two virtual planes VS1 and VS2, the electric fields of the two coupling modes TE01δx + y mode and TE01δx-y mode as shown in FIG. , An unbalanced perturbation occurs, and the two resonance modes are coupled to each other.
[0022]
If the hole 15 is provided at the position of the virtual plane VS2 as shown in (A), the hole 15 acts equally on the electric fields of the TE01δx mode and the TE01δy mode. The resonance frequency rises equally.
[0023]
On the other hand, as shown in FIG. 7B, when the hole 15 is provided at a position shifted from the virtual plane VS2, there is a difference in the degree of influence of the two resonance modes on the electric field. In this example, the hole 15 is present at a portion where the electric field intensity of the TE01δy mode is relatively low and is present at a portion where the electric field intensity of the TE01δx mode is relatively high. Therefore, the effective dielectric constant with respect to the electric field of the TE01δx mode is reduced, and The resonance frequency becomes relatively higher than the resonance frequency of the TE01δy mode.
[0024]
FIG. 7C shows the position of the hole 15 in a positional relationship with respect to two virtual planes. As the distance D in the direction along the virtual plane VS2 from the center 15 of the dielectric resonator 10 (the straight line intersecting the two virtual planes VS1 and VS2) increases, the frequency difference between the two coupling modes increases. The amount of binding increases. Further, as the deviation d from the virtual plane VS2 increases, the difference between the resonance frequencies of the two resonance modes increases. Further, as the volume determined by the inner diameter and the depth of the hole 15 increases, the above-described operation becomes more remarkable. Therefore, the resonance frequency and the coupling amount of the two resonance modes can be arbitrarily determined according to the position and the size of the hole 15.
[0025]
Next, a dielectric resonator according to a second embodiment will be described with reference to FIGS.
FIG. 8 is a perspective view of the dielectric resonator. Unlike the dielectric resonator shown in the first embodiment, two holes 15 and 15 'are provided.
[0026]
FIG. 9 is a top view of the dielectric resonator. When the two holes 15, 15 'are provided at the position of the virtual plane VS2 as shown in FIG. 9A, the holes 15, 15' are equivalent to the electric fields of the TE01.delta.x mode and the TE01.delta.y mode. In operation, the resonance frequencies of the two resonance modes rise equally.
[0027]
On the other hand, as shown in FIG. 9B, when the holes 15 and 15 'are provided at positions shifted from the virtual plane VS2, a difference occurs in the degree of influence of the two resonance modes on the electric field. In this example, the holes 15, 15 'are present in a portion where the electric field intensity of the TE01δy mode is relatively low and are present in a portion where the electric field intensity of the TE01δx mode is relatively high. Relatively high.
[0028]
FIG. 9C shows the positions of the holes 15, 15 'in a positional relationship with respect to the two virtual planes. The larger the distances D and D 'in the direction along the virtual plane VS2 from the center o of the dielectric resonator 10 (the straight line intersecting the two virtual planes VS1 and S2) with the holes 15, 15', the larger the two coupling modes. Since the frequency difference increases, the coupling amount increases. Further, the difference between the resonance frequencies of the two resonance modes increases as the shift amounts d and d 'from the virtual plane VS2 increase. Further, as the volume determined by the inner diameter and the depth of the holes 15, 15 'becomes larger, the above-mentioned effect becomes more remarkable. Therefore, the resonance frequencies and coupling amounts of the two resonance modes can be arbitrarily determined according to the positions and sizes of the holes 15, 15 '.
[0029]
If the two holes 15 and 15 'are provided in this manner, for example, the holes 15 are provided at predetermined positions and at predetermined depths in the first stage when adjusting the coupling amount and the resonance frequency, and the characteristics of the dielectric resonator are improved. After measurement, if the other hole 15 ′ is provided at a predetermined position by a predetermined depth in order to correct a deviation from a predetermined characteristic value, the coarse adjustment and the fine adjustment are combined, and The characteristic adjustment is completed.
[0030]
FIG. 10 is a perspective view of the dielectric resonator according to the third embodiment. In the first and second embodiments, an example has been described in which the coupling amount and the resonance frequency are determined for two of the three resonance modes. However, the coupling amount and the resonance frequency of the second and third resonance modes are also determined. In order to perform the adjustment, holes may be provided on two orthogonal outer surfaces of the dielectric resonator 10 as shown in FIG. In the example shown in FIG. 10, the coupling amounts of the TE01δx mode and the TE01δy mode and the respective resonance frequencies are determined by the holes 15 and 15 ′, and the coupling amounts of the TE01δx mode and the TE01δz mode and the respective resonance frequencies are determined by the holes 16 and 16 ′. be able to.
[0031]
FIG. 11 is a top view of the dielectric resonator according to the fourth embodiment. In this example, holes 15a and 15a 'are provided for coarse adjustment, and holes 15b and 15b' are provided for fine adjustment. The holes 15b and 15b 'for fine adjustment are provided near another orthogonal virtual surface VS1 different from the virtual surface VS2 near the holes 15a and 15a' for coarse adjustment. For example, assuming that the coupling amount of the two resonance modes before the hole is provided is 0 (coupling coefficient k = 0%) and the resonance frequencies of the two resonance modes are f1 and f2, the holes 15a and 15a 'are provided. When the coupling amount (e.g., coupling coefficient k '= 2%) is reached and the resonance frequencies change to f1' and f2 ', respectively, then, to reduce the coupling amount to a predetermined coupling amount (e.g., coupling coefficient k "= 1%), The fine adjustment holes 15b and 15b 'are provided, so that the two resonance frequencies also change to f1 "and f2". Therefore, in anticipation of the change in the resonance frequency at the time of the fine adjustment, the f1 "and f2" are set. Should be determined so that the target resonance frequency is obtained and the coupling coefficient k ″ becomes the target coupling coefficient by adjusting the positions and sizes of the fine adjustment holes 15b and 15b ′.
[0032]
In addition, by providing each hole in the relationship of the diagonal positions, not only the adjustment range is widened, but even if the adjustment amount is increased, the structural symmetry of the dielectric resonator 10 is not largely broken, This has the effect of suppressing the occurrence of spurious modes.
[0033]
Next, a dielectric resonator according to a fifth embodiment will be described with reference to FIGS.
FIG. 12 is a perspective view of the dielectric resonator. In the example of (A), the groove 11 having a predetermined depth is provided at a position away from the central portion o of the predetermined surface of the dielectric resonator 10 and extends in parallel with the ridge E4. In the example shown in (B), two grooves 11, 11 'are similarly provided.
[0034]
FIG. 13 is a top view showing the positional relationship between the electric field distribution and the groove of two resonance modes to be coupled by the dielectric resonator. Since the grooves 11, 11 'are provided at positions distant from the center of the predetermined surface and parallel to the ridge, two coupling modes based on two resonance modes (TE01δx mode, TE01δy mode) are provided. And the two resonance modes are coupled to each other. In addition, a difference occurs in the effective permittivity of a portion where the electric field vector of the two coupled resonance modes passes, and a difference occurs in the resonance frequency of the two resonance modes.
[0035]
When the positions of the grooves 11 and 11 'are represented by distances S and S' from the ridges E1 and E3 as shown in FIG. 13C, the electric field of the two coupling modes decreases as the distances S and S 'decrease. And the amount of coupling increases. Also, as S and S 'are increased, the difference between the effects of the two resonance modes on the electric field is increased, and the difference between the resonance frequencies is increased. Further, the influence on the coupling amount and the resonance frequency difference also changes depending on the ratio between the width and the depth of the grooves 11, 11 '.
[0036]
As described above, since the coupling amount and the difference between the two resonance frequencies change together depending on the positions of the grooves 11, 11 ', both cannot be determined completely independently. However, the width and depth of the grooves 11, 11' are also adjusted. By doing so, the resonance frequencies of the two resonance modes and their coupling amounts can be determined with a certain degree of freedom. For example, if the groove 11 is provided for coarse adjustment and the groove 11 'is provided for fine adjustment, the resonance frequencies of the two resonance modes and the coupling amount thereof can be determined with higher accuracy.
[0037]
If a fine adjustment groove is provided on the side opposite to 11 'as a virtual plane VS1 boundary as indicated by 11 ", the change in the resonance frequency difference between the two resonance modes can be made to act in a decreasing direction. .
[0038]
In the example shown in FIG. 13D, grooves 11a and 11a 'are provided for coarse adjustment, and grooves 11b and 11b' are provided for fine adjustment. The fine adjustment grooves 11b and 11b 'are provided near another orthogonal virtual surface VS2 different from the virtual surface VS1 near the coarse adjustment grooves 11a and 11a'. By providing each groove in the relationship of the diagonal positions as described above, not only the adjustment range is widened, but even if the adjustment amount is increased, the structural symmetry of the dielectric resonator 10 is not largely broken, and the spurious mode This has the effect of suppressing the occurrence of.
[0039]
Next, a configuration of a dielectric filter according to a sixth embodiment will be described with reference to FIG. FIG. 14 shows the positional relationship between a dielectric resonator in a cavity and a coupling loop coupled thereto. This dielectric resonator 10 is the same as the dielectric resonator shown in FIG. The cavity is omitted in the figure. One end of each of the coupling loops Ky and Kz is connected to the center conductor of the coaxial connector attached to the cavity, and the other end is connected to the inner surface of the cavity. The coupling loop Ky points its loop plane to the xz plane. The coupling loop Kz has its loop plane oriented in the xy plane. Therefore, the coupling loop Ky magnetically couples to the TE01δy mode, and the coupling loop Kz magnetically couples to the TE01δz mode.
[0040]
As already described with reference to FIG. 10, the TE01δx mode is coupled to the TE01δy mode and is also coupled to the TE01δz mode. Therefore, between the two coupling loops Ky and Kz, the TE01δy mode resonator → TE01δx mode resonator → TE01δz mode There are equivalently three resonators coupled in the order of the resonators. As a result, a filter having band-pass filter characteristics composed of three stages of resonators can be configured.
[0041]
Next, the configurations of the composite dielectric filter and the communication device according to the seventh embodiment are shown in FIG.
Here, the duplexer includes a transmission filter and a reception filter. Each of the transmission filter and the reception filter is a filter having the above-described configuration. The phase adjustment is performed between the output port of the transmission filter and the input port of the reception filter so that the transmission signal does not go to the reception filter side and the reception signal does not go to the transmission filter side. A transmission circuit is connected to a transmission signal input port of the duplexer, and a reception circuit is connected to a reception signal output port. An antenna is connected to the antenna port. Thus, a communication device including the dielectric resonator according to the present invention is configured.
[0042]
【The invention's effect】
According to the present invention, holes are provided at different positions from the first and second imaginary planes including two ridges of the substantially rectangular parallelepiped dielectric resonator, which are parallel and diagonal to each other, The two resonance modes can be coupled to each other, and the resonance frequencies of the two resonance modes can have a difference.
[0043]
Further, according to the present invention, by forming a groove extending from the center portion of the outer surface of the dielectric resonator and away from the ridge included in the surface and extending parallel to the ridge at a predetermined depth. In addition, the two resonance modes can be coupled to each other, and the resonance frequencies of the two resonance modes can have a difference.
[0044]
Further, according to the present invention, a dielectric filter having desired filter characteristics and a composite dielectric filter having the above-described dielectric resonator device and external coupling means externally coupled thereto can be easily obtained.
[0045]
Further, according to the present invention, a compact and low-cost communication device can be configured by providing the above-described dielectric filter or composite dielectric filter in a high-frequency circuit section.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a basic structure of a dielectric resonator according to a first embodiment. FIG. 2 is a diagram showing an electromagnetic field distribution in a TE01δx mode. FIG. 3 is a diagram showing an electromagnetic field distribution in a TE01δy mode. FIG. 4 is a view showing an electromagnetic field distribution of a TE01δz mode. FIG. 5 is a view showing directions of electric fields of two resonance modes and a coupling mode thereof. FIG. 6 is a perspective view of a dielectric resonator. FIG. FIG. 8 is a view showing an electric field distribution of two resonance modes and a positional relationship between holes. FIG. 8 is a perspective view of a dielectric resonator according to a second embodiment. FIG. 9 is a view showing two resonance modes and directions of electric fields of the coupled modes. FIG. 10 is a perspective view of a dielectric resonator according to a third embodiment. FIG. 11 is a diagram showing the electric field distribution and the positional relationship of holes in two resonance modes to be coupled by the dielectric resonator according to the fourth embodiment. FIG. 12 is a perspective view of a dielectric resonator according to a fifth embodiment. FIG. 13 is a diagram showing directions of electric fields of two resonance modes and a coupling mode thereof. FIG. 14 is a perspective view showing a configuration of a main part of a dielectric filter according to a sixth embodiment. FIG. 15 is a seventh embodiment. Showing the configuration of a composite dielectric filter and a communication device according to the present invention.
10-dielectric resonator 11, 11 ', 11a, 11a', 11b, 11b'-groove 15, 15 ', 15a, 15a', 15b, 15b'-hole VS1, VS2-virtual plane E1, E2, E3 E4-ridge

Claims (5)

キャビティ内に配置される、全体が略直方体形状をなすTE01δ多重モードの誘電体共振器において、
前記誘電体共振器の互いに平行且つ対角位置関係にある2つの稜を含む第1の仮想面と、前記2つの稜とは異なる互いに平行且つ対角位置関係にある他の2つの稜を含む第2の仮想面のいずれからも異なった位置に穴を設けたことを特徴とする誘電体共振器。
In a TE01δ multi-mode dielectric resonator which is disposed in a cavity and has a substantially rectangular parallelepiped shape as a whole,
A first imaginary surface including two edges parallel and diagonal to each other of the dielectric resonator, and two other edges parallel to each other and diagonally different from each other; A dielectric resonator, wherein holes are provided at positions different from any of the second virtual planes.
キャビティ内に配置される、全体が略直方体形状をなすTE01δ多重モードの誘電体共振器において、
前記誘電体共振器の面に、該面の中央部から離れ且つ該面に含まれる稜から離れた位置を通り、所定深さで前記稜に対して略平行に延びる溝を設けたことを特徴とする誘電体共振器。
In a TE01δ multi-mode dielectric resonator which is disposed in a cavity and has a substantially rectangular parallelepiped shape as a whole,
A groove is provided on the surface of the dielectric resonator, the groove extending from the center of the surface and away from a ridge included in the surface and extending substantially parallel to the ridge at a predetermined depth. And a dielectric resonator.
請求項1または2に記載の誘電体共振器と、該誘電体共振器に外部結合する外部結合手段とを備えてなる誘電体フィルタ。3. A dielectric filter comprising: the dielectric resonator according to claim 1; and external coupling means externally coupled to the dielectric resonator. 請求項3に記載の誘電体フィルタを複数組備えるとともに、それぞれの誘電体フィルタの一方の外部結合手段を共用した複合誘電体フィルタ。A composite dielectric filter comprising a plurality of sets of the dielectric filters according to claim 3 and sharing one external coupling means of each of the dielectric filters. 請求項3に記載の誘電体フィルタまたは請求項4に記載の複合誘電体フィルタを高周波回路部に備えた通信装置。A communication device comprising the dielectric filter according to claim 3 or the composite dielectric filter according to claim 4 in a high-frequency circuit unit.
JP2003101986A 2003-04-04 2003-04-04 Dielectric resonator, dielectric filter, composite dielectric filter, and communication device Expired - Fee Related JP4059126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101986A JP4059126B2 (en) 2003-04-04 2003-04-04 Dielectric resonator, dielectric filter, composite dielectric filter, and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101986A JP4059126B2 (en) 2003-04-04 2003-04-04 Dielectric resonator, dielectric filter, composite dielectric filter, and communication device

Publications (2)

Publication Number Publication Date
JP2004312288A true JP2004312288A (en) 2004-11-04
JP4059126B2 JP4059126B2 (en) 2008-03-12

Family

ID=33465611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101986A Expired - Fee Related JP4059126B2 (en) 2003-04-04 2003-04-04 Dielectric resonator, dielectric filter, composite dielectric filter, and communication device

Country Status (1)

Country Link
JP (1) JP4059126B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169434A1 (en) * 2013-04-16 2014-10-23 华为技术有限公司 Dielectric resonator, dielectric filter and manufacturing methods therefor
US9325046B2 (en) 2012-10-25 2016-04-26 Mesaplexx Pty Ltd Multi-mode filter
US9401537B2 (en) 2011-08-23 2016-07-26 Mesaplexx Pty Ltd. Multi-mode filter
US9406988B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Multi-mode filter
US9614264B2 (en) 2013-12-19 2017-04-04 Mesaplexxpty Ltd Filter
US9843083B2 (en) 2012-10-09 2017-12-12 Mesaplexx Pty Ltd Multi-mode filter having a dielectric resonator mounted on a carrier and surrounded by a trench
CN114039187A (en) * 2021-12-03 2022-02-11 大富科技(安徽)股份有限公司 Dielectric dual-mode resonator and filter
WO2024156104A1 (en) * 2023-01-28 2024-08-02 华为技术有限公司 Dielectric filter, radio frequency processing unit, and base station

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191705A (en) * 1997-02-03 1999-07-13 Murata Mfg Co Ltd Multiple mode dielectric resonator and its characteristic adjustment method
JP2001085913A (en) * 1999-09-09 2001-03-30 Murata Mfg Co Ltd Dielectric resonator, dielectric filter, duplexer and communication unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191705A (en) * 1997-02-03 1999-07-13 Murata Mfg Co Ltd Multiple mode dielectric resonator and its characteristic adjustment method
JP2001085913A (en) * 1999-09-09 2001-03-30 Murata Mfg Co Ltd Dielectric resonator, dielectric filter, duplexer and communication unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698455B2 (en) 2011-08-23 2017-07-04 Mesaplex Pty Ltd. Multi-mode filter having at least one feed line and a phase array of coupling elements
US9401537B2 (en) 2011-08-23 2016-07-26 Mesaplexx Pty Ltd. Multi-mode filter
US9406988B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Multi-mode filter
US9406993B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Filter
US9437916B2 (en) 2011-08-23 2016-09-06 Mesaplexx Pty Ltd Filter
US9437910B2 (en) 2011-08-23 2016-09-06 Mesaplexx Pty Ltd Multi-mode filter
US9559398B2 (en) 2011-08-23 2017-01-31 Mesaplex Pty Ltd. Multi-mode filter
US9843083B2 (en) 2012-10-09 2017-12-12 Mesaplexx Pty Ltd Multi-mode filter having a dielectric resonator mounted on a carrier and surrounded by a trench
US9325046B2 (en) 2012-10-25 2016-04-26 Mesaplexx Pty Ltd Multi-mode filter
US10320044B2 (en) 2013-04-16 2019-06-11 Huawei Technologies Co., Ltd. Method of fabricating a dielectric resonator having a sealed demetallized notch formed therein and a dielectric filter formed therefrom
US9780428B2 (en) 2013-04-16 2017-10-03 Huawei Technologies Co., Ltd. Dielectric resonator/filter including a metallized dielectric body having a blind hole therein with a demetallized notch that is sealed by a metallized sealing part
WO2014169434A1 (en) * 2013-04-16 2014-10-23 华为技术有限公司 Dielectric resonator, dielectric filter and manufacturing methods therefor
US10903539B2 (en) 2013-04-16 2021-01-26 Huawei Technologies Co., Ltd. Dielectric resonator having a sealed demetallized notch formed therein, for forming a dielectric filter and a base station therefrom
US9614264B2 (en) 2013-12-19 2017-04-04 Mesaplexxpty Ltd Filter
CN114039187A (en) * 2021-12-03 2022-02-11 大富科技(安徽)股份有限公司 Dielectric dual-mode resonator and filter
WO2024156104A1 (en) * 2023-01-28 2024-08-02 华为技术有限公司 Dielectric filter, radio frequency processing unit, and base station

Also Published As

Publication number Publication date
JP4059126B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
KR100338593B1 (en) Multi-mode Dielectric Resonance Devices, Dielectric Filter, Composite Dielectric Filter, Synthesizer, Distributor, and Communication Equipment
US6549092B1 (en) Resonator device, filter, composite filter device, duplexer, and communication device
US7332987B2 (en) Multimode dielectric resonator device, dielectric filter, composite dielectric filter and communication apparatus
US6621381B1 (en) TEM-mode dielectric resonator and bandpass filter using the resonator
KR101320896B1 (en) The Ceramic Panel Dual mode Resonators using Quasi TM110 mode and RF Dual mode Filter by the same
JPH11145705A (en) Multiplex mode dielectric resonator device, dielectric filter, composite dielectric filter, composting device, distributor and communication equipment
EP2865047B1 (en) In-line pseudoelliptic te01(no) mode dielectric resonator filters
CN106785263A (en) A kind of microwave difference filter based on bimodulus dielectric resonator
JP2004186712A (en) Dielectric resonance element, dielectric resonator, filter, resonator device, and communication device
JP3506076B2 (en) Multi-mode dielectric resonator device, filter, duplexer, and communication device
JP4059126B2 (en) Dielectric resonator, dielectric filter, composite dielectric filter, and communication device
US6756865B2 (en) Resonator device, filter, duplexer, and communication apparatus using the same
JP3506077B2 (en) Multi-mode dielectric resonator device, filter, duplexer, and communication device
JP2004312287A (en) Dielectric resonator, dielectric filter, composite dielectric filter, and communication apparatus
US20160240905A1 (en) Hybrid folded rectangular waveguide filter
US7274273B2 (en) Dielectric resonator device, dielectric filter, duplexer, and high-frequency communication apparatus
KR100789378B1 (en) Filter with cylindrical cavity resonator using multiple via walls
JP3788055B2 (en) Dielectric resonator device, shared transmission and reception device, and communication device
EP1962371A1 (en) Dielectric multimode resonator
JP2004349981A (en) Resonator device, filter, compound filter device, and communication apparatus
JP4284832B2 (en) Multimode dielectric resonator device, filter, duplexer, and communication device
JP2004336496A (en) Multi-mode filter
Tomassoni et al. TM dual-mode filters with asymmetric filtering functions
CN115917869A (en) Three-mode resonator and waveguide filter including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees