[go: up one dir, main page]

JP2004306648A - Door turning mechanism for air-conditioner - Google Patents

Door turning mechanism for air-conditioner Download PDF

Info

Publication number
JP2004306648A
JP2004306648A JP2003099153A JP2003099153A JP2004306648A JP 2004306648 A JP2004306648 A JP 2004306648A JP 2003099153 A JP2003099153 A JP 2003099153A JP 2003099153 A JP2003099153 A JP 2003099153A JP 2004306648 A JP2004306648 A JP 2004306648A
Authority
JP
Japan
Prior art keywords
air
door
shape memory
memory member
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003099153A
Other languages
Japanese (ja)
Inventor
Shinji Naruse
新二 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003099153A priority Critical patent/JP2004306648A/en
Publication of JP2004306648A publication Critical patent/JP2004306648A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a door turning mechanism for an air-conditioner wherein the manufacturing cost is low, the arrangement space is small, and no working sounds are generated. <P>SOLUTION: An air-conditioner door 30 including a turning shaft 38 which is turnably supported by an air feeding duct, and a constraining plate 31 which constrains the flow of air by locating in an air feeding passage is turned by this door turning mechanism. The door turning mechanism comprises: a first shape memory member 70 which is arranged between the turning shaft of the air feeding duct and a first eccentric section 62, and turns the air-conditioner door in one direction at the time of contraction; a second shape memory member 75 which is arranged between the turning shaft of the air feeding duct and a second eccentric section 63, and turns the air-conditioner door in the other direction at the time of contraction; and power feeding means 81, 88 and 89 which make the first shape memory member or the second shape memory member contract by feeding power. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車両用空調装置において、各種空調ドアを回動させるの空調ドア回動機構に関する。
【0002】
【従来の技術】
車両用空調装置は送風ダクトと、送風ダクト内に配置された送風機、蒸発器(エバポレータ)及びヒータコア等とを含む。送風路を区画する送風ダクトは上流側に空気取入口を備え、下流側に空気吹出口を備える。空気取入口から取り入れた空気を送風機により下流側に送り、エバポレータで冷却して冷風を生成し、ヒータコアで加熱して温風を生成する。冷風、温風又は両者を混合した空調空気が空気吹出口から吹き出される。
【0003】
例えば、空気取入口には取入口ドアが配置されている。取入口ドアは回動軸と、送風路を横断する方向に延びた規制板とを持ち、送風ダクトに対して回動可能となっている。取入空気の調整時は、回動軸に外力を加えて取入口ドアを回動させる。すると、規制板が遮る流通路の大きさが変化し、空気量又は空気流れが調整される。ヒータコアの上流に配置されたエアミックスや、空気吹出口に配置された吹出口ドアでも大体事情は同じである。
【0004】
従来の送風ユニット(特許文献1参照)は、サーボモータのその駆動力により取入口ドアを回動させている。
【0005】
【特許文献1】
特開2000−016049号公報
【0006】
【発明が解決しようとする課題】
しかし、従来例ではサーボモータ及びその関連部品(歯車等)が必要となり、空調装置の製造コストが上昇する。また、サーボモータ等の配置スペースが必要となり、これは利用可能なスペースが限られた車両では望ましくない。加えて、サーボモータが作動時に発する作動音は乗員にとって気障りである。
【0007】
本発明は上記事情に鑑みてなされたもので、構造が簡単で製造コストが安く、配置スペースが少なくて済み、さらに作動音が発生しない空調装置のドア駆動機構を提供することを目的とする。
【0008】
【課題を解決するための手段】
本願の発明者は上記目的を達成するために形状記憶部材(合金)に注目した。形状記憶部部材には電流を流すと発熱して収縮する性質のものがあり、この収縮性を利用して空調ドアを回動させることを思い付いた。
【0009】
本願の第1発明による空調装置のドア回動機構は、請求項1に記載したように、車両の空調装置において、送風ダクトにより回動可能に支持された回動軸と、送風路内に位置して空気の流れを規制する規制板とを含む空調ドアを回動させるドア回動機構が、送風ダクトと回動軸の第1偏心部分との間に配設され、収縮時に前記空調ドアを一方向に回動させる第1形状記憶部材と;送風ダクトと回動軸の第2偏心部分との間に配設され、収縮時に空調ドアを他方向に回動させる第2形状記憶部材と;第1形状記憶部材又は第2形状記憶部材に電流を流して収縮させる通電手段と;から成る。
【0010】
このドア回動機構において、通電手段により通電されたとき第1形状記憶部材は発熱して収縮し、回動軸の第1偏心部分に引張力を加える。その結果、空調ドアが一方向に回動し、規制板が送風路内で送風路を塞ぐ又は開放する位置を占める。第2形状記憶部材が収縮すると、回動軸の第2偏心部分に引張力を加え、空調ドアが他方向に回動させ、規制板が送風路内で送風路を開放する又は塞ぐ位置を占める。
【0011】
請求項2のドア回動機構は、請求項1において、第1形状記憶部材は非通電時は弛緩している第1線材から成り、第2形状記憶部材は非通電時は弛緩している第2線材から成る。請求項3のドア回動機構は、請求項2において、通電手段は第1線材を流れる電流を継断する第1スイッチ、及び第2線材を流れる電源を継断する第2スイッチを含む。
【0012】
請求項4のドア回動機構は、請求項1において、空調ドアは、送風ダクトの上流部に配置され取り入れる内気と外気との割合を調整する取入れドア、エバポレータとヒートコアとの間に配置されヒートコアを通過する空気とバイパスする空気との割合を調整するエアミックスドア、及び/又は送風ダクトの下流部に配置され吹き出す空気量を調整する吹出しドアである。請求項5のドア回動機構は、請求項1において、空調ドアは、一方向に回動して第1回動位置を占めたとき送風路を塞ぎ、他方向に回動して第2回動位置を占めたとき送風路を開放する。
【0013】
本願の第2発明による空調装置のドア回動機構は、請求項6に記載したように、車両の空調装置において、送風ダクトにより回動可能に支持された回動軸と、送風路内に位置して空気の流れを規制する規制板とを含む空調ドアを回動させるドア回動機構が、送風ダクトと回動軸の偏心部分との間に配設された形状記憶部材と;形状記憶部材に電流を流して収縮させ空調ドアを所定方向に回動させる通電手段と;から成ることを特徴とする。
【0014】
【発明の実施の形態】
<空調装置、空調ドア>
本発明の車両用空調装置は送風ダクトと、送風ダクト内に配置された送風機、蒸発器(エバポレータ)及びヒータコアとを含む。送風路を区画する送風ダクトは上流側に空気取入口を備え、下流側に空気吹出口を備える。
【0015】
空調ドアは空気取入口に配置された取入口ドア、ヒータコアの上流側に配置されたエアミックスドア、及び空気吹出口に配置された吹出口ドアを含む。何れの空調ドアも送風ダクトに支持される回動軸と、送風路内に位置する規制板とを持ち、回動可能となっている。一方向に回動し第1回動位置を占めたとき規制板が送風路を塞ぎ、他方向に回動し第2回動位置を占めたとき送風路を開放する。
<ドア回動機構>
本発明のドア回動機構は、空調ドアの回動軸の端部に結合される形状記憶部材と、形状記憶部材に電流を流す通電手段とを含む。形状記憶部材の具体的配置に応じて2つのタイプに大別される。
▲1▼第1タイプでは、空調ドアの一方向回動にも他方向回動にも形状記憶部材の収縮性を利用する(請求項1参照)。そのためには、回動軸の第1偏心位置と送風ダクトの一部との間に第1形状記憶部材を張設し、第2偏心位置と送風ダクトの一部との間に第2形状記憶部材を張設すれば良い。第1偏心位置と第2偏心位置とは回動軸の直径方向で対向する位置を選択する。
【0016】
材料の使用量を少なくすること、及び空調ドアに要求される回動力の大きさ(それ程大きくない)を考慮すると、形状記憶線材を使用することが望ましい。第1形状記憶線材及び第2形状記憶線材の長さは、非通電時は弛緩して回動軸の回動を妨げず、通電時は発熱により収縮して回動軸に回動力を加える程度に選定する。
【0017】
通電手段は、第1形状記憶部材又は第2形状記憶部材に選択的に電流を流す。一方に通電するときは他方は非通電とする。そのためには、第1形状記憶部材の給電経路中に第1スイッチを配置し、第2形状記憶部材の給電経路中に第2スイッチを配置すれば良い。
▲2▼一方、第2タイプでは、空調ドアの所定の一方向回動に形状記憶部材の収縮性を利用する(請求項6参照)。そのためには、回動軸の第1偏心位置と送風ダクトの一部との間に形状記憶部材を張設すれば良い。他方向回動には、第2偏心位置と送風ダクトの一部との間に張設した引張バネの付勢力を利用することができる。
▲3▼なお、何れのタイプでも、空調ドアは直接送風ダクトに回動可能に支持されていても良いし、送風ダクトに固定された別部材により回動可能に支持されていても良い。
【0018】
【実施例】
以下、本発明の実施例を添付図面を参照しつつ説明する。
(構成)
図1に取入口ユニットを示す。この取入口ユニットは内外気切換箱10、内外気切換ドア30及び送風機50を含む。
【0019】
図2において、内外気切換箱10(以下、実施例では「切換箱」と略称する)10はポリプロピレンのインジェクション成形により製作され、上端縁部11、一対の側壁部16及び前方(左方)側の窓形成部21を含む。上端縁部11は四角枠形状を持ち、外気取入口13を区画し、上端面にパッキン14が取り付けられている。一対の側壁部16は上端縁部11の短辺12aから下方に延び、扇形状を持つ。
【0020】
窓形成部21は側壁部16の前記(左方)縁17a側に、上端縁部11の長辺12bから円周方向に延びた3本の円周方向フレーム22と、側壁部16の下端から半径方向に延びた2本の半径方向フレーム23と、両者を結合する軸方向フレーム24とを含む。円周方向フレーム22は別の軸方向フレーム25によっても相互に結合されている。フレーム22,24及び25により4つの内気取入口27が区画されている。
【0021】
また、半径方向フレーム23と軸方向フレーム24とにより下部開口28aが区画され、上端縁部11の後方(右方)側の長辺12bを側壁部16の後方内17bとで後部開口28bが区画されている。
【0022】
図3において、内外気切換ドア30(以下、実施例では「切換ドア」と略称する)30はポリプロピレンのインジェクション成形により製作され、湾曲ドア部31、平面ドア部41及び両者を連結する連結部46を含む。このうち、湾曲ドア部31(規制板)は湾曲ドア32と、一対の側壁35とを有する。湾曲ドア32は一定曲率で湾曲し、上記切換箱10の窓形成部21に対応する円周方向長さ及び幅を持つ。各側壁35は湾曲ドア32の湾曲縁33から直角方向に延び扇形状を持つ。湾曲ドア32の一方端縁34aと側壁35の一方側縁36aとで区画される底部38aは開放されている。同様に、他方端縁34bと他方側縁36bとで区画される後部38bも開放されている。
【0023】
平面ドア部41は矩形板からなり、その幅は湾曲ドア部31の幅と等しく、高さは側壁35の他方側縁36bの高さよりも低い。側壁35の他方縁36bと平面ドア部41とが半径方向で内外に離れた一対の連結部46で連結されている。
【0024】
図1に示すように、切換ドア30は切換箱10に回動可能に収容されている。幅方向では切換ドア30の側壁35が切換箱10の側壁部16の内側に位置し、円周方向では切換ドア30の湾曲ドア32が切換箱10の窓形成部21の内側に位置している。切換箱10の側壁部16の角部にあけた貫通孔を貫通して軸部材(回動軸)38が延び、その内方端は切換ドア30の側壁35の角部に形成した嵌合孔37に嵌合している。軸部材38に回動力を加えると、切換ドア30は切換箱10に対して回動可能となっている。
【0025】
図1に戻って、送風機50はブロワモータ51と、ブロワファン52と、ケーシング54とを含む。ブロワモータ51は上下方向に配置され、その出力軸にブロワファン52が固定されている。ケーシング54は上ケース56と下ケース58とを含む。上ケース56は吸入孔57を持ち、送風ダクト(不図示)の一部に固定されている。上ケース56と一体化された下ケース58はブロワモータ51及びブロワファン52を包囲し、通路59を区画している。
【0026】
次に、切換箱10内で切換ドア30を回動させるドア回動機構について説明する。図1及び図4(a)(b)に示すように、切換ドア30の軸部材38の端部に形成した円周溝61の第1偏心部分62にねじ部材66により第1形状記憶線材70の一端71が結合されている。他端72は軸部材38から所定距離離れ、ケーシング54に固定されたコネクタ81に結合されている。また、円周溝61の第2偏心部分63に一端76が結合された第2形状記憶線材75の他端77もはコネクタ81に結合されている。第1形状記憶線材70及び第2形状記憶線材75の長さは、非通電時は軸部材38とコネクタ81との間隔よりも長く、通電時はこの間隔よりも短くなるように選定されている。
【0027】
導電性のリード線85の一端86が第1形状記憶線材70の一端71及び第2形状記憶線材75の一端76に接続されている。リード線85の他端87はコネクタ81を通過して延び、所定の電圧(3V程度)が印加されている。図6に示すように、第1形状記憶線材70の他端72とGNDとの間に第1スイッチ88が配置され、第2形状記憶線材75の他端77とGNDとの間に第2スイッチ89が配置されている。
(作動)
このドア回動機構の作動は以下の通りである。切換ドア30は図1に示した左方回動位置又は右方回動位置を取り得る。左方回動位置は外気を取り入れるための位置、右方回動状態は内気を取り入れるための位置である。
【0028】
外気の取入れ時、第1スイッチ88を入れて電流を流すと、第1形状記憶線材70が発熱して収縮し、軸部材38に半時計方向の回動力を加える。軸部材38と一体化された切換ドア30が反対時計方向に回動し、湾曲ドア部31が内気取入口27を塞ぎ、平面ドア部41が上下方向に延び切換箱10の後方開口28bを塞ぐ。切換ドア30の回動は、一方端縁34a及び一方側縁36aが切換箱30の半径方向フレーム23及び軸方向フレーム24に当接することにより停止する。
【0029】
送風ダクトの送風路Xから外気取入口12に流入した外気は下方に流れ、矢印Yで示すように、切換箱30の開放底部38aからケーシング54の吸入口57及び通路59を経て、下流側に送られる。なお、第2形状記憶線材75は弛緩したままであり、軸部材38の反時計方向の回動が第2形状記憶線材75により妨げられる心配はない。
【0030】
これに対して、内気の取入れ時、第2スイッチ89を入れて第2形状記憶線材75に電流を流す。すると、図5に示すように第2形状記憶線材75が発熱して収縮し、軸部材38に時計方向の回動力を加える。切換ドア30の時計方向に回動により、湾曲ドア部31が内気取入口27から後退して開放するとともに、外気取入口12の下方に位置してこれを塞ぐ。平面ドア部41はケーシング54の上方壁に近接する。内気取入口27から取り入れられる内気は上記Y方向に流れる。なお、弛緩したままの第1形状記憶部線材70は軸部材38の時計方向の回動を妨げない。
(効果)
この実施例によれば、以下の効果が得られる。第1に、切換ドア30のドア回動機構が一対の形状記憶線材70,75、リード線85及びスイッチ88、89等の少ない部品点数から成る。一般に形状記憶合金はそれ程安価ではないが、本実施例では形状記憶線材70,75として使用しており、使用量が少ないので製造コストはそれ程上昇しない。
【0031】
第2に、形状記憶線材70,75、リード線85及びスイッチ88,89等が占めるスペースはわずかである。従来のサーボモータに比べると、大幅に減少する。これは、利用可能なスペースに制約がある車両では非常に有意義である。
【0032】
第3に、切換ドア30の回動に形状記憶線材70,75の収縮を利用するので、サーボモータのような回転部分がなく、切換ドア30の回動時に気障りな作動音が発生するおそれもない。
【0033】
【発明の効果】
以上述べてきたように、第1発明にかかる空調装置のドア回動機構によれば、空調ドアの回動に2本の形状記憶部材を利用した結果、少ない部品点数及び小さい配置スペースで、作動音を発生することなく、一方向及び他方向に空調ドアを回動できる。
【0034】
請求項2のドア回動機構によれば、第1形状記憶部材及び第2形状記憶部材の使用量が少なくでき、製造コストの上昇を抑制できる。請求項3のドア回動機構によれば、第1形状記憶部材の収縮による空調ドアの一方向回動、及び第2形状記憶部材の収縮による空調ドアの他方向回動が簡単かつ確実に切り換えられる。
【0035】
請求項4のドア回動機構によれば、第1形状記憶部材及び第2形状記憶部材が取入口ドア、エアミックスドア、及び 又は吹出口ドアを所定時期に所定方向に回動させる。請求項5のドア回動機構によれば、第1回動位置又は第2回動位置に回動した空調ドアが送風路を塞ぎ又は開放し、空気量や空気流れを調整する。
【0036】
第2発明にかかる空調装置のドア回動機構によれば、空調ドアの回動に1本の形状記憶部材を利用した結果、更に少ない部品点数及び小さい配置スペースで、作動音を発生することなく、所定方向に空調ドアを回動できる。
【図面の簡単な説明】
【図1】車両用空調装置の取入口ドアを含む取入ユニットの正面図である。
【図2】本発明の実施例の内外気切換箱10を示す斜視図である。
【図3】同じく内外気切換ドア30を示す斜視図である。
【図4】(a)は図1の要部拡大図、(b)はその側面図である。
【図5】実施例の作動説明図である。
【図6】実施例の回路説明図である。
【符号の説明】
10:切換箱 11:上端縁部
13:外気取入口 16:側壁部
21:窓形成部 27:内気取入口
30:切換ドア 32:湾曲ドア部
38:軸部材 41:平面ドア部
50:送風機 61:円周溝
63:第2偏心部分 70:第1形状記憶線材
75:第2形状記憶線材 85:リード線
88:第1スイッチ 89:第2スイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioning door turning mechanism for turning various air conditioning doors in a vehicle air conditioner.
[0002]
[Prior art]
The vehicle air conditioner includes a blower duct, a blower, an evaporator (evaporator), a heater core, and the like disposed in the blower duct. The air duct defining the air passage has an air inlet on the upstream side and an air outlet on the downstream side. The air taken in from the air inlet is sent downstream by a blower, cooled by an evaporator to generate cool air, and heated by a heater core to generate warm air. Cold air, hot air or a mixture of both is blown out from the air outlet.
[0003]
For example, an intake door is arranged at the air intake. The intake door has a rotation shaft and a regulating plate extending in a direction crossing the air passage, and is rotatable with respect to the air duct. When adjusting the intake air, an external force is applied to the rotation shaft to rotate the intake door. Then, the size of the flow passage blocked by the regulating plate changes, and the air amount or the air flow is adjusted. The same is true for the air mix arranged upstream of the heater core and the outlet door arranged at the air outlet.
[0004]
In a conventional blower unit (see Patent Document 1), an intake door is rotated by the driving force of a servomotor.
[0005]
[Patent Document 1]
JP 2000-016049 A
[Problems to be solved by the invention]
However, in the conventional example, a servomotor and its related parts (gears and the like) are required, and the manufacturing cost of the air conditioner increases. Further, a space for arranging a servomotor or the like is required, which is not desirable in a vehicle having a limited available space. In addition, the operation noise generated when the servomotor is operated is annoying to the occupant.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a door drive mechanism of an air conditioner that has a simple structure, is inexpensive to manufacture, requires a small installation space, and does not generate operating noise.
[0008]
[Means for Solving the Problems]
The inventor of the present application paid attention to a shape memory member (alloy) to achieve the above object. Some shape memory members have a property of generating heat and shrinking when an electric current is applied, and have come up with the idea of rotating the air-conditioning door using this shrinkage.
[0009]
According to the first aspect of the present invention, a door rotation mechanism of an air conditioner according to the first aspect of the present invention is a vehicle air conditioner, wherein a rotation shaft rotatably supported by an air duct and a position in a ventilation path. A door turning mechanism for turning the air-conditioning door including a regulating plate for restricting the flow of air is provided between the air duct and the first eccentric portion of the turning shaft, and the air-conditioning door is retracted when contracted. A first shape memory member that rotates in one direction; a second shape memory member that is disposed between the blower duct and the second eccentric portion of the rotation shaft and that rotates the air conditioning door in the other direction when contracted; Current applying means for causing an electric current to flow through the first shape memory member or the second shape memory member to cause contraction.
[0010]
In the door rotating mechanism, when energized by the energizing means, the first shape memory member generates heat and contracts, and applies a tensile force to the first eccentric portion of the rotating shaft. As a result, the air-conditioning door rotates in one direction, and the regulating plate occupies a position in the ventilation path to close or open the ventilation path. When the second shape memory member contracts, a tensile force is applied to the second eccentric portion of the rotating shaft, the air-conditioning door is rotated in the other direction, and the regulating plate occupies a position in the ventilation path to open or close the ventilation path. .
[0011]
According to a second aspect of the present invention, in the door rotating mechanism according to the first aspect, the first shape memory member is made of a first wire which is relaxed when not energized, and the second shape memory member is relaxed when not energized. It consists of two wires. According to a third aspect of the present invention, in the door rotating mechanism according to the second aspect, the energizing means includes a first switch for interrupting a current flowing through the first wire, and a second switch for interrupting a power source flowing through the second wire.
[0012]
According to a fourth aspect of the present invention, there is provided the door rotating mechanism according to the first aspect, wherein the air-conditioning door is arranged at an upstream portion of the air duct to adjust a ratio of an inside air and an outside air to be taken, and is arranged between the evaporator and the heat core. And / or an air mixing door that adjusts the ratio of air passing through and bypassing air, and / or an air outlet door that is arranged downstream of the air duct to adjust the amount of air to be blown out. According to a fifth aspect of the present invention, in the door rotating mechanism according to the first aspect, when the air-conditioning door rotates in one direction to occupy the first rotation position, the air-conditioning door closes the ventilation path and rotates in the other direction to rotate the second time. When the moving position is occupied, open the air passage.
[0013]
According to a second aspect of the present invention, a door rotating mechanism of an air conditioner according to a sixth aspect of the present invention, in the air conditioner of a vehicle, includes a rotating shaft rotatably supported by an air duct and a rotary shaft located in the air path. A shape memory member disposed between the blower duct and an eccentric portion of the rotation shaft; a shape memory member; and a shape memory member; And an energizing means for causing an electric current to flow to cause the air-conditioning door to contract and rotate in a predetermined direction.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
<Air conditioner and air conditioning door>
The vehicle air conditioner of the present invention includes a blower duct, a blower, an evaporator (evaporator), and a heater core arranged in the blower duct. The air duct defining the air passage has an air inlet on the upstream side and an air outlet on the downstream side.
[0015]
The air-conditioning door includes an intake door located at an air intake, an air mix door located upstream of the heater core, and an outlet door located at an air outlet. Each of the air-conditioning doors has a rotation shaft supported by a ventilation duct and a regulating plate located in the ventilation path, and is rotatable. When the rotation plate rotates in one direction and occupies the first rotation position, the regulating plate closes the air passage, and when it rotates in the other direction and occupies the second rotation position, the air passage is opened.
<Door rotation mechanism>
The door rotation mechanism of the present invention includes a shape memory member coupled to an end of a rotation shaft of an air-conditioning door, and an energizing unit for supplying a current to the shape memory member. They are roughly classified into two types according to the specific arrangement of the shape memory members.
{Circle around (1)} In the first type, the contractility of the shape memory member is used for both the one-way rotation and the other-direction rotation of the air-conditioning door (see claim 1). For this purpose, a first shape memory member is provided between the first eccentric position of the rotating shaft and a part of the air duct, and a second shape memory member is provided between the second eccentric position and a part of the air duct. What is necessary is just to stretch a member. The position where the first eccentric position and the second eccentric position oppose each other in the diameter direction of the rotation shaft is selected.
[0016]
It is desirable to use a shape memory wire in consideration of reducing the amount of material used and the magnitude (not so large) of the turning power required for the air conditioning door. The lengths of the first shape memory wire and the second shape memory wire are such that when not energized, they relax and do not hinder the rotation of the rotating shaft, and when energized, contract due to heat generation and apply a rotating power to the rotating shaft. To be selected.
[0017]
The current supply means selectively supplies a current to the first shape memory member or the second shape memory member. When one is energized, the other is de-energized. For that purpose, the first switch may be disposed in the power supply path of the first shape memory member, and the second switch may be disposed in the power supply path of the second shape memory member.
{Circle around (2)} On the other hand, in the second type, the contraction of the shape memory member is used for the predetermined one-way rotation of the air-conditioning door (see claim 6). For this purpose, a shape memory member may be provided between the first eccentric position of the rotation shaft and a part of the air duct. The biasing force of a tension spring stretched between the second eccentric position and a part of the air duct can be used for the rotation in the other direction.
(3) Regardless of the type, the air-conditioning door may be directly rotatably supported by the air duct, or may be rotatably supported by another member fixed to the air duct.
[0018]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(Constitution)
FIG. 1 shows the intake unit. The intake unit includes an inside / outside air switching box 10, an inside / outside air switching door 30, and a blower 50.
[0019]
In FIG. 2, an inside / outside air switching box 10 (hereinafter, abbreviated as "switching box" in the embodiment) 10 is manufactured by injection molding of polypropylene, and has an upper edge 11, a pair of side walls 16, and a front (left) side. Window forming part 21. The upper edge 11 has a rectangular frame shape, defines an outside air intake 13, and a packing 14 is attached to the upper end surface. The pair of side walls 16 extend downward from the short side 12a of the upper edge 11 and have a fan shape.
[0020]
The window forming portion 21 includes three circumferential frames 22 extending in the circumferential direction from the long side 12 b of the upper end edge portion 11 on the (left) edge 17 a side of the side wall portion 16, and from the lower end of the side wall portion 16. It includes two radial frames 23 extending in the radial direction, and an axial frame 24 connecting the two. The circumferential frames 22 are also interconnected by another axial frame 25. The four inside air intakes 27 are defined by the frames 22, 24 and 25.
[0021]
A lower opening 28 a is defined by the radial frame 23 and the axial frame 24, and a rear opening 28 b is defined by a long side 12 b on the rear side (right side) of the upper edge 11 and an inner side 17 b of the side wall 16. Have been.
[0022]
In FIG. 3, an inside / outside air switching door 30 (hereinafter, abbreviated as a "switching door") 30 is manufactured by injection molding of polypropylene, and has a curved door portion 31, a flat door portion 41, and a connecting portion 46 for connecting both. including. Among them, the curved door portion 31 (restriction plate) has a curved door 32 and a pair of side walls 35. The curved door 32 is curved at a constant curvature and has a circumferential length and width corresponding to the window forming portion 21 of the switching box 10. Each side wall 35 extends perpendicularly from the curved edge 33 of the curved door 32 and has a fan shape. A bottom 38a defined by one end 34a of the curved door 32 and one side 36a of the side wall 35 is open. Similarly, a rear portion 38b defined by the other edge 34b and the other side edge 36b is also open.
[0023]
The flat door portion 41 is formed of a rectangular plate, the width thereof is equal to the width of the curved door portion 31, and the height is lower than the height of the other side edge 36b of the side wall 35. The other edge 36b of the side wall 35 and the flat door portion 41 are connected by a pair of connecting portions 46 separated inward and outward in the radial direction.
[0024]
As shown in FIG. 1, the switching door 30 is rotatably accommodated in the switching box 10. In the width direction, the side wall 35 of the switching door 30 is located inside the side wall portion 16 of the switching box 10, and in the circumferential direction, the curved door 32 of the switching door 30 is located inside the window forming portion 21 of the switching box 10. . A shaft member (rotating shaft) 38 extends through a through hole formed in a corner of the side wall 16 of the switching box 10, and an inner end thereof is a fitting hole formed in a corner of the side wall 35 of the switching door 30. 37. When a turning force is applied to the shaft member 38, the switching door 30 is rotatable with respect to the switching box 10.
[0025]
Returning to FIG. 1, blower 50 includes a blower motor 51, a blower fan 52, and a casing 54. The blower motor 51 is arranged vertically and a blower fan 52 is fixed to an output shaft thereof. Casing 54 includes an upper case 56 and a lower case 58. The upper case 56 has a suction hole 57 and is fixed to a part of a ventilation duct (not shown). A lower case 58 integrated with the upper case 56 surrounds the blower motor 51 and the blower fan 52 and defines a passage 59.
[0026]
Next, a door rotating mechanism for rotating the switching door 30 in the switching box 10 will be described. As shown in FIGS. 1 and 4A and 4B, the first eccentric portion 62 of the circumferential groove 61 formed at the end of the shaft member 38 of the switching door 30 is screwed with the first shape memory wire 70 by the screw member 66. Is connected to one end 71. The other end 72 is separated from the shaft member 38 by a predetermined distance, and is connected to a connector 81 fixed to the casing 54. Further, the other end 77 of the second shape memory wire 75 in which one end 76 is connected to the second eccentric portion 63 of the circumferential groove 61 is also connected to the connector 81. The lengths of the first shape memory wire 70 and the second shape memory wire 75 are selected so as to be longer than the distance between the shaft member 38 and the connector 81 when power is not supplied, and shorter than the distance when power is supplied. .
[0027]
One end 86 of the conductive lead 85 is connected to one end 71 of the first shape memory wire 70 and one end 76 of the second shape memory wire 75. The other end 87 of the lead 85 extends through the connector 81 and is applied with a predetermined voltage (about 3 V). As shown in FIG. 6, a first switch 88 is disposed between the other end 72 of the first shape memory wire 70 and GND, and a second switch is provided between the other end 77 of the second shape memory wire 75 and GND. 89 are arranged.
(Actuation)
The operation of the door rotation mechanism is as follows. The switching door 30 can assume the left turning position or the right turning position shown in FIG. The left rotation position is a position for taking in outside air, and the right rotation state is a position for taking in inside air.
[0028]
When the first switch 88 is turned on and an electric current is applied during intake of outside air, the first shape memory wire 70 generates heat and contracts, and applies a counterclockwise turning force to the shaft member 38. The switching door 30 integrated with the shaft member 38 rotates counterclockwise, the curved door portion 31 closes the inside air intake 27, and the flat door portion 41 extends in the vertical direction and closes the rear opening 28b of the switching box 10. . The rotation of the switching door 30 is stopped when the one edge 34a and the one side edge 36a abut on the radial frame 23 and the axial frame 24 of the switching box 30.
[0029]
The outside air flowing into the outside air inlet 12 from the air passage X of the air duct flows downward, and flows from the open bottom 38a of the switching box 30 to the downstream side through the suction port 57 and the passage 59 of the casing 54, as shown by the arrow Y. Sent. The second shape memory wire 75 remains relaxed, and there is no concern that the counterclockwise rotation of the shaft member 38 is hindered by the second shape memory wire 75.
[0030]
On the other hand, at the time of taking in the inside air, the second switch 89 is turned on, and a current flows through the second shape memory wire 75. Then, as shown in FIG. 5, the second shape memory wire 75 generates heat and contracts, and applies a clockwise turning force to the shaft member 38. When the switching door 30 is rotated in the clockwise direction, the curved door portion 31 retreats from the inside air intake 27 and opens, and is located below the outside air intake 12 to close it. The flat door portion 41 approaches the upper wall of the casing 54. The inside air taken in from the inside air inlet 27 flows in the Y direction. In addition, the first shape memory portion wire 70 in the relaxed state does not prevent the clockwise rotation of the shaft member 38.
(effect)
According to this embodiment, the following effects can be obtained. First, the door rotating mechanism of the switching door 30 is composed of a small number of components such as a pair of shape memory wires 70 and 75, a lead wire 85, and switches 88 and 89. In general, shape memory alloys are not so inexpensive, but in the present embodiment, they are used as shape memory wires 70 and 75, and the amount used is small, so that the manufacturing cost does not increase so much.
[0031]
Second, the space occupied by the shape memory wires 70 and 75, the lead wires 85 and the switches 88 and 89 is small. Compared with the conventional servo motor, the number is greatly reduced. This is very significant for vehicles with limited available space.
[0032]
Third, since the contraction of the shape memory wires 70 and 75 is used for the rotation of the switching door 30, there is no rotating part such as a servomotor, and a troublesome operation sound may be generated when the switching door 30 is rotated. Absent.
[0033]
【The invention's effect】
As described above, according to the door turning mechanism of the air conditioner according to the first invention, as a result of using the two shape memory members for turning the air conditioning door, the air conditioner operates with a small number of parts and a small arrangement space. The air-conditioning door can be turned in one direction and the other direction without generating sound.
[0034]
According to the door rotating mechanism of the second aspect, the amount of use of the first shape memory member and the second shape memory member can be reduced, and an increase in manufacturing cost can be suppressed. According to the door rotation mechanism of the third aspect, the one-way rotation of the air-conditioning door by the contraction of the first shape memory member and the other direction rotation of the air-conditioning door by the contraction of the second shape memory member are easily and reliably switched. Can be
[0035]
According to the door rotation mechanism of the fourth aspect, the first shape memory member and the second shape memory member rotate the intake door, the air mix door, and / or the outlet door in a predetermined direction at a predetermined time. According to the door turning mechanism of the fifth aspect, the air conditioning door turned to the first turning position or the second turning position closes or opens the air passage, and adjusts the amount of air and the air flow.
[0036]
According to the door turning mechanism of the air conditioner according to the second aspect of the present invention, as a result of using one shape memory member for turning the air conditioning door, the number of parts is reduced and the operating space is reduced without generating operation noise. The air-conditioning door can be turned in a predetermined direction.
[Brief description of the drawings]
FIG. 1 is a front view of an intake unit including an intake door of a vehicle air conditioner.
FIG. 2 is a perspective view showing the inside / outside air switching box 10 according to the embodiment of the present invention.
FIG. 3 is a perspective view showing the inside / outside air switching door 30;
4A is an enlarged view of a main part of FIG. 1, and FIG. 4B is a side view thereof.
FIG. 5 is an operation explanatory view of the embodiment.
FIG. 6 is a circuit diagram of the embodiment.
[Explanation of symbols]
10: Switching box 11: Upper edge 13: Outside air intake 16: Side wall 21: Window forming part 27: Inside air intake 30: Switching door 32: Curved door part 38: Shaft member 41: Flat door part 50: Blower 61 : Circumferential groove 63: second eccentric portion 70: first shape memory wire 75: second shape memory wire 85: lead wire 88: first switch 89: second switch

Claims (6)

車両の空調装置において、送風ダクトにより回動可能に支持された回動軸と、送風路内に位置して空気の流れを規制する規制板とを含む空調ドアを回動させるドア回動機構であって、
前記送風ダクトと前記回動軸の第1偏心部分との間に配設され、収縮時に前記空調ドアを一方向に回動させる第1形状記憶部材と、
前記送風ダクトと前記回動軸の第2偏心部分との間に配設され、収縮時に前記空調ドアを他方向に回動させる第2形状記憶部材と、
前記第1形状記憶部材又は前記第2形状記憶部材に電流を流して収縮させる通電手段と、
から成ることを特徴とする空調装置のドア回動機構。
In a vehicle air conditioner, a door rotation mechanism for rotating an air conditioning door including a rotation shaft rotatably supported by an air duct and a regulating plate positioned in the air passage to regulate air flow. So,
A first shape memory member disposed between the air duct and the first eccentric portion of the rotating shaft, the first shape memory member rotating the air-conditioning door in one direction when contracted;
A second shape memory member disposed between the blower duct and a second eccentric portion of the rotation shaft, and configured to rotate the air-conditioning door in another direction when contracted;
Energizing means for causing an electric current to flow through the first shape memory member or the second shape memory member to cause contraction;
A door rotation mechanism for an air conditioner, comprising:
前記第1形状記憶部材は非通電時は弛緩している第1線材から成り、前記第2形状記憶部材は非通電時は弛緩している第2線材から成る請求項1に記載のドア回動機構。2. The door rotation according to claim 1, wherein the first shape memory member is formed of a first wire that is relaxed when not energized, and the second shape memory member is formed of a second wire that is relaxed when not energized. mechanism. 前記通電手段は、前記第1線材を流れる電流を継断する第1スイッチ、及び前記第2線材を流れる電源を継断する第2スイッチを含む請求項2に記載のドア回動機構。The door turning mechanism according to claim 2, wherein the energizing unit includes a first switch that cuts off a current flowing through the first wire and a second switch that cuts off a power supply flowing through the second wire. 前記空調ドアは、前記送風ダクトの上流部に配置され取り入れる内気と外気との割合を調整する取入れドア、エバポレータとヒートコアとの間に配置されヒートコアを通過する空気とバイパスする空気との割合を調整するエアミックスドア、及び 又は前記送風ダクトの下流部に配置され吹き出す空気量を調整する吹出しドアである請求項1に記載のドア回動機構。The air-conditioning door is arranged at an upstream portion of the air duct and adjusts a ratio between inside air and outside air to be taken in, and is arranged between an evaporator and a heat core and adjusts a ratio between air passing through the heat core and air to be bypassed. The door rotation mechanism according to claim 1, wherein the door rotation mechanism is an air mixing door that performs the air blowing and / or an air blowing door that is arranged downstream of the air duct to adjust an amount of air to be blown. 前記空調ドアは、一方向に回動して第1回動位置を占めたとき前記送風路を塞ぎ、他方向に回動して第2回動位置を占めたとき該送風路を開放する請求項1に記載のドア回動機構。The air-conditioning door, when rotated in one direction and occupies the first rotation position, closes the air passage, and rotates in the other direction to open the air passage when occupied in the second rotation position. Item 2. The door rotation mechanism according to Item 1. 車両の空調装置において、送風ダクトにより回動可能に支持された回動軸と、送風路内に位置して空気の流れを規制する規制板とを含む空調ドアを回動させるドア回動機構であって、
前記送風ダクトと前記回動軸の偏心部分との間に配設された形状記憶部材と、
前記形状記憶部材に電流を流して収縮させ前記空調ドアを所定方向に回動させる通電手段と、
から成ることを特徴とする空調装置のドア回動機構。
In a vehicle air conditioner, a door rotation mechanism for rotating an air conditioning door including a rotation shaft rotatably supported by an air duct and a regulating plate positioned in the air passage to regulate air flow. So,
A shape memory member disposed between the air duct and the eccentric portion of the rotating shaft,
Energizing means for applying an electric current to the shape memory member to contract and rotate the air conditioning door in a predetermined direction;
A door rotation mechanism for an air conditioner, comprising:
JP2003099153A 2003-04-02 2003-04-02 Door turning mechanism for air-conditioner Pending JP2004306648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099153A JP2004306648A (en) 2003-04-02 2003-04-02 Door turning mechanism for air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099153A JP2004306648A (en) 2003-04-02 2003-04-02 Door turning mechanism for air-conditioner

Publications (1)

Publication Number Publication Date
JP2004306648A true JP2004306648A (en) 2004-11-04

Family

ID=33463697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099153A Pending JP2004306648A (en) 2003-04-02 2003-04-02 Door turning mechanism for air-conditioner

Country Status (1)

Country Link
JP (1) JP2004306648A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006105585A1 (en) * 2005-04-04 2006-10-12 Telezygology Inc Stud fastener and stabilising device
CN103791601A (en) * 2014-02-12 2014-05-14 安徽江淮汽车股份有限公司 Ventilation door and ventilation door mechanism for automobile air conditioning cabinet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006105585A1 (en) * 2005-04-04 2006-10-12 Telezygology Inc Stud fastener and stabilising device
US7854580B2 (en) 2005-04-04 2010-12-21 Telezygology Inc. Stud fastener and stabilising device
CN103791601A (en) * 2014-02-12 2014-05-14 安徽江淮汽车股份有限公司 Ventilation door and ventilation door mechanism for automobile air conditioning cabinet

Similar Documents

Publication Publication Date Title
US7108599B2 (en) Vehicle air conditioning system having door drive mechanism
JP5796644B2 (en) Air conditioner
JPH03281423A (en) Air conditioner
CN103492203A (en) Air-conditioning device for vehicle
JP3486961B2 (en) Vehicle air conditioner
JP2007331416A (en) Vehicular air conditioning system
WO1998011392A1 (en) Air supply port structure of air conditioner
JP2004306648A (en) Door turning mechanism for air-conditioner
JP3257547B2 (en) Vehicle air conditioner
JP2000289440A (en) Air conditioning system for vehicle
JP2003042097A (en) Centrifugal blower
JP2004161061A (en) Air conditioner for vehicle
JP3314692B2 (en) Vehicle air conditioner
JP2009018644A (en) Vehicle air conditioner
JPH0431882B2 (en)
JPS63184513A (en) Air conditioner for automobile
JPH0769035A (en) Air blowing unit for vehicle
JP3330807B2 (en) Ventilation control device for automotive air conditioner
JPH11115451A (en) Air conditioner for vehicle
JP2004074922A (en) Vehicular air conditioner
JP2002347429A (en) Air passage switching device
JPH01170798A (en) Centrifugal blower
JP2005082112A (en) Air conditioning unit for vehicle
JP3680389B2 (en) Air flow switching device
JP2002052916A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080214

Free format text: JAPANESE INTERMEDIATE CODE: A02