[go: up one dir, main page]

JP2004304134A - Wiring board and manufacturing method of the same - Google Patents

Wiring board and manufacturing method of the same Download PDF

Info

Publication number
JP2004304134A
JP2004304134A JP2003098384A JP2003098384A JP2004304134A JP 2004304134 A JP2004304134 A JP 2004304134A JP 2003098384 A JP2003098384 A JP 2003098384A JP 2003098384 A JP2003098384 A JP 2003098384A JP 2004304134 A JP2004304134 A JP 2004304134A
Authority
JP
Japan
Prior art keywords
dielectric
differential transmission
transmission line
wiring board
wirings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003098384A
Other languages
Japanese (ja)
Inventor
Yakushiba Ko
躍芝 黄
Toshio Sudo
俊夫 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003098384A priority Critical patent/JP2004304134A/en
Publication of JP2004304134A publication Critical patent/JP2004304134A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board capable of reducing the influence of crosstalk noise even when high density mounting is conducted by using a one-to-one differential transmission system. <P>SOLUTION: This wiring board has at least a pair of wirings 4 forming a differential transmission line 3 among lines constituting a microstrip line by the differential transmission line 3 and a ground conductor 2. The differential transmission line 3 has a dielectric 6, which connects between the respective wirings 4 constituting the differential transmission line 3, with the relative permittivity higher than that of dielectrics arranged between air and the other pair of the differential transmission lines 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、複数の差動伝送線路を備えたマイクロストリップ線路構造の配線基板及びその製造方法に関する。
【0002】
【従来の技術】
近年、ノートパソコンなどの電子機器では、搭載するマイクロプロセッサの動作周波数はGHzオーダーに突入し、急激な向上が図られている。しかしながら、プリント基板を伝播する信号速度は、たとえばメモリとメモリコントローラとの間の信号速度でいえば、未だ133MHzや266MHz程度に留まっている。
【0003】
これは、メモリコントローラから複数のメモリへ信号伝送を行うために、伝送線路の形態として分岐配線を使用することに起因している。つまり、伝送線路に分岐があると、その分岐点での反射のためにパルス信号の波形に乱れが生じ、伝送速度を上げることに限界が生じてしまうからである。
【0004】
そこで、基板上の信号伝送速度を高めるための解決方法として、1対1伝送方式を用いることで配線の分岐をなくし、かつ差動配線を用いるということが検討されている。通常、差動伝送方式は、信号のリターン電流を接地面とするシングルエンド伝送方式と比べて、接地面の揺れなどによるコモンモードノイズに対して強いという利点を有している。
【0005】
しかしながら、1対1の差動伝送方式を用いると、上述したような利点がある一方で、分岐を有する配線構造に比べて、配線本数がメモリの数の2倍に増加してしまう。そのため、1対1の差動伝送線路によって複数の信号を伝送するためには、大きな配線領域が必要となる。
【0006】
高速度データ伝送においては、マイクロストリップ線路構造の配線基板が使用されることが多い。図5に示すように、この配線基板は下面に接地面導体aを備えた誘電体基板bを有する。この誘電体基板bの上面には、上記複数の差動伝送線路c(2つのみ図示)が設けられ、その上にはこれら差動伝送線路cを覆うように誘電体層dが誘電体基板b全面にわたってほぼ均一な厚さに形成されている。
【0007】
図6(a)に示すように、各差動伝送線路を構成する各配線には、互いに逆方向電圧振幅を有する信号が伝送される。そのため、信号の伝送によって発生する電磁界はこれら配線内で閉じるような分布となるが、隣接する他の差動伝送線路間の配線同士においても、これらが逆方向の電圧振幅を有する場合に、大きな電磁界干渉が生じ、図6(b)に示すように、差動伝送線路間のクロストークノイズとして現れることがある。
【0008】
そのため、図5に示すように、従来の構成では、差動伝送線路間の配線ピッチを配線の幅寸法の2倍程度とすることで、差動伝送線路間のクロストークノイズの低減を図っていた。
【0009】
【発明が解決しようとする課題】
したがって、以上のような配線基板では、差動伝送線路間のピッチ間隔の狭小化に限界があり、高密度実装すると大きなクロストークノイズが発生することがあった。
【0010】
本発明は、上記事情を鑑みてなされたものであて、その目的とするところは、1対1の差動伝送方式を用いて高密度実装をした場合でも、クロストークノイズの影響を小さくできる配線基板を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決し目的を達成するために、本発明は次のように構成されている。
【0012】
(1)伝送線路と他の導電層とによりマイクロストリップ線路を構成する線路のうち差動伝送線路を形成する少なくとも一組の配線を有する配線基板であって、上記差動伝送線路は、上記差動伝送線路を構成するそれぞれの配線間を連結する、空気及び他の組の差動伝送線路との間に配設される誘電体よりも比誘電率が高い誘電体部を有することを特徴とする。
【0013】
(2)(1)に記載された配線基板であって、上記誘電体部は、上記差動伝送線路を構成するそれぞれの配線の対向面間に設けられていることを特徴とする。
【0014】
(3)伝送線路と他の導電層とによりマイクロストリップ線路を構成する線路のうち差動伝送線路を形成する少なくとも一組の配線を有する配線基板の製造方法であって、上記差動伝送線路を構成するそれぞれの上記伝送線路上及び上記伝送線路間の間隙に空気よりも比誘電率の高い第1の誘電体を供給する第1の供給工程と、上記伝送線路上及び上記伝送線路間の間隙に上記第1の誘電体よりも比誘電率の小さい第2の誘電体を供給する第2の供給工程とを具備することを特徴とする。
【0015】
【発明の実施の形態】
以下、図1と図2を参照しながら本発明の実施の形態について説明する。
【0016】
図1は本発明の第1の実施の形態に係る配線基板の構成を示す断面図、図2(a)は差動伝送線路を伝播する信号を示す概略図、図2(b)は図2(a)に示す信号を複数の差動伝送線路に同時に伝送させた場合に差動伝送線路間に生じるクロストークノイズを示す概略図である。
【0017】
図1に示す配線基板は、矩形板状の誘電体基板1を有する。誘電体基板1の下面には、薄い板状の接地導体2(他の導電層)が密着して設けられ、上面には複数の差動伝送線路3(2組のみ図示)が所定間隔G、本実施の形態では約1×10−4[m]からなるギャップ部21を隔てて並設されている。
【0018】
各差動伝送線路3は、ほぼ平行に配設された一対の配線4からなり、これら配線4には、図2(a)に+と−で示すように、同じ信号がそれぞれ位相を反転させた状態で伝送される。図1に示すように、各配線4は幅寸法がW、この実施の形態では約1×10−4[m]の金属板からなり、これら配線4間の間隙は所定間隔S、この実施の形態では約1×10−4[m]からなるスペース部5となっている。
【0019】
差動伝送線路3を構成する配線4の上面と、これら配線4の間のスペース部5には、それぞれ第1の誘電体6(誘電体部)が両配線4を連結するように密着して設けられている。第1の誘電体6の材料としては、比誘電率が4〜5のエポキシ系の樹脂からなるソルダレジストが用いられる。すなわち、第1の誘電体6の外側の空気層は、比誘電率がほぼ1であるため、第1の誘電体6各々の内部は、その周囲に比べて大きな比誘電率を備えている。
【0020】
次に、誘電体基板1の上面に設けられた差動伝送線路3に第1の誘電体6を形成する方法について説明する。
【0021】
差動伝送線路3に第1の誘電体6を形成する場合、スクリーン印刷が用いられる。すなわち、スクリーン印刷によって、誘電体基板1の上面に、配線4の幅寸法Wを2つ分と配線4間のスペース部5の間隔寸法Sとの和、すなわち2W+Sのソルダレジスト供給部22、及び各差動伝送線路3間の間隔寸法Gのソルダレジスト非供給部23とを交互に形成することで実現できる。
【0022】
しかしながら、実際には、塗布したソルダレジストの広がりを考慮し、ソルダレジスト供給部22とソルダレジスト非供給部23とをほぼ同じ寸法にしてもよい。このようにスクリーン印刷を用いると、高密度実装によって配線ピッチがさらに微細になった場合でも、スクリーン印刷を微細化することによって対応することができる。また、感光性を有するポリイミド系樹脂やエポキシ系樹脂を用いて、選択的にペアを構成する配線4の間にだけに第1の誘電体6を設けることもできる。
【0023】
上記構成の配線基板によれば、差動伝送線路3を構成する一対の配線4の上面及びこれら配線4間のスペース部5に、第1の誘電体6を両配線4を連結するように設けた。すなわち、各差動伝送線路3周囲の比誘電率を、第1の誘電体6の外側よりも大きくすることで、隣接する差動伝送線路3間の間隙における比誘電率を相対的に下げた。これによって、差動伝送線路3間の相互キャパシタンスの値が相対的に下がることになり、差動伝送線路3間の結合容量が小さくなる。
【0024】
そのため、信号の伝送によって各配線4の周囲に生じる電磁界は、比誘電率が相対的に大きい第1の誘電体6の内部に集中するから、第1の誘電体6の外側では電磁界が低減することになる。その結果、図2(b)に示すように、差動伝送線路3間で生じるクロストークノイズを図6(b)に示す従来のノイズレベルに比べて低減することができる。
【0025】
なお、差動伝送線路3を構成する各配線4ペア内では、第1の誘電体6を設けることで比誘電率が大きくなるため、相互キャパシタンスの値は増加しており、互いのノイズを受け易くなっているが、各配線4にそれぞれ同じ信号を位相が反転した状態で伝送し、受信側で一方の配線4からの信号の位相を反転させて、これらを足し合わせるという差動伝送方式を用いているため、ノイズ成分は相殺されてクロストークノイズの影響はほとんど無くなる。
【0026】
図3は、上記第1の実施の形態の変形例に係る配線基板の構成を示す断面図である。この変形例は、差動伝送線路3上の第1の誘電体6を覆うように、誘電体基板1の上面全体にわたって第2の誘電体7を形成したものである。第2の誘電体7の素材としては、比誘電率が第1の誘電体6よりも小さいものが用いられる。
【0027】
そのため、上述したように、差動伝送線路3周囲の比誘電率をその外側よりも大きくすることができるから、信号伝送によって発生する電磁界を第1の誘電体6の内部に集中させることができる。それによって、上述したようにクロストークノイズの影響を抑えることができる。
【0028】
また、このように第2の誘電体7を設けることによって、第1の誘電体6の素材として大きな比誘電率の誘電体を用いなくても、第2の誘電体7の素材として第1の誘電体6よりも小さな比誘電率を有する誘電体を用いることで、上記同様の効果を得ることができる。すなわち、第1の誘電体6の比誘電率を第2の誘電体7の比誘電率に対して相対的に大きくできればよい。
【0029】
さらに、誘電体基板1の上面全体にわたって第2の誘電体7の層を形成することで、配線4の表面全体をこの第2の誘電体7によって覆うことができるから、配線4の腐食を防止することができる。
【0030】
次に図4を参照しながら本発明の第2の実施の形態について説明する。なお、ここでは、上記第1の実施の形態と同様の構成について、同様の符号を付してその説明を省略する。
【0031】
図4は本発明の第2の実施に係る配線基板の構成を示す断面図である。本実施の形態では、第1の実施の形態において、差動伝送線路3を構成する各配線4の上面及びこれらの配線4間のスペース部5にそれぞれ第1の誘電体6を設けたのに対して、各配線4間のスペース部5にだけ第1の誘電体6を設けている。
【0032】
このように、差動伝送線路3を構成する配線間のギャップを埋めるように第1の誘電体6を設けたことで、電磁界の分布を一組の差動伝送線路内に集中させることができるから、クロストークノイズをさらに抑制することができる。
【0033】
なお、配線4間に第1の誘電体6を設けることで、差動伝送線路3の特性インピーダンスが変動することになる。しなしながら、予め、誘電体の比誘電率の値や配線の長さ寸法および幅寸法などを考慮することで、伝送される信号波形の形状への影響を防止することができる。
【0034】
上述した実施の形態によれば、以下のような構成が得られる。
【0035】
(付記1)誘電体基板1上に配設され、所定間隔を存して並設された一対の配線を有する差動伝送線路3が複数個形成されてなる配線基板において、差動伝送線路3を形成する第1の伝送線路4と第2の伝送線路4の間に誘電体を具備することを特徴とする配線基板。
【0036】
(付記2)上記誘電体基板1の上面に第1の誘電体を、上記誘電体基板1全面に覆うように第2の誘電体層が形成し、第2の誘電体の比誘電率が上記誘電体基板1自体の比誘電率と同等であることを特徴とする付記1記載の配線基板。
【0037】
なお、本発明は、上記実施の形態そのままに限定されるものではなく、実施の段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。
【0038】
【発明の効果】
本発明によれば、各配線の周辺に生じる電磁界を配線ペア内に集中させることで、配線ペアの外側における電磁界が弱く抑えられるから、隣接する差動伝送線路間のクロストークノイズを抑制することができる。
【図面の簡単な説明】
【図1】本発明の配線基板の第1の実施の形態に係る配線基板の構成を示す断面図。
【図2】同実施の形態に係る伝送信号を示し、(a)は差動伝送線路を伝播する信号を示す概略図、(b)は(a)に示す信号を複数の差動伝送線路に同時に伝送させた場合に差動伝送線路間に生じるクロストークノイズを示す概略図。
【図3】同実施の形態の変形例に係る配線基板の構成を示す断面図。
【図4】本発明の第2の実施の形態に係る配線基板の構成を示す断面図。
【図5】従来の配線基板の構成を示す断面図。
【図6】従来に係る伝送信号を示し、(a)は差動伝送線路を伝播する信号を示す概略図、(b)は(a)に示す信号を隣接する差動伝送線路に同時に伝送させた場合に差動伝送線路間に生じるクロストークノイズを示す概略図。
【符号の説明】
1…誘電体基板(基板)、4…配線、3…差動伝送線路、6…第1の誘電体、7…第2の誘電体。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board having a microstrip line structure having a plurality of differential transmission lines and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in electronic devices such as notebook personal computers, the operating frequency of a mounted microprocessor has entered the order of GHz, and rapid improvement has been achieved. However, the signal speed propagating through the printed circuit board is still, for example, about 133 MHz or 266 MHz in terms of the signal speed between the memory and the memory controller.
[0003]
This is due to the use of branch wiring as the form of the transmission line in order to transmit signals from the memory controller to a plurality of memories. That is, if there is a branch in the transmission line, the waveform of the pulse signal is disturbed due to reflection at the branch point, and there is a limit in increasing the transmission speed.
[0004]
Therefore, as a solution for increasing the signal transmission speed on a substrate, it has been studied to use a one-to-one transmission method to eliminate wiring branching and to use differential wiring. Normally, the differential transmission system has an advantage that it is more resistant to common mode noise due to the swing of the ground plane than the single-ended transmission system using the return current of a signal as the ground plane.
[0005]
However, when the one-to-one differential transmission system is used, while having the above-described advantages, the number of wirings is twice as large as the number of memories as compared with a wiring structure having branches. Therefore, a large wiring area is required to transmit a plurality of signals through the one-to-one differential transmission line.
[0006]
In high-speed data transmission, a wiring board having a microstrip line structure is often used. As shown in FIG. 5, this wiring board has a dielectric board b provided with a ground plane conductor a on the lower surface. The plurality of differential transmission lines c (only two are shown) are provided on the upper surface of the dielectric substrate b, and a dielectric layer d is provided thereon so as to cover the differential transmission lines c. b It is formed to a substantially uniform thickness over the entire surface.
[0007]
As shown in FIG. 6A, signals having mutually opposite voltage amplitudes are transmitted to each of the wires constituting each differential transmission line. Therefore, the electromagnetic field generated by signal transmission has a distribution that closes in these wirings, but also in wirings between other adjacent differential transmission lines, when these have voltage amplitudes in opposite directions, Large electromagnetic interference may occur, and may appear as crosstalk noise between the differential transmission lines as shown in FIG.
[0008]
Therefore, as shown in FIG. 5, in the conventional configuration, the crosstalk noise between the differential transmission lines is reduced by setting the wiring pitch between the differential transmission lines to about twice the width of the wiring. Was.
[0009]
[Problems to be solved by the invention]
Therefore, in the above-described wiring board, there is a limit in narrowing the pitch interval between the differential transmission lines, and large crosstalk noise may occur when mounted at high density.
[0010]
The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the influence of crosstalk noise even when high-density mounting is performed using a one-to-one differential transmission system. It is to provide a substrate.
[0011]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the present invention is configured as follows.
[0012]
(1) A wiring board having at least one set of wirings forming a differential transmission line among lines forming a microstrip line by a transmission line and another conductive layer, wherein the differential transmission line is It has a dielectric portion having a higher relative dielectric constant than a dielectric disposed between air and another pair of differential transmission lines, which connects between respective wirings constituting the dynamic transmission line. I do.
[0013]
(2) The wiring board according to (1), wherein the dielectric portion is provided between opposing surfaces of the respective wirings constituting the differential transmission line.
[0014]
(3) A method for manufacturing a wiring board having at least one set of wirings forming a differential transmission line among lines constituting a microstrip line by a transmission line and another conductive layer, wherein the differential transmission line is A first supply step of supplying a first dielectric having a higher relative dielectric constant than air to each of the transmission lines and the gaps between the transmission lines, and a gap on the transmission lines and between the transmission lines. And a second supplying step of supplying a second dielectric having a relative permittivity smaller than that of the first dielectric.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0016]
FIG. 1 is a cross-sectional view showing a configuration of a wiring board according to a first embodiment of the present invention, FIG. 2A is a schematic diagram showing a signal transmitted through a differential transmission line, and FIG. FIG. 5 is a schematic diagram illustrating crosstalk noise generated between the differential transmission lines when the signal illustrated in FIG.
[0017]
The wiring board shown in FIG. 1 has a rectangular plate-shaped dielectric substrate 1. On the lower surface of the dielectric substrate 1, a thin plate-like ground conductor 2 (another conductive layer) is provided in close contact, and on the upper surface, a plurality of differential transmission lines 3 (only two pairs are shown) are provided at predetermined intervals G. In the present embodiment, they are arranged side by side with a gap 21 made of about 1 × 10 −4 [m].
[0018]
Each differential transmission line 3 is composed of a pair of wirings 4 arranged substantially in parallel, and these wirings 4 have the same signal inverted in phase as indicated by + and-in FIG. Is transmitted in a state where As shown in FIG. 1, each wiring 4 is formed of a metal plate having a width of W, which is about 1 × 10 −4 [m] in this embodiment. In the embodiment, the space portion 5 is formed of about 1 × 10 −4 [m].
[0019]
A first dielectric 6 (dielectric part) is in close contact with the upper surface of the wiring 4 constituting the differential transmission line 3 and the space 5 between these wirings 4 so as to connect the two wirings 4. Is provided. As a material for the first dielectric 6, a solder resist made of an epoxy resin having a relative dielectric constant of 4 to 5 is used. That is, since the air layer outside the first dielectric 6 has a relative dielectric constant of approximately 1, the inside of each first dielectric 6 has a larger relative dielectric constant than its surroundings.
[0020]
Next, a method of forming the first dielectric 6 on the differential transmission line 3 provided on the upper surface of the dielectric substrate 1 will be described.
[0021]
When the first dielectric 6 is formed on the differential transmission line 3, screen printing is used. That is, by screen printing, on the upper surface of the dielectric substrate 1, the sum of the width dimension W of two wirings 4 and the spacing dimension S of the space portion 5 between the wirings 4, that is, 2W + S solder resist supply section 22, and This can be realized by alternately forming the solder resist non-supply portions 23 having the spacing dimension G between the differential transmission lines 3.
[0022]
However, in actuality, the solder resist supply unit 22 and the solder resist non-supply unit 23 may have substantially the same size in consideration of the spread of the applied solder resist. When screen printing is used in this manner, even when the wiring pitch becomes finer due to high-density mounting, it is possible to cope with the finer screen printing. Alternatively, the first dielectric 6 may be provided only between the wirings 4 that selectively form a pair using a photosensitive polyimide resin or epoxy resin.
[0023]
According to the wiring board having the above configuration, the first dielectric 6 is provided on the upper surfaces of the pair of wirings 4 constituting the differential transmission line 3 and on the space 5 between the wirings 4 so as to connect the two wirings 4. Was. That is, by making the relative dielectric constant around each differential transmission line 3 larger than the outside of the first dielectric 6, the relative dielectric constant in the gap between the adjacent differential transmission lines 3 is relatively reduced. . As a result, the value of the mutual capacitance between the differential transmission lines 3 relatively decreases, and the coupling capacitance between the differential transmission lines 3 decreases.
[0024]
Therefore, the electromagnetic field generated around each wiring 4 due to signal transmission concentrates inside the first dielectric 6 having a relatively large relative dielectric constant, so that the electromagnetic field is generated outside the first dielectric 6. Will be reduced. As a result, as shown in FIG. 2B, crosstalk noise generated between the differential transmission lines 3 can be reduced as compared with the conventional noise level shown in FIG. 6B.
[0025]
Since the relative permittivity is increased by providing the first dielectric 6 within each pair of wires 4 constituting the differential transmission line 3, the value of the mutual capacitance is increased, and mutual noise is received. Although it is easier, the same signal is transmitted to each wiring 4 in a state where the phases are inverted, and the receiving side inverts the phase of the signal from one wiring 4 and adds them up. Since the noise component is used, the noise component is canceled and the influence of the crosstalk noise is almost eliminated.
[0026]
FIG. 3 is a cross-sectional view illustrating a configuration of a wiring board according to a modified example of the first embodiment. In this modification, a second dielectric 7 is formed over the entire upper surface of the dielectric substrate 1 so as to cover the first dielectric 6 on the differential transmission line 3. As a material of the second dielectric 7, a material having a relative dielectric constant smaller than that of the first dielectric 6 is used.
[0027]
Therefore, as described above, the relative permittivity around the differential transmission line 3 can be made larger than the outside, so that the electromagnetic field generated by signal transmission can be concentrated inside the first dielectric 6. it can. Thereby, the influence of the crosstalk noise can be suppressed as described above.
[0028]
Further, by providing the second dielectric 7 in this manner, the first dielectric 6 can be formed of the first dielectric 6 without using a dielectric having a large relative dielectric constant. By using a dielectric having a relative permittivity smaller than that of the dielectric 6, the same effect as described above can be obtained. That is, it is only necessary that the relative permittivity of the first dielectric 6 can be made relatively larger than the relative permittivity of the second dielectric 7.
[0029]
Further, by forming a layer of the second dielectric 7 over the entire upper surface of the dielectric substrate 1, the entire surface of the wiring 4 can be covered with the second dielectric 7, so that the corrosion of the wiring 4 is prevented. can do.
[0030]
Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0031]
FIG. 4 is a sectional view showing a configuration of a wiring board according to a second embodiment of the present invention. In the present embodiment, the first dielectric 6 is provided on the upper surface of each wiring 4 constituting the differential transmission line 3 and the space portion 5 between these wirings 4 in the first embodiment. On the other hand, the first dielectric 6 is provided only in the space 5 between the wirings 4.
[0032]
By providing the first dielectric 6 so as to fill the gap between the wirings forming the differential transmission line 3, the distribution of the electromagnetic field can be concentrated in one set of the differential transmission lines. Therefore, crosstalk noise can be further suppressed.
[0033]
The provision of the first dielectric 6 between the wirings 4 causes the characteristic impedance of the differential transmission line 3 to fluctuate. However, by considering in advance the value of the relative dielectric constant of the dielectric, the length and width of the wiring, and the like, it is possible to prevent the influence on the shape of the transmitted signal waveform.
[0034]
According to the above-described embodiment, the following configuration is obtained.
[0035]
(Supplementary Note 1) In a wiring board having a plurality of differential transmission lines 3 provided on a dielectric substrate 1 and having a pair of wirings arranged in parallel at a predetermined interval, the differential transmission lines 3 Wherein a dielectric is provided between the first transmission line 4 and the second transmission line 4 that form the wiring board.
[0036]
(Supplementary Note 2) A first dielectric is formed on the upper surface of the dielectric substrate 1 and a second dielectric layer is formed so as to cover the entire surface of the dielectric substrate 1, and the relative permittivity of the second dielectric is as described above. 2. The wiring board according to claim 1, wherein the relative dielectric constant of the dielectric board 1 itself is equal to that of the wiring board.
[0037]
It should be noted that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the components without departing from the scope of the invention at the stage of implementation. Various inventions can be formed by appropriately combining a plurality of components disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment.
[0038]
【The invention's effect】
According to the present invention, by concentrating the electromagnetic field generated around each wiring in the wiring pair, the electromagnetic field outside the wiring pair can be weakly suppressed, so that the crosstalk noise between adjacent differential transmission lines is suppressed. can do.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a configuration of a wiring board according to a first embodiment of the present invention;
FIGS. 2A and 2B show transmission signals according to the embodiment, FIG. 2A is a schematic diagram showing signals propagating through a differential transmission line, and FIG. 2B is a diagram showing the signal shown in FIG. FIG. 4 is a schematic diagram illustrating crosstalk noise generated between differential transmission lines when transmitting signals simultaneously.
FIG. 3 is an exemplary sectional view showing the configuration of a wiring board according to a modification of the embodiment;
FIG. 4 is a cross-sectional view illustrating a configuration of a wiring board according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view illustrating a configuration of a conventional wiring board.
FIGS. 6A and 6B show transmission signals according to the related art, wherein FIG. 6A is a schematic diagram showing a signal propagating through a differential transmission line, and FIG. 6B is a diagram showing a case where the signal shown in FIG. FIG. 3 is a schematic diagram showing crosstalk noise generated between differential transmission lines when the transmission is performed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dielectric substrate (substrate), 4 ... wiring, 3 ... differential transmission line, 6 ... 1st dielectric, 7 ... 2nd dielectric.

Claims (3)

伝送線路と他の導電層とによりマイクロストリップ線路を構成する線路のうち差動伝送線路を形成する少なくとも一組の配線を有する配線基板であって、
上記差動伝送線路は、上記差動伝送線路を構成するそれぞれの配線間を連結する、空気及び他の組の差動伝送線路との間に配設される誘電体よりも比誘電率が高い誘電体部を有することを特徴とする配線基板。
A wiring board having at least one pair of wirings forming a differential transmission line among lines forming a microstrip line by a transmission line and another conductive layer,
The differential transmission line has a higher relative permittivity than a dielectric disposed between air and another pair of differential transmission lines, which connects the respective wirings constituting the differential transmission line. A wiring board having a dielectric part.
上記誘電体部は、上記差動伝送線路を構成するそれぞれの配線の対向面間に設けられていることを特徴とする請求項1記載の配線基板。2. The wiring board according to claim 1, wherein the dielectric portion is provided between opposing surfaces of respective wirings constituting the differential transmission line. 伝送線路と他の導電層とによりマイクロストリップ線路を構成する線路のうち差動伝送線路を形成する少なくとも一組の配線を有する配線基板の製造方法であって、
上記差動伝送線路を構成するそれぞれの上記伝送線路上及び上記伝送線路間の間隙に空気よりも比誘電率の高い第1の誘電体を供給する第1の供給工程と、
上記伝送線路上及び上記伝送線路間の間隙に上記第1の誘電体よりも比誘電率の小さい第2の誘電体を供給する第2の供給工程と、
を具備することを特徴とする配線基板の製造方法。
A method of manufacturing a wiring board having at least one pair of wirings forming a differential transmission line among lines forming a microstrip line by a transmission line and another conductive layer,
A first supply step of supplying a first dielectric having a higher relative dielectric constant than air to each of the transmission lines constituting the differential transmission line and to a gap between the transmission lines;
A second supplying step of supplying a second dielectric having a relative permittivity smaller than that of the first dielectric to the gap between the transmission lines and between the transmission lines;
A method for manufacturing a wiring board, comprising:
JP2003098384A 2003-04-01 2003-04-01 Wiring board and manufacturing method of the same Pending JP2004304134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098384A JP2004304134A (en) 2003-04-01 2003-04-01 Wiring board and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098384A JP2004304134A (en) 2003-04-01 2003-04-01 Wiring board and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2004304134A true JP2004304134A (en) 2004-10-28

Family

ID=33409926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098384A Pending JP2004304134A (en) 2003-04-01 2003-04-01 Wiring board and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2004304134A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235408A (en) * 2007-03-19 2008-10-02 Fujitsu Ltd Method for manufacturing differential transmission circuit board and differential transmission circuit board
KR100983510B1 (en) 2008-02-18 2010-09-27 포항공과대학교 산학협력단 Data transmission circuit and method
JP2013054811A (en) * 2011-09-06 2013-03-21 Dainippon Printing Co Ltd Substrate for suspension, suspension, suspension with element, hard disk drive and production method for substrate for suspension
CN103094653A (en) * 2011-11-04 2013-05-08 索尼公司 Electronic circuit, method of manufacturing electronic circuit, and mounting member
US9781824B2 (en) 2014-04-01 2017-10-03 Oclaro Japan, Inc. Differential transmission circuit, optical module and manufacturing method of differential transmission circuit
CN113473702A (en) * 2021-05-31 2021-10-01 浪潮电子信息产业股份有限公司 Electronic equipment and printed circuit board thereof
JP2022181086A (en) * 2021-05-25 2022-12-07 日本放送協会 signal generator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235408A (en) * 2007-03-19 2008-10-02 Fujitsu Ltd Method for manufacturing differential transmission circuit board and differential transmission circuit board
KR100983510B1 (en) 2008-02-18 2010-09-27 포항공과대학교 산학협력단 Data transmission circuit and method
JP2013054811A (en) * 2011-09-06 2013-03-21 Dainippon Printing Co Ltd Substrate for suspension, suspension, suspension with element, hard disk drive and production method for substrate for suspension
CN103094653A (en) * 2011-11-04 2013-05-08 索尼公司 Electronic circuit, method of manufacturing electronic circuit, and mounting member
JP2013098888A (en) * 2011-11-04 2013-05-20 Sony Corp Electronic circuit, manufacturing method of electronic circuit, and packaging member
CN103094653B (en) * 2011-11-04 2017-09-22 索尼半导体解决方案公司 Electronic circuit, the manufacture method of electronic circuit and installing component
US9781824B2 (en) 2014-04-01 2017-10-03 Oclaro Japan, Inc. Differential transmission circuit, optical module and manufacturing method of differential transmission circuit
JP2022181086A (en) * 2021-05-25 2022-12-07 日本放送協会 signal generator
JP7682021B2 (en) 2021-05-25 2025-05-23 日本放送協会 Error tolerance evaluation device
CN113473702A (en) * 2021-05-31 2021-10-01 浪潮电子信息产业股份有限公司 Electronic equipment and printed circuit board thereof
CN113473702B (en) * 2021-05-31 2023-11-03 浪潮电子信息产业股份有限公司 Electronic equipment and printed circuit board thereof

Similar Documents

Publication Publication Date Title
JP3206561B2 (en) Multilayer wiring board
US6420778B1 (en) Differential electrical transmission line structures employing crosstalk compensation and related methods
US6366466B1 (en) Multi-layer printed circuit board with signal traces of varying width
US8907748B2 (en) Common-mode suppression filter for microstrip 10-Gb/s differential lines
US7271348B1 (en) Providing decoupling capacitors in a circuit board
US20080121421A1 (en) Printed circuit board
US9313890B2 (en) Attenuation reduction structure for high frequency signal contact pads of circuit board
US8476533B2 (en) Printed circuit board
US20030231473A1 (en) Printed wiring board for controlling signal transmission using paired inductance and capacitance
KR101308970B1 (en) Multi layer PCB for suppressing the unwanted electromagnetic fields and noise
US20070194434A1 (en) Differential signal transmission structure, wiring board, and chip package
KR101081592B1 (en) Printe circuit board
JPH09199818A (en) Inter-ground connection structure
JP4659087B2 (en) Differential balanced signal transmission board
JP2004304134A (en) Wiring board and manufacturing method of the same
JP4834937B2 (en) Multi-layer wiring board for high-frequency circuits
WO2009119849A1 (en) Composite wiring board
JP2009088063A (en) Semiconductor apparatus and method of designing the same
JP4660738B2 (en) Printed wiring board and electronic device
JP2002057418A (en) Printed wiring board
JP2008166357A (en) Printed circuit board
US6495911B1 (en) Scalable high frequency integrated circuit package
JP2005183790A (en) Printed-wiring board
JP2006080162A (en) Printed wiring board
KR100448194B1 (en) printed circuit board