[go: up one dir, main page]

JP2004303856A - Substrate manufacturing method - Google Patents

Substrate manufacturing method Download PDF

Info

Publication number
JP2004303856A
JP2004303856A JP2003093288A JP2003093288A JP2004303856A JP 2004303856 A JP2004303856 A JP 2004303856A JP 2003093288 A JP2003093288 A JP 2003093288A JP 2003093288 A JP2003093288 A JP 2003093288A JP 2004303856 A JP2004303856 A JP 2004303856A
Authority
JP
Japan
Prior art keywords
hole
substrate
thermoplastic resin
layer
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003093288A
Other languages
Japanese (ja)
Other versions
JP4113024B2 (en
JP2004303856A5 (en
Inventor
Masanori Nazuka
正範 名塚
Yasuo Kaneda
安生 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2003093288A priority Critical patent/JP4113024B2/en
Publication of JP2004303856A publication Critical patent/JP2004303856A/en
Publication of JP2004303856A5 publication Critical patent/JP2004303856A5/ja
Application granted granted Critical
Publication of JP4113024B2 publication Critical patent/JP4113024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a substrate by which a metallic conductive layer is formed selectively on a hole inner wall with a simple constitution. <P>SOLUTION: The manufacturing method for a substrate contains at least a process in which thermoplastic resin layers 4 are formed on both surfaces of the substrate for forming a circuit by using the substrate 10 for forming the circuit to which a hole 3 is formed, a process in which the resin layers in the opening section of the hole are removed and the thermoplastic resin layers are formed on both surfaces of the substrate with the exception of the opening section, a process in which the metallic conductive layers 2 are formed on the inner walls of the through-hole by a plating treatment, and a process in which the resin layers are removed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、サブトラクティブ法によりプリント配線板を作製するための基板の製造方法に係り、特に貫通孔または/及び非貫通孔(以下、これらをまとめて孔という)を有する回路形成用基板の製造方法に関するものである。
【0002】
【従来の技術】
プリント配線板の製造方法は、サブトラクティブ法とアディティブ法の2つに大別される。サブトラクティブ法は、絶縁性基板に銅等の金属導電層を設けた回路形成用基板上にレジスト画像を形成し、そのレジスト画像で被覆されていない金属導電層をエッチングにより取り除く方法である。アディティブ法は、金属めっき処理により絶縁性基板上の配線パターン部にのみ金属導電層を形成する方法である。
【0003】
また、近年の電子機器の小型、多機能化に伴い、機器内部に使用されるプリント配線板も高密度化や回路パターンの微細化が進められており、そのような条件を達成する手段としては、プリント配線板の多層化が挙げられる。多層プリント配線板は、多層構造を成すために、一般にスルーホール、バイアホールと呼ばれる、内壁を金属導電層で被覆した貫通孔、非貫通孔といった孔を通じて各層間の導通が行われている。
【0004】
一般に、上記内壁を金属導電層で被覆した孔を形成するには、絶縁性基板の両面に金属導電層を設けた銅張り積層板もしくは多層プリント配線板の製造過程における外層板(以下、回路形成用基板)へ、ドリルまたはレーザー加工等により孔を形成した後、孔の内壁を含む基板の両面に無電解めっき処理を施し、続いて電解めっき処理により所定の厚みの金属導電層を貫通孔内壁に形成する。
【0005】
しかしながら、上記のように孔を形成する場合、回路形成用基板の両面の金属導電層上に、さらに電解めっき処理による第2の金属導電層が形成されることになり、孔内壁に所定厚みの金属導電層を形成しようとすると、第2の金属導電層もそれ相応の厚みを有することになって、必要以上にめっき液を消費してしまうばかりでなく、以降の回路形成に伴う不要の金属導電層の除去における処理液負荷も増加する。
【0006】
また、回路形成用基板に貫通孔を形成し、ドライフィルム状のめっきレジストをラミネートし、ランドを覆う部分を含めたスルーホール部のドライフィルムを除去した後、金属めっき処理する方法によれば、ランドを覆う部分を含めたスルーホールの開口部を選択的に除去するために、光硬化性樹脂等のフォトポリマーを露光したり、レーザー加工等の位置合わせを必要とする加工が必要となる。また、同様に、絶縁性基板の両面に金属導電層を形成した回路形成用基板に貫通孔を形成し、一般的なサブトラクティブ法によりスルーホール部以外の配線パターンを形成した後、ドライフィルム状のめっきレジストをラミネートし、ランドを覆う部分を含めたスルーホール部のドライフィルムを除去した後、金属めっき処理する方法によっても、ランドを覆う部分を含めたスルーホールの開口部を選択的に除去するために、光硬化性樹脂等のフォトポリマーを露光したり、レーザー加工等の位置合わせを必要とする加工が必要となるばかりでなく、スルーホール近傍の配線パターンとスルーホールめっきが意図せず短絡することがあった(例えば、特許文献1参照)。
【0007】
【特許文献1】
特開平7−170068号公報(第1〜2頁)
【0008】
【発明が解決しようとする課題】
したがって、本発明は、簡易な構成で孔内壁に選択的に金属導電層を形成する基板の製造方法を提供しようとするものである。
【0009】
【課題を解決するための手段】
上記問題を解決するために鋭意検討した結果、貫通孔または/及び非貫通孔を形成した回路形成用基板の両面に熱可塑性樹脂層を形成し、次に該孔の開口部だけ熱可塑性樹脂層を除去し、続いて該孔の内壁に金属導電層を形成した後、熱可塑性樹脂層を除去する基板の製造方法を適用すれば良いことを見いだした。
【0010】
また、貫通孔または/及び非貫通孔を形成した回路形成用基板における貫通孔または/及び非貫通孔の内壁面を含む回路形成用基板の両面に金属導電層を形成し、次に該回路形成用基板の両面に熱可塑性樹脂層を形成し、該孔の開口部の熱可塑性樹脂層を除去した後、該孔の内壁に金属導電層を形成し、しかる後に熱可塑性樹脂層を除去する基板の製造方法を適用しても良いことを見いだした。
【0011】
【発明の実施の形態】
以下、本発明の基板の製造方法について詳細に説明する。
【0012】
まず、本発明の実施形態を図を用いて説明する。本発明の第1の実施形態を示す断面図を図1に示す。絶縁性基板1の両面に金属導電層2を設けた回路形成用基板10に貫通孔3を形成する(図1(b))。次に、熱可塑性樹脂層4とキャリアフィルム5から成るドライフィルムをラミネートした後(図1(c))、キャリアフィルム5と貫通孔の開口部の熱可塑性樹脂層とを除去し、開口部を除く回路形成用基板の両面に熱可塑性樹脂層を形成する(図1(d))。次いで、無電解銅めっきにより熱可塑性樹脂層以外の部分である孔内壁に無電解銅めっき層6を設け(図1(e))、さらにこの上に電解銅めっき処理により電解銅めっき層7を所定の厚みに形成する(図1(f))。その後、熱可塑性樹脂層4を除去する(図1(g))。さらに、必要に応じて貫通孔エッジ部の余剰なめっきを研磨することにより、貫通孔を有する基板が製造される(図1(h))。
【0013】
上記では貫通孔を例にとって説明したが、非貫通孔を有する場合であっても、非貫通孔の開口部の熱可塑性樹脂層を貫通孔の場合と同様に除去すれば、他の工程は貫通孔を有する場合と同様の工程となる。また、上記第1の実施形態では、孔の内壁の金属導電層を無電解銅めっき層6及び電解銅めっき層7により構成したが、所望により無電解銅めっき層6のみでもよく、また孔の内壁に金属導電層が形成できれば、まったくめっき法によらなくてもよい。
【0014】
これにより、孔の内壁の金属導電層をめっき法により形成するとしても、回路形成用基板表面に不要なめっきを施す必要がなく、不必要なめっき液の消費を抑止し得るばかりでなく、以降の回路形成に伴う回路形成面の不要の金属導電層の除去における処理液負荷も大幅に軽減される。
【0015】
本発明の第2の実施形態を示す断面図を図2に示す。上記第1の実施形態と同様、貫通孔のみを有する基板を用いて説明する。孔の内壁のに形成する金属導電層等についても上記第1の実施形態に準ずる。絶縁性基板1の両面に金属導電層2を設けた回路形成用基板10に貫通孔3を形成する(図2(b))。次に、貫通孔3の内壁を含む基板表面に無電解銅めっき処理を施して無電解銅めっき層6を形成し(図2(c))、熱可塑性樹脂層4とキャリアフィルム5から成るドライフィルムをラミネートした後(図2(d))、キャリアフィルム5と貫通孔の開口部の熱可塑性樹脂層とを除去し、開口部を除く回路形成用基板の両面に熱可塑性樹脂層を形成する(図2(e))。さらに、電解銅めっき処理により電解銅めっき層7を所定の厚みに形成する(図2(f))。その後、熱可塑性樹脂層4を除去し(図2(g))、さらに必要に応じて貫通孔エッジ部の余剰なめっきを研磨することにより貫通孔を有する基板が製造される。
【0016】
次に、本発明の基板の製造方法に係わる各種材料について説明する。本発明に係わる貫通孔または/及び非貫通孔を形成した回路形成用基板は、基本的には、絶縁性基板の両面に金属導電層を設けた積層板、あるいは貫通孔及び非貫通孔のごとき孔を形成する工程を有する多層プリント配線板製造時の孔形成前の外層板(内層に絶縁層を介して配線パターン層、グランド層等を有する積層板)、ビルドアップ時の非貫通孔を形成する内層板等に対して、ポンチ、ドリル、またはパルスレーザー等を用いて貫通孔及び非貫通孔のごとき孔を形成することによって得られる。例えば、貫通孔及び非貫通孔による層間接続を行う上記多層プリント配線板に関しては、「JPCA規格、ビルドアップ配線板」(1998年5月、日本プリント回路工業会発刊)に記載されており、一般的なスルーホール、バリードバイアホール、ブラインドバイアホール等、基本的にサブトラクティブ法で適用可能なものに対応することが可能である。
【0017】
また、上記の絶縁性基板の両面に金属導電層を設けた積層板としては、例えば「プリント回路技術便覧−第二版−」((社)プリント回路学会編、日刊工業新聞社発刊)に記載されているものを使用することができる。絶縁性基板としては、紙基材またはガラス基材にエポキシ樹脂またはフェノール樹脂等を含浸させたもの、ポリエステルフィルム、ポリイミドフィルム等が挙げられる。金属導電層の材料としては、例えば、銅、銀、アルミ等が挙げられる。
【0018】
本発明の基板の製造方法に係わる金属めっき処理の方法としては、例えば、めっき導電層が銅の場合には、「表面実装技術」(1993年6月号、日刊工業新聞社発刊)等記載の無電解めっき工程、無電解めっき−電解めっき工程、直接電解めっき工程等を適用することができる。
【0019】
本発明に係わる回路形成用基板の両面に形成する熱可塑性樹脂層は、基本的には、孔の開口部に於いても孔内部に熱可塑性樹脂が入らず、孔の開口部を含む回路形成基板の面上に略均一な厚みで形成されれば良い。このように熱可塑性樹脂層を形成する方法としては、ドライフィルムラミネート法、ロールコート法、テーブルコート法、及びカーテンコート法等が挙げられるが、ロールコート法、テーブルコート法、及びカーテンコート法では塗布液の粘度等の制約が大きくなるので、好ましくはドライフィルムラミネート法を用いる。いずれの方法によっても、熱可塑性樹脂層の厚みは5μmから30μm程度であれば良く、10μmから15μmが好適である。
【0020】
ドライフィルムラミネート法で用いるドライフィルムは、少なくともキャリアフィルムと熱可塑性樹脂層の2層から成っていれば良く、熱可塑性樹脂層は媒体に溶解せしめてキャリアフィルム上に塗布及び乾燥して形成する。キャリアフィルムとしては、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、アラミド、カプトン、ポリメチルペンテン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のフィルムを使用することができる。
【0021】
その他、熱可塑性樹脂のみからなるキャリアフィルムを有さないフィルムをラミネートまたはコートしてもよいし、キャリアフィルムの有無に関係なく、熱可塑性樹脂層上に接着層を有し、接着層等を介して回路形成用基板の両面へ熱可塑性樹脂層を設けてもよい。また、場合によっては、保存時の物理的衝撃や組成の経時変化に対する安定性の面から、熱可塑性樹脂層等を挟んでキャリアフィルムと反対面にポリエチレン等の保護フィルムを設けても良い。さらに、熱可塑性樹脂層を塗布する面の接着性を制御するため、コロナ処理やプライマー処理が施されたフィルムを用いることも可能である。
【0022】
本発明に係わる熱可塑性樹脂層は、基本的に貫通孔及び非貫通孔のごとき孔の内壁に金属導電層を形成する際に耐性を有するものであり、金属導電層をめっきに形成する場合は、それに使用するめっき液に不溶な熱可塑性樹脂である。その具体例としては、少なくとも酸性の電解めっき液に耐える耐酸性を有する樹脂としては、スチレン/マレイン酸モノエステル共重合体、メタクリル酸/メタクリル酸エステル共重合体、スチレン/メタクリル酸/メタクリル酸エステル共重合体、アクリル酸/メタクリル酸エステル共重合体、スチレン/アクリル酸/メタクリル酸エステル共重合体、アクリル酸エステル類共重合体、メタクリル酸エステル類共重合体、アクリル酸エステル/メタクリル酸エステル共重合体、酢酸ビニル/クロトン酸共重合体、及び酢酸ビニル/クロトン酸/メタクリル酸エステル共重合体等の、スチレン、(メタ)アクリル酸エステル、酢酸ビニル、及び安息香酸ビニル単量体等、及び(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸等もしくは無水マレイン酸及びフマル酸のモノエステル等のカルボキシル基含有単量体から選択した2種以上の単量体の共重合体、フェノール樹脂等が挙げられる。また、アルカリ性の無電解銅めっき液等に耐える樹脂が必要な場合は酸性の官能基を有さない単量体から共重合樹脂を得れば良い。さらに、本発明に係わる熱可塑性樹脂層に使用する熱可塑性樹脂層には、2種以上の熱可塑性樹脂を混合して用いても良い。
【0023】
熱可塑性樹脂溶液を各種コート法によって熱可塑性樹脂層を設ける場合の塗布液の作製に使用する溶剤としては、本発明に熱可塑性樹脂を均一に溶解できるものであれば良く、具体的には、メタノール、エタノール、1−プロパノール等のアルコール類、THF、1,4−ジオキサン、1,2−ジメトキシエタン、エチレングリコールモノメチルエーテル、1−メトキシ−2−プロパノール等のエーテル類、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル、酢酸プロピル、酢酸イソブチル等のエステル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド類、ジメチルスルホキシド等が挙げられるが、これらに限定されるものではなく、塗布方法と乾燥条件等によって適当なものを単独または2種以上を選択して使用できる。塗布液の固形分濃度についても、塗布方法と乾燥条件等によって適切な濃度を選択できる。また、塗布液には必要に応じて、熱可塑性樹脂の他に熱可塑性樹脂層の膜物性、塗布液の粘度等を改良する目的で密着促進剤等の添加剤を加えても良い。
【0024】
また、本発明においては、必要に応じて熱可塑性樹脂層と回路形成用基板の間に、回路形成用基板との接着等の向上のため、必要に応じカゼイン、ポリビニルアルコール、ヒドロキシエチルセルロース、フェノール樹脂、スチレン/無水マレイン酸共重合体、マレイン酸/アクリル酸共重合体、アクリル酸/メタクリル酸共重合体、ポリアクリル酸、及びこれら高分子電解質のアルカリ金属塩及び/またはアンモニウム塩、エタノールアミン類及びそれらの塩酸塩、しゅう酸塩、リン酸塩、クエン酸、及び酒石酸等のヒドロキシカルボン酸、及びそれらの塩、グリシン、アラニン、グルタミン酸等のアミノ酸、スルファミン酸等の脂肪族アミノスルホン酸、エチレンジアミン四酢酸、ニトリロ三酢酸、トリエチレンンテトラミン六酢酸等の(ポリ)アミノポリ酢酸、アミノトリ(メチレンホスホン)酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)等の(ポリ)アミノポリ(メチレンホスホン酸)及びその類似物、及びこれら化合物の酸基の少なくとも一部がアルカリ金属塩或いはアンモニウム塩等からなる中間層を設けても良い。
【0025】
中間層にはさらに、酸化チタン、アルミナ、シリカ、ジルコニア、及び酸化アンチモン等のサブミクロン微粒子を併用しても良い。中間層の厚みには特に制限はないが、熱可塑性樹脂層の接着性を目的とするのであれば、用いる回路形成用基板に関係なく厚くとも5μm程度で良い。
【0026】
【実施例】
以下本発明を実施例により詳説するが、本発明はその主旨を超えない限り、下記実施例に限定されるものではない。
【0027】
実施例1
熱可塑性樹脂として、2−エチルヘキシルアクリレート60部、メチルメタクリレート25部、及びフェノキシエチルメタクリレート15部から成る共重合樹脂を酢酸エチル中に溶解し、固形分25wt%としたものを調液した。片面にコロナ処理を施した厚み16μmのポリエチレンテレフタラートフィルム(三菱化学ポリエステルフィルム(株)製、H500)のコロナ処理面上に、カーテンコート法を用いて、乾燥後の熱可塑性樹脂層が12μmとなるように塗布し、本発明に係わるドライフィルムを得た。また、回路形成用基板として、200×200×0.4mmの銅張り積層板(三菱ガス化学(株)製、EL170)を用い、ドリルで0.3μmの貫通孔を複数形成し、真空ラミネータを用いて100℃予熱条件で上記で調整したドライフィルムをラミネートした。その後、常温下でキャリアフィルムを剥離したところ、貫通孔の開口部の熱可塑性樹脂がキャリアフィルムに密着したまま剥離されていた。さらに、無電解銅めっき−電解銅めっき処理(奥野製薬(株)、OPCプロセスM)を施し、貫通孔内壁に厚さ10μmの銅めっき層を設けた後、2−プロパノールで回路形成用基板上の熱可塑性樹脂層を剥離し、最後にバフ研磨により貫通孔エッジ部の余剰な銅を研磨除去して貫通孔を有する基板を得た。得られた基板をパターン形成しヒートサイクル試験を行ったところ500サイクルまで問題は見られなかった。
【0028】
実施例2
熱可塑性樹脂として、2−エチルヘキシルアクリレート55部、メタクリル酸25部、及びフェノキシエチルメタクリレート20部から成る共重合樹脂を酢酸エチル中に溶解し、固形分25wt%としたものを調液した。片面にコロナ処理を施した厚み16μmのポリエチレンテレフタラートフィルム(三菱化学ポリエステルフィルム(株)製、H500)のコロナ処理面上に、カーテンコート法を用いて、乾燥後の熱可塑性樹脂層が12μmとなるように塗布し、本発明に係わるドライフィルムを得た。また、回路形成用基板として、200×200×0.4mmの銅張り積層板(三菱ガス化学(株)製、EL170)を用い、ドリルで0.3μmの貫通孔を複数形成し、無電解銅めっきを貫通孔内壁を含む全面に施した。真空ラミネータを用いて100℃予熱条件で上記で調整したドライフィルムをラミネートした後、常温下でキャリアフィルムを剥離したところ、貫通孔の開口部の熱可塑性樹脂がキャリアフィルムに密着したまま剥離されていた。さらに、電解銅めっき処理を施し、貫通孔内壁に厚さ10μmの銅めっき層を設けた後、2%炭酸ナトリウム水溶液で回路形成用基板上の熱可塑性樹脂層を剥離し、最後にバフ研磨により貫通孔エッジ部の余剰な銅を研磨除去して貫通孔を有する基板を得た。得られた基板をパターン形成しヒートサイクル試験を行ったところ500サイクルまで問題は見られなかった。
【0029】
比較例
熱可塑性樹脂として、実施例2と同様の共重合樹脂を用い、それぞれ固形分に対して2−メチルアントラキノン1wt%、ペンタエリスリトール・トリメタクリレート25wt%を添加した塗布液を用いてネガ型のフォトポリマードライフィルムを得た。また、回路形成用基板として、200×200×0.4mmの銅張り積層板(三菱ガス化学(株)製、EL170)を用い、ドリルで0.3μmの貫通孔を複数形成し、無電解銅めっきを貫通孔内壁を含む全面に施した。真空ラミネータを用いて100℃予熱条件で上記で調整したドライフィルムをラミネートした後、貫通孔に対応したフィルムマスクを用いて、貫通孔の開口部とランド以外の部分を露光した。その後、常温下でキャリアフィルムを剥離したところ、貫通孔の開口部とランド部分の樹脂層がキャリアフィルムに密着したまま剥離されていた。さらに、電解銅めっき処理を施し、貫通孔内壁に厚さ10μmの銅めっき層を設けた後、2%水酸化ナトリウム水溶液で回路形成用基板上の熱可塑性樹脂層を剥離し、最後にバフ研磨により貫通孔エッジ部の余剰な銅を研磨除去して貫通孔を有する基板を得た。得られた基板を詳細に観察したところ、基板の端の方で露光パターン位置ズレに起因するめっき不良が見られた。パターン形成しヒートサイクル試験を行ったところ3サイクルで断線した。
【0030】
【発明の効果】
以上説明したごとく、本発明の基板の製造方法によれば、回路形成用基板表面に不要なめっきを施す必要が無いばかりか、フォトポリマーやレーザー加工の必要が無いので孔に対する位置合わせ精度に製品歩留まりが左右されることが無くなる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す断面図。
【図2】本発明の第2の実施形態を示す断面図。
【符号の説明】
1 絶縁性基板
2 金属導電層
3 貫通孔、孔
4 熱可塑性樹脂層
5 キャリアフィルム
6 無電解めっき層
7 電解めっき層
10 回路形成用基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a substrate for manufacturing a printed wiring board by a subtractive method, and in particular, to manufacturing a circuit forming substrate having a through hole and / or a non-through hole (hereinafter, collectively referred to as holes). It is about the method.
[0002]
[Prior art]
Manufacturing methods for printed wiring boards are broadly classified into two methods: a subtractive method and an additive method. The subtractive method is a method in which a resist image is formed on a circuit-forming substrate in which a metal conductive layer such as copper is provided on an insulating substrate, and the metal conductive layer not covered with the resist image is removed by etching. The additive method is a method of forming a metal conductive layer only on a wiring pattern portion on an insulating substrate by a metal plating process.
[0003]
In addition, with the recent miniaturization and multifunctionality of electronic devices, the density of printed wiring boards used inside the devices and the miniaturization of circuit patterns have been promoted. As means for achieving such conditions, And multilayered printed wiring boards. In the multilayer printed wiring board, in order to form a multilayer structure, conduction between layers is generally performed through holes such as through holes and non-through holes whose inner walls are covered with a metal conductive layer, which are generally called through holes and via holes.
[0004]
Generally, in order to form a hole in which the inner wall is covered with a metal conductive layer, an outer layer board (hereinafter referred to as a circuit forming board) in a manufacturing process of a copper-clad laminate or a multilayer printed wiring board having a metal conductive layer provided on both sides of an insulating substrate. After the hole is formed on the substrate using a drill or laser processing, both surfaces of the substrate including the inner wall of the hole are subjected to electroless plating, and then a metal conductive layer having a predetermined thickness is formed by electrolytic plating on the inner wall of the through hole. Formed.
[0005]
However, when the holes are formed as described above, a second metal conductive layer is further formed by electrolytic plating on the metal conductive layers on both surfaces of the circuit forming substrate, and a predetermined thickness is formed on the inner wall of the hole. If an attempt is made to form a metal conductive layer, the second metal conductive layer also has a corresponding thickness, which not only consumes the plating solution more than necessary, but also reduces unnecessary metal accompanying the subsequent circuit formation. The processing solution load in removing the conductive layer also increases.
[0006]
According to a method of forming a through hole in a circuit forming substrate, laminating a dry film-shaped plating resist, removing a dry film in a through hole portion including a portion covering a land, and then performing a metal plating process, In order to selectively remove the opening of the through hole including the portion covering the land, it is necessary to expose a photopolymer such as a photocurable resin or to perform processing such as laser processing that requires alignment. Similarly, a through hole is formed in a circuit forming substrate in which a metal conductive layer is formed on both surfaces of an insulating substrate, and a wiring pattern other than the through hole portion is formed by a general subtractive method. Laminating the plating resist and removing the dry film of the through hole including the part covering the land, and then selectively removing the opening of the through hole including the part covering the land also by the metal plating method In order to do this, not only is it necessary to expose a photopolymer such as a photocurable resin, or perform processing that requires alignment such as laser processing, but also the wiring pattern near the through-hole and the through-hole plating are not intended. In some cases, a short circuit occurred (see, for example, Patent Document 1).
[0007]
[Patent Document 1]
JP-A-7-17068 (pages 1-2)
[0008]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for manufacturing a substrate in which a metal conductive layer is selectively formed on the inner wall of a hole with a simple configuration.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, a thermoplastic resin layer is formed on both sides of a circuit forming substrate having a through hole and / or a non-through hole formed therein, and then the thermoplastic resin layer is formed only in the opening of the hole. It has been found that a method of manufacturing a substrate may be applied in which a metal conductive layer is formed on the inner wall of the hole, and then the thermoplastic resin layer is removed.
[0010]
Further, a metal conductive layer is formed on both sides of the circuit forming substrate including the inner wall surface of the through hole and / or the non-through hole in the circuit forming substrate having the through hole and / or the non-through hole, and then the circuit forming substrate is formed. A substrate on which a thermoplastic resin layer is formed on both sides of the substrate, and after removing the thermoplastic resin layer at the opening of the hole, a metal conductive layer is formed on the inner wall of the hole, and then the thermoplastic resin layer is removed. It has been found that the manufacturing method can be applied.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method for manufacturing a substrate of the present invention will be described in detail.
[0012]
First, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view illustrating a first embodiment of the present invention. A through hole 3 is formed in a circuit forming substrate 10 having a metal conductive layer 2 provided on both surfaces of an insulating substrate 1 (FIG. 1B). Next, after laminating a dry film composed of the thermoplastic resin layer 4 and the carrier film 5 (FIG. 1C), the carrier film 5 and the thermoplastic resin layer at the opening of the through hole are removed, and the opening is removed. A thermoplastic resin layer is formed on both sides of the circuit-forming substrate except for that shown in FIG. 1 (d). Next, an electroless copper plating layer 6 is provided on the inner wall of the hole which is a portion other than the thermoplastic resin layer by electroless copper plating (FIG. 1 (e)), and an electrolytic copper plating layer 7 is further formed thereon by electrolytic copper plating. It is formed to a predetermined thickness (FIG. 1F). Thereafter, the thermoplastic resin layer 4 is removed (FIG. 1 (g)). Further, a substrate having a through-hole is manufactured by polishing excess plating at the through-hole edge as necessary (FIG. 1 (h)).
[0013]
In the above description, the through-hole has been described as an example. However, even in the case of having a non-through-hole, if the thermoplastic resin layer at the opening of the non-through-hole is removed in the same manner as in the case of the through-hole, other steps are performed. The same process as in the case of having holes is performed. Further, in the first embodiment, the metal conductive layer on the inner wall of the hole is constituted by the electroless copper plating layer 6 and the electrolytic copper plating layer 7. However, if desired, only the electroless copper plating layer 6 may be used. As long as the metal conductive layer can be formed on the inner wall, it is not necessary to use the plating method at all.
[0014]
As a result, even if the metal conductive layer on the inner wall of the hole is formed by a plating method, it is not necessary to apply unnecessary plating to the surface of the circuit-forming substrate, and not only can unnecessary consumption of plating solution be suppressed, but also The processing liquid load in the removal of the unnecessary metal conductive layer on the circuit formation surface accompanying the circuit formation is greatly reduced.
[0015]
FIG. 2 is a cross-sectional view showing a second embodiment of the present invention. Similar to the first embodiment, description will be made using a substrate having only through holes. The metal conductive layer formed on the inner wall of the hole also conforms to the first embodiment. A through hole 3 is formed in a circuit forming substrate 10 in which a metal conductive layer 2 is provided on both surfaces of an insulating substrate 1 (FIG. 2B). Next, the surface of the substrate including the inner wall of the through hole 3 is subjected to an electroless copper plating treatment to form an electroless copper plating layer 6 (FIG. 2C), and a dry layer comprising the thermoplastic resin layer 4 and the carrier film 5. After laminating the film (FIG. 2D), the carrier film 5 and the thermoplastic resin layer at the opening of the through hole are removed, and the thermoplastic resin layers are formed on both surfaces of the circuit forming substrate except for the opening. (FIG. 2 (e)). Further, an electrolytic copper plating layer 7 is formed to a predetermined thickness by an electrolytic copper plating treatment (FIG. 2 (f)). Thereafter, the thermoplastic resin layer 4 is removed (FIG. 2 (g)), and if necessary, the excess plating at the edge of the through hole is polished to produce a substrate having a through hole.
[0016]
Next, various materials related to the substrate manufacturing method of the present invention will be described. The circuit-forming substrate having the through-holes and / or non-through-holes according to the present invention is basically a laminated board having a metal conductive layer provided on both sides of an insulating substrate, or a through-hole and a non-through-hole. Forming an outer layer board before forming a hole (laminate having a wiring pattern layer and a ground layer via an insulating layer in the inner layer) before manufacturing a multilayer printed wiring board having a step of forming a hole, and forming a non-through hole at the time of build-up It is obtained by forming holes, such as through holes and non-through holes, using a punch, a drill, a pulse laser, or the like on the inner layer plate or the like. For example, the above-mentioned multilayer printed wiring board that performs interlayer connection by through holes and non-through holes is described in "JPCA Standard, Build-up Wiring Board" (May 1998, published by Japan Printed Circuit Industries Association). Basic through-holes, buried via-holes, blind via-holes, and the like that can be basically applied by the subtractive method can be used.
[0017]
Examples of the laminated board having a metal conductive layer provided on both sides of the insulating substrate are described in, for example, "Printed Circuit Technology Handbook-Second Edition-" (edited by The Printed Circuit Society, published by Nikkan Kogyo Shimbun). You can use what is. Examples of the insulating substrate include a paper substrate or a glass substrate impregnated with an epoxy resin or a phenol resin, a polyester film, a polyimide film, and the like. Examples of the material of the metal conductive layer include copper, silver, aluminum, and the like.
[0018]
Examples of the metal plating method according to the method for manufacturing a substrate of the present invention include, for example, those described in “Surface Mounting Technology” (June 1993, published by Nikkan Kogyo Shimbun) when the plating conductive layer is copper. An electroless plating step, an electroless plating-electrolytic plating step, a direct electrolytic plating step, or the like can be applied.
[0019]
The thermoplastic resin layers formed on both sides of the circuit-forming substrate according to the present invention basically have a structure in which the thermoplastic resin does not enter the inside of the hole even at the opening of the hole, and the circuit formation includes the opening of the hole. What is necessary is just to form it with a substantially uniform thickness on the surface of a board | substrate. Examples of the method of forming the thermoplastic resin layer in this manner include a dry film laminating method, a roll coating method, a table coating method, a curtain coating method, and the like.In the roll coating method, the table coating method, and the curtain coating method, A dry film laminating method is preferably used because restrictions such as the viscosity of the coating liquid are increased. In any case, the thickness of the thermoplastic resin layer may be about 5 μm to 30 μm, and preferably 10 μm to 15 μm.
[0020]
The dry film used in the dry film laminating method only needs to be composed of at least two layers, a carrier film and a thermoplastic resin layer. The thermoplastic resin layer is formed by dissolving in a medium, coating and drying on the carrier film. As the carrier film, films of polytetrafluoroethylene, polyethylene terephthalate, aramid, Kapton, polymethylpentene, polyethylene, polypropylene, polyvinyl chloride and the like can be used.
[0021]
In addition, a film having no carrier film consisting of only a thermoplastic resin may be laminated or coated, or with or without a carrier film, having an adhesive layer on the thermoplastic resin layer, via an adhesive layer or the like. Alternatively, a thermoplastic resin layer may be provided on both sides of the circuit forming substrate. In some cases, a protective film such as polyethylene may be provided on the surface opposite to the carrier film with the thermoplastic resin layer or the like interposed between them in terms of stability against physical impact during storage and changes over time in the composition. Furthermore, in order to control the adhesiveness of the surface to which the thermoplastic resin layer is applied, it is also possible to use a film that has been subjected to a corona treatment or a primer treatment.
[0022]
The thermoplastic resin layer according to the present invention basically has resistance when forming a metal conductive layer on the inner wall of a hole such as a through hole and a non-through hole, and when the metal conductive layer is formed by plating. And a thermoplastic resin that is insoluble in the plating solution used for it. Specific examples thereof include styrene / maleic acid monoester copolymer, methacrylic acid / methacrylic acid ester copolymer, and styrene / methacrylic acid / methacrylic acid ester as resins having acid resistance to withstand at least acidic electrolytic plating solution. Copolymer, acrylic acid / methacrylic acid ester copolymer, styrene / acrylic acid / methacrylic acid ester copolymer, acrylic acid ester copolymer, methacrylic acid ester copolymer, acrylic acid ester / methacrylic acid ester copolymer Styrene, (meth) acrylate, vinyl acetate, and vinyl benzoate monomers such as polymers, vinyl acetate / crotonic acid copolymers, and vinyl acetate / crotonic acid / methacrylic acid ester copolymers; and (Meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, etc. A copolymer of two or more monomers selected from the carboxyl group-containing monomer of monoesters of maleic acid and fumaric acid, and phenol resins. When a resin that can withstand an alkaline electroless copper plating solution or the like is required, a copolymer resin may be obtained from a monomer having no acidic functional group. Further, the thermoplastic resin layer used for the thermoplastic resin layer according to the present invention may be a mixture of two or more thermoplastic resins.
[0023]
As a solvent used for preparing a coating solution when a thermoplastic resin solution is provided with a thermoplastic resin layer by various coating methods, any solvent that can uniformly dissolve the thermoplastic resin in the present invention may be used. Alcohols such as methanol, ethanol and 1-propanol, THF, 1,4-dioxane, 1,2-dimethoxyethane, ethylene glycol monomethyl ether, ethers such as 1-methoxy-2-propanol, methyl ethyl ketone, cyclohexanone, methyl isobutyl Ketones such as ketones, aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, propyl acetate and isobutyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like Amides, dimethyl sulfoxide, etc. Is not limited to these, it can be selected and used singly or two or appropriate ones by a coating method and drying conditions. Regarding the solid content concentration of the coating liquid, an appropriate concentration can be selected depending on the coating method, drying conditions, and the like. If necessary, an additive such as an adhesion promoter may be added to the coating liquid in order to improve the physical properties of the thermoplastic resin layer, the viscosity of the coating liquid, and the like, in addition to the thermoplastic resin.
[0024]
Further, in the present invention, if necessary, between the thermoplastic resin layer and the circuit-forming substrate, for improving the adhesion to the circuit-forming substrate, etc., as necessary, casein, polyvinyl alcohol, hydroxyethyl cellulose, phenol resin Styrene / maleic anhydride copolymer, maleic acid / acrylic acid copolymer, acrylic acid / methacrylic acid copolymer, polyacrylic acid, and alkali metal salts and / or ammonium salts of these polymer electrolytes, ethanolamines And hydroxycarboxylic acids such as hydrochloride, oxalate, phosphate, citric acid, and tartaric acid, and salts thereof, amino acids such as glycine, alanine, and glutamic acid; aliphatic aminosulfonic acids such as sulfamic acid; and ethylenediamine. Such as tetraacetic acid, nitrilotriacetic acid, and triethylenetetramine hexaacetic acid ( (I) aminopolyacetic acid, aminotri (methylenephosphonic) acid, 1-hydroxyethylidene-1,1-diphosphonic acid, (poly) aminopoly (methylenephosphonic acid) such as ethylenediaminetetra (methylenephosphonic acid) and the like, and their compounds May be provided with an intermediate layer in which at least a part of the acid group is made of an alkali metal salt or an ammonium salt.
[0025]
The intermediate layer may further contain submicron fine particles such as titanium oxide, alumina, silica, zirconia, and antimony oxide. The thickness of the intermediate layer is not particularly limited, but may be at most about 5 μm irrespective of the circuit-forming substrate to be used if the purpose is to adhere the thermoplastic resin layer.
[0026]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.
[0027]
Example 1
As a thermoplastic resin, a copolymer resin composed of 60 parts of 2-ethylhexyl acrylate, 25 parts of methyl methacrylate, and 15 parts of phenoxyethyl methacrylate was dissolved in ethyl acetate to have a solid content of 25% by weight. On a corona-treated surface of a 16 μm-thick polyethylene terephthalate film (H500, manufactured by Mitsubishi Chemical Polyester Film Co., Ltd.) having one surface subjected to a corona treatment, the thermoplastic resin layer after drying was 12 μm by using a curtain coat method. To obtain a dry film according to the present invention. Further, as a circuit forming substrate, a copper laminated board (EL170, manufactured by Mitsubishi Gas Chemical Co., Ltd., EL170) having a size of 200 × 200 × 0.4 mm was used, and a plurality of 0.3 μm through-holes were formed with a drill to form a vacuum laminator. Then, the dry film prepared above was laminated under the condition of preheating at 100 ° C. Thereafter, when the carrier film was peeled off at room temperature, the thermoplastic resin at the opening of the through hole was peeled off while being in close contact with the carrier film. Further, electroless copper plating-electrolytic copper plating treatment (Okuno Pharmaceutical Co., Ltd., OPC process M) is performed, a copper plating layer having a thickness of 10 μm is provided on the inner wall of the through hole, and then the circuit formation substrate is formed with 2-propanol. Then, the excess copper at the edge of the through hole was polished and removed by buffing to obtain a substrate having a through hole. When a pattern was formed on the obtained substrate and a heat cycle test was performed, no problem was observed up to 500 cycles.
[0028]
Example 2
As a thermoplastic resin, a copolymer resin composed of 55 parts of 2-ethylhexyl acrylate, 25 parts of methacrylic acid, and 20 parts of phenoxyethyl methacrylate was dissolved in ethyl acetate to have a solid content of 25 wt% to prepare a liquid. On a corona-treated surface of a 16 μm-thick polyethylene terephthalate film (H500, manufactured by Mitsubishi Chemical Polyester Film Co., Ltd.) having one surface subjected to a corona treatment, the thermoplastic resin layer after drying was 12 μm by using a curtain coat method. To obtain a dry film according to the present invention. Further, a 200 × 200 × 0.4 mm copper-clad laminate (manufactured by Mitsubishi Gas Chemical Co., Ltd., EL170) was used as a circuit formation substrate, and a plurality of 0.3 μm through holes were formed with a drill. Plating was applied to the entire surface including the inner wall of the through hole. After laminating the dry film prepared above under 100 ° C. preheating condition using a vacuum laminator, and peeling the carrier film at room temperature, the thermoplastic resin in the opening of the through hole is peeled off while being in close contact with the carrier film. Was. Further, an electrolytic copper plating process is performed to provide a copper plating layer having a thickness of 10 μm on the inner wall of the through hole. Then, the thermoplastic resin layer on the circuit forming substrate is peeled off with a 2% aqueous sodium carbonate solution, and finally, buffing is performed. Excess copper at the edge of the through hole was removed by polishing to obtain a substrate having a through hole. When a pattern was formed on the obtained substrate and a heat cycle test was performed, no problem was observed up to 500 cycles.
[0029]
COMPARATIVE EXAMPLE As the thermoplastic resin, the same copolymer resin as that of Example 2 was used, and a negative type was prepared by using a coating solution in which 1% by weight of 2-methylanthraquinone and 25% by weight of pentaerythritol / trimethacrylate were added to the solid content. A photopolymer dry film was obtained. Further, a 200 × 200 × 0.4 mm copper-clad laminate (manufactured by Mitsubishi Gas Chemical Co., Ltd., EL170) was used as a circuit formation substrate, and a plurality of 0.3 μm through holes were formed with a drill. Plating was applied to the entire surface including the inner wall of the through hole. After laminating the dry film adjusted as described above under a preheating condition of 100 ° C. using a vacuum laminator, a portion other than the opening and the land of the through hole was exposed using a film mask corresponding to the through hole. Thereafter, when the carrier film was peeled off at room temperature, the resin layer in the opening of the through hole and the land portion was peeled off while being in close contact with the carrier film. Further, an electrolytic copper plating process is performed to provide a copper plating layer having a thickness of 10 μm on the inner wall of the through hole. Then, the thermoplastic resin layer on the circuit forming substrate is peeled off with a 2% aqueous sodium hydroxide solution, and finally buffed. The excess copper at the edge of the through hole was removed by polishing to obtain a substrate having a through hole. Observation of the obtained substrate in detail revealed that a plating defect was caused at the edge of the substrate due to an exposure pattern misalignment. When a pattern was formed and a heat cycle test was performed, the wire was broken in three cycles.
[0030]
【The invention's effect】
As described above, according to the method for manufacturing a substrate of the present invention, not only is it unnecessary to apply unnecessary plating to the surface of the circuit forming substrate, but also because there is no need for photopolymer or laser processing, the product has a high alignment accuracy with respect to the holes. The yield will not be affected.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a first embodiment of the present invention.
FIG. 2 is a sectional view showing a second embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Insulating substrate 2 Metal conductive layer 3 Through hole, hole 4 Thermoplastic resin layer 5 Carrier film 6 Electroless plating layer 7 Electrolytic plating layer 10 Circuit forming substrate

Claims (2)

貫通孔または/及び非貫通孔を形成した回路形成用基板の両面に熱可塑性樹脂層を形成し、次に該孔の開口部だけ熱可塑性樹脂層を除去し、続いて該孔の内壁に金属導電層を形成した後、熱可塑性樹脂層を除去することを特徴とする基板の製造方法。A thermoplastic resin layer is formed on both sides of a circuit forming substrate having a through-hole and / or a non-through-hole formed therein, and then the thermoplastic resin layer is removed only at the opening of the hole. A method for manufacturing a substrate, comprising: removing a thermoplastic resin layer after forming a conductive layer. 貫通孔または/及び非貫通孔を形成した回路形成用基板における貫通孔または/及び非貫通孔の内壁面を含む回路形成用基板の両面に金属導電層を形成し、次に該回路形成用基板の両面に熱可塑性樹脂層を形成し、該孔の開口部の熱可塑性樹脂層を除去した後、該孔の内壁に金属導電層を形成し、しかる後に熱可塑性樹脂層を除去することを特徴とする基板の製造方法。A metal conductive layer is formed on both sides of the circuit forming substrate including the inner wall surface of the through hole and / or the non-through hole in the circuit forming substrate having the through hole and / or the non-through hole, and then the circuit forming substrate is formed. Forming a thermoplastic resin layer on both sides of the hole, removing the thermoplastic resin layer at the opening of the hole, forming a metal conductive layer on the inner wall of the hole, and then removing the thermoplastic resin layer. Manufacturing method of a substrate.
JP2003093288A 2003-03-31 2003-03-31 Substrate manufacturing method Expired - Fee Related JP4113024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093288A JP4113024B2 (en) 2003-03-31 2003-03-31 Substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093288A JP4113024B2 (en) 2003-03-31 2003-03-31 Substrate manufacturing method

Publications (3)

Publication Number Publication Date
JP2004303856A true JP2004303856A (en) 2004-10-28
JP2004303856A5 JP2004303856A5 (en) 2006-02-02
JP4113024B2 JP4113024B2 (en) 2008-07-02

Family

ID=33406125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093288A Expired - Fee Related JP4113024B2 (en) 2003-03-31 2003-03-31 Substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4113024B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173597A (en) * 2004-11-22 2006-06-29 Mitsubishi Paper Mills Ltd Resist pattern forming method, circuit board manufacturing method, and circuit board
KR100722625B1 (en) 2005-12-12 2007-05-28 삼성전기주식회사 Via hole having a micro holland and a method of forming the same
JP2007311452A (en) * 2006-05-17 2007-11-29 Mitsubishi Paper Mills Ltd Circuit board manufacturing method
JP2007311451A (en) * 2006-05-17 2007-11-29 Mitsubishi Paper Mills Ltd Circuit board manufacturing method
WO2009132528A1 (en) * 2008-04-30 2009-11-05 Li Dongming Hole thickening plating method of pcb
US8143533B2 (en) 2006-05-17 2012-03-27 Mitsubishi Paper Mills Limited Method for forming resist pattern, method for producing circuit board, and circuit board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173597A (en) * 2004-11-22 2006-06-29 Mitsubishi Paper Mills Ltd Resist pattern forming method, circuit board manufacturing method, and circuit board
JP4676317B2 (en) * 2004-11-22 2011-04-27 三菱製紙株式会社 Resist pattern forming method, circuit board manufacturing method, and circuit board
KR100722625B1 (en) 2005-12-12 2007-05-28 삼성전기주식회사 Via hole having a micro holland and a method of forming the same
US7629692B2 (en) 2005-12-12 2009-12-08 Samsung Electro-Mechanics Co., Ltd. Via hole having fine hole land and method for forming the same
JP2007311452A (en) * 2006-05-17 2007-11-29 Mitsubishi Paper Mills Ltd Circuit board manufacturing method
JP2007311451A (en) * 2006-05-17 2007-11-29 Mitsubishi Paper Mills Ltd Circuit board manufacturing method
JP4628993B2 (en) * 2006-05-17 2011-02-09 三菱製紙株式会社 Circuit board manufacturing method
JP4676376B2 (en) * 2006-05-17 2011-04-27 三菱製紙株式会社 Circuit board manufacturing method
US8143533B2 (en) 2006-05-17 2012-03-27 Mitsubishi Paper Mills Limited Method for forming resist pattern, method for producing circuit board, and circuit board
WO2009132528A1 (en) * 2008-04-30 2009-11-05 Li Dongming Hole thickening plating method of pcb

Also Published As

Publication number Publication date
JP4113024B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
KR100936446B1 (en) Manufacturing method of high density printed circuit board
JP2007523500A (en) Etched dielectric film in hard disk drive
TWI664323B (en) Method of forming a metal layer and method of manufacturing a substrate having such metal layer
JP2014503607A (en) Polymer etching agent and method of using the same
JP4113024B2 (en) Substrate manufacturing method
JP2004214253A (en) Metal pattern forming method
JP2004055618A (en) Process for producing multilayer printed wiring board
JP4976766B2 (en) Circuit board manufacturing method
JP2009295677A (en) Method of producing metallic pattern
JP2002280689A (en) Extremely thin copper foil with support and extremely thin copper foil board using the same
WO2002068525A1 (en) Positive photodefinable composition of polycarboxylic acid, phenolic and thermocurable resins
JP2015046519A (en) Method for manufacturing circuit board
JP2004349358A (en) Plating resist composition, plating resist sheet, and method of manufacturing substrate using the same
JP2004273744A (en) Thermoplastic resin material and manufacturing method of printed circuit board
JP2011023428A (en) Method for manufacturing composite, and composite
JP4676376B2 (en) Circuit board manufacturing method
JP2004031375A (en) Method of manufacturing printed wiring board
JP5639465B2 (en) Method for producing metal pattern
JP3219827B2 (en) Heat-resistant resin particles for anchor formation, adhesive for electroless plating, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH10215051A (en) Image forming method, electronic circuit manufacturing method, and electronic circuit manufactured by the manufacturing method
TWM573119U (en) Apparatus for thin filming resist layer
JP2002134909A (en) Manufacturing method of printed wiring board
JP2009054802A (en) Lid plating method
JP2004214254A (en) Manufacturing method of printed wiring board by electrophotography
JPH04245692A (en) Manufacture of printed wiring board

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees