[go: up one dir, main page]

JP2004301852A - Sample preparation apparatus for three-dimensional structure observation, electron microscope, and method therefor - Google Patents

Sample preparation apparatus for three-dimensional structure observation, electron microscope, and method therefor Download PDF

Info

Publication number
JP2004301852A
JP2004301852A JP2004166547A JP2004166547A JP2004301852A JP 2004301852 A JP2004301852 A JP 2004301852A JP 2004166547 A JP2004166547 A JP 2004166547A JP 2004166547 A JP2004166547 A JP 2004166547A JP 2004301852 A JP2004301852 A JP 2004301852A
Authority
JP
Japan
Prior art keywords
sample
projection
dimensional structure
ion beam
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004166547A
Other languages
Japanese (ja)
Other versions
JP2004301852A5 (en
Inventor
Ruriko Tokida
るり子 常田
Hiroshi Kakibayashi
博司 柿林
Masanari Takaguchi
雅成 高口
Kuniyasu Nakamura
邦康 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004166547A priority Critical patent/JP2004301852A/en
Publication of JP2004301852A publication Critical patent/JP2004301852A/en
Publication of JP2004301852A5 publication Critical patent/JP2004301852A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample manufacturing device for an electron microscope for observing the three-dimensional structure of a desired place in a finely processed semiconductor device, and to provide the electron microscope and its method. <P>SOLUTION: A dicer is used for processing a sample piece 10 and converged ion beam processing is used in processing for shaving off the part to be observed of the sample piece 10 into a projected shape. The sample piece 10 is fixed to an uniaxial ominidirectionally inclined sample holder so that the center axis of the projection 11 formed coincides with the inclined axis Z of the sample piece and a TEM image formed by electrons scattered at a high angle is used as a projection image to perform reconstitution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微細に加工された半導体デバイス内の所望の箇所における構造を3次元的に観察するための3次元構造観察用試料作製装置及びその観察手段と方法に関する。   The present invention relates to a three-dimensional structure observation sample preparation apparatus for three-dimensionally observing a structure at a desired location in a finely processed semiconductor device, and an observation means and method thereof.

半導体デバイスでは試料構造が微細になるにつれ、高空間分解能を持つ透過電子顕微鏡(以下略してTEM)による観察の重要性が高まってきている。それに加え、様々なパターン形状を重ね合わせて作製される半導体デバイスの構造を3次元的に評価したいという要求も高まってきている。   In semiconductor devices, as the sample structure becomes finer, the importance of observation with a transmission electron microscope (hereinafter abbreviated as TEM) having high spatial resolution is increasing. In addition, there is an increasing demand for three-dimensionally evaluating the structure of a semiconductor device manufactured by overlapping various pattern shapes.

これらの要求に対し、TEMを用いて試料の3次元構造を観察する試みがなされてきた。以下、従来の観察法の手順を示す。   In response to these requirements, attempts have been made to observe the three-dimensional structure of a sample using a TEM. Hereinafter, the procedure of the conventional observation method will be described.

まず観察対象のTEM像を観察するために、試料を薄膜化する。試料内を電子線が透過できる距離は短く、透過電子顕微鏡の入射電圧100から300kVでは、電子線が透過できる距離は100nm以下である。観察対象の厚さを100nm以下にするために、研磨剤を用いて試料を100μm程度まで薄膜化する。
更に観察対象近傍をすり鉢状に研磨して厚さ数10μmにした後、例えば特開平5−312700 号記載のTEM試料の作製装置を用いて100nm以下に薄膜化する。
First, the sample is thinned in order to observe a TEM image of the observation target. The distance that the electron beam can pass through the sample is short, and when the incident voltage of the transmission electron microscope is 100 to 300 kV, the distance that the electron beam can pass is 100 nm or less. In order to reduce the thickness of the observation target to 100 nm or less, the sample is thinned to about 100 μm using an abrasive.
Further, the vicinity of the observation object is polished in a mortar shape to a thickness of several tens of micrometers, and then thinned to 100 nm or less by using, for example, a TEM sample preparation apparatus described in JP-A-5-312700.

薄膜化した試料片をリング状の試料台に固定し、上記試料台の周辺部を、例えば特開平6−139986 号記載の電子顕微鏡の試料支持方法及び装置に示される試料ホルダに固定した後試料室に挿入し、観察対象のTEM像を観察する。3次元構造を評価するには試料片を試料室内で傾斜させて複数方向から観察したTEM像を用いる。   The thinned sample piece is fixed to a ring-shaped sample stage, and the periphery of the sample stage is fixed to a sample holder described in, for example, a method and apparatus for supporting a sample of an electron microscope described in Japanese Patent Application Laid-Open No. 6-139986. It is inserted into a room and a TEM image of the observation target is observed. To evaluate the three-dimensional structure, a TEM image obtained by observing a sample piece from a plurality of directions while tilting the sample piece in a sample chamber is used.

更に3次元構造を定量的に評価するには、TEM像を投影像として用い、3次元再構成を行う。結晶性試料のTEM像を投影像として用いるためには、特願平3−110126 号記載の3次元原子配列観察装置を用いて試料内の原子によって高角に散乱された電子で結像した高角散乱電子像を用いる必要がある。これはTEM像のコントラストには主に電子散乱能を反映した散乱コントラストだけでなく、主に結晶構造を反映した回折コントラストが混在しており、TEM像を投影像として用いるには回折コントラストを低減させる必要があるからである。上記高角散乱電子像を用い、特願平3−110126 号記載の方法で3次元構造再構成を行う。
まず投影切断面定理を用いて各2次元断面を再構成し、それらを積み重ねて3次元構造を構築する。
Further, in order to quantitatively evaluate the three-dimensional structure, three-dimensional reconstruction is performed using a TEM image as a projection image. In order to use a TEM image of a crystalline sample as a projection image, high-angle scattering formed by electrons scattered at high angles by atoms in the sample using a three-dimensional atomic arrangement observation apparatus described in Japanese Patent Application No. 3-110126 is disclosed. It is necessary to use an electronic image. This is because the contrast of the TEM image contains not only the scattering contrast that mainly reflects the electron scattering ability but also the diffraction contrast that mainly reflects the crystal structure. If the TEM image is used as a projection image, the diffraction contrast is reduced. It is necessary to make it. Using the high-angle scattering electron image, three-dimensional structure reconstruction is performed by the method described in Japanese Patent Application No. 3-110126.
First, each two-dimensional cross section is reconstructed using the projection cut plane theorem, and they are stacked to construct a three-dimensional structure.

特開平3−110126号公報JP-A-3-110126

従来のTEM観察用試料片では、観察対象はすり鉢状に加工された試料片の中心近傍に存在する。この様な形状では、試料片を大きく傾斜させると電子線を通過させる試料厚さが厚くなり、電子線が透過できないためにTEM像が得られなくなる。また従来のTEM観察用試料ホルダでは、試料ホルダを大きく傾斜させるとリング状の試料台や試料ホルダが電子線の経路を塞いでしまうため、TEM像が得られなくなる。つまり従来の試料片形状及び試料ホルダを用いる限り、試料傾斜角度範囲に制限があり、観察対象を任意の方向から観察することはできない。汎用TEMにおける傾斜角度範囲は±60度程度であり、高空間分解能の TEMほど電子レンズのギャップは狭く設計されているため、試料ホルダを挿入する試料室の幅が狭くなり、更に傾斜角度範囲は狭くなっている。   In the conventional TEM observation specimen, the observation target exists near the center of the mortar-shaped specimen. In such a shape, if the sample piece is greatly inclined, the thickness of the sample through which the electron beam passes increases, and the TEM image cannot be obtained because the electron beam cannot be transmitted. Further, in the conventional TEM observation sample holder, if the sample holder is greatly inclined, the ring-shaped sample stage or the sample holder blocks the electron beam path, so that a TEM image cannot be obtained. That is, as long as the conventional sample piece shape and sample holder are used, the range of the sample inclination angle is limited, and the observation target cannot be observed from any direction. The tilt angle range of a general-purpose TEM is about ± 60 degrees, and the higher the spatial resolution of the TEM, the narrower the gap of the electron lens is designed. Therefore, the width of the sample chamber into which the sample holder is inserted becomes narrower. It is getting smaller.

更に試料傾斜角度範囲の制限は、3次元再構成において非常に大きな障害となる。画像再構成で用いられる投影面切断定理とは、試料f(x,y)のθ方向からの投影データp(r,θ)の1次元フーリエ変換は、試料の2次元フーリエ変換F(μ,ν)のθ方向の切断面のラインプロファイルと一致するという定理である(図17(a))。つまり全方向の投影データが得られれば、試料構造に関する全ての情報は得られたことになる(図17(b))。   Furthermore, the limitation of the sample tilt angle range is a very serious obstacle in three-dimensional reconstruction. The projection plane cutting theorem used in image reconstruction is that a one-dimensional Fourier transform of projection data p (r, θ) from a θ direction of a sample f (x, y) is a two-dimensional Fourier transform F (μ, μ) of the sample. ν) is the theorem that it matches the line profile of the cut surface in the θ direction (FIG. 17A). That is, if the projection data in all directions is obtained, all the information on the sample structure is obtained (FIG. 17B).

しかし投影角度範囲が制限されると、図17(c)に示す様に必要な情報が欠落してしまい、正確な再構成像を得ることが原理的に困難となる。投影角度制限下で再構成を行うと、再構成像上に激しいアーティファクトが発生し、上記アーティファクトのために試料構造の解析ができないこともある。上記アーティファクトを画像復元処理によって低減する方法が検討されてきたが、試料構造に関する様々な仮定が必要であったり、また復元処理を適用できる試料形状が限定されたりしていた。また同一構造と思われる試料を複数個用意し、上記試料を異なる方向から薄膜化して試料の全方向の投影像を得る試みもなされているが、デバイス不良箇所の解析の様に不良素子がただ1つしか存在しない場合には適用できなかった。   However, when the projection angle range is limited, necessary information is lost as shown in FIG. 17C, and it is theoretically difficult to obtain an accurate reconstructed image. When reconstruction is performed under the limitation of the projection angle, severe artifacts occur on the reconstructed image, and the artifacts may not be able to analyze the sample structure. Methods for reducing the above-mentioned artifacts by image restoration processing have been studied. However, various assumptions regarding the sample structure are required, and the sample shape to which the restoration processing can be applied is limited. Attempts have also been made to prepare a plurality of samples having the same structure and obtain a projection image in all directions of the sample by thinning the sample from different directions. It could not be applied if there was only one.

本発明では3次元観察用試料片として、観察対象を内包する突起部分を持つ形状に加工した試料片を用いる。上記試料片では突起の中心軸回りの全方向から観察対象を観察できる。上記形状に試料片を加工するために、ダイサー,集束イオンビーム加工装置等を用いる。上記集束イオンビーム加工装置は観察対象を内包する突起作製用のイオンビーム偏向器及びブランカを有する。更に試料ホルダとして1軸全方向傾斜試料ホルダを用いる。上記1軸全方向傾斜試料ホルダは保持筒と上記保持筒によって支えられた棒状支持具によって構成され、上記棒状支持具は1軸全方向に傾斜できる様に設計されている。上記試料片を上記棒状支持具の先端に突起の中心軸と試料傾斜軸を合わせて設置すれば、観察対象を突起の中心軸回りに360°傾斜して観察できる。つまり観察対象の全方向のTEM像を得ることができる。   In the present invention, as the three-dimensional observation sample piece, a sample piece processed into a shape having a projection portion including the observation target is used. With the sample piece, the observation target can be observed from all directions around the central axis of the protrusion. A dicer, a focused ion beam processing device, or the like is used to process the sample into the above shape. The focused ion beam processing apparatus has an ion beam deflector and a blanker for producing a projection including an observation target. Further, a one-axis omnidirectional tilt sample holder is used as the sample holder. The one-axis omnidirectional tilt sample holder is constituted by a holding cylinder and a rod-shaped support supported by the holding cylinder, and the rod-shaped support is designed to be tiltable in all directions of one axis. If the sample piece is set at the tip of the rod-shaped support so that the central axis of the projection and the sample tilt axis are aligned, the observation object can be observed at an angle of 360 ° around the central axis of the projection. That is, TEM images of the observation target in all directions can be obtained.

本発明を用いれば、観察対象を突起の中心軸回りの任意の方向から観察した TEM像を得られるので、3次元的な試料構造を直接評価できる様になる。また、試料の3次元構造を再構成するための必要条件ある全方向の投影像の観察が実現される。従って試料に関する既知情報を用いる必要はなく、任意の試料形状を1つの試料片から正確に再構成できる。   According to the present invention, a TEM image obtained by observing an observation object from an arbitrary direction around the center axis of the projection can be obtained, so that a three-dimensional sample structure can be directly evaluated. Further, observation of a projected image in all directions, which is a necessary condition for reconstructing the three-dimensional structure of the sample, is realized. Therefore, it is not necessary to use known information about the sample, and an arbitrary sample shape can be accurately reconstructed from one sample piece.

本発明によって、3次元的に構築されたデバイス構造内の任意形状及び任意位置の試料構造を3次元的に解析し、デバイスのプロセスのチェックや最適化さらにはデバイス設計に関する重要な情報を提供することができる。   According to the present invention, a sample structure of an arbitrary shape and an arbitrary position in a three-dimensionally constructed device structure is analyzed three-dimensionally, and important information on device process checking and optimization and device design is provided. be able to.

図1は本発明の実施例で用いた透過電子顕微鏡の基本構成である。電子銃1,コンデンサレンズ2,電子線偏向コイル3,対物レンズ4,試料ホルダ5,試料傾斜機構6,インカラム(in−column)型7またポストカラム(post-column)型35のエネルギフィルタ、画像記録装置8及び制御用ソフトと画像処理ソフトを備えた計算機9から構成されている。   FIG. 1 shows a basic configuration of a transmission electron microscope used in an embodiment of the present invention. Electron gun 1, condenser lens 2, electron beam deflection coil 3, objective lens 4, sample holder 5, sample tilting mechanism 6, in-column type 7 and post-column type 35 energy filter, image It comprises a recording device 8 and a computer 9 having control software and image processing software.

図2に本実施例で用いる試料片10の形状を示す。試料片10はある面に突起部分11を持つチップに加工されている。突起11の中心軸をz軸とする。突起部分11は観察対象12を内包している。上記領域における突起の直径2Rは電子線が通過できる範囲内にする。直径2Rは入射電子線の加速電圧に依存し、加速電圧が高くなるほど電子線が透過する距離は長くなる。加速電圧100〜300kVの場合には2Rは100nm以下、3MVの場合には10μm以下である。   FIG. 2 shows the shape of the sample piece 10 used in this embodiment. The sample piece 10 is processed into a chip having a projection 11 on a certain surface. The central axis of the projection 11 is defined as the z-axis. The protruding portion 11 includes the observation target 12. The diameter 2R of the protrusion in the above-mentioned region is set within a range in which an electron beam can pass. The diameter 2R depends on the acceleration voltage of the incident electron beam, and the higher the acceleration voltage, the longer the distance the electron beam transmits. 2R is 100 nm or less when the acceleration voltage is 100 to 300 kV, and 10 μm or less when the acceleration voltage is 3 MV.

前記試料片10を図3に示す試料台13に固定する。試料台13の上部には試料片10を設置する台、下部には試料台13を棒状支持具15に固定するネジ 16が設けられている。試料片10を接着剤で固定する試料台(図3(a))とネジで固定する試料台(図3(b))がある。   The sample piece 10 is fixed to a sample stage 13 shown in FIG. A table on which the sample piece 10 is placed is provided above the sample table 13, and a screw 16 for fixing the sample table 13 to the rod-shaped support 15 is provided below the sample table 13. There are a sample stage (FIG. 3A) for fixing the sample piece 10 with an adhesive and a sample stage (FIG. 3B) for fixing with a screw.

図3(a)の試料台13では試料台13の上部と試料片10の下面を接着剤で固定する。装置構造が単純なので小型化が容易であるという特徴を持つ。図3 (b)の試料台13は試料台13の上部に試料を設置する凹状部分を有し、上記凹状部分の外枠に取り付けられている4本のネジ40で試料片10を固定する。
この構造では、試料台内の試料位置の微調整を4本のネジで行える。また試料片10の脱着が容易なので、一度観察した試料片10に他の装置で処理を施した後、同じ試料片10を観察することも可能である。また接着剤を用いないので、試料室内の真空度の劣化を避けられる。
In the sample stage 13 of FIG. 3A, the upper portion of the sample stage 13 and the lower surface of the sample piece 10 are fixed with an adhesive. Since the device structure is simple, miniaturization is easy. The sample stage 13 shown in FIG. 3B has a concave portion on which the sample is placed above the sample stage 13, and the sample piece 10 is fixed with four screws 40 attached to the outer frame of the concave portion.
With this structure, fine adjustment of the sample position in the sample stage can be performed with four screws. Further, since the sample piece 10 can be easily attached and detached, it is possible to observe the same sample piece 10 after processing the sample piece 10 once observed by another apparatus. Further, since no adhesive is used, deterioration of the degree of vacuum in the sample chamber can be avoided.

図4に1軸全方向傾斜ホルダの構成図を示す。1軸全方向傾斜試料ホルダは保持筒14によって支えられた棒状支持具15を有し、上記棒状支持具15は1軸全方向に傾斜できる。試料傾斜軸方向をZ軸,電子線の入射方向をY軸,前記2つの軸と直交する方向をX軸とする。試料片10の並行移動は従来のTEM用試料ホルダと同様に、パルスモータとテコを用いたホルダ微動機構により、試料ホルダ全体をXYZ方向に移動させて実現する。試料片10を固定した試料台13は棒状保持具15の先端に設けられたネジ穴に試料台13下部のネジ16を差し込んで取り付ける。   FIG. 4 shows a configuration diagram of the uniaxial omnidirectional tilt holder. The one-axis omnidirectional sample holder has a rod-shaped support 15 supported by a holding cylinder 14, and the rod-shaped support 15 can be tilted in all directions of one axis. The sample tilt axis direction is the Z axis, the electron beam incident direction is the Y axis, and the direction orthogonal to the two axes is the X axis. The parallel movement of the sample piece 10 is realized by moving the entire sample holder in the XYZ directions by a holder fine movement mechanism using a pulse motor and a lever, similarly to the conventional TEM sample holder. The sample table 13 to which the sample piece 10 is fixed is attached by inserting a screw 16 below the sample table 13 into a screw hole provided at the tip of the rod-shaped holder 15.

試料台13には、試料台固定の際に突起11の破壊を防ぐため、図7に示すような保護カバー34が取り付けられる。上記保護カバー34は筒状の形状をしており、側面に縦長の穴があいている。図7(a)に示すように保護カバー34を上げてネジ41で固定しておくと、作業中に誤って突起11を破壊することがかなり防止できる。突起11を側面から加工・観察する際は、図7(b)に示すように保護カバー34を下げ、ネジ41で固定して使用する。   A protective cover 34 as shown in FIG. 7 is attached to the sample stage 13 to prevent the projection 11 from being destroyed when the sample stage is fixed. The protective cover 34 has a cylindrical shape, and has a vertically long hole on a side surface. If the protective cover 34 is raised and fixed with the screws 41 as shown in FIG. 7A, it is possible to considerably prevent the projection 11 from being broken by mistake during the operation. When processing and observing the projection 11 from the side, the protective cover 34 is lowered as shown in FIG.

ネジ16の中心軸と試料傾斜軸Zを一致させてあるので、棒状支持具15を傾斜させると試料台13はネジ16の中心軸回りに傾斜する。更に突起11の中心軸とネジ16の中心軸を一致させて試料片10を試料台13に固定すれば、突起11つまり観察対象12を1軸全方向に傾斜して観察できる。   Since the center axis of the screw 16 is aligned with the sample tilt axis Z, when the rod-shaped support 15 is tilted, the sample table 13 tilts around the center axis of the screw 16. Further, if the sample piece 10 is fixed to the sample table 13 with the central axis of the projection 11 and the central axis of the screw 16 aligned, the projection 11, that is, the observation target 12, can be observed obliquely in all directions along one axis.

突起11の中心軸zと試料傾斜軸Zを一致させるための装置としては、例えば以下の2つがある。   As a device for matching the center axis z of the projection 11 with the sample tilt axis Z, for example, there are the following two devices.

1つは前記試料台13に図5(a)に示す様に付けられた目印17と光軸上に十字のパターン18が挿入された光学顕微鏡を用いるものである。上記目印17は前記試料台13上部に向かい合わせに2組付けられており、各目印を結ぶ直線は試料台13を棒状支持具15に固定した際にZ軸で交差する様になっている。
試料台13の目印17を結ぶ直線と十字パターン18が一致する様に試料台13を設置し、上記試料台13に突起11の先端が十字パターン18の中心と一致するよう試料を固定すれば、突起11の中心軸zと試料ホルダの試料傾斜軸Zが一致する。
One is to use an optical microscope having a mark 17 attached to the sample table 13 as shown in FIG. 5A and a cross pattern 18 inserted on the optical axis. Two sets of the marks 17 are attached to the upper part of the sample table 13 so as to face each other. The straight lines connecting the marks intersect with each other on the Z axis when the sample table 13 is fixed to the rod-shaped support 15.
If the sample stage 13 is set such that the straight line connecting the marks 17 of the sample stage 13 and the cross pattern 18 coincide with each other, and the sample is fixed to the sample stage 13 so that the tip of the projection 11 coincides with the center of the cross pattern 18, The center axis z of the projection 11 and the sample tilt axis Z of the sample holder match.

もう1つは、試料台13を差し込めるネジ穴を有した試料台回転装置(図5 (b))と光学顕微鏡を用いるものである。上記回転台19は上記試料台13をネジ16の中心軸回りに回転させることができる。試料片10を乗せた試料台 13を回転させ、光学顕微鏡で突起11の移動を観察する。突起11の中心軸zが試料台と回転軸と一致すれは、突起11の中心位置は回転しなくなる。   The other uses a sample stage rotating device (FIG. 5B) having a screw hole into which the sample stage 13 can be inserted, and an optical microscope. The rotating table 19 can rotate the sample table 13 around the center axis of the screw 16. The sample stage 13 on which the sample 10 is placed is rotated, and the movement of the projection 11 is observed with an optical microscope. When the center axis z of the projection 11 coincides with the sample stage and the rotation axis, the center position of the projection 11 does not rotate.

なお図2に示す形状以外の試料片、例えば支持棒の先端に観察対象が付着している試料や様々な形状の生物試料などを立体的に観察する場合、試料台13を各試料形状に応じて加工し、上記加工された試料台の下部に試料台13と共通のネジ16を設ければ、共通の棒状支持具15に装着できる。つまり試料形状に応じて加工する箇所は試料台のみで良い。   When three-dimensionally observing a sample piece having a shape other than the shape shown in FIG. 2, for example, a sample having an observation object attached to the tip of a support rod or a biological sample having various shapes, the sample table 13 is set according to each sample shape. If a screw 16 common to the sample table 13 is provided below the processed sample table, it can be mounted on the common bar-shaped support 15. That is, only the sample stage needs to be processed according to the sample shape.

また他の計測装置で試料片を観察する際、上記計測装置の試料ホルダに前記試料台固定用ネジに対応するネジ穴を設けておけば、試料台13を共通使用できる。例えば図6に示す走査電子顕微鏡(以下略してSEM)用試料ホルダにネジ 16に適応するネジ穴を設けておけば、試料片の加工形状を高分解能でSEM観察できる。   When a sample piece is observed by another measuring device, the sample holder 13 can be commonly used by providing a screw hole corresponding to the screw for fixing the sample stage in the sample holder of the measuring device. For example, if a screw hole corresponding to the screw 16 is provided in a sample holder for a scanning electron microscope (hereinafter abbreviated as SEM) shown in FIG. 6, the processed shape of the sample piece can be observed by SEM with high resolution.

次に3次元構造解析用試料片作製装置である集束イオンビーム加工装置の基本構成を図8に示す。液体金属イオン源21,コンデンサレンズ22,ブランカ 23,イオンビーム偏向器24,対物レンズ25,試料ホルダ26,試料傾斜機構27,試料冷却機構28,2次イオン検出及び2次イオン質量分析器29及び画像記録と制御用の計算機30から構成される。試料ホルダ26として、前記試料ホルダ5を含む他の試料ホルダを使用できる。上記偏向器24は計算機30の制御によってを任意の走査方式で走査できる。また上記ブランカ23及び偏向器24は計算機30によって制御されており、集束イオンビームが指定領域を走査しようとするとブランカ23によって試料片10へのイオン照射が中断される機能を有する。   Next, FIG. 8 shows a basic configuration of a focused ion beam processing apparatus which is a sample piece preparation apparatus for three-dimensional structure analysis. Liquid metal ion source 21, condenser lens 22, blanker 23, ion beam deflector 24, objective lens 25, sample holder 26, sample tilting mechanism 27, sample cooling mechanism 28, secondary ion detection and secondary ion mass analyzer 29, It comprises a computer 30 for image recording and control. As the sample holder 26, another sample holder including the sample holder 5 can be used. The deflector 24 can scan by an arbitrary scanning method under the control of the computer 30. The blanker 23 and the deflector 24 are controlled by the computer 30, and have a function of interrupting the irradiation of the sample piece 10 by the blanker 23 when the focused ion beam attempts to scan a designated area.

次に3次元解析用試料作製法について説明する。本工程によって図2に示す形状に試料片10を加工する。   Next, a method for preparing a three-dimensional analysis sample will be described. In this step, the sample piece 10 is processed into the shape shown in FIG.

まずダイサーを用いて太めの突起11を持つチップに加工する。ダイサーの加工精度では突起11の幅は数10μmである。上記方法としては、突起11を作製してからチップに切り分ける方法と、チップに切り分けてから突起11を作製する方法の2つがある。   First, it is processed into a chip having a thick protrusion 11 using a dicer. In the processing accuracy of the dicer, the width of the projection 11 is several tens μm. As the above method, there are two methods: a method of forming the protrusion 11 and then cutting the chip, and a method of forming the protrusion 11 and then cutting the chip.

まず前者の手順を図9に示す。ウェハをダイサーにセットし、幅の厚いダイサー31を用いて突起11以外の部分を削り取る(図9(a))。その後幅の薄いダイサー31で図3に示す試料台13に固定できる大きさのチップを切り出す (図9(b))。本法はウェハ内で同一の加工パターンが繰り返されている試料に有効である。   First, the former procedure is shown in FIG. The wafer is set on a dicer, and portions other than the protrusions 11 are scraped off using a thicker dicer 31 (FIG. 9A). Thereafter, a chip having a size that can be fixed to the sample table 13 shown in FIG. 3 is cut out with a thin dicer 31 (FIG. 9B). This method is effective for a sample in which the same processing pattern is repeated in a wafer.

次に後者の手順を図10に示す。ダイサー31でウェハをチップに切り出した後、突起以外の部分をダイサー31で切り出すあるいは削り取る。前者の方法ではウェハ表面と直交する突起11つまり結晶成長方向と同じ方向の突起11しか作製できないのに対し、本法では任意方向の突起11を作製できる。   Next, the latter procedure is shown in FIG. After the wafer is cut into chips by the dicer 31, portions other than the protrusions are cut or cut by the dicer 31. In the former method, only protrusions 11 perpendicular to the wafer surface, that is, protrusions 11 in the same direction as the crystal growth direction can be formed, whereas in the present method, protrusions 11 in any direction can be formed.

次に前記試料片10を前記試料台13に、太めの突起11の中心軸と試料傾斜軸を一致させて固定する工程を示す。試料片10が試料台13の中心から大きく外れると、後の工程の障害となる。例えば試料片10を回転させながら集束イオンビームを加工する際、試料片10の回転によって突起11が移動してしまうと、突起11の加工精度が低下する。位置ずれが大きい場合にはそれを補正するための工夫が必要である。例えば、位置ずれを補正する試料ホルダ微動機構、位置ずれに追随する集束イオンビーム照射機構等が必要となってくる。   Next, a step of fixing the sample piece 10 to the sample table 13 with the center axis of the thick protrusion 11 and the sample tilt axis aligned will be described. If the sample piece 10 deviates significantly from the center of the sample table 13, it will hinder the subsequent steps. For example, when processing the focused ion beam while rotating the sample piece 10, if the projection 11 moves due to the rotation of the sample piece 10, the processing accuracy of the projection 11 decreases. If the displacement is large, a device for correcting it is necessary. For example, a sample holder fine movement mechanism for correcting the position shift, a focused ion beam irradiation mechanism for following the position shift, and the like are required.

突起11の中心軸と試料傾斜軸を一致させるために、光学顕微鏡に挿入された十字のパターン18と試料台13の目印17を結ぶ直線とが一致する様に試料台13を設置する方法(図5(a))や、図5(b)に示す様に試料台13を回転させながら突起11の中心の運動を光学顕微鏡で観察し、突起11の中心位置が回転しなくなる様に試料位置を微調整する方法を用いる。   In order to make the center axis of the projection 11 coincide with the specimen tilt axis, a method of setting the specimen table 13 so that the cross pattern 18 inserted into the optical microscope and the straight line connecting the mark 17 of the specimen table 13 coincide (FIG. 5 (a)) and while rotating the sample stage 13 as shown in FIG. 5 (b), observe the movement of the center of the projection 11 with an optical microscope, and adjust the sample position so that the center position of the projection 11 does not rotate. Use the method of fine adjustment.

次に図11,図12に集束イオンビームを用いて、電子線が透過できる太さに突起11を細線化する工程を示す。上記工程には集束イオンビームを突起11の中心軸zに対してほぼ並行な方向から入射する方法と直交する方向から入射する方法がある。   Next, FIGS. 11 and 12 show a process of using the focused ion beam to thin the projection 11 to a thickness that allows transmission of an electron beam. In the above-mentioned process, there is a method in which the focused ion beam is incident from a direction substantially parallel to the central axis z of the projection 11 and a method perpendicular to the direction.

まず、図11では集束イオンビーム33を突起11の中心軸zに対してほぼ並行な方向から入射する工程を示す。試料片10を突起11の中心軸zと集束イオンビーム33の入射方向が並行になるように集束イオンビーム試料室に設置し、2次イオン像を観察する。この観察像を計算機に入力して画像表示装置に表示し、突起領域111を指定する。突起領域111の中心つまり加工後突起先端となる位置に集束イオンビームを用いて目印32をマーキングする。細線化された突起11をz軸方向から観察した像から突起内の解析対象12の位置を特定するのは一般に困難だからである。尚、太めの突起11に加工した時点で観察対象の位置を見失う試料は、太めの突起11に加工する前に目印32を付けておく必要がある。また本工程によって観察対象近傍の突起11の太さは100nm以下になるので突起は非常に破損し易くなる。突起の破損防止のためには突起形状を円柱状よりも円錐状にすることが望ましい。   First, FIG. 11 shows a process in which the focused ion beam 33 is incident from a direction substantially parallel to the central axis z of the projection 11. The sample piece 10 is placed in a focused ion beam sample chamber such that the central axis z of the projection 11 and the incident direction of the focused ion beam 33 are parallel, and a secondary ion image is observed. This observation image is input to the computer and displayed on the image display device, and the projection area 111 is designated. The mark 32 is marked using the focused ion beam at the center of the projection region 111, that is, at the position to be the tip of the projection after processing. This is because it is generally difficult to specify the position of the analysis target 12 in the projection from the image obtained by observing the thinned projection 11 in the z-axis direction. Note that a sample that loses the position of the observation target when processed into the thick protrusion 11 needs to be marked 32 before processing into the thick protrusion 11. In addition, since the thickness of the projection 11 near the observation target is reduced to 100 nm or less by this step, the projection is very easily damaged. In order to prevent the breakage of the projection, it is desirable that the shape of the projection is conical rather than cylindrical.

従来の集束イオンビーム加工法では試料上で集束イオンビーム33を図11 (a)に示す様に走査していた。本法では突起領域111を残して集束イオンビーム33を走査しなければならない。例えば図11(a)に示す様に突起領域 111を指定した場合、集束イオンビーム33を図11(b)に示す様に円状に走査すれば突起以外の領域のみを削除できる(図11(c))。楕円や正方形など形状に加工したい場合は集束イオンビーム33を楕円または正方形に走査すれば良い。突起形状を円錐状にする場合は、突起中心近傍が残るように、中心近傍における集束イオンビーム走査速度を周辺近傍よりも速くなるように調整する。
本法は従来の集束イオンビーム加工装置の集束イオンビーム偏向器の制御プログラムを書替えれば実現できる。
In the conventional focused ion beam processing method, the focused ion beam 33 is scanned on the sample as shown in FIG. In this method, the focused ion beam 33 must be scanned while leaving the projection region 111. For example, when the projection region 111 is designated as shown in FIG. 11A, only the region other than the projection can be deleted by scanning the focused ion beam 33 in a circular shape as shown in FIG. 11B. c)). When it is desired to process the beam into a shape such as an ellipse or a square, the focused ion beam 33 may be scanned in an ellipse or a square. When the projection is formed in a conical shape, the focused ion beam scanning speed in the vicinity of the center is adjusted to be faster than that in the vicinity of the periphery so that the vicinity of the center of the projection remains.
This method can be realized by rewriting the control program of the focused ion beam deflector of the conventional focused ion beam processing apparatus.

また別の方法として図12のように、計算機制御されたブランカ23を利用する方法がある。集束イオンビーム33は従来と同様に走査し(図12(a))、集束イオンビーム33が突起領域111を走査する時には計算機制御されたブランカによって集束イオンビーム照射が中断される(図12(b))。突起形状を円錐状にする場合は、集束イオンビーム照射中断領域を同心円的に拡大・縮小し、中心近傍が残るように調整する。前記図11の加工法はでは集束イオンビーム走査モードがTVの走査モードと異なるため、加工中に試料の2次イオン像を得ることができないが、本法では試料加工中の2次イオン像をTV画面上で常に監視しながら加工を行える。   As another method, there is a method using a blanker 23 controlled by a computer as shown in FIG. The focused ion beam 33 scans in the same manner as in the related art (FIG. 12A). When the focused ion beam 33 scans the protruding region 111, the focused ion beam irradiation is interrupted by a computer-controlled blanker (FIG. 12B). )). When the projection is formed in a conical shape, the focused ion beam irradiation interruption region is concentrically enlarged or reduced so that the vicinity of the center is adjusted. In the processing method shown in FIG. 11, the focused ion beam scanning mode is different from the TV scanning mode, so that a secondary ion image of the sample cannot be obtained during the processing. Processing can be performed while constantly monitoring on the TV screen.

次に、集束イオンビーム33を突起11の中心軸zに対してほぼ直交する方向から入射する工程を示す。試料片10を突起11の中心軸zと集束イオンビーム33の入射方向が直交するように集束イオンビーム試料室に設置し、2次イオン像を観察する。例えば図13(a)の様に突起の根本近傍に目印32をマーキングする。突起領域111を指定し、他の領域は集束イオンビーム33を照射して削除する。上記領域の削除が終了すると試料を傾斜し、上記工程を繰り返し(図13(b))、所望の形状に試料を加工する(図13(c))。集束イオンビーム33の入射方向と突起11の中心軸zを並行に設定して加工する方法では試料加工中に突起11の真上からしか観察できなかったが、本法では突起11を横方向から観察できるので、突起11の根本近傍のデバイスパターン形状を参照しながら、観察対象の位置を指定することができる。   Next, a step of injecting the focused ion beam 33 from a direction substantially orthogonal to the central axis z of the protrusion 11 will be described. The sample piece 10 is placed in a focused ion beam sample chamber such that the central axis z of the projection 11 is orthogonal to the incident direction of the focused ion beam 33, and a secondary ion image is observed. For example, as shown in FIG. 13A, a mark 32 is marked near the root of the projection. The projection region 111 is designated, and the other regions are deleted by irradiating the focused ion beam 33. When the deletion of the region is completed, the sample is tilted, and the above steps are repeated (FIG. 13B), and the sample is processed into a desired shape (FIG. 13C). In the method of processing by setting the incident direction of the focused ion beam 33 and the central axis z of the projection 11 in parallel, observation was possible only from directly above the projection 11 during sample processing. Since observation is possible, the position of the observation target can be specified while referring to the device pattern shape near the root of the protrusion 11.

また試料片10を回転させながら集束イオンビーム33を照射しても良い。図14に示す様に試料片10をZ軸回りに回転させながら集束イオンビーム33を照射する。その際集束イオンビーム33の入射位置を突起11の中心軸Zの位置よりも所望の半径Rだけずらして指定する。集束イオンビーム33の試料表面に対する入射角度θは、突起半径rが大きいときは急角度(θ1)で入射するので、試料ダメージは大きいが加工速度は速くなる(図15(a))。突起半径rが小さくなるに従って試料入射角度が小さくなる(θ2)ので、加工速度は遅くなるが試料ダメージは少なくなる(図15(b))。突起半径rが所望の半径Rよりも小さくなると集束イオンビーム照射は自動的に終了する(図15(c))。   Alternatively, the focused ion beam 33 may be irradiated while rotating the sample piece 10. As shown in FIG. 14, the focused ion beam 33 is irradiated while rotating the sample piece 10 around the Z axis. At that time, the incident position of the focused ion beam 33 is designated by being shifted from the position of the central axis Z of the projection 11 by a desired radius R. The incident angle θ of the focused ion beam 33 to the sample surface is a steep angle (θ1) when the projection radius r is large, so that the sample damage is large but the processing speed is high (FIG. 15A). As the projection radius r becomes smaller, the sample incident angle becomes smaller (θ2), so that the processing speed becomes slower but the sample damage is reduced (FIG. 15B). When the projection radius r becomes smaller than the desired radius R, the focused ion beam irradiation automatically ends (FIG. 15C).

なお、突起11の中心軸zと試料回転軸Zの位置がずれていると、試料を回転させた時に突起11の中心軸の位置がずれるので、予め幾つかの回転角度における突起11の中心軸の位置を測定して計算機に入力し、上記位置ずれを追跡するように試料回転と同期させながら集束イオンビームを走査する。本法には集束イオンビームのビーム径よりも細い突起を比較的容易に作製できるという特徴がある。また加工が進むに連れて試料ダメージが小さくなることから、試料の仕上げ工程として有効である。   If the position of the center axis z of the protrusion 11 is shifted from the position of the sample rotation axis Z, the position of the center axis of the protrusion 11 is shifted when the sample is rotated. Is measured and input to a computer, and the focused ion beam is scanned while synchronizing with the rotation of the sample so as to track the positional deviation. This method has a feature that a projection smaller than the beam diameter of the focused ion beam can be relatively easily formed. In addition, since sample damage is reduced as the processing proceeds, it is effective as a sample finishing step.

以上の方法を用いて試料を加工する。試料が所望の形状に加工されたかの判断は2次イオン像による形状観察、または2次イオン質量分析法による組成解析、2次電子像による高空間分解能の形状観察等を用いる。   The sample is processed using the above method. To determine whether the sample has been processed into a desired shape, shape observation using a secondary ion image, composition analysis using secondary ion mass spectrometry, high spatial resolution shape observation using a secondary electron image, or the like is used.

なお突起状に加工する工程において、試料を観察してから解析対象を決定する場合もある。つまりあるデバイスで不良原因となり得る箇所が複数箇所存在し、TEM像で観察してからでなければ3次元的に解析したい領域が決定できない場合がある。例えば図16に示す様に、パターン形状の一部が断線している場合、まず図16(a)に示すような板状に試料を加工してTEMで観察し、断線箇所を観察対象12と特定した後、上記観察対象12を内包する突起(図16(b))に加工し、断線状態を3次元的に観察する。   In the process of processing into a projection, the analysis target may be determined after the sample is observed. In other words, there are a plurality of locations that may cause a defect in a certain device, and a region to be three-dimensionally analyzed may not be determined unless observed with a TEM image. For example, as shown in FIG. 16, when a part of the pattern shape is disconnected, first, the sample is processed into a plate shape as shown in FIG. After the identification, the projection is processed into a projection (FIG. 16 (b)) including the observation target 12, and the disconnection state is observed three-dimensionally.

前記工程によって作製された試料片10の観察は従来のTEM観察と同様に行う。試料片10が固定されている試料台13を保持筒14内の棒状支持具15に固定し、TEM試料室に挿入し、加速した電子線を観察対象12に照射し、そのTEM像を得る。観察対象12をz軸回りに自由に傾斜させながら3次元構造を観察する。   Observation of the sample piece 10 produced by the above-described process is performed in the same manner as conventional TEM observation. A sample table 13 on which the sample piece 10 is fixed is fixed to a rod-like support 15 in a holding cylinder 14, inserted into a TEM sample chamber, and irradiated with an accelerated electron beam to the observation object 12 to obtain a TEM image. The three-dimensional structure is observed while the observation target 12 is freely tilted around the z-axis.

本発明を用いれば、例えばある不良箇所近傍のデバイスパターン形状及びその周辺の析出物の3次元分布等を直接評価できる。また本技術によって全方向の投影像を得ることが可能となり、3次元再構成のための必要条件が初めて満たされたのである。本法によって、ただ1つの試料片から任意形状の構造を再構成することが可能となる。   According to the present invention, for example, a three-dimensional distribution of a device pattern shape near a certain defective portion and a precipitate around the device pattern can be directly evaluated. Further, the present technology makes it possible to obtain a projected image in all directions, and the necessary conditions for three-dimensional reconstruction are satisfied for the first time. According to the present method, it is possible to reconstruct an arbitrary-shaped structure from only one sample piece.

なお、観察対象12の領域が広範囲である場合、観察対象12を内包する突起の直径2Rは必然的に大きくなってしまう。突起の直径2Rが大きくなると、試料内で散乱される電子が増加するため、観察像の空間分解能が低下してしまう。
加速電圧100kV〜300kVで通常のTEM像を得る際、試料厚さを数10nm程度にして観察しており、これ以上厚くすると観察像が不鮮明になってくる。厚膜試料観察に対しては、エネルギフィルタを用いた非弾性散乱電子の除去が効果を発揮する。試料内を通過した電子のうち弾性散乱電子のみが通過できる様にエネルギフィルタのスリットを設定して非散乱電子を除去すれば、フィルタなしの場合の数倍の厚さの試料が観察できるようになる。
When the region of the observation target 12 is wide, the diameter 2R of the projection including the observation target 12 is inevitably large. When the diameter 2R of the projection increases, the number of electrons scattered in the sample increases, and the spatial resolution of the observed image decreases.
When a normal TEM image is obtained at an acceleration voltage of 100 kV to 300 kV, the observation is performed with the sample thickness set to about several tens of nm. If the thickness is further increased, the observation image becomes unclear. For the observation of a thick film sample, removal of inelastic scattered electrons using an energy filter is effective. If non-scattered electrons are removed by setting the slit of the energy filter so that only elastic scattered electrons can pass among the electrons that have passed through the sample, a sample several times thicker than without a filter can be observed. Become.

本発明の実施例で用いた透過電子顕微鏡の全体構成図。1 is an overall configuration diagram of a transmission electron microscope used in an example of the present invention. 3次元観察用試料片の形状を示す概念図。The conceptual diagram which shows the shape of the sample piece for three-dimensional observation. 試料片を設置する試料台の構成図。The block diagram of the sample stand in which a sample piece is installed. 1軸全方向試料ホルダの構成図。FIG. 3 is a configuration diagram of a uniaxial omnidirectional sample holder. 試料片の加工位置調整の説明図。Explanatory drawing of adjustment of the processing position of a sample piece. SEM用標準試料ホルダの断面図。Sectional drawing of the standard sample holder for SEM. 試料破損保護カバーの構成図。The block diagram of the sample damage protection cover. 本発明の一実施例の集束イオンビーム加工装置の基本構成図。FIG. 1 is a basic configuration diagram of a focused ion beam processing apparatus according to one embodiment of the present invention. ダイサーを用いて太めの突起を切り出す工程を示す説明図。Explanatory drawing which shows the process which cuts out a thick protrusion using a dicer. ダイサーを用いて太めの突起を切り出す工程を示す説明図。Explanatory drawing which shows the process which cuts out a thick protrusion using a dicer. 試料片の加工工程の説明図。Explanatory drawing of the process of processing a sample piece. 試料片の加工工程の説明図。Explanatory drawing of the process of processing a sample piece. 試料片の加工工程の説明図。Explanatory drawing of the process of processing a sample piece. 試料片の加工工程の説明図。Explanatory drawing of the process of processing a sample piece. 試料片に形成する突起部の半径とイオンビーム加工位置の関係を示す説明図。FIG. 4 is an explanatory diagram illustrating a relationship between a radius of a protrusion formed on a sample piece and an ion beam processing position. 試料片上の観察対象部の説明図。Explanatory drawing of the observation target part on a sample piece. 投影切断面定理の説明図。FIG. 4 is an explanatory diagram of the projection cut plane theorem.

符号の説明Explanation of reference numerals

1…電子銃、2…コンデンサレンズ、3…電子偏向コイル、4…対物レンズ、5…試料ホルダ、6…試料傾斜機構、7…in−column型エネルギフィルタ、8…画像記録装置、9…制御用ソフトと画像処理用ソフトを備えた計算機、10…試料片、11…突起、12…観察対象、13…試料台、14…保持筒、15…棒状支持具、16…試料台固定用ネジ、17…試料片位置調整用の目印、18…光学顕微鏡の光軸上に挿入された十字パターン、19…試料台回転装置、20…SEM 用標準試料台、21…液体金属イオン源、22…コンデンサレンズ、23…ブランカ、24…イオンビーム偏向器、25…対物レンズ、26…試料ホルダ、27…試料傾斜機構、28…試料冷却機構、29…質量分析機、30…画像記録装置及び制御用計算機、31…ダイサー、32…観察対象の位置参照に用いる目印、33…イオンビーム、34…試料破損保護カバー、35…post−column型エネルギフィルタ、111…突起領域。

DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... Condenser lens, 3 ... Electron deflection coil, 4 ... Objective lens, 5 ... Sample holder, 6 ... Sample tilting mechanism, 7 ... In-column type energy filter, 8 ... Image recording device, 9 ... Control Computer with software for image processing and software for image processing, 10: sample piece, 11: protrusion, 12: observation target, 13: sample table, 14: holding cylinder, 15: rod-shaped support, 16: screw for fixing the sample table, 17: mark for adjusting the position of a sample piece, 18: cross pattern inserted on the optical axis of an optical microscope, 19: sample stage rotating device, 20: standard sample stage for SEM, 21: liquid metal ion source, 22: condenser Lens, 23 Blanker, 24 Ion beam deflector, 25 Objective lens, 26 Sample holder, 27 Sample tilting mechanism, 28 Sample cooling mechanism, 29 Mass analyzer, 30 Image recording device and control computer , 31 ... L'Yser, 32 ... mark used in the location reference of the observation object, 33 ... ion beam, 34 ... sample damage protective cover, 35 ... post-column type energy filter, 111 ... projection area.

Claims (23)

イオン源,コンデンサレンズ,対物レンズ,試料ホルダ,試料回転・移動機構,試料冷却機構,質量分析器,画像記録装置及び制御用計算機からなる集束イオンビーム加工装置であって、観察対象を内包する突起部分を有する形状に試料を加工するイオンビーム偏向器,イオンビーム制御機構及びブランカを具備することを特徴とする3次元構造観察用試料作製装置。   A focused ion beam processing device consisting of an ion source, a condenser lens, an objective lens, a sample holder, a sample rotating / moving mechanism, a sample cooling mechanism, a mass analyzer, an image recording device, and a control computer. A sample preparation apparatus for three-dimensional structure observation, comprising: an ion beam deflector for processing a sample into a shape having a portion; an ion beam control mechanism; and a blanker. 請求項1記載の観察対象を内包する突起部分を有する形状は、上記突起の直径が透過電子顕微鏡像が観察可能な値であることを特徴とする3次元構造観察用試料作製装置。   3. A three-dimensional structure observation sample preparation apparatus according to claim 1, wherein the shape having the projection portion including the observation target has a value such that a diameter of the projection can be observed by a transmission electron microscope image. 請求項1記載の試料を加工する手段は、試料の2次元観察像を記録し、上記2次元観察像内の観察対象を含む突起に加工する領域を指定し、上記領域以外をイオンビームが走査する様にイオンビーム偏向器を制御する手段を含むことを特徴とする3次元構造観察用試料作製装置。   The means for processing a sample according to claim 1 records a two-dimensional observation image of the sample, designates an area to be processed into a projection including an observation target in the two-dimensional observation image, and scans an area other than the area with an ion beam. And a means for controlling the ion beam deflector so as to perform the operation. 請求項1記載の試料を加工する手段は、試料の2次元観察像を記録し、上記2次元観察像内の観察対象を含む突起領域を指定し、イオンビームで試料上を走査し、イオンビーム入射位置が上記突起領域を走査する時は計算機制御されたブランカによってイオン照射を中断する手段を含むことを特徴とする3次元構造観察用試料作製装置。   The means for processing a sample according to claim 1 records a two-dimensional observation image of the sample, designates a projection region including an observation target in the two-dimensional observation image, scans the sample with an ion beam, and scans the ion beam. An apparatus for preparing a three-dimensional structure observation sample, comprising means for interrupting ion irradiation by a computer-controlled blanker when the incident position scans the projection region. 請求項1記載の試料を加工する手段は、試料を突起の中心軸回りに回転させる手段、突起の中心軸に対して直交する方向からイオンビームを入射し、突起の半径が所望の値になるまで突起表面を削除する手段を含むことを特徴とする3次元構造観察用試料作製装置。   The means for processing a sample according to claim 1 is a means for rotating the sample around a central axis of the projection, and an ion beam is incident from a direction perpendicular to the central axis of the projection, and the radius of the projection becomes a desired value. An apparatus for preparing a three-dimensional structure observation sample, comprising: means for removing a projection surface up to the projection. 電子銃,電子レンズ,電子線偏向コイル,試料ホルダ,試料回転・移動機構,エネルギフィルタ,画像記録装置及び制御用ソフトと画像処理ソフトを備えた計算機からなる電子顕微鏡であって、観察対象を内包する突起部分を有する試料を試料室内で入射電子線と直交する回転軸回りに360°回転できる試料ホルダ、上記試料の3次元構造を観察する手段を含むことを特徴とする3次元構造観察用電子顕微鏡。   An electron microscope consisting of an electron gun, an electron lens, an electron beam deflection coil, a sample holder, a sample rotation / movement mechanism, an energy filter, an image recording device, and a computer equipped with control software and image processing software. A sample holder capable of rotating a sample having a protruding portion by 360 ° around a rotation axis orthogonal to an incident electron beam in a sample chamber, and a means for observing a three-dimensional structure of the sample, comprising: microscope. 請求項6記載の試料ホルダは、試料台,棒状支持具及び保持筒から構成され、上記棒状支持具は保持筒内で試料回転軸回りに360°回転でき、棒状支持具の回転軸と試料台の回転軸を一致させて固定する手段と、試料台の回転軸と突起の中心軸とを一致させて固定する手段を有することを特徴とする3次元構造観察用電子顕微鏡。   7. The sample holder according to claim 6, comprising a sample table, a rod-shaped support, and a holding cylinder, wherein said rod-shaped support can be rotated by 360 ° around the sample rotation axis in the holding cylinder, and the rotation axis of the rod-shaped support and the sample table. 3. An electron microscope for three-dimensional structure observation, comprising: means for making the rotation axes of the sample table coincide with each other and fixing the same, and means for making the rotation axis of the sample table coincide with the center axis of the projection. 請求項7記載の試料台は、突起の破損を防ぐための保護カバーを備えていることを特徴とする3次元構造観察用電子顕微鏡。   An electron microscope for three-dimensional structure observation, wherein the sample stage according to claim 7 is provided with a protective cover for preventing breakage of the projection. 請求項7記載の棒状支持具の回転軸と試料台の回転軸を一致させて固定する手段は、試料台下部と棒状支持具の先端に設けられたネジ及びネジ穴であることを特徴とする3次元構造観察用電子顕微鏡。   The means for fixing the rotation axis of the rod-shaped support and the rotation axis of the sample stage so as to coincide with each other is a screw and a screw hole provided at the lower part of the sample stage and at the tip of the rod-shaped support. Electron microscope for three-dimensional structure observation. 請求項7記載の試料台の回転軸と突起の中心軸を一致させて固定する手段は、試料台に設けられた複数組の目印であり、各組の目印を結ぶ直線の交点は試料台の回転軸上にあり、上記交点と突起の中心軸が一致するように試料台に対する試料の位置を微調整する手段を有することを特徴とする3次元構造観察用電子顕微鏡。   The means for fixing the rotation axis of the sample table and the central axis of the projections in accordance with claim 7 is a plurality of sets of marks provided on the sample table, and the intersection of a straight line connecting the marks of each set is the cross point of the sample table. An electron microscope for observing a three-dimensional structure, comprising means for adjusting the position of the sample with respect to the sample stage so that the center of the projection coincides with the intersection point on the rotation axis. 請求項7記載の試料台の回転軸と突起の中心軸を一致させて固定する手段は、試料台を試料台の回転軸回りに回転させる装置であり、上記装置を用いて試料台を回転させたとき、試料台上に設置した試料の突起の中心軸が移動しないように試料台に対する試料の位置を微調整する手段を有することを特徴とする3次元構造観察用電子顕微鏡。   The means for fixing the rotation axis of the sample stage and the central axis of the projection according to claim 7 is a device for rotating the sample stage around the rotation axis of the sample stage. An electron microscope for observing a three-dimensional structure, comprising means for finely adjusting the position of the sample with respect to the sample stage so that the center axis of the projection of the sample mounted on the sample stage does not move when the sample stage is placed. 観察対象を内包する突起を有する形状に試料を加工する工程、上記形状の試料を試料ホルダに固定する工程、上記試料を1軸回りの任意の方向から観察した複数枚の透過電子顕微鏡像を得る工程、上記複数枚の透過電子顕微鏡像から観察対象の3次元構造を構築する工程を含むことを特徴とする3次元構造観察法。   A step of processing the sample into a shape having a projection including the observation target, a step of fixing the sample of the above shape to a sample holder, and obtaining a plurality of transmission electron microscope images obtained by observing the sample from any direction around one axis A three-dimensional structure observation method, comprising: constructing a three-dimensional structure of an observation target from the plurality of transmission electron microscope images. 請求項12記載の観察対象を内包する突起部分を有する形状は、上記突起の直径は透過電子顕微鏡の入射電圧100kVから300kVでは100nm以下とすることを特徴とした3次元構造観察法。   13. The three-dimensional structure observation method according to claim 12, wherein a diameter of the projection is 100 nm or less at an incident voltage of 100 kV to 300 kV of a transmission electron microscope. 請求項12記載の試料を前記形状に加工する工程は、試料の2次元観察像を記録して計算機に入力して突起領域を設定し、上記領域の周辺部のみをイオンビームが走査するようにイオンビーム偏向器を計算機によって制御することによって突起以外の部分のみを削除する工程を含むことを特徴とする3次元構造観察法。   The step of processing the sample into the shape according to claim 12 is such that a two-dimensional observation image of the sample is recorded and input to a computer to set a projection region, and the ion beam scans only the periphery of the region. A three-dimensional structure observation method including a step of deleting only a portion other than a protrusion by controlling an ion beam deflector by a computer. 請求項12記載の試料を前記形状に加工する工程は、試料の2次元観察像を記録して計算機に入力して突起領域を設定し、イオンビームで試料上を走査し、イオンビーム入射位置が上記突起領域を走査する時はブランカを用いてイオン照射を中断することによって突起以外の部分のみを削除する工程を含むことを特徴とする3次元構造観察法。   The step of processing the sample into the shape according to claim 12 includes recording a two-dimensional observation image of the sample, inputting the image to a computer, setting a projection region, scanning the sample with an ion beam, and setting the ion beam incident position to A method for observing a three-dimensional structure, comprising the step of interrupting ion irradiation using a blanker when scanning the above-mentioned projection region to delete only a portion other than the projection. 請求項12記載の試料を前記形状に加工する工程は、試料を突起の中心軸回りに回転させながら突起の中心軸に対して直交する方向からイオンビームを入射し、突起表面を削除しながら突起を所望の半径に加工する工程を含むことを特徴とする3次元構造観察法。   13. The step of processing the sample into the shape according to claim 12, wherein the step of rotating the sample around the central axis of the projection, inputting an ion beam from a direction perpendicular to the central axis of the projection, and removing the surface of the projection. A three-dimensional structure observing method, comprising a step of processing a surface to a desired radius. 請求項16記載の試料を突起の中心軸回りに回転させながら突起の中心軸に対して直交する方向からイオンビームを入射する工程は、試料傾斜軸と突起の中心軸の位置ずれによる突起中心軸の回転を追跡しながらイオンビームを走査する工程を含むことを特徴とする3次元構造観察法。   17. The projecting central axis due to a displacement of the sample tilt axis and the central axis of the projection according to claim 16, wherein the step of injecting the ion beam from a direction perpendicular to the central axis of the projection while rotating the sample around the central axis of the projection. A three-dimensional structure observation method, comprising a step of scanning an ion beam while tracking the rotation of the ion beam. 請求項16記載の突起を所望の半径に加工する工程は、イオンビーム入射位置を所望の半径の位置に設定することにより、突起半径が所望の半径よりも大きいと突起表面に対するイオンビーム入射角度が大きくなるため粗加工となり、所望の半径に近づくと小さくなるため仕上げ加工となる工程を含むことを特徴とする3次元構造観察法。   In the step of processing the projection to a desired radius according to claim 16, by setting the ion beam incident position to a position of a desired radius, when the projection radius is larger than the desired radius, the ion beam incident angle with respect to the projection surface becomes larger. A three-dimensional structure observing method, which includes a step of performing a roughing process because the size becomes large, and a finishing process because the size becomes small when the radius approaches a desired radius. 請求項12記載の試料を試料ホルダに固定する工程は、試料台に設けられた複数組の目印を用い、各組の目印を結ぶ直線の交点である試料台の回転軸と突起の中心軸が一致するように試料台に対する試料の位置を微調整し、突起の中心軸と試料台の傾斜軸を一致させて固定する工程を含むことを特徴とする3次元構造観察法。   The step of fixing the sample according to claim 12 to the sample holder uses a plurality of sets of marks provided on the sample table, and the center axis of the rotation axis of the sample table and the central axis of the projection, which is the intersection of straight lines connecting the marks of each set, are used. A three-dimensional structure observation method, which comprises a step of finely adjusting a position of a sample with respect to a sample stage so as to be coincident, and fixing the sample so that a center axis of a projection and an inclination axis of the sample stage are aligned. 請求項12記載の試料を試料ホルダに固定する工程は、試料台の回転軸回りに試料台を回転させる装置に試料を設置して試料台を回転させたとき、突起の中心軸が移動しないように試料台に対する試料の位置を微調整し、突起の中心軸と試料台の傾斜軸を一致させて固定する工程を含むことを特徴とする3次元構造観察法。   The step of fixing the sample to the sample holder according to claim 12 is such that, when the sample is set on an apparatus for rotating the sample stage around the rotation axis of the sample stage and the sample stage is rotated, the central axis of the projection does not move. 3. A three-dimensional structure observation method, comprising the steps of: finely adjusting the position of the sample with respect to the sample table, fixing the center axis of the projection and the tilt axis of the sample table so as to coincide with each other. 請求項12記載の試料を1軸回りの任意の方向から観察した複数枚の透過電子顕微鏡像は、試料内を通過した電子線のうちエネルギフィルタによって特定のエネルギの電子で結像した像であることを特徴とする3次元構造観察法。   A plurality of transmission electron microscope images obtained by observing the sample according to claim 12 from an arbitrary direction around one axis are images formed by electrons of a specific energy by an energy filter among electron beams passing through the sample. A three-dimensional structure observation method characterized in that: 請求項12記載の試料を1軸回りの任意の方向から観察した複数枚の透過電子顕微鏡像は、試料内を通過した電子線のうち高角散乱電子で結像した像であり、試料の電子散乱能と像コントラストとが線形関係に近似できることを特徴とする3次元構造観察法。   A plurality of transmission electron microscope images obtained by observing the sample according to claim 12 from an arbitrary direction about one axis are images formed by high-angle scattered electrons among electron beams passing through the sample, and electron scattering of the sample is performed. A three-dimensional structure observation method, wherein the function and the image contrast can be approximated to a linear relationship. 請求項12記載の複数枚の透過電子顕微鏡像から観察対象の3次元構造を構築する工程は、透過電子顕微鏡像を投影像として用い、上記投影像を画像再構成する工程を含むことを特徴とする3次元構造観察法。


The step of constructing a three-dimensional structure of an observation object from a plurality of transmission electron microscope images according to claim 12 includes a step of using the transmission electron microscope image as a projection image and reconstructing the projection image. 3D structure observation method.


JP2004166547A 2004-06-04 2004-06-04 Sample preparation apparatus for three-dimensional structure observation, electron microscope, and method therefor Pending JP2004301852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166547A JP2004301852A (en) 2004-06-04 2004-06-04 Sample preparation apparatus for three-dimensional structure observation, electron microscope, and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166547A JP2004301852A (en) 2004-06-04 2004-06-04 Sample preparation apparatus for three-dimensional structure observation, electron microscope, and method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26406796A Division JP3677895B2 (en) 1996-10-04 1996-10-04 Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof

Publications (2)

Publication Number Publication Date
JP2004301852A true JP2004301852A (en) 2004-10-28
JP2004301852A5 JP2004301852A5 (en) 2005-06-16

Family

ID=33411320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166547A Pending JP2004301852A (en) 2004-06-04 2004-06-04 Sample preparation apparatus for three-dimensional structure observation, electron microscope, and method therefor

Country Status (1)

Country Link
JP (1) JP2004301852A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193977A (en) * 2006-01-17 2007-08-02 Hitachi High-Technologies Corp Charged beam apparatus and charged beam processing method
JP2015532709A (en) * 2012-07-27 2015-11-12 ガタン インコーポレイテッドGatan Inc. Ion beam sample preparation apparatus and method
US20220310354A1 (en) * 2021-03-23 2022-09-29 Fei Company Beam trajectory via combination of image shift and hardware alpha tilt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193977A (en) * 2006-01-17 2007-08-02 Hitachi High-Technologies Corp Charged beam apparatus and charged beam processing method
JP2015532709A (en) * 2012-07-27 2015-11-12 ガタン インコーポレイテッドGatan Inc. Ion beam sample preparation apparatus and method
US10110854B2 (en) 2012-07-27 2018-10-23 Gatan, Inc. Ion beam sample preparation apparatus and methods
US20220310354A1 (en) * 2021-03-23 2022-09-29 Fei Company Beam trajectory via combination of image shift and hardware alpha tilt
US11574794B2 (en) * 2021-03-23 2023-02-07 Fei Company Beam trajectory via combination of image shift and hardware alpha tilt

Similar Documents

Publication Publication Date Title
JP3287858B2 (en) Electron microscope device and electron microscope method
JP4433092B2 (en) Three-dimensional structure observation method
JP6393448B2 (en) Reference mark formation for acquisition and alignment of TEM / STEM tomography continuous tilt
US8227781B2 (en) Variable-tilt specimen holder and method and for monitoring milling in a charged-particle instrument
CN105914159B (en) Pattern matching using automatic S/TEM acquisition and metrology of thin slices of known shape
JP5309552B2 (en) Electron beam tomography method and electron beam tomography apparatus
JP3677895B2 (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof
CN110021513B (en) Method for sample orientation for TEM flake preparation
KR20160119840A (en) Method of Performing Electron Diffraction Pattern Analysis Upon a Sample
JP2011216465A (en) Compound charged particle beam device and sample processing observation method
US20130214458A1 (en) Sample preparation method and apparatus
JP4283432B2 (en) Sample preparation equipment
US10319561B2 (en) Object preparation device and particle beam device with an object preparation device and method for operating the particle beam device
JP2021068702A (en) Method for 3d analysis of large area of sample using slightly incident fib milling
JP2020064780A (en) Charged particle beam device and sample processing observation method
KR102144555B1 (en) Method and system for reducing curtaining in charged particle beam sample preparation
CN103308356A (en) Sample preparation apparatus and sample preparation method
JP4699168B2 (en) Electron microscope sample preparation method
JP2023076412A (en) Method of imaging and milling sample
JP4393352B2 (en) electronic microscope
JP2004301852A (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope, and method therefor
JP4232848B2 (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof
JP2004301851A (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope, and method therefor
US20240120175A1 (en) Method for preparing a microscopic sample for fib/sem tomography
JP2008262921A (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016