[go: up one dir, main page]

JP2004300182A - High-strength composite lubricating film using self-assembled monolayer and method for producing the same - Google Patents

High-strength composite lubricating film using self-assembled monolayer and method for producing the same Download PDF

Info

Publication number
JP2004300182A
JP2004300182A JP2003092122A JP2003092122A JP2004300182A JP 2004300182 A JP2004300182 A JP 2004300182A JP 2003092122 A JP2003092122 A JP 2003092122A JP 2003092122 A JP2003092122 A JP 2003092122A JP 2004300182 A JP2004300182 A JP 2004300182A
Authority
JP
Japan
Prior art keywords
film
lubricating film
composite lubricating
self
fomblin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003092122A
Other languages
Japanese (ja)
Inventor
Takahisa Kato
孝久 加藤
Junho Che
ジュンホ チェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003092122A priority Critical patent/JP2004300182A/en
Publication of JP2004300182A publication Critical patent/JP2004300182A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lubricants (AREA)

Abstract

【課題】薄膜においても高い強度を有する潤滑膜及びその製造方法を提供する。
【解決手段】固体表面上に部分的または全面的に形成した複合潤滑膜であって、該固体表面に固定化されたシラン系有機化合物からなる自己組織化単分子膜と、流動性潤滑剤膜とからなることを特徴とする高強度複合潤滑膜。
【選択図】 なし
A lubricating film having high strength even in a thin film and a method for manufacturing the same are provided.
Kind Code: A1 A composite lubricating film formed partially or entirely on a solid surface, comprising a self-assembled monomolecular film composed of a silane-based organic compound fixed on the solid surface, and a fluid lubricant film. A high-strength composite lubricating film comprising:
[Selection diagram] None

Description

【0001】
【発明の属する技術分野】
本発明は、超高密度記録装置、精密位置決め機構、精密搬送装置、精密回転機械、マイクロマシンなどの微小機械のしゅう動要素として有用な高強度複合潤滑膜に関するものである。
【0002】
【従来の技術】
上記微小機械では摩擦を低下させ、また摩擦要素が接触したときの衝撃をやわらげるため潤滑剤が塗布されているが、ナノメータレベルの位置決めあるいは作動精度を期待し、そして潤滑剤蒸発あるいは飛散による環境への悪化をおそれるために、ナノメータ厚さの、主としてフッ素系高分子パーフルオロポリエーテルなどの潤滑剤が用いられている。
【0003】
超高密度記録装置、精密位置決め機構、精密搬送装置、精密回転機械、マイクロマシンなどにおいては記録密度を高めるため、また位置決めあるいは作動精度をより確実にするためにより薄膜の潤滑システムが必要とされている。
【0004】
潤滑剤には固体表面保護の観点からの吸着性、および摩擦低減の観点からの流動性の2つの相反する性質が求められている。従来の潤滑では適当量の潤滑油をしゅう動部分に給油することにより、そのうち固体表面近傍の潤滑剤(境界潤滑膜)が吸着性を、それ以外が流動性を示していると考えられるが、これらを個別に制御することは行われていなかった。
【0005】
潤滑膜が数ナノメータの厚さになると、潤滑剤の流動および回復が遅れるため期待すべき効果を得にくくなる。これを避けるためには吸着性を示す潤滑剤(吸着層)と流動性を示す潤滑剤(流動層)とを個別に制御することが必要である。
【0006】
【発明が解決しようとする課題】
本発明は、薄膜においても高い強度を有する潤滑膜及びその製造方法を提供することをその課題とする。
【0007】
【課題を解決するための手段】
本発明によれば、以下に示す高強度複合潤滑膜及びその製造方法が提供される。
(1)固体表面上に部分的または全面的に形成した複合潤滑膜であって、該固体表面に固定化されたシラン系有機化合物からなる自己組織化単分子膜と、流動性潤滑剤膜とからなることを特徴とする高強度複合潤滑膜。
(2)固体表面にシラン系有機化合物と流動性潤滑剤を含む溶液を接触させた後乾燥することを特徴とする高強度複合潤滑膜の製造方法。
(3)固体表面にシラン系有機化合物を含む溶液を接触させた後乾燥して形成した自己組織化単分子膜上に、流動性潤滑剤を塗布することを特徴とする高強度複合潤滑膜の製造方法。
【0008】
【発明の実施の形態】
自己組織化単分子膜は固体表面と化学結合して吸着性を示す。これと流動性を示す従来の潤滑剤分子とを組合わせることによって、図1に示すような複合潤滑膜を形成する。複合潤滑膜は自己組織化単分子膜の固体表面保護機能に加えて流動潤滑剤分子の保持機能も併せ持ち、高強度性能が発現する。
【0009】
なお、本明細書で言う自己組織化単分子膜とは、有機分子の溶液に固体を浸漬することにより、有機分子が固体表面に吸着して自主的に形成する単分子膜を意味する。
【0010】
下記一般式(1)で表されるシラン系有機化合物の溶液に固体を接触させると、該シラン系有機化合物が固体表面の水酸基等と反応して、図2に示すような自己組織化単分子膜を形成する。
【化1】
R−SiX (1)
前記式中、Rは有機基を示し、Xは固体表面に結合し得る基又は元素を示す。
【0011】
有機基Rには、炭素数1〜18、好ましくは6〜18の含炭素基(アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、アルアルキル基等)が包含される。Xには炭素数1または2のアルコキシ基や、ハロゲン元素(塩素、臭素等)、メルカプト基、カルボキシル基、スルホン酸基、リン酸基等が包含される。
前記含炭素基は、炭素水素基や含ハロゲン(フッ素、塩素、臭素等)炭化水素基等が包含される。
【0012】
本発明で用いる流動性潤滑剤としては、従来公知の各種のもの、例えば、炭化水素系、含フッ素炭化水素系、オルガノシロキサン系等の潤滑剤が用いられる。この潤滑剤は、固体表面上に厚さ0.5〜5nm、好ましくは1〜2nmの潤滑剤膜を与えるような量で用いられる。
【0013】
本発明において用いる固体表面は、カーボン、ダイヤモンドライクカーボン、シリカ、シリコン、ガラス、金属等からなるものであるが、特に制約されない。
【0014】
(複合潤滑膜の製造方法)
シラン系有機化合物の溶液に流動性潤滑剤分子を加えたものに新たな固体試料を接触させると、固体表面には自己組織化単分子と流動性潤滑剤分子とが適当に配置して、図1で示すような複合分子膜が形成される。ここで、固体試料の溶液接触時間を増やすことによって自己組織化単分子膜の固体表面積に占める割合を増加させることができる。
【0015】
(製造方法1による複合潤滑膜の製造)
その製造例として、シラン系有機化合物にはFDTS(perfluorodecyltrichlorosilane、CF(CFCHCHSiCl、分子長さ約15Å)、流動分子にはFomblin Z03(CF−[(O−CF−CF)p−(O−CF)q]−O−CF、ただしp/q=2/3、分子量3840、分子層厚さ約15Å、Ausimont社)、溶媒にはハイドロフルオロエーテル(HFE−7100DL、3M社)を用いて複合潤滑膜を作成した。また、固体試料には表面にDLC(ダイヤモンドライクカーボン)薄膜が蒸着してある磁気デスク基板を用いた。
【0016】
(複合潤滑膜に関する平均膜厚の計測結果)
図3に複合潤滑膜の平均膜厚および接触角の計測結果を示す。図の横軸は溶液浸漬時間を、縦軸は潤滑膜の平均膜厚(左縦軸)および水に対する接触角(右縦軸)を示す。平均膜厚はエリプソメータにて、接触角は接触角計にて測定した。図中の○印は浸漬直後の平均膜厚を、□印はその後さらに流動分子を洗い流した後の結果である。すなわち、○印は複合潤滑膜(FDTS+Fomblin Z03)の平均厚さ、□印は自己組織化単分子膜(FDTS)のみの平均厚さである。これらのデータより、浸漬時間の増加に伴ってFDTSの自己組織化膜が成長し最終的にはその平均膜厚が分子長さ(約15Å)にまで達すること、すなわち浸漬時間の増加に伴ってFDTSの自己組織化膜の生成が促進されて、最終的には固体表面上にFDTSの自己組織化膜が形成されることがわかる。一方、○印と□印の値の差に相当する流動分子Fomblin Z03の膜厚は浸漬時間にかかわらず一定値(約15Å)を示す、すなわち浸漬時間には依存しない。そして、最終的には、Fomblin Z03の分子層がFDTSの自己組織化単分子膜の上に存在して、2分子層構造になっている。
【0017】
(複合潤滑膜に関する接触角の計測結果)
さらに図3にはFomblin Z03洗浄後の接触角測定結果▲が示してある。データは浸漬時間の増加に伴う接触角の増加は表面エネルギの低下を示しており、このデータからも自己組織化膜の形成が確認できる。
【0018】
(Fomblin Z03膜およびSAM膜のスクラッチ試験の結果)
スクラッチ試験機を用いてFomblin Z03膜単体とSAM膜単体それぞれを塗布した試料についてスクラッチ強度を測定した。膜厚はFomblinZ03単体が2nm、SAM単体が1.5nmである。スクラッチ試験は試料にダイヤモンド製の硬質針を摩擦させるものであり、ここで硬質針の押付け荷重を徐々に増やしてDLC薄膜膜が破壊される時の荷重を測定して、これをスクラッチ強度とする。スクラッチ強度が高いほど表面に塗布された潤滑膜の強度が高い。図4にFomblin Z03膜とSAM膜のスクラッチ強度を示す。荷重(横軸)の増加に伴ってある荷重で急激に摩擦(縦軸)が増大する。このときの荷重がスクラッチ強度である。図より、Fomblin Z03単体とSAM膜単体ではFomblin Z03単体の方がスクラッチ強度が高い。
【0019】
(製造方法1による複合潤滑膜のスクラッチ試験の結果)
これに対して、Fomblin Z03膜単体と複合潤滑膜をそれぞれを塗布した試料についてのスクラッチ強度を比較した。塗布した潤滑膜は以下の通りである。
A:Fomblin Z03、膜厚1.4nm
B:Fomblin Z03、膜厚1.7nm
C:Fomblin Z03、膜厚1.3nm+SAM膜厚0.4nm=総膜厚1.7nm
D:Fomblin Z03、膜厚1.5nm+SAM膜厚0.8nm=総膜厚2.3nm
E:Fomblin Z03、膜厚3.0nm
試験の結果、図5に示すように、同程度の膜厚の場合(BとCの比較)には複合潤滑膜の方が強度が高く、また、Fomblin Z03単体の膜厚3nm(E)よりも複合膜で膜厚2.3nm(D)の方が、膜厚が薄いにもかかわらず、強度が高くなるという結果が得られた。
【0020】
(複合潤滑膜の製造方法2)
前記シラン系有機化合物の溶液には流動性潤滑剤分子を加えずに固体試料を接触させると、SAM膜のみが形成される。溶媒を乾燥除去した後に、流動性潤滑剤を塗布することによって複合潤滑膜を形成させる。製造方法1よりもこの製造方法2による方が、SAM分子の高被覆率複合潤滑膜を容易に製造することができる。
【0021】
(製造方法2による複合潤滑膜の製造)
SAM用分子として、n−hexyltrichlorosilane(CH(CHSiCl)、n−octyltrichlorosilane(CH(CHSiCl)、n−decyltrichlorosilane(CH(CHSiCl)、の3種類の分子を用いて複合潤滑膜MxC6、MxC8およびMxC10を製造した。固体試料には表面にDLC(ダイヤモンドライクカーボン)薄膜が蒸着してある磁気デスク基板を用いた。また、比較のためにフッ素系高分子潤滑剤Fomblin Z03(分子量3840)およびFomblin Zdol(分子量4000、Ausimont社)を用いた。Fomblin Zdolの分子式はOHCHCF[(OCFCF(OCF]OCFCHOH、ただしp/q=2/3、であり、末端に水酸基を有しているため、Fomblin Z03と異なり、Fomblin Zdolは固体への吸着性も示す。これら5種類の潤滑膜の厚さを表1に示す。いずれも総膜厚約2nmで統一した。
【0022】
【表1】

Figure 2004300182
【0023】
(製造方法2による複合潤滑膜のスクラッチ試験の結果)
3種類の複合潤滑膜、および比較に用いたFomblin Zdol、Fomblin Z03を塗布した固体試料のスクラッチ試験の結果を図6に示す。Fomblin ZdolおよびFomblin Z03と比較して複合潤滑膜MxC6、MxC8およびMxC10を塗布した固体試料の方がスクラッチ強度が高くなっていること、すなわち複合潤滑膜の方が従来のフッ素系潤滑剤Fomblin Zdol、Fomblin Z03単体よりも強度が高く、潤滑性能が改善されていることがわかる。
【0024】
本発明の複合潤滑膜において、その総厚は0.5〜5nm、好ましくは1〜2nmであり、流動性潤滑剤膜は、0〜3nm、好ましくは0.3〜1.5nmである。
【0025】
【発明の効果】
本発明によれば、各種の固体表面上に高強度の超薄膜潤滑膜を得ることができる。
【図面の簡単な説明】
【図1】自己組織化単分子膜を用いた高強度複合潤滑膜の概念図を示す。
【図2】固体表面上に形成された自己組織化単分子膜の説明図である。
【図3】複合潤滑膜の平均と接触角の計測結果を示す図である。
【図4】Fomblin Z03膜とSAM膜のスクラッチ強度を示す図である。
【図5】製造方法1で形成された資料の種類と膜強度(mN)との関係を示す図である。
【図6】製造方法2で形成された試料の種類と膜強度(mN)との関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength composite lubricating film useful as a sliding element for a micromachine such as an ultrahigh-density recording device, a precision positioning mechanism, a precision transport device, a precision rotating machine, and a micromachine.
[0002]
[Prior art]
In the above micromachines, lubricant is applied to reduce friction and soften the impact when the friction element comes into contact, but positioning and operation accuracy at the nanometer level are expected, and the environment due to lubricant evaporation or scattering In order to fear deterioration of the lubricant, a lubricant having a thickness of nanometer, mainly a fluoropolymer perfluoropolyether or the like is used.
[0003]
Ultra-high-density recording devices, precision positioning mechanisms, precision transport devices, precision rotating machines, micromachines, etc. require a thin film lubrication system to increase recording density and to ensure positioning or operation accuracy. .
[0004]
Lubricants are required to have two contradictory properties, ie, adsorptivity from the viewpoint of solid surface protection and fluidity from the viewpoint of friction reduction. In conventional lubrication, by supplying an appropriate amount of lubricating oil to the sliding part, the lubricant (boundary lubricating film) near the solid surface is considered to have adsorptivity, and the rest to show fluidity. These were not individually controlled.
[0005]
When the thickness of the lubricating film is several nanometers, it is difficult to obtain expected effects because the flow and recovery of the lubricant are delayed. In order to avoid this, it is necessary to individually control the lubricant exhibiting adsorptivity (adsorption layer) and the lubricant exhibiting fluidity (fluid bed).
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a lubricating film having high strength even in a thin film and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
According to the present invention, there are provided a high-strength composite lubricating film and a method for producing the same as described below.
(1) A composite lubricating film formed partially or entirely on a solid surface, comprising a self-assembled monolayer composed of a silane-based organic compound fixed on the solid surface, and a fluid lubricant film. A high-strength composite lubricating film comprising:
(2) A method for producing a high-strength composite lubricating film, wherein a solid surface is brought into contact with a solution containing a silane-based organic compound and a fluid lubricant and then dried.
(3) A high-strength composite lubricating film characterized by applying a fluid lubricant onto a self-assembled monolayer formed by contacting a solution containing a silane-based organic compound on a solid surface and drying the solution. Production method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The self-assembled monolayer is chemically bonded to the solid surface and exhibits adsorptivity. By combining this with a conventional lubricant molecule exhibiting fluidity, a composite lubricating film as shown in FIG. 1 is formed. The composite lubricating film has a function of retaining the fluid lubricant molecules in addition to the function of protecting the solid surface of the self-assembled monolayer, and exhibits high strength performance.
[0009]
In addition, the self-assembled monomolecular film referred to in this specification means a monomolecular film formed by immersing a solid in a solution of an organic molecule so that the organic molecule is adsorbed on the surface of the solid and voluntarily formed.
[0010]
When a solid is brought into contact with a solution of a silane-based organic compound represented by the following general formula (1), the silane-based organic compound reacts with a hydroxyl group on the surface of the solid to form a self-assembled monomolecule as shown in FIG. Form a film.
Embedded image
R-SiX 3 (1)
In the above formula, R represents an organic group, and X represents a group or element capable of binding to the solid surface.
[0011]
The organic group R includes a carbon-containing group having 1 to 18, preferably 6 to 18 carbon atoms (such as an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an aryl group, and an aralkyl group). X includes an alkoxy group having 1 or 2 carbon atoms, a halogen element (such as chlorine or bromine), a mercapto group, a carboxyl group, a sulfonic acid group, a phosphoric acid group and the like.
The carbon-containing group includes a hydrocarbon group, a halogen-containing (fluorine, chlorine, bromine, etc.) hydrocarbon group and the like.
[0012]
As the fluid lubricant used in the present invention, various conventionally known lubricants, for example, hydrocarbon-based, fluorine-containing hydrocarbon-based, and organosiloxane-based lubricants are used. The lubricant is used in an amount to provide a 0.5 to 5 nm, preferably 1 to 2 nm thick lubricant film on the solid surface.
[0013]
The solid surface used in the present invention is made of carbon, diamond-like carbon, silica, silicon, glass, metal, or the like, but is not particularly limited.
[0014]
(Method of manufacturing composite lubricating film)
When a new solid sample is brought into contact with a solution of a silane-based organic compound to which fluid lubricant molecules have been added, self-assembled monomolecules and fluid lubricant molecules are appropriately arranged on the solid surface. A composite molecular film as shown by 1 is formed. Here, the ratio of the self-assembled monolayer to the solid surface area can be increased by increasing the solution contact time of the solid sample.
[0015]
(Production of composite lubricating film by production method 1)
As a production example, FDTS (perfluorodecyltrichlorosilane, CF 3 (CF 2 ) 7 CH 2 CH 2 SiCl 3 , a molecular length of about 15 °) is used for a silane-based organic compound, and Fomblin Z03 (CF 3 -[(O− CF 2 -CF 2) p- (O -CF 2) q] -O-CF 3, provided that p / q = 2/3, molecular weight 3840, molecular layer thickness of about 15 Å, Ausimont Co.), hydrofluoroether is a solvent A composite lubricating film was formed using ether (HFE-7100DL, 3M). The solid sample used was a magnetic desk substrate having a DLC (diamond-like carbon) thin film deposited on the surface.
[0016]
(Results of measurement of average film thickness for composite lubricating film)
FIG. 3 shows the measurement results of the average thickness and the contact angle of the composite lubricating film. The horizontal axis of the figure represents the solution immersion time, and the vertical axis represents the average thickness of the lubricating film (left vertical axis) and the contact angle with water (right vertical axis). The average film thickness was measured with an ellipsometer, and the contact angle was measured with a contact angle meter. In the figure, the symbol 印 indicates the average film thickness immediately after immersion, and the symbol □ indicates the result after the flowing molecules were further washed away. That is, ○ indicates the average thickness of the composite lubricating film (FDTS + Fomblin Z03), and □ indicates the average thickness of only the self-assembled monomolecular film (FDTS). From these data, it can be seen that the self-assembled film of FDTS grows as the immersion time increases, and finally the average film thickness reaches the molecular length (about 15 °). It can be seen that the formation of the self-assembled film of FDTS is promoted, and the self-assembled film of FDTS is finally formed on the solid surface. On the other hand, the film thickness of the fluid molecule Fomblin Z03, which corresponds to the difference between the values of ○ and □, shows a constant value (about 15 °) regardless of the immersion time, that is, does not depend on the immersion time. Finally, a molecular layer of Fomblin Z03 exists on the self-assembled monolayer of FDTS, and has a bilayer structure.
[0017]
(Measurement result of contact angle for composite lubricating film)
Further, FIG. 3 shows the contact angle measurement results 角 after the cleaning of Fomblin Z03. The data show that an increase in the contact angle with an increase in the immersion time indicates a decrease in the surface energy, and this data also confirms the formation of a self-assembled film.
[0018]
(Results of scratch test of Fomblin Z03 film and SAM film)
Using a scratch tester, the scratch strength of a sample to which each of the Fomblin Z03 film alone and the SAM film alone was applied was measured. The film thickness of Fomblin Z03 alone is 2 nm, and that of SAM alone is 1.5 nm. In the scratch test, a hard needle made of diamond is rubbed against a sample. Here, the pressing force of the hard needle is gradually increased, and the load when the DLC thin film is broken is measured, and this is defined as the scratch strength. . The higher the scratch strength, the higher the strength of the lubricating film applied to the surface. FIG. 4 shows the scratch strength of the Fomblin Z03 film and the SAM film. As the load (horizontal axis) increases, the friction (vertical axis) sharply increases at a certain load. The load at this time is the scratch strength. As can be seen from the figure, of the Fomblin Z03 alone and the SAM film alone, the Fomblin Z03 alone has higher scratch strength.
[0019]
(Results of scratch test of composite lubricating film by Production Method 1)
On the other hand, the scratch strength of the sample to which each of the Fomblin Z03 film alone and the composite lubricating film was applied was compared. The applied lubricating film is as follows.
A: Fomblin Z03, thickness 1.4 nm
B: Fomblin Z03, film thickness 1.7 nm
C: Fomblin Z03, thickness 1.3 nm + SAM thickness 0.4 nm = total thickness 1.7 nm
D: Fomblin Z03, thickness 1.5 nm + SAM thickness 0.8 nm = total thickness 2.3 nm
E: Fomblin Z03, film thickness 3.0 nm
As a result of the test, as shown in FIG. 5, when the film thickness is almost the same (comparison between B and C), the composite lubricating film has higher strength, and the film thickness of Fomblin Z03 alone is 3 nm (E). The result was that the composite film having a thickness of 2.3 nm (D) had a higher strength despite its smaller thickness.
[0020]
(Method 2 for producing composite lubricating film)
When a solid sample is brought into contact with the solution of the silane-based organic compound without adding a fluid lubricant molecule, only a SAM film is formed. After drying and removing the solvent, a fluid lubricant is applied to form a composite lubricating film. According to the manufacturing method 2, it is possible to easily manufacture a high-coverage composite lubricating film of SAM molecules in comparison with the manufacturing method 1.
[0021]
(Production of composite lubricating film by production method 2)
As molecular for SAM, n-hexyltrichlorosilane (CH 3 (CH 2) 5 SiCl 3), n-octyltrichlorosilane (CH 3 (CH 2) 7 SiCl 3), n-decyltrichlorosilane (CH 3 (CH 2) 9 SiCl 3), Using these three types of molecules, composite lubricating films MxC6, MxC8 and MxC10 were produced. For the solid sample, a magnetic desk substrate having a DLC (diamond-like carbon) thin film deposited on the surface was used. For comparison, a fluorine-based polymer lubricant Fomblin Z03 (molecular weight: 3840) and Fomblin Zdol (molecular weight: 4000, Ausimont) were used. The molecular formula of Fomblin Zdol is OHCH 2 CF 2 [(OCF 2 CF 2 ) p (OCF 2 ) q ] OCF 2 CH 2 OH, where p / q = 2/3, and has a hydroxyl group at the terminal. Unlike Fomblin Z03, Fomblin Zdol also exhibits adsorptivity to solids. Table 1 shows the thicknesses of these five types of lubricating films. In all cases, the total film thickness was about 2 nm.
[0022]
[Table 1]
Figure 2004300182
[0023]
(Result of scratch test of composite lubricating film by Production Method 2)
FIG. 6 shows the results of a scratch test of a solid sample coated with three types of composite lubricating films and Fomblin Zdol and Fomblin Z03 used for comparison. Compared with Fomblin Zdol and Fomblin Z03, the solid sample coated with the composite lubricating films MxC6, MxC8 and MxC10 has a higher scratch strength, that is, the composite lubricating film has a higher conventional fluorine-based lubricant Fomblin Zdol, It can be seen that the strength is higher than that of Fomblin Z03 alone and the lubrication performance is improved.
[0024]
In the composite lubricating film of the present invention, the total thickness is 0.5 to 5 nm, preferably 1 to 2 nm, and the fluid lubricant film has a thickness of 0 to 3 nm, preferably 0.3 to 1.5 nm.
[0025]
【The invention's effect】
According to the present invention, a high-strength ultrathin lubricating film can be obtained on various solid surfaces.
[Brief description of the drawings]
FIG. 1 shows a conceptual diagram of a high-strength composite lubricating film using a self-assembled monolayer.
FIG. 2 is an illustration of a self-assembled monolayer formed on a solid surface.
FIG. 3 is a diagram showing a measurement result of an average and a contact angle of a composite lubricating film.
FIG. 4 is a view showing the scratch strength of a Fomblin Z03 film and a SAM film.
FIG. 5 is a diagram showing the relationship between the type of material formed by the manufacturing method 1 and the film strength (mN).
FIG. 6 is a diagram showing the relationship between the type of sample formed by the manufacturing method 2 and the film strength (mN).

Claims (3)

固体表面上に部分的または全面的に形成した複合潤滑膜であって、該固体表面に固定化されたシラン系有機化合物からなる自己組織化単分子膜と、流動性潤滑剤膜とからなることを特徴とする高強度複合潤滑膜。A composite lubricating film formed partially or entirely on a solid surface, comprising a self-assembled monomolecular film composed of a silane-based organic compound immobilized on the solid surface, and a fluid lubricant film A high-strength composite lubricating film characterized by the following. 固体表面にシラン系有機化合物と流動性潤滑剤を含む溶液を接触させた後乾燥することを特徴とする高強度複合潤滑膜の製造方法。A method for producing a high-strength composite lubricating film, comprising: bringing a solution containing a silane-based organic compound and a fluid lubricant into contact with a solid surface, followed by drying. 固体表面にシラン系有機化合物を含む溶液を接触させた後乾燥して形成した自己組織化単分子膜上に、流動性潤滑剤を塗布することを特徴とする高強度複合潤滑膜の製造方法。A method for producing a high-strength composite lubricating film, comprising applying a fluid lubricant to a self-assembled monolayer formed by contacting a solution containing a silane-based organic compound on a solid surface and drying the solution.
JP2003092122A 2003-03-28 2003-03-28 High-strength composite lubricating film using self-assembled monolayer and method for producing the same Pending JP2004300182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092122A JP2004300182A (en) 2003-03-28 2003-03-28 High-strength composite lubricating film using self-assembled monolayer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092122A JP2004300182A (en) 2003-03-28 2003-03-28 High-strength composite lubricating film using self-assembled monolayer and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004300182A true JP2004300182A (en) 2004-10-28

Family

ID=33405314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092122A Pending JP2004300182A (en) 2003-03-28 2003-03-28 High-strength composite lubricating film using self-assembled monolayer and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004300182A (en)

Similar Documents

Publication Publication Date Title
US8257783B2 (en) Magnetic disk and method of manufacturing the same
JP5631604B2 (en) Manufacturing method of magnetic disk
JP5465454B2 (en) Magnetic disk and manufacturing method thereof
US8685548B2 (en) Lubricant compositions
JP2007193924A (en) Magnetic disk
US6379801B1 (en) Silane derivatized lubricants for magnetic recording media
JP2010250929A (en) Lubricant compound for magnetic disk, magnetic disk, and method of manufacturing the same
US7510999B2 (en) Lubricant composition for magnetic recording media
JP4099860B2 (en) Liquid lubricant, magnetic recording medium using the same, and manufacturing method thereof
WO2013054393A1 (en) Lubricant and magnetic disk device using same
JPH09282642A (en) Magnetic recording medium
Ru¨ he et al. Ultrathin perfluoropolyether films—influence of anchoring and mobility of polymers on the tribological properties
JP5382876B2 (en) Perfluoropolyether compound, lubricant containing the same and magnetic disk
JP4297461B2 (en) Magnetic recording medium and method for manufacturing the same
WO2010084548A1 (en) Lubricant agent, and magnetic disk device using same
US20220290066A1 (en) Low profile lubricants for data storage devices
US6468947B1 (en) Lubricants with improved stability for magnetic recording media
JPH11131083A (en) Polyether compound and magnetic recording medium
JP2004300182A (en) High-strength composite lubricating film using self-assembled monolayer and method for producing the same
Choi et al. Nanoscale lubricant with strongly bonded phase and mobile phase
JP3941011B2 (en) Recording medium and manufacturing method thereof
JPWO2020054420A1 (en) Fluorine-containing ether compound, lubricant for magnetic recording medium and magnetic recording medium
JP2000003512A (en) Magnetic disk and magnetic disk device provided with them
JP3888625B2 (en) Magnetic disk and manufacturing method thereof
JP2967746B2 (en) Lubricant for magnetic recording medium and magnetic recording medium using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20050304

A711 Notification of change in applicant

Effective date: 20050310

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050310

A521 Written amendment

Effective date: 20050325

Free format text: JAPANESE INTERMEDIATE CODE: A821

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Effective date: 20080305

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080827