[go: up one dir, main page]

JP2004296772A - Electrical drive method for multilayer piezoelectric element - Google Patents

Electrical drive method for multilayer piezoelectric element Download PDF

Info

Publication number
JP2004296772A
JP2004296772A JP2003087001A JP2003087001A JP2004296772A JP 2004296772 A JP2004296772 A JP 2004296772A JP 2003087001 A JP2003087001 A JP 2003087001A JP 2003087001 A JP2003087001 A JP 2003087001A JP 2004296772 A JP2004296772 A JP 2004296772A
Authority
JP
Japan
Prior art keywords
voltage
piezoelectric element
multilayer piezoelectric
absolute value
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003087001A
Other languages
Japanese (ja)
Inventor
Takeshi Yano
健 矢野
Toshiro Higuchi
俊郎 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENSHI SEIKI KK
Original Assignee
DENSHI SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENSHI SEIKI KK filed Critical DENSHI SEIKI KK
Priority to JP2003087001A priority Critical patent/JP2004296772A/en
Publication of JP2004296772A publication Critical patent/JP2004296772A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the electrically driving method of a stacked piezoelectric element which suppresses the migration of silver. <P>SOLUTION: When an intermittent voltage is applied to the stacked piezoelectric element 10, the applied voltage respectively includes a positive polarity voltage and a negative polarity voltage in every intermittent driving. The total amount of an electric charge flowed into the stacked piezoelectric element 10 in every respective intermittent driving is preferably set to a substantial zero. Further preferably, the larger absolute value out of the positive polarity voltage or the negative polarity voltage is determined as a main voltage. The voltage opposed to the main voltage in polarity is set to a sub-voltage. The absolute value of the sub-voltage is not more than 1/4 of the absolute value of the main voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、積層型圧電素子の電気的駆動方法に関する。
【0002】
【従来の技術】
圧電セラミック層と電極層(内部電極)とが交互に積層され、内部電極が一層おきに接続された構造を有する積層型圧電素子は、接着型と一体焼成型とに大別することができる。このうち、一体焼成型の積層型圧電素子は、圧電セラミック粉末を用いて作製された所定の形状を有するグリーンシートに電極ペーストを印刷し、これを所定枚数積層して一体化し、焼成することによって作製される。こうして作製される積層型圧電素子においては、圧電セラミック層の厚さは一般的に数十μm〜百数十μmである。また、内部電極としては、圧電セラミックスの焼成が可能な高温に耐える高融点金属の中で比較的安価な銀/パラジウム合金が一般的に用いられる。
【0003】
このように積層型圧電素子では内部電極に銀が含まれるために、銀のマイグレーションによる絶縁破壊を抑制することが信頼性を高める観点から重要である。周知の通り、銀のマイグレーションは、絶縁物を挟んで銀電極が形成されているデバイスに起こる。図4は銀のマイグレーションによる銀の堆積を模式的に示す説明図である。銀が酸素と結びついて酸化銀になり、絶縁物91中に水分(または水蒸気)が存在すると酸化銀がイオンとなり、ここに電界の傾斜があると正電極92a側から負電極92b側にイオンが引き寄せられて、樹枝状(デンドライト状)に銀の堆積が起こる。なお、図4において樹枝状に堆積(成長)した銀は符号93で示されている。
【0004】
前述したように、一体焼成型の積層型圧電素子においては、圧電セラミック層の厚みは100μm前後と薄いために、樹枝状に堆積した銀によって電極間の短絡が起こり易い。実用場面では、堆積した銀が対向する電極に達して電極間を短絡させる前に、堆積した銀によって耐電圧が低下するために、所定の電圧が内部電極間に印加された際に堆積した銀と対向する電極との間で放電が発生し、絶縁破壊が生ずる。
【0005】
このような銀のマイグレーションを抑制した積層型圧電素子として、例えば、特開平5−291641号公報(特許文献1)には、内部電極、外部電極、リード線およびハンダから銀系材料を取り除いた積層型圧電素子が開示されている。また、特開平5−160458号公報(特許文献2)には、アクリルとウレタンとを結合させたシリコン樹脂で表面がコーティングされた積層型圧電素子が開示されている。
【0006】
【特許文献1】
特開平5−291641号公報(第6段落、第1図)
【特許文献2】
特開平5−160458号公報(第28〜31段落、第1図)
【0007】
【発明が解決しようとする課題】
しかしながら、特開平5−291641号公報に開示されている積層型圧電素子では、内部電極材料として高価な白金を用いるために、製造コスト(素子単価)が高くなるという問題がある。また、特開平5−160458号公報に開示された発明は、積層型圧電素子の表面に形成される樹脂被膜に塩素成分が含まれることを回避することによって、空気中の水分が素子に引き寄せられるのを防止する観点に立つものである。
【0008】
ところが、このような樹脂被膜が塩素成分を含まない場合であっても、樹脂被膜を水蒸気が通過する難易度は樹脂の架橋の多さに関連しており、さらにこの架橋の多さが樹脂の硬度と関係しているために、樹脂の水蒸気透過性を低く抑えようとすると樹脂の架橋を多くしなければならず、この場合には樹脂の硬度が高くなって、積層型圧電素子の変位を抑制するという新たな問題を生ずる。逆に積層型圧電素子の変位を妨げないように樹脂の硬度を小さくすると、水蒸気透過性を小さくすることができない。
【0009】
本発明はかかる事情に鑑みてなされたものであって、銀のマイグレーションを抑制する積層型圧電素子の電気的駆動方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明によれば、積層型圧電素子に間歇的に電圧を印加する電気的駆動方法において、
前記積層型圧電素子に間歇的に印加される電圧が、それぞれの間歇駆動毎に正の極性の電圧および負の極性の電圧を含むことを特徴とする積層型圧電素子の電気的駆動方法、が提供される。
【0011】
この本発明の積層型圧電素子の電気的駆動方法によれば、銀が樹脂状に成長するような電界が加えられた場合に、その電界と逆の電界が続けて印加されるために、銀のマイグレーションが抑制され、これによって絶縁特性を一定に保持することができる。
【0012】
このような積層型圧電素子の電気的駆動方法においては、積層型圧電素子に間歇的に印加される電圧がそれぞれの間歇駆動毎に正の極性の電圧および負の極性の電圧を含み、さらに積層型圧電素子にそれぞれの間歇駆動毎に流入する電荷の総和が実質的にゼロとなるようにすることが好ましい。これにより、間歇駆動を繰り返し行った場合に微小な銀のマイグレーションの累積によって絶縁特性が低下することを抑制することができる。
【0013】
また、本発明の積層型圧電素子の電気的駆動方法においては、積層型圧電素子に間歇的に印加される電圧がそれぞれの間歇駆動毎に正の極性の電圧および負の極性の電圧を含み、このときに正の極性の電圧または負の極性の電圧のうち絶対値の大きい極性の電圧を主電圧とし、この主電圧と逆符号の極性の電圧を副電圧とするときに、副電圧の絶対値は主電圧の絶対値の1/4以下とすることが好ましい。これにより、積層型圧電素子を構成する圧電体の分極状態が変化することを抑制することができ、積層型圧電素子の駆動特性を保持し、また、積層型圧電素子の破壊を抑制することができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。図1は積層型圧電素子の概略の構造を示す断面図である。この積層型圧電素子10は、圧電セラミック層11と内部電極12とが交互に積層され、対向する一対の側面(図1においてはX方向側面)において内部電極12が一層おきに絶縁体13によってその表面に露出しないようになっており、この絶縁体13が設けられているX方向側面に積層方向に延在する外部電極14が設けられることによって、内部電極12が一層おきに電気的に接続された構造を有している。
【0015】
このような、所謂、全面電極型の積層型圧電素子10は、例えば、まず最初に公知のセラミックグリーンシートを用いた一体焼成法(同時焼成法)によって積層コンデンサ型の積層型圧電素子を作製し、続いて帯電したガラス成分のコロイドを電気泳動法等によって内部電極12の露出部分に堆積させて、その後に積層型圧電素子を所定の温度で焼成することによってガラスからなる絶縁体13を形成し、隣接する電極どうしが重なり合っていない部分を切り落とし、さらに絶縁体13が形成された側面に外部電極14を塗布して焼き付けることによって、作製することができる。
【0016】
この積層型圧電素子10の一対の外部電極14に所定の駆動電圧を印加することにより内部電極12間に電界が発生し、この電界によって圧電セラミック層11には、分極の発生と圧電セラミックスの圧電効果(圧電定数d33による縦効果)によってZ方向での伸縮変位が生ずる。図5は積層型圧電素子10の変位量と駆動電圧との関係を模式的に示すグラフであり、所謂、バタフライカーブと呼ばれるものである。
【0017】
図5中の点Pは、外部電極14を焼き付けた後の状態(初期状態)を示している。この状態から積層型圧電素子10に電圧を印加し、その印加電圧を上げていくと、積層型圧電素子10の変位は増加する。電圧Vから徐々に印加電圧を下げると積層型圧電素子10の変位は減少し、印加電圧がゼロになった時点では積層型圧電素子10の変位はゼロには戻らずに点P´に戻る。これは残留分極の影響による。ここからさらに印加電圧を下げると積層型圧電素子10は収縮するが、印加電圧が−Vに達すると収縮していた変位が伸長する変位に逆転する分極反転が起こる。この電圧Vの絶対値は分極反転電圧と呼ばれ、このときに圧電セラミック層11に掛かる電界は抗電界と呼ばれる。電圧Vの値は、圧電セラミック材料の種類(組成)と、圧電セラミック層11の厚さによって定まる。
【0018】
その後さらにまた印加電圧を下げると積層型圧電素子10の変位は増加するが、電圧−Vに達した後に印加電圧の極性を逆転させて印加電圧を上げていくと、積層型圧電素子10の変位は減少して、印加電圧値がゼロになった時点で積層型圧電素子10の変位は点P´に戻る。さらに印加電圧を上げると積層型圧電素子10は収縮するが、印加電圧がVに達すると収縮していた変位が伸長する変位に逆転する分極反転が起こり、その後さらに印加電圧を上げていくと積層型圧電素子10の変位は増加する。印加電圧が電圧Vに達した後に印加電圧を下げると、前述したように積層型圧電素子10の変位は点P´に向かって小さくなる。
【0019】
従来、積層型圧電素子10を間歇的に駆動する場合には、分極反転電圧Vよりも大きい電圧で分極処理を施した後に、図6に示すように、正の電圧(分極電圧の極性と同じ極性の電圧をいうものとする)のパルス電圧を印加している。しかしながら、このような方法では、積層型圧電素子10の内部に浸透した水分や積層型圧電素子10の表面に付着した水分によって内部電極12や外部電極14の成分である銀等から銀イオンが発生している場合に、常に同じ向きに電界が印加されるために銀のマイグレーションが発生、進行する。
【0020】
そこで図5に示す特性を利用して、積層型圧電素子10を間歇的に駆動する場合には、間歇駆動毎に圧電セラミック層11に正の電圧を印加してその後に負の電圧(正の電圧と極性が逆である電圧をいうものとする)を印加する。図2(a)は、このような間歇駆動を行う場合の、駆動電圧と時間との関係を示すグラフの一例である。また、図2(b)は図2(a)に示す駆動電圧によって積層型圧電素子10に発生する変位を示している。このような駆動方法により、銀のマイグレーションを抑制することができる。これは、銀イオンが発生している場合であっても、この銀イオンには交互に逆向きの電界が掛かるために圧電セラミック層11内での移動が抑制されるからである。
【0021】
積層型圧電素子10を間歇的に駆動する場合に、このように間歇駆動毎に正の電圧と負の電圧を加える場合には、正の電圧で目的とする変位を得る。このために、正の電圧の最大値Vmaxの絶対値を負の電圧の最小値Vmin(つまり最も低い電圧値)の絶対値よりも大きくする。また、分極反転が繰り返されることによる積層型圧電素子10の破壊を防止する観点から、図2(a)に示されるように、負の電圧の最小値Vminの絶対値は、分極反転電圧Vの絶対値よりも大きくならないようにすることが好ましい。
【0022】
また、積層型圧電素子10を間歇駆動毎に正の電圧と負の電圧が含まれるように駆動する場合には、積層型圧電素子10に間歇駆動毎に流入する電荷の総和が実質的にゼロとなるようにすることが好ましい。図2(a)では、正の電圧による電荷は面積Sで示され、負の電圧による電荷は面積Sで示されるから、この面積Sと面積Sが等しくなるようにする。これは、面積Sと面積Sが異なる場合には、間歇駆動を繰り返し行った場合に、面積の大きい方の駆動による微小な銀のマイグレーションの累積が起こり、これによって積層型圧電素子10の絶縁特性が低下することが起こるからである。
【0023】
上述したように、積層型圧電素子10を間歇駆動毎に正の電圧と負の電圧が含まれるように駆動する場合においては、正の電圧の最大値Vmaxの絶対値を負の電圧の最小値Vminの絶対値よりも大きくする。このとき、目的とする変位を得るための絶対値の大きい正の電圧を主電圧とし、銀のマイグレーションの抑制を主な目的とする絶対値の小さい負の電圧を副電圧とすると、副電圧の絶対値は主電圧の絶対値の1/4以下とすることが好ましい。図2(a)の場合には、Vminの絶対値をVmaxの絶対値の1/4以下とする。
【0024】
分極の向きと逆の向きに不要に大きな電圧を印加すると、その電圧値が分極反転電圧Vに達しなくとも圧電セラミック層11の分極特性が変化し、これによって、一定の正の電圧を印加したときの積層型圧電素子10の変位特性が変化してしまう。そこで、積層型圧電素子10の間歇駆動にこのような主電圧と副電圧の大きさの制限を設けることによって、積層型圧電素子10の駆動特性を一定に保持することができる。
【0025】
以上、本発明の実施の形態について説明したが、本発明はこのような形態に限定されるものではない。例えば、図1に示した積層型圧電素子10の側面には、周知の通りに、樹脂被膜を設けることが好ましい。このとき、樹脂被膜としては、積層型圧電素子10の変位を抑制しないような硬度のものを用いることができる。積層型圧電素子10は金属缶に封入された形態で用いられてもよい。
【0026】
また、図1に示した全面電極型の積層型圧電素子10は、一体焼成法によって作製される積層型圧電素子の一例に過ぎない。例えば、周知の図3(a)に示す積層コンデンサ型構造の積層型圧電素子10a、図3(b)に示す応力緩和型の積層型圧電素子10bにも、上述した本発明に係る駆動方法を適用することができることはいうまでもない。なお、図3(b)中の符号15はスリット(間隙)であり、図3のその他の符号は図1に示す符号と同等の部材を示す。
【0027】
さらに、本発明に係る駆動方法は、複数の圧電単板を接着剤で接着して積み重ねた積層型圧電素子や、複数の圧電単板をボルト締め等によって締め付けたランジュバン型圧電アクチュエータにも適用することができる。積層型圧電素子を間歇的に駆動する場合の電圧波形は図2(a)に示した矩形波に限定されるものではなく、三角波等であってもよい。
【0028】
【発明の効果】
上述の通り、本発明の積層型圧電素子の電気的駆動方法によれば、銀のマイグレーションが抑制される。これによって積層型圧電素子の絶縁特性が長く維持され、信頼性が高められる。
【図面の簡単な説明】
【図1】積層型圧電素子の一実施形態を示す概略断面図。
【図2】積層型圧電素子の本発明に係る駆動方法と、積層型圧電素子の変位を示す説明図。
【図3】積層型圧電素子の別の形態を示す概略断面図。
【図4】銀のマイグレーションの進行を示す説明図。
【図5】積層型圧電素子の変位量と印加電圧との関係を示す説明図。
【図6】積層型圧電素子の従来の駆動方法と、積層型圧電素子の変位を示す説明図。
【符号の説明】
10;積層型圧電素子
11;圧電セラミック層
12;内部電極
13;絶縁体
14;外部電極
15;スリット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for electrically driving a laminated piezoelectric element.
[0002]
[Prior art]
Laminated piezoelectric elements having a structure in which piezoelectric ceramic layers and electrode layers (internal electrodes) are alternately laminated, and the internal electrodes are connected alternately, can be broadly classified into an adhesive type and an integral firing type. Among them, the monolithic firing type laminated piezoelectric element is obtained by printing an electrode paste on a green sheet having a predetermined shape manufactured using piezoelectric ceramic powder, laminating a predetermined number of the pastes, integrating and firing. It is made. In the multilayer piezoelectric element thus manufactured, the thickness of the piezoelectric ceramic layer is generally several tens μm to one hundred and several tens μm. In addition, as the internal electrode, a relatively inexpensive silver / palladium alloy among metals having a high melting point that can withstand a high temperature at which piezoelectric ceramics can be fired is generally used.
[0003]
As described above, since silver is contained in the internal electrode in the multilayer piezoelectric element, it is important from the viewpoint of improving reliability to suppress dielectric breakdown due to migration of silver. As is well known, silver migration occurs in a device in which a silver electrode is formed via an insulator. FIG. 4 is an explanatory view schematically showing the deposition of silver by migration of silver. Silver is combined with oxygen to form silver oxide, and when moisture (or water vapor) is present in the insulator 91, silver oxide becomes an ion. When there is a gradient in the electric field, the ion moves from the positive electrode 92a side to the negative electrode 92b side. As a result, silver is deposited in a dendritic manner. In FIG. 4, silver deposited (grown) in a tree shape is indicated by reference numeral 93.
[0004]
As described above, in the integrally fired multilayer piezoelectric element, since the thickness of the piezoelectric ceramic layer is as thin as about 100 μm, a short circuit between the electrodes is likely to occur due to dendritic silver. In practical use, before the deposited silver reaches the opposing electrodes and short-circuits between the electrodes, the deposited silver lowers the withstand voltage, so the silver deposited when a predetermined voltage is applied between the internal electrodes A discharge occurs between the electrode and the opposite electrode, and dielectric breakdown occurs.
[0005]
For example, Japanese Patent Application Laid-Open No. 5-291641 (Patent Document 1) discloses a laminated piezoelectric element in which silver migration is suppressed, in which a silver-based material is removed from an internal electrode, an external electrode, a lead wire, and solder. A piezoelectric element is disclosed. Japanese Patent Application Laid-Open No. 5-160458 (Patent Document 2) discloses a laminated piezoelectric element whose surface is coated with a silicon resin in which acrylic and urethane are combined.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 5-291641 (Paragraph 6, FIG. 1)
[Patent Document 2]
JP-A-5-160458 (paragraphs 28 to 31; FIG. 1)
[0007]
[Problems to be solved by the invention]
However, the multi-layer piezoelectric element disclosed in Japanese Patent Application Laid-Open No. 5-291641 has a problem that the production cost (element unit price) increases because expensive platinum is used as the internal electrode material. Further, the invention disclosed in Japanese Patent Application Laid-Open No. 5-160458 discloses that moisture in the air is attracted to the element by avoiding the resin film formed on the surface of the multilayer piezoelectric element from containing a chlorine component. It is from the viewpoint of preventing the situation.
[0008]
However, even when such a resin film does not contain a chlorine component, the difficulty of passage of water vapor through the resin film is related to the degree of crosslinking of the resin, and the degree of crosslinking is further increased by the degree of crosslinking of the resin. Because of the relationship with the hardness, it is necessary to increase the degree of crosslinking of the resin in order to reduce the water vapor permeability of the resin. In this case, the hardness of the resin increases, and the displacement of the multilayer piezoelectric element is reduced. A new problem of suppression occurs. Conversely, if the hardness of the resin is reduced so as not to hinder the displacement of the laminated piezoelectric element, the water vapor permeability cannot be reduced.
[0009]
The present invention has been made in view of such circumstances, and has as its object to provide a method for electrically driving a multilayer piezoelectric element that suppresses migration of silver.
[0010]
[Means for Solving the Problems]
According to the present invention, in an electric driving method for intermittently applying a voltage to a multilayer piezoelectric element,
A method of electrically driving a multi-layer piezoelectric element, wherein the voltage applied intermittently to the multi-layer piezoelectric element includes a positive polarity voltage and a negative polarity voltage for each intermittent drive. Provided.
[0011]
According to the electric driving method of the multilayer piezoelectric element of the present invention, when an electric field that causes silver to grow into a resin state is applied, an electric field opposite to the electric field is continuously applied. Migration is suppressed, whereby the insulating properties can be kept constant.
[0012]
In such a method for electrically driving a multilayer piezoelectric element, the voltage applied intermittently to the multilayer piezoelectric element includes a voltage of a positive polarity and a voltage of a negative polarity for each intermittent drive. It is preferable that the sum of the charges flowing into the piezoelectric element at each intermittent drive is substantially zero. Thus, it is possible to suppress the deterioration of the insulation characteristics due to the accumulation of minute migration of silver when the intermittent driving is repeatedly performed.
[0013]
Further, in the method for electrically driving the multilayer piezoelectric element of the present invention, the voltage applied intermittently to the multilayer piezoelectric element includes a positive polarity voltage and a negative polarity voltage for each intermittent drive, At this time, when a voltage having a larger absolute value of a positive polarity voltage or a negative polarity voltage is used as a main voltage, and a voltage having a polarity opposite to the main voltage is used as a sub voltage, an absolute value of the sub voltage is used. It is preferable that the value be 1/4 or less of the absolute value of the main voltage. Thereby, it is possible to suppress a change in the polarization state of the piezoelectric body constituting the multilayer piezoelectric element, to maintain the driving characteristics of the multilayer piezoelectric element, and to suppress the destruction of the multilayer piezoelectric element. it can.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic structure of a laminated piezoelectric element. In the laminated piezoelectric element 10, the piezoelectric ceramic layers 11 and the internal electrodes 12 are alternately laminated, and the internal electrodes 12 are alternately provided by the insulator 13 on a pair of opposing side surfaces (side surfaces in the X direction in FIG. 1). The external electrodes 14 extending in the laminating direction are provided on the X-direction side surface on which the insulator 13 is provided, so that the internal electrodes 12 are electrically connected every other layer. It has a structure.
[0015]
Such a so-called full-electrode-type multilayer piezoelectric element 10 is manufactured by, for example, firstly manufacturing a multilayer capacitor-type multilayer piezoelectric element by an integral firing method (simultaneous firing method) using a known ceramic green sheet. Subsequently, a charged colloid of a glass component is deposited on the exposed portion of the internal electrode 12 by an electrophoresis method or the like, and then the laminated piezoelectric element is fired at a predetermined temperature to form an insulator 13 made of glass. Alternatively, it can be manufactured by cutting off a portion where adjacent electrodes do not overlap with each other, and applying and baking an external electrode 14 on the side surface on which the insulator 13 is formed.
[0016]
An electric field is generated between the internal electrodes 12 by applying a predetermined driving voltage to the pair of external electrodes 14 of the laminated piezoelectric element 10, and the electric field causes the piezoelectric ceramic layer 11 to generate polarization and the piezoelectric ceramics. stretching displacement in the Z direction by the effect (longitudinal effect piezoelectric constant d 33) occurs. FIG. 5 is a graph schematically showing the relationship between the amount of displacement of the laminated piezoelectric element 10 and the drive voltage, and is a so-called butterfly curve.
[0017]
A point P in FIG. 5 indicates a state (initial state) after the external electrode 14 is burned. When a voltage is applied to the multilayer piezoelectric element 10 from this state and the applied voltage is increased, the displacement of the multilayer piezoelectric element 10 increases. Reduced and lowered gradually applied voltage from the voltage V 1 was displacement of the laminated piezoelectric element 10, the displacement of the laminated piezoelectric element 10 at the time the applied voltage becomes zero to return to the point P'without returning to zero . This is due to the influence of remanent polarization. When the applied voltage is further reduced, the laminated piezoelectric element 10 contracts. However, when the applied voltage reaches −V 2 , polarization reversal occurs in which the contracted displacement is reversed to the extended displacement. The absolute value of the voltage V 2 is called the polarization inversion voltage, an electric field across the piezoelectric ceramic layer 11 in this case is referred to as the coercive field. The value of the voltage V 2 is the type of piezoelectric ceramic material (composition), determined by the thickness of the piezoelectric layer 11.
[0018]
Displacement of the laminated piezoelectric element 10 then furthermore decrease the applied voltage is increased, but when we increased the applied voltage polarity is reversed applied voltage after reaching the voltage -V 1, the stacked piezoelectric element 10 The displacement decreases, and when the applied voltage value becomes zero, the displacement of the multilayer piezoelectric element 10 returns to the point P '. Although further and raising the applied voltage multilayer piezoelectric element 10 is contracted, occur poled displacement the applied voltage had been contracted to reach V 2 is reversed to the displacement extending and then is further raised to the applied voltage The displacement of the multilayer piezoelectric element 10 increases. When the applied voltage lowers the applied voltage after reaching the voltage V 1, the displacement of the stacked piezoelectric element 10 as described above becomes smaller towards the point P'.
[0019]
Conventionally, in the case of intermittently driving the multilayer piezoelectric element 10, after being subjected to a polarization treatment at a greater voltage than the polarization inversion voltage V 2, as shown in FIG. 6, the polarity of the positive voltage (polarization voltage and (Voltages of the same polarity). However, according to such a method, silver ions are generated from silver or the like which is a component of the internal electrode 12 or the external electrode 14 due to moisture that has penetrated into the multilayer piezoelectric element 10 or moisture that has adhered to the surface of the multilayer piezoelectric element 10. In this case, the migration of silver occurs and proceeds because the electric field is always applied in the same direction.
[0020]
Therefore, when the multilayer piezoelectric element 10 is intermittently driven using the characteristics shown in FIG. 5, a positive voltage is applied to the piezoelectric ceramic layer 11 every time the intermittent driving is performed, and then a negative voltage (positive voltage) is applied. A voltage having the opposite polarity to the voltage). FIG. 2A is an example of a graph showing the relationship between drive voltage and time when such intermittent drive is performed. FIG. 2B shows a displacement generated in the multilayer piezoelectric element 10 by the driving voltage shown in FIG. With such a driving method, migration of silver can be suppressed. This is because, even when silver ions are generated, the silver ions are alternately applied with electric fields in opposite directions, so that movement in the piezoelectric ceramic layer 11 is suppressed.
[0021]
When the laminated piezoelectric element 10 is driven intermittently and a positive voltage and a negative voltage are applied every intermittent driving as described above, a desired displacement is obtained with a positive voltage. For this purpose, the absolute value of the maximum value Vmax of the positive voltage is made larger than the absolute value of the minimum value Vmin of the negative voltage (that is, the lowest voltage value). In addition, from the viewpoint of preventing the destruction of the multilayer piezoelectric element 10 due to repeated polarization inversion, as shown in FIG. 2A, the absolute value of the minimum value Vmin of the negative voltage is equal to the polarization inversion voltage V 2. Is preferably not larger than the absolute value of.
[0022]
When the multilayer piezoelectric element 10 is driven so that a positive voltage and a negative voltage are included at each intermittent drive, the total sum of electric charges flowing into the multilayer piezoelectric element 10 at each intermittent drive is substantially zero. It is preferable that In FIG. 2 (a), the charge due to the positive voltage is indicated by an area S 1, the charge due to the negative voltage since represented by area S 2, so that this area S 1 and the area S 2 equal. This is because, when the area S 1 is different from the area S 2 , when intermittent driving is repeatedly performed, accumulation of minute silver migration due to driving of the larger area occurs, thereby causing the multilayer piezoelectric element 10 This is because the insulation characteristics may deteriorate.
[0023]
As described above, when the multilayer piezoelectric element 10 is driven so that a positive voltage and a negative voltage are included for each intermittent drive, the absolute value of the maximum value Vmax of the positive voltage is set to the minimum value of the negative voltage. Vmin is made larger than the absolute value. At this time, assuming that a positive voltage having a large absolute value for obtaining a target displacement is a main voltage and a negative voltage having a small absolute value for the main purpose of suppressing silver migration is a sub-voltage, It is preferable that the absolute value is not more than 1/4 of the absolute value of the main voltage. In the case of FIG. 2A, the absolute value of Vmin is set to 1 / or less of the absolute value of Vmax.
[0024]
Application is applied unnecessarily large voltage polarization direction opposite to the direction, polarization characteristics of the piezoelectric ceramic layer 11 is changed without voltage value reaches the polarization inversion voltage V 2, thereby, a constant positive voltage In this case, the displacement characteristics of the laminated piezoelectric element 10 change. Therefore, by providing such a limitation on the magnitude of the main voltage and the sub-voltage in the intermittent drive of the multilayer piezoelectric element 10, the drive characteristics of the multilayer piezoelectric element 10 can be kept constant.
[0025]
Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments. For example, as is well known, it is preferable to provide a resin film on the side surface of the multilayer piezoelectric element 10 shown in FIG. At this time, a resin film having a hardness that does not suppress the displacement of the multilayer piezoelectric element 10 can be used. The multilayer piezoelectric element 10 may be used in a form sealed in a metal can.
[0026]
Further, the multilayer electrode 10 of the full-electrode type shown in FIG. 1 is merely an example of the multilayer piezoelectric element manufactured by the integral firing method. For example, the driving method according to the present invention described above is applied to a well-known multilayer piezoelectric element 10a having a multilayer capacitor type structure shown in FIG. 3A and a stress relaxation type multilayer piezoelectric element 10b shown in FIG. It goes without saying that it can be applied. Reference numeral 15 in FIG. 3B denotes a slit (gap), and other reference numerals in FIG. 3 denote members equivalent to those in FIG.
[0027]
Furthermore, the driving method according to the present invention is also applied to a laminated piezoelectric element in which a plurality of piezoelectric veneers are stacked by bonding with an adhesive, and a Langevin-type piezoelectric actuator in which a plurality of piezoelectric veneers are tightened by bolting or the like. be able to. The voltage waveform when the multilayer piezoelectric element is driven intermittently is not limited to the rectangular wave shown in FIG. 2A, but may be a triangular wave or the like.
[0028]
【The invention's effect】
As described above, according to the method for electrically driving the multilayer piezoelectric element of the present invention, migration of silver is suppressed. Thereby, the insulation characteristics of the multilayer piezoelectric element are maintained for a long time, and the reliability is improved.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an embodiment of a laminated piezoelectric element.
FIG. 2 is an explanatory diagram showing a driving method of the multilayer piezoelectric element according to the present invention and a displacement of the multilayer piezoelectric element.
FIG. 3 is a schematic cross-sectional view showing another embodiment of the multilayer piezoelectric element.
FIG. 4 is an explanatory diagram showing the progress of silver migration.
FIG. 5 is an explanatory diagram showing a relationship between a displacement amount of a multilayer piezoelectric element and an applied voltage.
FIG. 6 is an explanatory diagram showing a conventional driving method of a multilayer piezoelectric element and a displacement of the multilayer piezoelectric element.
[Explanation of symbols]
10; laminated piezoelectric element 11; piezoelectric ceramic layer 12; internal electrode 13; insulator 14; external electrode 15;

Claims (3)

積層型圧電素子に間歇的に電圧を印加する電気的駆動方法において、
前記積層型圧電素子に間歇的に印加される電圧が、それぞれの間歇駆動毎に正の極性の電圧および負の極性の電圧を含むことを特徴とする積層型圧電素子の電気的駆動方法。
In an electric driving method of intermittently applying a voltage to a laminated piezoelectric element,
A method of electrically driving a multilayer piezoelectric element, wherein the voltage intermittently applied to the multilayer piezoelectric element includes a positive polarity voltage and a negative polarity voltage for each intermittent drive.
前記積層型圧電素子に間歇的に印加される電圧がそれぞれの間歇駆動毎に正の極性の電圧および負の極性の電圧を含み、
前記積層型圧電素子にそれぞれの間歇駆動毎に流入する電荷の総和が実質的にゼロとなるように設定されていることを特徴とする請求項1に記載の積層型圧電素子の電気的駆動方法。
The voltage applied intermittently to the multilayer piezoelectric element includes a positive polarity voltage and a negative polarity voltage for each intermittent drive,
2. The method for electrically driving a multilayer piezoelectric element according to claim 1, wherein the sum of electric charges flowing into the multilayer piezoelectric element at each intermittent drive is set to substantially zero. .
前記積層型圧電素子に間歇的に印加される電圧がそれぞれの間歇駆動毎に正の極性の電圧および負の極性の電圧を含み、
前記正の極性の電圧または前記負の極性の電圧のうち絶対値の大きい極性の電圧を主電圧とし、前記主電圧と逆符号の極性の電圧を副電圧とするときに、前記副電圧の絶対値は前記主電圧の絶対値の1/4以下であることを特徴とする請求項1および請求項2に記載の積層型圧電素子の電気的駆動方法。
The voltage applied intermittently to the multilayer piezoelectric element includes a positive polarity voltage and a negative polarity voltage for each intermittent drive,
When the positive polarity voltage or the negative polarity voltage is a voltage having a larger absolute value as a main voltage, and a voltage having a polarity opposite to the main voltage is a sub voltage, the absolute value of the sub voltage is 3. The method according to claim 1, wherein the value is not more than 1/4 of the absolute value of the main voltage.
JP2003087001A 2003-03-27 2003-03-27 Electrical drive method for multilayer piezoelectric element Pending JP2004296772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087001A JP2004296772A (en) 2003-03-27 2003-03-27 Electrical drive method for multilayer piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087001A JP2004296772A (en) 2003-03-27 2003-03-27 Electrical drive method for multilayer piezoelectric element

Publications (1)

Publication Number Publication Date
JP2004296772A true JP2004296772A (en) 2004-10-21

Family

ID=33401466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087001A Pending JP2004296772A (en) 2003-03-27 2003-03-27 Electrical drive method for multilayer piezoelectric element

Country Status (1)

Country Link
JP (1) JP2004296772A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180639A (en) * 2004-12-22 2006-07-06 Fujitsu Ltd Driving method of piezoelectric actuator
JP2006239664A (en) * 2005-03-07 2006-09-14 Dainippon Printing Co Ltd Die head and method for adjusting slit gap
JP2010161273A (en) * 2009-01-09 2010-07-22 Murata Mfg Co Ltd Piezoelectric element and fluid apparatus with the same
JP2013110886A (en) * 2011-11-22 2013-06-06 Konica Minolta Holdings Inc Posture correction device, michelson interferometer, and fourier transformation spectroscopic analysis device
JP2014212227A (en) * 2013-04-19 2014-11-13 ホーチキ株式会社 Ceramic device and inspection method therefor
JP2014219488A (en) * 2013-05-04 2014-11-20 ホーチキ株式会社 Ceramic device and operation method of the same
JP2017163154A (en) * 2009-05-11 2017-09-14 クリー インコーポレイテッドCree Inc. Semiconductor light-emitting diode having a reflective structure and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283581A (en) * 1990-03-30 1991-12-13 Nec Corp Laminated piezoelectric actuator element
JPH04370986A (en) * 1991-06-19 1992-12-24 Olympus Optical Co Ltd Piezoelectric element driving controller
JPH07107753A (en) * 1993-09-29 1995-04-21 Toyota Motor Corp Piezoelectric-element driving device
JP2000308355A (en) * 1999-04-15 2000-11-02 Hitachi Metals Ltd Piezoelectric transformer type power converter
JP2001250994A (en) * 2000-03-03 2001-09-14 Tdk Corp Multilayer piezoelectric element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283581A (en) * 1990-03-30 1991-12-13 Nec Corp Laminated piezoelectric actuator element
JPH04370986A (en) * 1991-06-19 1992-12-24 Olympus Optical Co Ltd Piezoelectric element driving controller
JPH07107753A (en) * 1993-09-29 1995-04-21 Toyota Motor Corp Piezoelectric-element driving device
JP2000308355A (en) * 1999-04-15 2000-11-02 Hitachi Metals Ltd Piezoelectric transformer type power converter
JP2001250994A (en) * 2000-03-03 2001-09-14 Tdk Corp Multilayer piezoelectric element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180639A (en) * 2004-12-22 2006-07-06 Fujitsu Ltd Driving method of piezoelectric actuator
JP2006239664A (en) * 2005-03-07 2006-09-14 Dainippon Printing Co Ltd Die head and method for adjusting slit gap
JP2010161273A (en) * 2009-01-09 2010-07-22 Murata Mfg Co Ltd Piezoelectric element and fluid apparatus with the same
JP2017163154A (en) * 2009-05-11 2017-09-14 クリー インコーポレイテッドCree Inc. Semiconductor light-emitting diode having a reflective structure and manufacturing method thereof
JP2013110886A (en) * 2011-11-22 2013-06-06 Konica Minolta Holdings Inc Posture correction device, michelson interferometer, and fourier transformation spectroscopic analysis device
JP2014212227A (en) * 2013-04-19 2014-11-13 ホーチキ株式会社 Ceramic device and inspection method therefor
JP2014219488A (en) * 2013-05-04 2014-11-20 ホーチキ株式会社 Ceramic device and operation method of the same

Similar Documents

Publication Publication Date Title
KR100876533B1 (en) Piezoelectric element
GB2242312A (en) Laminated displacement device
JP4369238B2 (en) Piezoelectric component and manufacturing method thereof
JP2830724B2 (en) Manufacturing method of piezoelectric actuator
JP5718910B2 (en) Piezoelectric element
JP2005515641A6 (en) Piezoelectric component and manufacturing method thereof
JP2986706B2 (en) Piezoelectric element and piezoelectric actuator using the same
JP2004296772A (en) Electrical drive method for multilayer piezoelectric element
JP2013518422A (en) Piezoelectric element
JP5562382B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP2016536786A (en) Multilayer device and method for manufacturing a multilayer device
US20100308693A1 (en) Piezoelectric Stack Actuator Assembly
JPH06181343A (en) Laminated displacement element and manufacture thereof
JP2645628B2 (en) Multilayer type electrostrictive / piezoelectric element
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JP2748830B2 (en) Multilayer electrostrictive effect element
JPH1174576A (en) Multilayer piezoelectric actuator
CN1118134C (en) Piezoelectric resonator
JP6898167B2 (en) Laminated piezoelectric element
JP3080033B2 (en) Multilayer piezoelectric transformer
JPH0671102B2 (en) Electrostrictive effect element
JP6542660B2 (en) Piezoelectric element, method of manufacturing the same, and piezoelectric actuator
JP3227896B2 (en) Stacked piezoelectric body
JPH0555658A (en) Laminated piezoelectric actuator and method for manufacturing the same
JPH10190082A (en) Multilayer piezoelectric actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323