[go: up one dir, main page]

JP2004296565A - Method for manufacturing package for housing semiconductor element - Google Patents

Method for manufacturing package for housing semiconductor element Download PDF

Info

Publication number
JP2004296565A
JP2004296565A JP2003084178A JP2003084178A JP2004296565A JP 2004296565 A JP2004296565 A JP 2004296565A JP 2003084178 A JP2003084178 A JP 2003084178A JP 2003084178 A JP2003084178 A JP 2003084178A JP 2004296565 A JP2004296565 A JP 2004296565A
Authority
JP
Japan
Prior art keywords
semiconductor element
adhesive sheet
manufacturing
package
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084178A
Other languages
Japanese (ja)
Inventor
Shigenao Tomabechi
重尚 苫米地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2003084178A priority Critical patent/JP2004296565A/en
Publication of JP2004296565A publication Critical patent/JP2004296565A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a package for housing semiconductor element of low cost wherein heat dissipation plates are joined to a resin substrate with superior precision. <P>SOLUTION: In the method for manufacturing the package 10 for housing semiconductor element, openings 14 for cavities 13 are bored on a panel-shaped resin substance 19 wherein a plurality of resin substrates 11 are arranged, the heat dissipation plates 15 are joined to peripheries of the cavities 13 of one surface of the resin substrate 11 while the openings 14 are closed, and the package is formed. The method is provided with a process wherein a panel-shaped metal plate 20 is stuck on a pressure sensitive adhesive sheet 21, an etching mask is formed on the metal plate 20 according to the openings 14 of the resin substrate 11, the metal plate 20 exposed from a pattern is etched, and the heat dissipation plates 15 which stick on the pressure sensitive adhesive sheet 21 are formed, a process wherein bonding material 22 is stuck on the resin substrate 11 and/or the heat dissipation plates 15, a process for alignment, and a process wherein the bonding material 22 is heated and joined. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、半導体素子を搭載するための半導体素子収納用パッケージの製造方法に係り、より詳細には、導体配線パターンを有する樹脂基板の片面に放熱板を接合して形成する高放熱型の半導体素子収納用パッケージの製造方法に関する。
【0002】
【従来の技術】
近年の半導体素子の高性能化、小型化にともない、半導体素子を搭載するための半導体素子収納用パッケージは、半導体素子からの発熱量の増大、外部と接続するための端子の多端子化、半導体素子の実装性、低コスト化、低インピーダンス化等の観点から、高放熱構造を有するBGA(Ball Grid Array)タイプ等の高放熱型の半導体素子収納用パッケージが多く用いられている。この半導体素子収納用パッケージは、片面又は両面にCu箔を接合して形成した導体層を備えたBT樹脂(ビスマイレイミドトリアジンを主成分にした樹脂)やポリイミド樹脂等からなる1層又は多層の高耐熱性の樹脂基板に半導体素子を収納するための開口部を形成している。そして、樹脂基板の開口部を含めた一方側の面の全面に熱伝導率の高いCu等の金属板からなる放熱板を接合して、開口部と放熱板とで形成されるキャビティ部に半導体素子を搭載できるようにし、半導体素子からの発熱を放熱板から効率よく放熱できるようにしたものである(例えば、特許文献1、特許文献2参照)。
【0003】
また、図6に示すように、高放熱型の半導体素子収納用パッケージ50には、放熱板51を少なくとも樹脂基板52の一方の面の開口部53を覆い、この一方の面側の樹脂基板52の表面が部分的に露出しているようにしたものがある(例えば、特許文献3参照)。そして、この半導体素子収納用パッケージ50には、放熱板51と開口部53で形成されるキャビティ部54の放熱板51上に半導体素子55が搭載され、ボンディングワイヤ56で半導体素子55と樹脂基板52に形成されている導体配線パターンを接続し、封止樹脂57で気密に封止している。更に、この半導体素子収納用パッケージ50には、放熱板51が接合されている面の反対側の面に、ボンディングワイヤ56で接続された樹脂基板52上の導体配線パターンと電気的に導通している半田ボール等で形成された外部接続端子58が設けられている。半導体素子55が搭載された半導体素子収納用パッケージ50は、外部接続端子58でボード等にキャビティダウン型に実装されている。
【0004】
従来のこの半導体素子収納用パッケージ50の製造方法を、図7(A)〜(F)を参照しながら説明する。図7(A)に示すように、上面と下面に形成された導体配線パターン間で電気的導通を有する樹脂基板52(図7(F)参照)の複数個が配設されるパネル状の樹脂基材59には、半導体素子55を収納するためのキャビティ部54用の開口部53をそれぞれの樹脂基板52用毎に穿設する。次に、図7(B)に示すように、樹脂基材59に放熱板51を位置合わせして載置するための放熱板載置部が開口している位置合わせ治具60を所定位置に配設する。次に、図7(C)に示すように、位置合わせ治具60の開口から露出している樹脂基材59の上に、放熱板51を熱圧着させるための接着シート61を載置する。次に、図7(D)に示すように、接着シート61の上に、樹脂基材59の開口部53を覆う放熱板51を載置する。次に、図7(E)に示すように、樹脂基材59と放熱板51を接着シート61を介して仮接着を行った後、位置合わせ治具60を取り除き、加熱して本接着を行う。次に、図7(F)に示すように、切断箇所62で個別に切断することで半導体素子収納用パッケージ50を得ている。
【0005】
【特許文献1】
特開平7−321250号公報(第1−14頁、第1図)
【特許文献2】
特開平10−308467号公報(第1−5頁、第2図)
【特許文献3】
特開2000−31315号公報(第1−5頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、前述したような従来の半導体素子収納用パッケージの製造方法には、次のような問題がある。
(1)樹脂基板に放熱板を接合するのに位置合わせ治具を用いて行うのは、位置合わせ治具自体のできあがり精度、位置合わせ治具の放熱板載置部の開口と放熱板とのクリアランス等によって、精度よく接合することができなく、歩留まりの低下となっている。また、接合部の接合強度が低下したり、気密信頼性が低下する信頼性品質の低下となっている。
(2)特に、放熱板が接合される樹脂基板の面側に外部接続端子が設けられるキャビティアップ型のBGAタイプの半導体素子収納用パッケージは、放熱板が接合される樹脂基板の面側の導体配線パターンが多くなり、放熱板を接合するためのエリアが小さくなっているので、樹脂基板に放熱板を接合すること自体が困難となっている。
(3)半導体素子収納用パッケージの小型化に伴い、位置合わせ治具の作製コストが高くなっており、また、個片に作製した放熱板を位置合わせ治具の放熱板載置部の開口に載置させるのに時間がかかっているので、半導体素子収納用パッケージのコストアップとなっている。
本発明は、このような事情に鑑みてなされたものであって、樹脂基板に放熱板を精度よく接合する安価な半導体素子収納用パッケージの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的に沿う本発明に係る半導体素子収納用パッケージの製造方法は、導体配線パターンを有する樹脂基板の複数個が配設されたパネル状の樹脂基材に、半導体素子を収納するためのキャビティ部用の開口部を樹脂基板毎に穿設し、樹脂基板の一方の面のキャビティ部周縁に、半導体素子からの発熱を放熱するための放熱板を開口部を閉口させながら接合して形成する半導体素子収納用パッケージの製造方法において、樹脂基材と実質的に同等程度の寸法からなるパネル状の金属板を粘着シートに貼り付け、樹脂基材に配設された複数個の樹脂基板のキャビティ部用の開口部の配設位置に合わせて金属板上にフォトリソグラフィ法で所定の形状からなるエッチングマスクを形成し、エッチングマスクのパターンから露出する金属板をエッチングした後、エッチングマスクを剥離して除去し、粘着シートに配設して接着する複数の個片からなる放熱板を形成する工程と、樹脂基板と放熱板が互いに当接して接合する部位の樹脂基板及び/又は放熱板に接合材を展着する工程と、樹脂基板の複数個が配設された樹脂基材と、所定位置に配設された複数個の放熱板をそれぞれ個片からなる樹脂基板と放熱板が対応する位置で当接するように位置合わせする工程と、接合材を加熱して接合する工程を有する。
【0008】
これにより、樹脂基板と放熱板の接合は、位置合わせ治具を用いることなく、樹脂基材と放熱板を精度よく容易に位置合わせして接合することができるので、歩留まりがよく、接合精度のよい信頼性品質の高い、安価な半導体素子収納用パッケージの製造方法を提供できる。特に、樹脂基板の一方の面に放熱板と外部接続端子を有する導体配線パターンの多いキャビティアップ型のパッケージでも、樹脂基材と放熱板の接合に位置合わせ治具を用いることがないので、容易に作成することができる半導体素子収納用パッケージの製造方法を提供できる。
【0009】
ここで、本発明に係る半導体素子収納用パッケージの製造方法は、粘着シートが密着性と剥離性を兼ね備えるマスキングシートからなり、複数の個片からなる放熱板を形成後、複数の放熱板を収納できるセット治具を介して複数の放熱板を一度に吸着し固定してマスキングシートを除去し、放熱板を吸着状態のままで樹脂基材と位置合わせを行うのがよい。これにより、セット治具を介して吸着状態の放熱板に、セット治具に設けたガイドピンを基準に接合材を貼着し、このセット治具のガイドピンを基準に放熱板の上に樹脂基材をセットして加熱接合することができるので、樹脂基板に放熱板を極めて精度よく接合することができる半導体素子収納用パッケージの製造方法を提供できる。
【0010】
また、本発明に係る半導体素子収納用パッケージの製造方法は、粘着シートが耐熱性の高い高融点粘着シートからなり、複数の個片からなる放熱板を形成後、複数の放熱板を高融点粘着シートに貼着した状態のままで樹脂基材と位置合わせし、樹脂基板と放熱板を接合した後に高融点粘着シートを剥離するのがよい。これにより、樹脂基材と、粘着シートに付いたままの放熱板を加熱接合することができるので、放熱板の位置精度が崩れることなく樹脂基板と接合でき、樹脂基板に放熱板を極めて精度よく接合することができる半導体素子収納用パッケージの製造方法を提供できる。
【0011】
また、本発明に係る半導体素子収納用パッケージの製造方法は、粘着シートが加熱又は光の照射によって剥離性が変化する変性粘着シートからなり、複数の個片からなる放熱板を形成後、複数の放熱板を変性粘着シートを貼着した状態のままで樹脂基材と位置合わせしてから変性粘着シートを加熱又は変性粘着シートに光を照射し、変性粘着シートを剥離除去するのがよい。これにより、樹脂基材と粘着シートに付いたままの放熱板を精度よく位置合わせした後、機械的な負荷をかけずに粘着シートを除去することができるので、放熱板の位置精度が崩れることなく樹脂基板と接合でき、樹脂基板に放熱板を極めて精度よく接合することができる半導体素子収納用パッケージの製造方法を提供できる。
【0012】
更に、本発明に係る半導体素子収納用パッケージの製造方法は、接合材が半田又は接着樹脂からなり、樹脂基材及び/又は配設状態にある放熱板にスクリーン印刷で貼着するのがよい。これにより、樹脂基板及び/又は放熱板に精度よく、効率的に接合材を貼着することができる半導体素子収納用パッケージの製造方法を提供できる。
【0013】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
ここに、図1(A)、(B)はそれぞれ本発明の一実施の形態に係る半導体素子収納用パッケージの製造方法で作製される半導体素子収納用パッケージの説明図、図2(A)〜(F)はそれぞれ同半導体素子収納用パッケージの製造方法の説明図、図3(A)〜(F)はそれぞれ同半導体素子収納用パッケージの製造方法の具体例の説明図、図4(A)〜(E)はそれぞれ同半導体素子収納用パッケージの製造方法の他の具体例の説明図、図5(A)〜(E)はそれぞれ同半導体素子収納用パッケージの製造方法の更に他の具体例の説明図である。
【0014】
図1(A)、(B)を参照して、本発明の一実施の形態に係る半導体素子収納用パッケージの製造方法で作製される半導体素子収納用パッケージ10、10aの構造を説明する。図1(A)に示すように、半導体素子収納用パッケージ10は、片面又は両面にCu箔を接合したBT樹脂やポリイミド樹脂等からなる樹脂基材にCuめっきや、フォトリソグラフィ法のエッチング等によって導体配線パターンを設けて形成する樹脂基板11を有している。そして、半導体素子収納用パッケージ10は、この樹脂基板11に半導体素子12を搭載するためのキャビティ部13用の開口部14を設け、この開口部14の一方側を閉口するように樹脂基板11の一方の面のキャビティ部13周縁に、Cu板等の熱伝導率の高い金属板からなる放熱板15を接合材を介して接合して有している。この半導体素子収納用パッケージ10には、半導体素子12がキャビティ部13に搭載され、ボンディングワイヤ16で導体配線パターンと接続された後、封止樹脂17で気密に封止される。また、この半導体素子収納用パッケージ10には、半田ボール等からなる外部接続端子18が樹脂基板11の一方の面に接合された放熱板15と反対側の樹脂基板11の面の導体配線パターンに接合されて設けられる。半導体素子収納用パッケージ10は、この外部接続端子18によって、樹脂ボード等に半導体素子12をキャビティダウン型で実装することができるようになる。
【0015】
図1(B)に示すように、半導体素子収納用パッケージ10aは、半導体素子収納用パッケージ10と同様に樹脂基板11と放熱板15を接合して有している。そして、この半導体素子収納用パッケージ10aには、放熱板15が設けられている樹脂基板11の面と同一面に外部接続端子18が設けられる。半導体素子収納用パッケージ10aは、この外部接続端子18によって、樹脂ボード等に半導体素子12をキャビティアップ型で実装することができるようになる。
【0016】
次いで、図2(A)〜(F)を参照しながら、本発明の一実施の形態に係る半導体素子収納用パッケージ10、10aの製造方法を説明する。
半導体素子収納用パッケージ10、10aを構成する樹脂基板11は、パネル状の樹脂基材19(図2(C)参照)に複数個がそれぞれに導体配線パターンを有して形成されている。この樹脂基材19には、半導体素子12を収納するためのキャビティ部13用の開口部14がルーター加工機等でそれぞれの樹脂基板11毎に穿設されて形成されている。そして、図2(A)に示すように、樹脂基板11に接合される放熱板15を形成するためには、先ず、パネル状の樹脂基材19と実質的に同等程度の寸法からなるパネル状の金属板20に、粘着シート21に貼り付けた接合体を形成している。この金属板20は、Cu板や、Cu合金板等からなり、熱伝導率が高く、高放熱特性を有するものがよい。
【0017】
次に、金属板20の上にロールコーター等で貼着した感光性のドライフィルム上に、樹脂基材19に設けられたキャビティ部13用の開口部14の配設位置に合わせ、所定の形状のパターンを有するパターンマスクを当接し、露光、現像して形成するフォトリソグラフィ法で放熱板15の形状の逆形状からなるエッチングマスクを形成する。そして、このエッチングマスクのパターンから露出する金属板20をエッチングし、更に、エッチング後、エッチングマスクを剥離して除去することで、図2(B)に示すように、粘着シート21に配設して接着する複数の個片からなる放熱板15が形成される。この放熱板15には、半導体素子12が載置されて搭載されるようになっており、半導体素子12からの発熱を効率よく放熱させるのに使用されている。
【0018】
次に、図2(C)に示すように、樹脂基板11及び/又は放熱板15には、樹脂基板11の一方の面のキャビティ部13周縁に、半導体素子からの発熱を放熱するための放熱板15をキャビティ部13用の開口部14を閉口させながら接合して形成するための接合材22がスクリーン印刷等で貼着されて形成される。
【0019】
次に、図2(D)に示すように、複数個の樹脂基板11が隣接して配設されているパネル状の樹脂基材19と、樹脂基材19に設けられたキャビティ部13用の開口部14の配設位置に合わて粘着シート21や治具等の支持体の所定位置に配設された複数個の放熱板15とは、それぞれの個片からなる樹脂基板11と放熱板15とが対応する位置で当接するように位置合わせが行われている。なお、この位置合わせ方法には、例えば、セット台に設けられたガイドピン23に、樹脂基材19に設けられている位置合わせ用ガイド孔と、支持体に設けられている位置合わせ用ガイド孔を重ねて挿通させてセットすることで、樹脂基材19と放熱板15との接合部に接合材22を介するようにして位置合わせすることができる。
【0020】
次に、図2(E)に示すように、接合部に接合材22を介して位置合わせされて仮接着している樹脂基材19と放熱板15は、加熱炉等に投入され、接合材22を加熱硬化させることで、樹脂基材19に形成されている複数個の樹脂基板11のそれぞれに放熱板15が接合される。そして、図2(F)に示すように、放熱板15が接合された樹脂基材19は、切断箇所24で切断され、個片からなる半導体素子収納用パッケージ10、10aが作製されている。
【0021】
次いで、図3(A)〜(F)を参照しながら本発明の一実施の形態に係る半導体素子収納用パッケージ10、10aの製造方法の具体例を説明する。
図3(A)に示すように、Cu板や、Cu合金板等からなるパネル状の金属板20には、粘着シート21として密着性と、剥離性を兼ね備え、耐薬品性に優れるエッチングレジスト膜として用いるためのマスキングシート21aが貼着されている。次に、図3(B)に示すように、マスキングシート21aと貼着する金属板20には、前記の半導体素子収納用パッケージ10、10aの製造方法の場合と同様にフォトリソグラフィ法によるマスク処理とエッチング処理が施されることで、マスキングシート21aには、複数の個片からなる放熱板15が配設して接着するように形成されている。
【0022】
次に、図3(C)に示すように、複数の放熱板15は、複数の放熱板15のそれぞれが収納できるセット治具25の収納部位に、マスキングシート21aに接着する放熱板15を当接して載置し、セット治具25の下部から吸引して、複数の放熱板15を一度に吸着してセット治具25に固定している。次に、図3(D)に示すように、放熱板15をセット治具25に吸着し固定した状態で、マスキングテープ21aを剥離し除去している。
【0023】
次に、図3(E)に示すように、放熱板15をセット治具25に吸着し固定した状態のままで、例えば、セット治具25に設けられたガイドピン23に樹脂基材19に設けられた位置合わせ用ガイド孔を挿通させてセットし、放熱板15と樹脂基材19の位置合わせを行っている。次に、図3(F)に示すように、セット治具25にセットして位置合わせした状態のままの放熱板15と樹脂基材19は、加熱炉等に投入され、接合材22を加熱硬化させることで、樹脂基材19に形成されている複数個の樹脂基板11のそれぞれに放熱板15が接合される。そして、前記の半導体素子収納用パッケージ10、10aの製造方法の場合と同様に、放熱板15が接合された樹脂基材19は、個片に切断されて半導体素子収納用パッケージ10、10aが作製される。
【0024】
次いで、図4(A)〜(E)を参照しながら本発明の一実施の形態に係る半導体素子収納用パッケージ10、10aの製造方法の他の具体例を説明する。
図4(A)に示すように、Cu板や、Cu合金板等からなるパネル状の金属板20には、粘着シート21として、例えば、シリコン系粘着材を使用して耐熱性の高く、耐薬品性に優れるエッチングレジスト膜として用いるための高融点粘着シート21bが貼着されている。次に、図4(B)に示すように、高融点粘着シート21bと貼着する金属板20には、前記の半導体素子収納用パッケージ10、10aの製造方法の場合と同様にフォトリソグラフィ法によるマスク処理とエッチング処理が施されることで、高融点粘着シート21bには、複数の個片からなる放熱板15が配設して接着するように形成されている。
【0025】
次に、図4(C)に示すように、樹脂基材19に設けられた位置合わせ用ガイド孔を、例えば、固定治具25aに設けられたガイドピン23に挿通させてセットしている。更に、樹脂基材19の上には、高融点粘着シート21bに配設して貼着したままの複数の個片からなる放熱板15を、固定治具25aに設けられたガイドピン23に高融点粘着シート21bに設けられた位置合わせ用ガイド孔を挿通させてセットし、放熱板15と樹脂基材19の位置合わせを行っている。次に、図4(D)に示すように、固定治具25aにセットして位置合わせした状態で、高融点粘着シート21bに配設して貼着した状態のままの放熱板15と樹脂基材19は、加熱炉等に投入され、接合材22を加熱硬化させることで、樹脂基材19に形成されている複数個の樹脂基板11のそれぞれに放熱板15が接合される。
【0026】
次に、図4(E)に示すように、放熱板11が貼着されていた高融点粘着シート21bは、放熱板11が樹脂基材19に接合された後に剥離して除去される。そして、前記の半導体素子収納用パッケージ10、10aの製造方法の場合と同様に、放熱板15が接合された樹脂基材19は、個片に切断されて半導体素子収納用パッケージ10、10aが作製されている。
【0027】
次いで、図5(A)〜(E)を参照しながら本発明の一実施の形態に係る半導体素子収納用パッケージ10、10aの製造方法の更に他の具体例を説明する。
図5(A)に示すように、Cu板や、Cu合金板等からなるパネル状の金属板20には、粘着シート21として加熱、又は光の照射によって剥離性が変化し、耐薬品性に優れるエッチングレジスト膜として用いるための変性粘着シート21cが貼着されている。次に、図5(B)に示すように、変性粘着シート21cと貼着する金属板20には、前記の半導体素子収納用パッケージ10、10aの製造方法の場合と同様にフォトリソグラフィ法によるマスク処理とエッチング処理が施されることで、変性粘着シート21cには、複数の個片からなる放熱板15が配設して接着するように形成されている。
【0028】
次に、図5(C)に示すように、樹脂基材19に設けられた位置合わせ用ガイド孔を、例えば、固定治具25aに設けられたガイドピン23に挿通させてセットしている。更に、樹脂基材19の上には、変性粘着シート21cに配設して貼着したままの複数の個片からなる放熱板15を、固定治具25aに設けられたガイドピン23に変性粘着シート21cに設けられた位置合わせ用ガイド孔を挿通させてセットし、放熱板15と樹脂基材19の位置合わせを行っている。そして、位置合わせ後、変性粘着シート21cは、変性粘着シート21cに熱を加えたり、あるいは光を照射している。次に、図5(D)に示すように、変性粘着シート21cは、樹脂基材19と放熱板15が固定治具25aにセットして位置合わせした状態の中で、放熱板15から剥離し除去される。この剥離性が増加することができる理由は、例えば、変性粘着シート21cを加熱する場合においては、変性粘着シート21cの粘着剤層に発泡を起こさせ、接着面積を低下させることで剥離性を増加させることができることを利用している。
【0029】
次に、図5(D)に示すように、固定治具25aにセットして位置合わせした状態で、放熱板15と樹脂基材19は、加熱炉等に投入され、接合材22を加熱硬化させることで、樹脂基材19に形成されている複数個の樹脂基板11のそれぞれに放熱板15が接合される。そして、前記の半導体素子収納用パッケージ10、10aの製造方法の場合と同様に、放熱板15が接合された樹脂基材19は、個片に切断されて半導体素子収納用パッケージ10、10aが作製されている。
【0030】
上記の本発明の一実施の形態に係る半導体素子収納用パッケージ10、10aのそれぞれの製造方法に用いられる接合材22は、半田又は接着樹脂からなり、パネル状の樹脂基材19、又は、支持体に複数個が配設状態におかれた放熱板15にスクリーン印刷で貼着するのがよい。
【0031】
【発明の効果】
請求項1及びこれに従属する請求項2〜5記載の半導体素子収納用パッケージの製造方法は、樹脂基材と実質的に同等程度の寸法からなるパネル状の金属板を粘着シートに貼り付け、樹脂基材に配設された複数個の樹脂基板のキャビティ部用の開口部の配設位置に合わせて金属板上にフォトリソグラフィ法で所定の形状からなるエッチングマスクを形成し、エッチングマスクのパターンから露出する金属板をエッチングした後、エッチングマスクを剥離して除去し、粘着シートに配設して接着する複数の個片からなる前記放熱板を形成する工程と、樹脂基板と放熱板が互いに当接して接合する部位の樹脂基板及び/又は放熱板に接合材を貼着する工程と、樹脂基板の複数個が配設された樹脂基材と、所定位置に配設された複数個の放熱板をそれぞれ個片からなる樹脂基板と放熱板が対応する位置で当接するように位置合わせする工程と、接合材を加熱して接合する工程を有するので、樹脂基板と放熱板の接合に、位置合わせ治具を用いることなく、精度よく容易に位置合わせして接合することができ、歩留まりがよく、接合精度のよい信頼性品質の高い、安価な半導体素子収納用パッケージの製造方法を提供できる。
【0032】
特に、請求項2記載の半導体素子収納用パッケージの製造方法は、粘着シートが密着性と剥離性を兼ね備えるマスキングシートからなり、複数の個片からなる放熱板を形成後、複数の放熱板を収納できるセット治具を介して複数の放熱板を一度に吸着し固定してマスキングシートを除去し、放熱板を吸着状態のままで樹脂基材と位置合わせを行うので、セット治具を介して吸着状態の放熱板に、セット治具に設けたガイドピンを基準に接合材を貼着し、このセット治具のガイドピンを基準に放熱板の上に樹脂基材をセットして加熱接合することができ、樹脂基板に放熱板を極めて精度よく接合することができる半導体素子収納用パッケージの製造方法を提供できる。
【0033】
特に、請求項3記載の半導体素子収納用パッケージの製造方法は、粘着シートが耐熱性の高い高融点粘着シートからなり、複数の個片からなる放熱板を形成後、複数の放熱板を高融点粘着シートに貼着した状態のままで樹脂基材と位置合わせし、樹脂基板と放熱板を接合した後に高融点粘着シートを剥離するので、樹脂基材と、粘着シートに付いたままの放熱板を加熱接合して、放熱板の位置精度が崩れることなく樹脂基板と接合でき、樹脂基板に放熱板を極めて精度よく接合することができる半導体素子収納用パッケージの製造方法を提供できる。
【0034】
特に、請求項4記載の半導体素子収納用パッケージの製造方法は、粘着シートが加熱又は光の照射によって剥離性が変化する変性粘着シートからなり、複数の個片からなる放熱板を形成後、複数の放熱板を変性粘着シートを貼着した状態のままで樹脂基材と位置合わせしてから変性粘着シートを加熱又は変性粘着シートに光を照射し、変性粘着シートを剥離除去するので、樹脂基材と粘着シートに付いたままの放熱板を精度よく位置合わせした後、機械的な負荷をかけずに粘着シートを除去することができ、放熱板の位置精度が崩れることなく樹脂基板と接合でき、樹脂基板に放熱板を極めて精度よく接合することができる半導体素子収納用パッケージの製造方法を提供できる。
【0035】
特に、請求項5記載の半導体素子収納用パッケージの製造方法は、接合材が半田又は接着樹脂からなり、樹脂基材及び/又は配設状態にある放熱板にスクリーン印刷で貼着するので、樹脂基板及び/又は放熱板に精度よく、効率的に接合材を貼着することができる半導体素子収納用パッケージの製造方法を提供できる。
【図面の簡単な説明】
【図1】(A)、(B)はそれぞれ本発明の一実施の形態に係る半導体素子収納用パッケージの製造方法で作製される半導体素子収納用パッケージの説明図である。
【図2】(A)〜(F)はそれぞれ同半導体素子収納用パッケージの製造方法の説明図である。
【図3】(A)〜(F)はそれぞれ同半導体素子収納用パッケージの製造方法の具体例の説明図である。
【図4】(A)〜(E)はそれぞれ同半導体素子収納用パッケージの製造方法の他の具体例の説明図である。
【図5】(A)〜(E)はそれぞれ同半導体素子収納用パッケージの製造方法の更に他の具体例の説明図である。
【図6】従来の半導体素子収納用パッケージの製造方法で作製される半導体素子収納用パッケージの説明図である。
【図7】(A)〜(F)はそれぞれ従来の半導体素子収納用パッケージの製造方法の説明図である。
【符号の説明】
10、10a:半導体素子収納用パッケージ、11:樹脂基板、12:半導体素子、13:キャビティ部、14:開口部、15:放熱板、16:ボンディングワイヤ、17:封止樹脂、18:外部接続端子、19:樹脂基材、20:金属板、21:粘着シート、21a:マスキングシート、21b:高融点粘着シート、21c:変性粘着シート、22:接合材、23:ガイドピン、24:切断箇所、25:セット治具、25a:固定治具
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor element housing package for mounting a semiconductor element, and more particularly, to a high heat dissipation type semiconductor formed by joining a heat sink to one surface of a resin substrate having a conductor wiring pattern. The present invention relates to a method for manufacturing an element storage package.
[0002]
[Prior art]
With the recent increase in performance and miniaturization of semiconductor elements, semiconductor element storage packages for mounting semiconductor elements have increased the amount of heat generated from the semiconductor elements, increased the number of terminals for connection to the outside, and increased the number of terminals. From the viewpoints of device mounting, cost reduction, and impedance reduction, a high heat dissipation type semiconductor element housing package such as a BGA (Ball Grid Array) type having a high heat dissipation structure is often used. This package for housing a semiconductor element is a single-layer or multi-layer made of BT resin (resin having bismaileimide triazine as a main component) or polyimide resin having a conductor layer formed by bonding Cu foil on one or both surfaces. An opening for accommodating a semiconductor element is formed in a resin substrate having high heat resistance. Then, a heat sink made of a metal plate such as Cu having a high thermal conductivity is joined to the entire surface on one side including the opening of the resin substrate, and a semiconductor is formed in the cavity formed by the opening and the heat sink. An element can be mounted, and heat generated from a semiconductor element can be efficiently radiated from a heat radiating plate (for example, see Patent Documents 1 and 2).
[0003]
As shown in FIG. 6, in the high heat radiation type semiconductor element housing package 50, a heat radiating plate 51 covers at least an opening 53 on one surface of the resin substrate 52, and the resin substrate 52 on this one surface side is covered. (See, for example, Patent Document 3). The semiconductor element 55 is mounted on the heat sink 51 of the cavity 54 formed by the heat sink 51 and the opening 53 in the semiconductor element housing package 50, and the semiconductor element 55 and the resin substrate 52 are bonded by bonding wires 56. Are connected to each other, and are hermetically sealed with a sealing resin 57. Further, the semiconductor element housing package 50 is electrically connected to a conductor wiring pattern on a resin substrate 52 connected by bonding wires 56 on a surface opposite to a surface to which the heat sink 51 is joined. An external connection terminal 58 formed of a solder ball or the like is provided. The semiconductor element housing package 50 on which the semiconductor element 55 is mounted is mounted on a board or the like at an external connection terminal 58 in a cavity-down type.
[0004]
A conventional method of manufacturing the semiconductor device housing package 50 will be described with reference to FIGS. As shown in FIG. 7A, a panel-shaped resin on which a plurality of resin substrates 52 (see FIG. 7F) having electrical continuity between conductor wiring patterns formed on the upper surface and the lower surface is provided. An opening 53 for a cavity 54 for accommodating a semiconductor element 55 is formed in the base 59 for each resin substrate 52. Next, as shown in FIG. 7B, the positioning jig 60 having the opening for the heat sink mounting portion for positioning and mounting the heat sink 51 on the resin base material 59 is moved to a predetermined position. Arrange. Next, as shown in FIG. 7C, an adhesive sheet 61 for thermocompression bonding of the heat sink 51 is placed on the resin base material 59 exposed from the opening of the positioning jig 60. Next, as shown in FIG. 7D, a heat radiating plate 51 that covers the opening 53 of the resin base material 59 is placed on the adhesive sheet 61. Next, as shown in FIG. 7E, after the resin base material 59 and the heat sink 51 are temporarily bonded via the adhesive sheet 61, the positioning jig 60 is removed, and heating is performed to perform the final bonding. . Next, as shown in FIG. 7 (F), the semiconductor element housing package 50 is obtained by individually cutting at the cutting points 62.
[0005]
[Patent Document 1]
JP-A-7-321250 (page 1-14, FIG. 1)
[Patent Document 2]
JP-A-10-308467 (pages 1-5, FIG. 2)
[Patent Document 3]
JP-A-2000-31315 (pages 1-5, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, the conventional method for manufacturing a semiconductor device housing package as described above has the following problems.
(1) The use of a positioning jig to join the heat sink to the resin substrate involves the accuracy of the finished positioning jig itself, the gap between the opening of the heat sink mounting portion of the positioning jig and the heat sink. Due to clearance or the like, it is not possible to join with high accuracy, and the yield is reduced. In addition, the bonding strength of the bonding portion is reduced, and the reliability quality is reduced, resulting in reduced hermetic reliability.
(2) In particular, a cavity-up type BGA type semiconductor element housing package in which external connection terminals are provided on the surface side of the resin substrate to which the heat sink is joined is a conductor on the surface side of the resin substrate to which the heat sink is joined. Since the number of wiring patterns is increased and the area for joining the heat sink is reduced, it is difficult to join the heat sink to the resin substrate.
(3) With the miniaturization of the semiconductor element storage package, the manufacturing cost of the positioning jig is increasing. In addition, the heat radiating plate prepared for each piece is placed in the opening of the heat radiating plate mounting portion of the positioning jig. Since it takes time to mount the semiconductor device, the cost of the package for housing the semiconductor element is increased.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method of manufacturing an inexpensive semiconductor element housing package in which a heat sink is accurately bonded to a resin substrate.
[0007]
[Means for Solving the Problems]
A method of manufacturing a package for housing a semiconductor element according to the present invention, which meets the above object, comprises a cavity portion for housing a semiconductor element in a panel-shaped resin base on which a plurality of resin substrates having a conductor wiring pattern are disposed. A semiconductor device is formed by drilling an opening for each resin substrate and joining a heat sink for dissipating heat generated from the semiconductor element to the periphery of the cavity on one surface of the resin substrate while closing the opening. In the method for manufacturing an element storage package, a panel-shaped metal plate having substantially the same size as a resin base material is attached to an adhesive sheet, and cavities of a plurality of resin substrates provided on the resin base material are provided. An etching mask having a predetermined shape is formed on a metal plate by photolithography in accordance with the arrangement position of the opening for use, and the metal plate exposed from the etching mask pattern is etched. After the etching, the etching mask is peeled off and removed, and a step of forming a heat radiating plate composed of a plurality of pieces to be provided and adhered to the pressure-sensitive adhesive sheet, and a step of joining the resin substrate and the heat radiating plate in contact with each other A step of spreading the bonding material on the resin substrate and / or the heat sink, a resin substrate on which a plurality of resin substrates are provided, and a plurality of heat sinks provided at predetermined positions, each of which is made of an individual piece. The method includes a step of positioning the resin substrate and the heat radiating plate so as to contact each other at a corresponding position, and a step of heating and bonding the bonding material.
[0008]
As a result, the resin substrate and the heat sink can be accurately and easily aligned and joined without using a positioning jig, so that the yield is good and the joining accuracy is low. A method for manufacturing an inexpensive semiconductor element housing package having high reliability and high quality can be provided. In particular, even for a cavity-up type package having a large number of conductor wiring patterns having a heat sink and external connection terminals on one surface of the resin substrate, no positioning jig is used for joining the resin base material and the heat sink, so that it is easy to use. A method for manufacturing a package for housing a semiconductor element, which can be manufactured at a low cost, can be provided.
[0009]
Here, the method for manufacturing a package for housing a semiconductor element according to the present invention is characterized in that the pressure-sensitive adhesive sheet is formed of a masking sheet having both adhesiveness and releasability. It is preferable that a plurality of heat radiating plates are sucked and fixed at a time via a set jig to remove the masking sheet, and the heat radiating plate is aligned with the resin base material while the heat radiating plate remains in the sucked state. As a result, the bonding material is adhered to the heat sink in the suction state via the set jig based on the guide pins provided on the set jig, and the resin is placed on the heat sink based on the guide pins of the set jig. Since the base material can be set and heat-bonded, a method for manufacturing a semiconductor element housing package that can bond a heat sink to a resin substrate with extremely high precision can be provided.
[0010]
Further, in the method for manufacturing a package for housing a semiconductor element according to the present invention, the pressure-sensitive adhesive sheet is formed of a high heat-resistant high-melting pressure-sensitive adhesive sheet. It is preferable that the high-melting-point pressure-sensitive adhesive sheet be peeled off after the resin substrate and the heat sink are bonded together while being adhered to the sheet. As a result, the resin base and the heat sink attached to the adhesive sheet can be heated and joined, so that the heat sink can be joined to the resin substrate without losing the positional accuracy of the heat sink, and the heat sink can be attached to the resin substrate with high accuracy. It is possible to provide a method for manufacturing a semiconductor element housing package that can be joined.
[0011]
Further, the method for manufacturing a semiconductor element storage package according to the present invention is such that the pressure-sensitive adhesive sheet is formed of a modified pressure-sensitive adhesive sheet whose releasability is changed by heating or irradiation of light, and after forming a heat sink composed of a plurality of pieces, a plurality of pieces are formed. It is preferable to heat the modified adhesive sheet or irradiate the modified adhesive sheet with light to remove the modified adhesive sheet by aligning the heatsink with the resin substrate with the modified adhesive sheet adhered. This makes it possible to accurately align the resin substrate and the heat radiating plate attached to the pressure-sensitive adhesive sheet, and then remove the pressure-sensitive adhesive sheet without applying a mechanical load. The present invention can provide a method for manufacturing a semiconductor element housing package that can be bonded to a resin substrate without any difficulty and a heat sink can be bonded to the resin substrate with extremely high precision.
[0012]
Furthermore, in the method of manufacturing a package for housing a semiconductor element according to the present invention, it is preferable that the bonding material is made of solder or an adhesive resin, and is attached to a resin base material and / or a radiating plate in an arranged state by screen printing. Accordingly, it is possible to provide a method of manufacturing a package for housing a semiconductor element, which can accurately and efficiently attach a bonding material to a resin substrate and / or a heat sink.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
Here, FIGS. 1A and 1B are explanatory views of a semiconductor element housing package manufactured by the method of manufacturing a semiconductor element housing package according to one embodiment of the present invention, and FIGS. (F) is an explanatory view of a method of manufacturing the semiconductor element housing package, respectively, and FIGS. 3 (A) to (F) are an explanatory view of a specific example of a method of manufacturing the semiconductor element housing package, respectively, and FIG. FIGS. 5A to 5E are explanatory views of another specific example of the method of manufacturing the same semiconductor element housing package, and FIGS. 5A to 5E are still other specific examples of the method of manufacturing the same semiconductor element housing package. FIG.
[0014]
With reference to FIGS. 1A and 1B, a structure of a semiconductor element housing package 10, 10a manufactured by a method of manufacturing a semiconductor element housing package according to an embodiment of the present invention will be described. As shown in FIG. 1 (A), the semiconductor element housing package 10 is formed by Cu plating or etching by a photolithography method on a resin base made of BT resin, polyimide resin, or the like having a Cu foil bonded to one or both surfaces. It has a resin substrate 11 formed by providing a conductor wiring pattern. The semiconductor device housing package 10 is provided with an opening 14 for the cavity 13 for mounting the semiconductor element 12 on the resin substrate 11, and the resin substrate 11 is closed so that one side of the opening 14 is closed. A heat radiating plate 15 made of a metal plate having a high thermal conductivity such as a Cu plate is joined to the peripheral edge of the cavity portion 13 on one surface via a joining material. The semiconductor element 12 is mounted in the cavity 13 in the semiconductor element housing package 10, connected to the conductor wiring pattern by the bonding wire 16, and hermetically sealed with the sealing resin 17. In the package 10 for housing semiconductor elements, an external connection terminal 18 made of a solder ball or the like is formed on a conductor wiring pattern on the surface of the resin substrate 11 opposite to the heat radiating plate 15 joined to one surface of the resin substrate 11. It is provided joined. The external connection terminals 18 allow the semiconductor element housing package 10 to mount the semiconductor element 12 on a resin board or the like in a cavity-down type.
[0015]
As shown in FIG. 1B, the semiconductor element housing package 10a has a resin substrate 11 and a heat radiating plate 15 joined together like the semiconductor element housing package 10. The semiconductor device housing package 10a is provided with external connection terminals 18 on the same surface as the surface of the resin substrate 11 on which the heat sink 15 is provided. The external connection terminals 18 enable the semiconductor element housing package 10a to mount the semiconductor element 12 on a resin board or the like in a cavity-up type.
[0016]
Next, with reference to FIGS. 2A to 2F, a method of manufacturing the semiconductor element housing packages 10, 10a according to one embodiment of the present invention will be described.
A plurality of resin substrates 11 constituting the semiconductor element housing packages 10 and 10a are formed on a panel-shaped resin base material 19 (see FIG. 2C), each having a conductor wiring pattern. An opening 14 for the cavity 13 for accommodating the semiconductor element 12 is formed in the resin substrate 19 by drilling the resin substrate 11 for each resin substrate 11 using a router machine or the like. Then, as shown in FIG. 2A, in order to form the heat radiating plate 15 to be joined to the resin substrate 11, first, a panel-shaped resin base material 19 having substantially the same size as the panel-shaped resin base material 19 is formed. A bonded body attached to an adhesive sheet 21 is formed on the metal plate 20 of FIG. The metal plate 20 is preferably made of a Cu plate, a Cu alloy plate, or the like, and has a high thermal conductivity and a high heat radiation characteristic.
[0017]
Next, on a photosensitive dry film stuck on a metal plate 20 with a roll coater or the like, the position of the opening 14 for the cavity 13 provided in the resin substrate 19 is adjusted to a predetermined shape. An etching mask having a shape reverse to the shape of the heat radiating plate 15 is formed by a photolithography method in which a pattern mask having the above pattern is brought into contact with and exposed and developed. Then, the metal plate 20 exposed from the pattern of the etching mask is etched, and after the etching, the etching mask is peeled off and removed, so as to be disposed on the adhesive sheet 21 as shown in FIG. A heat radiating plate 15 composed of a plurality of individual pieces to be bonded is formed. The semiconductor element 12 is placed and mounted on the heat radiating plate 15 and is used to efficiently radiate heat generated from the semiconductor element 12.
[0018]
Next, as shown in FIG. 2 (C), the resin substrate 11 and / or the heat radiating plate 15 are provided on the peripheral edge of the cavity 13 on one surface of the resin substrate 11 for radiating heat generated from the semiconductor element. A bonding material 22 for bonding the plate 15 while closing the opening 14 for the cavity 13 is formed by sticking by screen printing or the like.
[0019]
Next, as shown in FIG. 2 (D), a panel-shaped resin substrate 19 in which a plurality of resin substrates 11 are disposed adjacent to each other, and a cavity for the cavity 13 provided in the resin substrate 19 are formed. The plurality of heat sinks 15 arranged at predetermined positions on the support such as the adhesive sheet 21 and the jig in accordance with the arrangement position of the openings 14 are composed of the resin substrate 11 and the heat sinks 15 each of which is an individual piece. Positioning is performed so that abuts at corresponding positions. Note that this positioning method includes, for example, a positioning pin provided on the resin base material 19 and a positioning guide hole provided on the support, provided on the guide pins 23 provided on the set table. Are set in such a manner that they are overlapped with each other and set, so that the joint between the resin base material 19 and the heat sink 15 can be positioned with the joining material 22 interposed therebetween.
[0020]
Next, as shown in FIG. 2 (E), the resin base material 19 and the heat radiating plate 15 which are aligned and temporarily bonded to the bonding portion via the bonding material 22 are put into a heating furnace or the like, and The heat radiating plate 15 is joined to each of the plurality of resin substrates 11 formed on the resin base material 19 by heating and curing the resin substrate 22. Then, as shown in FIG. 2 (F), the resin base material 19 to which the heat sink 15 is joined is cut at a cut portion 24, and the semiconductor element housing packages 10, 10a made of individual pieces are manufactured.
[0021]
Next, a specific example of a method of manufacturing the semiconductor device housing packages 10 and 10a according to one embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 3 (A), an etching resist film having both adhesiveness and releasability as a pressure-sensitive adhesive sheet 21 and having excellent chemical resistance is attached to a panel-shaped metal plate 20 made of a Cu plate, a Cu alloy plate or the like. A masking sheet 21a to be used as a mask is stuck. Next, as shown in FIG. 3B, the metal plate 20 to be adhered to the masking sheet 21a is subjected to a mask treatment by photolithography in the same manner as in the method of manufacturing the semiconductor element housing packages 10, 10a. By performing the etching process, the heat radiating plate 15 composed of a plurality of individual pieces is disposed and adhered to the masking sheet 21a.
[0022]
Next, as shown in FIG. 3C, the heat radiating plates 15 are bonded to the masking sheet 21a at the storage portions of the set jigs 25 in which the plurality of heat radiating plates 15 can be stored. The heat radiating plate 15 is sucked from the lower part of the set jig 25 and is fixed to the set jig 25 by sucking the heat radiating plates 15 at once. Next, as shown in FIG. 3 (D), the masking tape 21a is peeled off and removed while the radiator plate 15 is attracted and fixed to the set jig 25.
[0023]
Next, as shown in FIG. 3 (E), while the heat sink 15 is fixed to the set jig 25 by suction, for example, the guide pin 23 provided on the set jig 25 is attached to the resin base 19. The positioning guide holes provided are inserted and set, and the heat sink 15 and the resin base material 19 are aligned. Next, as shown in FIG. 3 (F), the radiator plate 15 and the resin base material 19 which have been set and set in the set jig 25 are put into a heating furnace or the like, and the bonding material 22 is heated. By curing, the heat radiating plate 15 is bonded to each of the plurality of resin substrates 11 formed on the resin base material 19. Then, similarly to the method of manufacturing the semiconductor element housing packages 10 and 10a, the resin base material 19 to which the heat sink 15 is bonded is cut into individual pieces to produce the semiconductor element housing packages 10 and 10a. Is done.
[0024]
Next, another specific example of a method for manufacturing the semiconductor element housing packages 10, 10a according to the embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 4A, a panel-shaped metal plate 20 made of a Cu plate, a Cu alloy plate, or the like is used as the adhesive sheet 21 by using, for example, a silicon-based adhesive material, and has high heat resistance. A high melting point pressure-sensitive adhesive sheet 21b to be used as an etching resist film having excellent chemical properties is attached. Next, as shown in FIG. 4B, the metal plate 20 to be adhered to the high melting point adhesive sheet 21b is applied to the metal plate 20 by the photolithography method in the same manner as in the method of manufacturing the semiconductor element housing packages 10, 10a. By performing the masking process and the etching process, the heat-dissipating plate 15 composed of a plurality of pieces is arranged and adhered to the high-melting-point pressure-sensitive adhesive sheet 21b.
[0025]
Next, as shown in FIG. 4 (C), a positioning guide hole provided in the resin base material 19 is set by being inserted into a guide pin 23 provided in the fixing jig 25a, for example. Further, on the resin base material 19, the heat radiating plate 15 composed of a plurality of pieces arranged and adhered to the high melting point adhesive sheet 21b is placed on the guide pins 23 provided on the fixing jig 25a. The guide holes for positioning provided in the melting point adhesive sheet 21b are inserted and set, and the heat sink 15 and the resin base material 19 are positioned. Next, as shown in FIG. 4 (D), the heat radiating plate 15 and the resin base are placed on the high-melting-point adhesive sheet 21b and adhered thereto while being set and aligned on the fixing jig 25a. The material 19 is put into a heating furnace or the like, and the heat radiating plate 15 is bonded to each of the plurality of resin substrates 11 formed on the resin base material 19 by heating and curing the bonding material 22.
[0026]
Next, as shown in FIG. 4E, the high melting point adhesive sheet 21b to which the heat radiating plate 11 has been adhered is peeled off and removed after the heat radiating plate 11 is bonded to the resin base material 19. Then, similarly to the method of manufacturing the semiconductor element housing packages 10 and 10a, the resin base material 19 to which the heat sink 15 is bonded is cut into individual pieces to produce the semiconductor element housing packages 10 and 10a. Have been.
[0027]
Next, still another specific example of the method of manufacturing the semiconductor element housing packages 10, 10a according to the embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 5 (A), the peeling property changes by heating or light irradiation as an adhesive sheet 21 on a panel-shaped metal plate 20 made of a Cu plate, a Cu alloy plate, or the like. A modified adhesive sheet 21c to be used as an excellent etching resist film is stuck. Next, as shown in FIG. 5B, the metal plate 20 to be adhered to the modified adhesive sheet 21c has a mask formed by photolithography in the same manner as in the method of manufacturing the semiconductor element housing packages 10, 10a. By performing the treatment and the etching treatment, the heat-dissipating plate 15 composed of a plurality of individual pieces is arranged and adhered to the modified adhesive sheet 21c.
[0028]
Next, as shown in FIG. 5C, a positioning guide hole provided in the resin base material 19 is set by being inserted into, for example, a guide pin 23 provided in the fixing jig 25a. Further, on the resin base material 19, the heat radiating plate 15 composed of a plurality of pieces arranged and adhered to the modified adhesive sheet 21c is attached to the guide pin 23 provided on the fixing jig 25a. The positioning guide holes provided in the sheet 21c are inserted and set, and the heat sink 15 and the resin base material 19 are aligned. Then, after the alignment, the modified adhesive sheet 21c applies heat or irradiates light to the modified adhesive sheet 21c. Next, as shown in FIG. 5D, the modified adhesive sheet 21c is peeled off from the heat radiating plate 15 while the resin base material 19 and the heat radiating plate 15 are set and aligned on the fixing jig 25a. Removed. The reason that the releasability can be increased is that, for example, when the modified adhesive sheet 21c is heated, the adhesive layer of the modified adhesive sheet 21c is foamed, and the adhesive area is reduced to increase the releasability. Utilize what you can do.
[0029]
Next, as shown in FIG. 5 (D), the heat radiating plate 15 and the resin base material 19 are put into a heating furnace or the like in a state where they are set and aligned on the fixing jig 25a, and the bonding material 22 is cured by heating. By doing so, the heat radiating plate 15 is joined to each of the plurality of resin substrates 11 formed on the resin base material 19. Then, similarly to the method of manufacturing the semiconductor element housing packages 10 and 10a, the resin base material 19 to which the heat sink 15 is bonded is cut into individual pieces to produce the semiconductor element housing packages 10 and 10a. Have been.
[0030]
The bonding material 22 used in each of the manufacturing methods of the semiconductor device housing packages 10 and 10a according to the embodiment of the present invention is made of solder or an adhesive resin, and has a panel-shaped resin base material 19 or a support. It is preferable that a plurality of the heat radiating plates 15 are attached to the body by screen printing.
[0031]
【The invention's effect】
The method for manufacturing a package for housing a semiconductor element according to claim 1 and the dependent claims 2 to 5 is characterized in that a panel-shaped metal plate having substantially the same size as a resin base material is attached to an adhesive sheet; An etching mask having a predetermined shape is formed on a metal plate by a photolithography method in accordance with an arrangement position of an opening for a cavity portion of a plurality of resin substrates provided on a resin base material, and the pattern of the etching mask is formed. After etching the metal plate exposed from, the etching mask is peeled off and removed, and a step of forming the heat radiating plate composed of a plurality of pieces to be disposed and adhered on the adhesive sheet, and the resin substrate and the heat radiating plate A step of attaching a bonding material to a resin substrate and / or a heat radiating plate at a portion to be contacted and bonded; a resin base on which a plurality of resin substrates are provided; and a plurality of heat radiators provided at predetermined positions The board The process includes the steps of aligning the resin substrate consisting of individual pieces and the radiator plate so that they contact each other at a corresponding position, and heating and joining the bonding material. It is possible to provide an inexpensive method for manufacturing a semiconductor device housing package that can be easily and accurately aligned and joined without using a jig, has good yield, has high joining quality, and has high reliability and quality.
[0032]
In particular, according to the method for manufacturing a semiconductor element housing package according to the second aspect, the pressure-sensitive adhesive sheet is formed of a masking sheet having both adhesiveness and releasability, and a plurality of heatsinks are housed after forming a plurality of heatsinks. Attach and fix multiple heat sinks at once via a set jig that can be removed, remove the masking sheet, and align the resin plate with the heat sink while the heat sink is in an adsorbed state. Affix the bonding material to the heat sink in the state based on the guide pins provided on the set jig, set the resin base material on the heat sink based on the guide pins of this set jig, and heat join. Thus, a method for manufacturing a semiconductor element housing package capable of bonding a heat sink to a resin substrate with extremely high precision can be provided.
[0033]
In particular, in the method of manufacturing a semiconductor element housing package according to the third aspect, the pressure-sensitive adhesive sheet is formed of a high heat-resistant high-melting-point pressure-sensitive adhesive sheet. The high-melting-point adhesive sheet is peeled off after being aligned with the resin base while being adhered to the adhesive sheet, and after bonding the resin substrate and the heat sink, so the resin base and the heat sink attached to the adhesive sheet By heating and bonding the heat sink, the heat sink can be bonded to the resin substrate without deteriorating the positional accuracy of the heat sink, and a method for manufacturing a semiconductor element housing package that can bond the heat sink to the resin substrate extremely accurately can be provided.
[0034]
In particular, in the method for manufacturing a semiconductor element housing package according to claim 4, the adhesive sheet is formed of a modified adhesive sheet whose releasability changes by heating or irradiation of light, and after forming a heat sink composed of a plurality of individual pieces, The heat-radiating plate is aligned with the resin substrate while the modified pressure-sensitive adhesive sheet is still adhered, and then the modified pressure-sensitive adhesive sheet is heated or irradiated with light to remove the modified pressure-sensitive adhesive sheet. After accurately aligning the heat sink with the adhesive sheet with the material, the adhesive sheet can be removed without applying a mechanical load, and it can be bonded to the resin substrate without disturbing the position accuracy of the heat sink. In addition, it is possible to provide a method of manufacturing a semiconductor element housing package capable of bonding a heat sink to a resin substrate with extremely high precision.
[0035]
In particular, according to the method of manufacturing a semiconductor element housing package according to the fifth aspect, the bonding material is made of solder or an adhesive resin, and is adhered to the resin base material and / or the radiating plate in the disposed state by screen printing. A method for manufacturing a package for housing a semiconductor element, which can accurately and efficiently attach a bonding material to a substrate and / or a heat sink, can be provided.
[Brief description of the drawings]
FIGS. 1A and 1B are explanatory views of a semiconductor element storage package manufactured by a method for manufacturing a semiconductor element storage package according to an embodiment of the present invention;
FIGS. 2A to 2F are explanatory views of a method of manufacturing the semiconductor device housing package.
FIGS. 3A to 3F are explanatory views of specific examples of a method for manufacturing the same semiconductor element housing package. FIGS.
FIGS. 4A to 4E are explanatory views of another specific example of a method for manufacturing the semiconductor device housing package.
FIGS. 5A to 5E are explanatory views of still another specific example of the method for manufacturing the semiconductor element housing package. FIGS.
FIG. 6 is an explanatory view of a semiconductor element housing package manufactured by a conventional method for manufacturing a semiconductor element housing package.
FIGS. 7A to 7F are explanatory views of a method for manufacturing a conventional semiconductor device housing package.
[Explanation of symbols]
10, 10a: semiconductor element storage package, 11: resin substrate, 12: semiconductor element, 13: cavity, 14: opening, 15: heat sink, 16: bonding wire, 17: sealing resin, 18: external connection Terminal, 19: resin base material, 20: metal plate, 21: adhesive sheet, 21a: masking sheet, 21b: high melting point adhesive sheet, 21c: modified adhesive sheet, 22: bonding material, 23: guide pin, 24: cut portion , 25: set jig, 25a: fixed jig

Claims (5)

導体配線パターンを有する樹脂基板の複数個が配設されたパネル状の樹脂基材に、半導体素子を収納するためのキャビティ部用の開口部を前記樹脂基板毎に穿設し、前記樹脂基板の一方の面の前記キャビティ部周縁に、前記半導体素子からの発熱を放熱するための放熱板を前記開口部を閉口させながら接合して形成する半導体素子収納用パッケージの製造方法において、
前記樹脂基材と実質的に同等程度の寸法からなるパネル状の金属板を粘着シートに貼り付け、前記樹脂基材に配設された複数個の前記樹脂基板の前記キャビティ部用の前記開口部の配設位置に合わせて前記金属板上にフォトリソグラフィ法で所定の形状からなるエッチングマスクを形成し、該エッチングマスクのパターンから露出する前記金属板をエッチングした後、前記エッチングマスクを剥離して除去し、前記粘着シートに配設して接着する複数の個片からなる前記放熱板を形成する工程と、
前記樹脂基板と前記放熱板が互いに当接して接合する部位の前記樹脂基板及び/又は前記放熱板に接合材を貼着する工程と、
前記樹脂基板の複数個が配設された前記樹脂基材と、所定位置に配設された複数個の前記放熱板をそれぞれ個片からなる前記樹脂基板と前記放熱板が対応する位置で当接するように位置合わせする工程と、
前記接合材を加熱して接合する工程を有することを特徴とする半導体素子収納用パッケージの製造方法。
A plurality of resin substrates each having a conductor wiring pattern are provided in a panel-shaped resin base material, and an opening for a cavity for accommodating a semiconductor element is formed in each of the resin substrates. A method for manufacturing a semiconductor element storage package, comprising: forming a heat dissipation plate for dissipating heat generated from the semiconductor element on a peripheral edge of the cavity portion on one surface while closing the opening;
A panel-shaped metal plate having substantially the same size as the resin base material is attached to the adhesive sheet, and the plurality of resin substrates provided on the resin base material have the openings for the cavity portions. An etching mask having a predetermined shape is formed on the metal plate by photolithography in accordance with the disposition position, and after etching the metal plate exposed from the pattern of the etching mask, the etching mask is peeled off. Removing, forming the heat sink composed of a plurality of pieces to be disposed and adhered to the adhesive sheet,
A step of attaching a bonding material to the resin substrate and / or the heat sink at a site where the resin substrate and the heat sink are in contact with each other and joined;
The resin substrate on which a plurality of the resin substrates are disposed, and the plurality of the heat radiation plates disposed at predetermined positions abut on the resin substrate and the heat radiation plate formed of individual pieces at corresponding positions. And the step of aligning
A method for manufacturing a semiconductor element housing package, comprising a step of heating and bonding the bonding material.
請求項1記載の半導体素子収納用パッケージの製造方法において、前記粘着シートが密着性と剥離性を兼ね備えるマスキングシートからなり、複数の個片からなる前記放熱板を形成後、複数の該放熱板を収納できるセット治具を介して複数の前記放熱板を一度に吸着し固定して前記マスキングシートを除去し、前記放熱板を吸着状態のままで前記樹脂基材と位置合わせを行うことを特徴とする半導体素子収納用パッケージの製造方法。2. The method for manufacturing a semiconductor element housing package according to claim 1, wherein the pressure-sensitive adhesive sheet is formed of a masking sheet having both adhesiveness and releasability. The masking sheet is removed by adsorbing and fixing a plurality of the heat sinks at once via a set jig that can be stored, and the masking sheet is removed. Of manufacturing a semiconductor device housing package. 請求項1記載の半導体素子収納用パッケージの製造方法において、前記粘着シートが耐熱性の高い高融点粘着シートからなり、複数の個片からなる前記放熱板を形成後、複数の該放熱板を前記高融点粘着シートに貼着した状態のままで前記樹脂基材と位置合わせし、前記樹脂基板と前記放熱板を接合した後に前記高融点粘着シートを剥離することを特徴とする半導体素子収納用パッケージの製造方法。2. The method for manufacturing a semiconductor element storage package according to claim 1, wherein the pressure-sensitive adhesive sheet is formed of a high heat-resistant high-melting-point pressure-sensitive adhesive sheet, and after forming the heat-dissipating plate composed of a plurality of pieces, the plurality of the heat-dissipating plates are removed. A semiconductor element storage package, wherein the high melting point adhesive sheet is peeled off after being aligned with the resin base while being adhered to the high melting point adhesive sheet, and after joining the resin substrate and the heat sink. Manufacturing method. 請求項1記載の半導体素子収納用パッケージの製造方法において、前記粘着シートが加熱又は光の照射によって剥離性が変化する変性粘着シートからなり、複数の個片からなる前記放熱板を形成後、複数の該放熱板を前記変性粘着シートを貼着した状態のままで前記樹脂基材と位置合わせしてから前記変性粘着シートを加熱又は前記変性粘着シートに光を照射し、前記変性粘着シートを剥離除去することを特徴とする半導体素子収納用パッケージの製造方法。The method for manufacturing a package for housing a semiconductor element according to claim 1, wherein the pressure-sensitive adhesive sheet is formed of a modified pressure-sensitive adhesive sheet whose releasability is changed by heating or irradiation of light, and after forming the heat dissipation plate including a plurality of pieces, After the heatsink is aligned with the resin substrate while the modified pressure-sensitive adhesive sheet is adhered, the modified pressure-sensitive adhesive sheet is heated or the modified pressure-sensitive adhesive sheet is irradiated with light to peel off the modified pressure-sensitive adhesive sheet A method for manufacturing a package for housing a semiconductor element, comprising: removing the package; 請求項1〜4のいずれか1項記載の半導体素子収納用パッケージの製造方法において、前記接合材が半田又は接着樹脂からなり、前記樹脂基材及び/又は配設状態にある前記放熱板にスクリーン印刷で貼着することを特徴とする半導体素子収納用パッケージの製造方法。5. The method of manufacturing a package for accommodating a semiconductor element according to claim 1, wherein the bonding material is made of a solder or an adhesive resin, and a screen is provided on the resin base material and / or the radiator plate in an arranged state. 6. A method for manufacturing a package for housing a semiconductor element, wherein the package is attached by printing.
JP2003084178A 2003-03-26 2003-03-26 Method for manufacturing package for housing semiconductor element Pending JP2004296565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084178A JP2004296565A (en) 2003-03-26 2003-03-26 Method for manufacturing package for housing semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084178A JP2004296565A (en) 2003-03-26 2003-03-26 Method for manufacturing package for housing semiconductor element

Publications (1)

Publication Number Publication Date
JP2004296565A true JP2004296565A (en) 2004-10-21

Family

ID=33399397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084178A Pending JP2004296565A (en) 2003-03-26 2003-03-26 Method for manufacturing package for housing semiconductor element

Country Status (1)

Country Link
JP (1) JP2004296565A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027227A (en) * 2005-07-13 2007-02-01 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
US7923826B2 (en) 2008-06-12 2011-04-12 Renesas Electronics Corporation Semiconductor device mounted on heat sink having protruded periphery
TWI485816B (en) * 2011-11-10 2015-05-21 Bridge Semiconductor Corp Three dimensional semiconductor assembly board with bump/flange supporting board, coreless build-up circuitry and built-in electronic device
US9721902B2 (en) 2014-08-26 2017-08-01 Samsung Electronics Co., Ltd. Method of manufacturing RF power amplifier module, RF power amplifier module, RF module, and base station

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027227A (en) * 2005-07-13 2007-02-01 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
US7923826B2 (en) 2008-06-12 2011-04-12 Renesas Electronics Corporation Semiconductor device mounted on heat sink having protruded periphery
US8232634B2 (en) 2008-06-12 2012-07-31 Renesas Electronics Corporation Semiconductor device having a pin mounted heat sink
TWI485816B (en) * 2011-11-10 2015-05-21 Bridge Semiconductor Corp Three dimensional semiconductor assembly board with bump/flange supporting board, coreless build-up circuitry and built-in electronic device
US9721902B2 (en) 2014-08-26 2017-08-01 Samsung Electronics Co., Ltd. Method of manufacturing RF power amplifier module, RF power amplifier module, RF module, and base station

Similar Documents

Publication Publication Date Title
JP2501019B2 (en) Flexible circuit board
JP5271886B2 (en) Semiconductor device and manufacturing method thereof
JPH0325023B2 (en)
CN111029332A (en) Fan-out package structure with high heat dissipation and electromagnetic shielding and preparation method thereof
JP4975584B2 (en) Semiconductor device and manufacturing method of semiconductor device.
JP3946659B2 (en) High heat dissipation plastic package and manufacturing method thereof
TW200416989A (en) Semiconductor device and method therefor
JP2004296565A (en) Method for manufacturing package for housing semiconductor element
JP2699929B2 (en) Semiconductor device
CN112701055B (en) Packaging method and packaging structure of embedded element
CN215266272U (en) High-radiating-plate-level fan-out packaging structure based on copper foil carrier plate
JP2936540B2 (en) Circuit board, method of manufacturing the same, and method of manufacturing semiconductor package using the same
WO2021115377A1 (en) Packaging method, packaging structure and packaging module
CN113327900A (en) High-radiating-board-level fan-out packaging structure based on copper foil carrier and preparation method thereof
JPS6239032A (en) Chip carrier for electronic element
CN113964093A (en) Packaging structure and preparation method thereof
KR100239387B1 (en) Ball Grid Array (BGA) Semiconductor Package Using Flexible Circuit Board and Manufacturing Method Thereof
JP3933910B2 (en) Manufacturing method of semiconductor device and manufacturing method of laminated structure
TW533518B (en) Substrate for carrying chip and semiconductor package having the same
JP2005051012A (en) High heat radiating plastic package and its manufacturing method
JP2861984B2 (en) Semiconductor device and method of manufacturing the semiconductor device
JP2003031725A (en) Method for manufacturing semiconductor device
JP3203176B2 (en) Hybrid integrated circuit device and method of manufacturing the same
JP4364231B2 (en) High heat dissipation plastic package
JPH0837204A (en) Semiconductor device and method of manufacturing semiconductor device