[go: up one dir, main page]

JP2004293831A - Industrial dehumidifying dryer - Google Patents

Industrial dehumidifying dryer Download PDF

Info

Publication number
JP2004293831A
JP2004293831A JP2003083954A JP2003083954A JP2004293831A JP 2004293831 A JP2004293831 A JP 2004293831A JP 2003083954 A JP2003083954 A JP 2003083954A JP 2003083954 A JP2003083954 A JP 2003083954A JP 2004293831 A JP2004293831 A JP 2004293831A
Authority
JP
Japan
Prior art keywords
air
hot water
dryer
storage tank
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003083954A
Other languages
Japanese (ja)
Other versions
JP3957652B2 (en
Inventor
Haruo Ono
晴生 大野
Tetsutaka Ueda
哲敬 上田
Akihiro Nishimura
明博 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Kubota Environmental Service Co Ltd
Original Assignee
Kubota Corp
Kubota Environmental Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Kubota Environmental Service Co Ltd filed Critical Kubota Corp
Priority to JP2003083954A priority Critical patent/JP3957652B2/en
Publication of JP2004293831A publication Critical patent/JP2004293831A/en
Application granted granted Critical
Publication of JP3957652B2 publication Critical patent/JP3957652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Drying Of Solid Materials (AREA)
  • Processing Of Solid Wastes (AREA)
  • Drying Of Gases (AREA)
  • Treatment Of Sludge (AREA)

Abstract

【課題】冷凍機に与える熱負荷変動を抑制することができる産業用除湿乾燥機を提供する
【解決手段】空気調和機5が冷却除湿コイル20、再加熱コイル21を配置した調和室19と、調和室19を通過した循環空気を乾燥機本体1に供給する送風機22を有し、調和室19の還気口23が還気路24を介して乾燥機本体1の空気排出口11に連通し、送風機22の送気口26が送気路27を介して乾燥機本体1の空気供給口10に連通し、冷温水供給装置8が、温水を貯留して空気調和機5の再加熱コイル21との間に温水循環路7を形成する温水蓄槽28と、冷水を貯留して空気調和機5の冷却除湿コイル20との間に冷水循環路6を形成する冷水蓄槽29と、冷凍機30とを有し、冷凍機30が温水蓄槽28に配置した凝縮器31と冷水蓄槽29に配置した蒸発器32と冷凍機本体33に配置した圧縮機および膨張弁とで冷凍サイクルを形成してなる。
【選択図】 図1
The present invention provides an industrial dehumidifier / dryer capable of suppressing fluctuations in heat load applied to a refrigerator. A conditioned room in which an air conditioner has a cooling / dehumidifying coil and a reheating coil disposed therein. It has a blower 22 that supplies the circulating air that has passed through the conditioning chamber 19 to the dryer main body 1, and the return air port 23 of the conditioning chamber 19 communicates with the air discharge port 11 of the dryer main body 1 via the return air passage 24. The air supply port 26 of the blower 22 communicates with the air supply port 10 of the dryer body 1 through the air supply path 27, and the cold / hot water supply device 8 stores hot water and reheats the coil 21 of the air conditioner 5. A cold water storage tank 29 that forms a hot water circulation path 7 between the hot water storage tank 7, a cold water storage tank 29 that stores cold water and forms a cold water circulation path 6 between the cooling water dehumidification coil 20 of the air conditioner 5, and a refrigerator. 30 and the refrigerator 30 is connected to the condenser 31 disposed in the hot water storage tank 28 with the condenser 31. By forming a refrigeration cycle in the evaporator 32 disposed in 蓄槽 29 and the refrigerator compressor and expansion valve disposed in the body 33.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は産業用除湿乾燥機に関し、し尿処理施設で発生する汚泥、余剰汚泥や一般廃棄物の生ごみ等を乾燥する技術に係るものである。
【0002】
【従来の技術】
し尿処理施設は全国に1100箇所程度が設置されており、大半の施設では汚泥を加熱乾燥し、乾燥した汚泥を汚泥焼却炉で焼却処分している。汚泥の乾燥方法には加熱乾燥の他に除湿乾燥がある。除湿乾燥機はハウジング内に乾燥用の循環空気を供給し、含水率75〜85%の乾燥対象の汚泥と循環空気とを接触させて含水率50%以下に乾燥させるものであり、汚泥から蒸発した水分を含む循環空気を空気調和機に導いて冷却・除湿し、再加熱後に除湿乾燥機へ循環させている。
【0003】
空気調和機では循環空気を冷却・除湿する冷却除湿コイルおよび、循環空気を再加熱する再加熱コイルへ冷凍機の冷媒を循環させており、冷却除湿コイルは冷凍サイクルの蒸発機能を果たし、再加熱コイルは冷凍サイクルの凝縮機能を果たしている。
【0004】
乾燥機の先行技術としては特許文献1,2に記載するものがある。
【0005】
【特許文献1】特開平5−103590号
【0006】
【特許文献2】特開平6−281330号
【0007】
【発明が解決しようとする課題】
ところで、乾燥機に投入する乾燥対象の汚泥は予め脱水するが、し尿処理施設で発生する余剰汚泥の脱水汚泥は性状や含水率が一定でなく変動し、例えば含水率は75〜85%の範囲にある。
【0008】
近年においては余剰汚泥に浄化槽汚泥を混合して処理することが行われており、その混合比率の変動によっても脱水汚泥の性状や含水率が変動する。脱水汚泥の性状や含水率が変動する要因には他にいくつかのものがあり、その一つは余剰汚泥を汚泥貯留槽に貯留する期間であり、通常で余剰汚泥は汚泥貯留槽に2日間程度一時的に貯められており、古い余剰汚泥であるほどに乾燥が困難で、新しい余剰汚泥であるほどに乾燥が容易となる。他の要因に季節変動があり、冬場の余剰汚泥は含水率が高く、夏場の余剰汚泥は含水率が低い。
【0009】
脱水汚泥の性状や含水率が変動すると汚泥を所定の含水率に乾燥させるための必要乾燥熱量が変化し、空気調和機に還流する循環空気の湿度、温度等が変化して空気調和機での熱負荷が変化する。また、乾燥機における必要乾燥熱量が変動する要因として乾燥機のハウジング内への作業者の入出退があり、ハウジングのメンテナンス用の出入口の開閉によって外部の寒気がハウジング内へ流入し、あるいはハウジング内の暖気が外部へ流出することで空気調和機に与える熱負荷が変化する。
【0010】
従来の空気調和機では冷凍機の冷媒を直接に冷却除湿コイル、再加熱コイルへ循環させる構成であるので、冷媒が循環空気の熱負荷変動を直接、瞬時に受け止めることになり、循環空気の熱量が少なくて冷媒が蒸発しきれずに液状のまま冷凍機の圧縮機へ還流すると圧縮機が損傷することがある。冷凍機の圧縮機の潤滑油は冷媒と一緒に循環するが、冷媒の循環経路が長い場合には冷却除湿コイル、再加熱コイルを経て圧縮機に戻る循環油が少なくなり、各コイルの熱交換機能が阻害され、延いては潤滑油の不足によって圧縮機が異常をきたすことがある。この熱負荷変動の自動調節を行う目的で冷媒の循環液量を制御する自動膨張弁が設置されているが、熱負荷変動に伴って自動膨張弁は頻繁に動作し、その寿命が短くなる。
【0011】
本発明は上記した課題を解決するものであり、冷凍機に与える熱負荷変動を抑制することができる産業用除湿乾燥機を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の本発明の産業用除湿乾燥機は、乾燥機本体と乾燥機本体へ乾燥対象物を投入する投入装置と乾燥機本体へ乾燥用の循環空気を供給する空気調和機と空気調和機に冷水および温水を供給する冷温水供給装置とを有し、乾燥機本体で乾燥対象物を循環空気で乾燥させ、空気調和機で循環空気の湿度および温度を調整するものであって、空気調和機が、内部に循環空気の流れ方向に沿って順次に冷却除湿コイル、再加熱コイルを配置した調和室と、調和室を通過した循環空気を乾燥機本体に供給する送風機を有し、調和室の還気口が還気路を介して乾燥機本体のハウジングの空気排出口に連通し、送風機の送気口が送気路を介して乾燥機本体のハウジングの空気供給口に連通してなり、冷温水供給装置が、温水を貯留して空気調和機の再加熱コイルとの間に温水循環路を形成する温水蓄槽と、冷水を貯留して空気調和機の冷却除湿コイルとの間に冷水循環路を形成する冷水蓄槽と、冷凍機とを有し、冷凍機が温水蓄槽に配置した凝縮器と冷水蓄槽に配置した蒸発器と冷凍機本体に配置した圧縮機および膨張弁とで冷凍サイクルを形成してなるものである。
【0013】
上記した構成において、空気調和機から乾燥機本体へ供給した循環空気は、乾燥機本体内で乾燥対象物を乾燥させて後に、乾燥対象物から蒸発した水分を含んで空気調和機に還流する。空気調和機では循環空気を冷却除湿コイルで冷却・除湿し、その後に再加熱コイルで循環空気を再加熱する。
【0014】
冷却除湿コイルでは冷水蓄槽との間で循環する冷水の冷熱によって循環空気を冷却して除湿し、循環空気の熱量を奪って温度上昇した冷水は冷水蓄槽に滞留する所定容量の冷水塊中に拡散する。したがって、冷却除湿コイルの入口と出口とにおける冷水の温度変化に比べて冷水蓄槽における冷水の温度変化は単位時間当たりにおいて緩やかとなる。再加熱コイルでは温水蓄槽との間で循環する温水の温熱によって循環空気を再加熱し、循環空気に熱量を奪われて温度降下した温水は温水蓄槽に滞留する所定容量の温水塊中に拡散する。したがって、再加熱コイルの入口と出口とにおける温水の温度変化に比べて温水蓄槽における温水の温度変化は単位時間当たりにおいて緩やかとなる。
【0015】
冷凍機では冷媒が温水蓄槽に配置した凝縮器と冷水蓄槽に配置した蒸発器と冷凍機本体に配置した圧縮機および膨張弁とからなる冷凍サイクルにおいて循環し、蒸発器での熱交換により冷水蓄槽の冷水を冷却し、凝縮器での熱交換により温水蓄槽の温水を加熱する。
【0016】
乾燥機に投入する乾燥対象物の性状や含水率の変動等に起因して空気調和機に還流する循環空気の湿度、温度等が変化し、空気調和機での熱負荷が変化する。しかし、冷水蓄槽において冷水の温度変化を緩和し、温水蓄槽において温水の温度変化を緩和することで、乾燥対象物が空気調和機に与える熱負荷の変化は直接に冷凍機の熱負荷の変化とならず、循環空気の熱量が少なくても冷凍サイクルにおいて冷媒が蒸発しきれずに液状のまま圧縮機へ還流することがなくなり、圧縮機の損傷を防止できる。さらに、熱負荷変動を抑制することで冷媒の循環液量が安定し、自動膨張弁の作動頻度を抑制してその寿命を延命できる。
【0017】
冷凍機が温水蓄槽に配置した凝縮器と冷水蓄槽に配置した蒸発器と冷凍機本体に配置した圧縮機および膨張弁とで冷凍サイクルを形成することで、冷媒の循環経路が短くなり、冷媒と一緒に循環する潤滑油がサイクル内に留まることなく円滑に圧縮機に還流する。
【0018】
請求項2に記載の本発明の産業用除湿乾燥機は、乾燥機本体が、ハウジングの天井部に循環空気を供給する空気供給口を有し、ハウジングの下部に循環空気を排出する空気排出口を有し、ハウジング内に複数のネットコンベアを多段に配置して乾燥対象物を搬送する搬送軌道を九十九折れの多層状に形成し、搬送軌道の最上層の軌道始端に対向してハウジングの天井部に乾燥対象物を投入する対象物投入口を形成し、搬送軌道の最下層の軌道終端に対向してハウジングの底部に乾燥物を排出する乾燥物排出口を形成し、対象物投入口に投入装置を配置してなり、投入装置が、外周面に多条溝を形成した一対のロールを有し、ロール間に投入する乾燥対象物を面状に延展するとともに多数の線形状物に形成して搬送軌道に投下するものである。
【0019】
上記した構成により、乾燥対象物はハウジング内の搬送軌道を移動しながら循環空気と接触して乾燥される。この際に搬送軌道が複数のネットコンベアで形成された九十九折れの多層状をなすことで、ハウジングの限られた空間内で搬送軌道を長く形成して循環空気による乾燥対象物の乾燥に必要な時間を確保することができる。
【0020】
ネットコンベア上に投下する乾燥対象物を多数の線形状物に形成することで、循環空気に対する乾燥対象物の接触面積を高めて乾燥効率を向上させることができる。
【0021】
請求項3に記載の本発明の産業用除湿乾燥機は、投入装置の前工程として乾燥対象物を解砕する解砕手段を設けたものである。
上記した構成により、乾燥対象物の性状を疎密なものに改質し、乾燥時に乾燥対象物から発生する水蒸気等のガスの脱気を促進して乾燥効率を向上させることができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1において、除湿乾燥機は、乾燥機本体1と、乾燥機本体1へ乾燥対象物である脱水汚泥2を投入する投入装置3と、乾燥機本体1へ空気循環路4を通して乾燥用の循環空気を供給する空気調和機5と、空気調和機5に冷水循環路6、温水循環路7を通して冷水および温水を供給する冷温水供給装置8とを有している。脱水汚泥2は、し尿処理施設で発生する余剰汚泥や浄化槽汚泥、あるいは生ごみであり、除湿乾燥機へ投入する前に予め含水率75〜85%の範囲に脱水している。
【0023】
乾燥機本体1は、ハウジング(乾燥室)9の天井部に循環空気4を供給する空気供給口10を有し、ハウジング9の下部に循環空気4を排出する空気排出口11を有している。ハウジング9の内部には脱水汚泥を搬送する複数のネットコンベア12を多段に配置しており、ネットコンベア12は金網材等からなる搬送面が通気性を有し、複数のネットコンベア12で九十九折れの多層状の搬送軌道を形成している。ハウジング9の天井部に形成した脱水汚泥2を投入するための対象物投入口13は搬送軌道の最上層の軌道始端に対向しており、ハウジング9の底部に形成した乾燥物を排出する乾燥物排出口14は搬送軌道の最下層の軌道終端に対向している。
【0024】
対象物投入口13に配置した投入装置3はケーシング16の内部に一対のロール17を有しており、ロール17は外周面に多条溝を形成してなり、ロール17の間に投入する脱水汚泥2を面状に延展するとともに多数の線形状物(うどん状)に形成して搬送軌道に投下するものである。投入装置3の前工程には脱水汚泥2を解砕する解砕手段18を設けている。
【0025】
空気調和機5は調和室19の内部に冷却除湿コイル20、再加熱コイル21を循環空気の流れ方向に沿って順次に配置しており、調和室19に循環空気を乾燥機本体1に供給する送風機22を接続している。調和室19は還気口23が空気循環路4の還気路24を介して乾燥機本体1のハウジング9の空気排出口11に連通しており、送風機22の送気口26が空気循環路4の送気路27を介して乾燥機本体1のハウジング9の空気供給口10に連通している。
【0026】
冷温水供給装置8は温水蓄槽28と冷水蓄槽29と冷凍機30とを有しており、温水蓄槽28は温水を貯留して空気調和機5の再加熱コイル21との間に温水循環路7を形成し、冷水蓄槽29は冷水を貯留して空気調和機5の冷却除湿コイル20との間に冷水循環路6を形成している。冷凍機30は温水蓄槽28に配置した凝縮器31と冷水蓄槽29に配置した蒸発器32と冷凍機本体33に配置した圧縮機(図示省略)および膨張弁(図示省略)とで冷凍サイクルを形成している。
【0027】
以下、上記した構成における作用を説明する。脱水汚泥2は含水率75〜85%の範囲に脱水したものであるが脱水の方法によって性状および含水率が異なり、遠心脱水機で脱水した汚泥は含水率85%程度であり、フィルタープレス、スクリュープレス等の圧縮型脱水機で脱水した汚泥は含水率75%程度であり、圧縮型脱水機の脱水汚泥は遠心脱水機の脱水汚泥に比べて圧密である。
【0028】
本発明者らは含水率の低い圧縮型脱水機の脱水汚泥が必ずしも乾燥性に優れず、含水率の高い遠心脱水機の脱水汚泥が必ずしも乾燥性に劣っていないことの検知を得た。この原因としては脱水工程において圧縮率を高めるほどに脱水効果は高くなるが、脱水汚泥2の性状が圧密である程に乾燥時に脱水汚泥2から発生する水蒸気等のガスの脱気が阻害されると思われる。
【0029】
このため、原料投入の前処理として、脱水汚泥の含水率を75〜85%、見掛比重を0.8以下に調整し、脱水時の原料調整として圧縮型脱水機では通気性確保の為に添加剤(おがくず、紙くず等)を添加する。遠心脱水機では添加剤を加える必要はない。
【0030】
図2は遠心脱水機で脱水したし尿脱水汚泥の見掛比重と含水率の関係を経験則として例示するものであり、含水率が75〜85%で見掛比重が0.8となり、適度なポーラス状態となる。
【0031】
また、脱水汚泥2の性状を改質するために乾燥の前工程として解砕手段18で脱水汚泥2を解砕し、その性状を疎密なものに改質する。解砕手段18そのものは公知の技術でよいので説明を省略する。この脱水汚泥2の性状の改質により、乾燥時に脱水汚泥2から発生する水蒸気等のガスの脱気を促進して乾燥効率を向上させる。
【0032】
投入装置3では一対のロール17の間に脱水汚泥2を投入し、脱水汚泥2を面状に延展するとともに多数の線形状物(うどん状)に形成して対象物投入口13から搬送軌道に投下する。対象物投入口13から搬送軌道に投下するのに際して、線形状物は本実施の形態ではその全幅がネットコンベア12の幅より10cm程度狭く、10〜30mm程度の厚みに調整する。
【0033】
空気調和機5から送風機22で供給する循環空気は送気口26から送気路27を通して乾燥機本体1へ供給し、脱水汚泥の乾燥の乾燥空気として供する。この乾燥空気は、線速度1m/sec程度、空気供給口10での温度40〜45度、湿度15〜25%に調整したものである。
【0034】
図3は遠心脱水機で脱水したし尿脱水汚泥の含水率の変化の実験結果を示すものである。脱水汚泥の含水率85%、乾燥空気の線速度1m/sec、乾燥空気の温度40度、45度とした場合に、3時間の乾燥時間で含水率10〜30%を達成することができ、結果として乾燥空気の温度としては40〜45度が適当であり、この温度は装置としての規模が大きくならずに容易に制御することができる。
【0035】
上述の調整によって、ハウジング(乾燥室)9の内部における湿度を85%以下に維持し、乾燥物排出口14からハウジング9の外へ排出する乾燥汚泥の含水率を50%以下とすることをめざす。含水率50%はネットコンベア12に乾燥汚泥が付着しないことを防止するために必要な値である。
【0036】
図4は遠心脱水機で脱水したし尿脱水汚泥の含水率の変化の実験結果を示すものである。脱水汚泥の含水率85%、ハウジング(乾燥室)9の内部における湿度、86%、91%、80%、45%、42%に維持した。ハウジング(乾燥室)9の内部の湿度が高くなるほどに所定の含水率に達する乾燥時間が長くなり、所定の乾燥速度を確保するためには、ハウジング(乾燥室)9の内部における湿度を85%以下に維持することが必要である。
【0037】
上述したように調整した循環空気は空気供給口10からハウジング9の内部に流入し、ハウジング9の底部に向けて下向流で流れる。脱水汚泥2はハウジング9の内部の搬送軌道を移動しながら循環空気と接触して乾燥される。この際、ネットコンベア12に投下する脱水汚泥2が線形状物をなすことで、循環空気に対する脱水汚泥2の接触面積が高くなり乾燥効率が向上する。搬送軌道は複数のネットコンベア12で形成された九十九折れの多層状をなすことで、ハウジング9の限られた空間内で搬送軌道を長く形成して循環空気による脱水汚泥2の乾燥に必要な時間を確保する。乾燥物は乾燥物排出口14からハウジング9の外へ排出する。
【0038】
循環空気は乾燥機本体1で脱水汚泥2を乾燥させて脱水汚泥2から蒸発した水分を含んで、空気排出口11から還気路24を通って還気口23から空気調和機5へ還流する。空気調和機5では循環空気を冷却除湿コイル20で冷却・除湿し、その後に再加熱コイル21で循環空気を再加熱し、送風機22で乾燥機本体1へ循環させる。
【0039】
冷却除湿コイル20では冷水循環路6を通して冷水蓄槽29との間で循環する冷水の冷熱によって循環空気を冷却して除湿し、循環空気の熱量を奪って温度上昇した冷水は冷水蓄槽29に滞留する所定容量の冷水塊中に拡散する。したがって、冷却除湿コイル20の入口と出口とにおける冷水の温度変化に比べて冷水蓄槽29における冷水の温度変化は単位時間当たりにおいて緩やかとなる。
【0040】
再加熱コイル21では温水循環路7を通して温水蓄槽28との間で循環する温水の温熱によって循環空気を再加熱し、循環空気に熱量を奪われて温度降下した温水は温水蓄槽28に滞留する所定容量の温水塊中に拡散する。したがって、再加熱コイル21の入口と出口とにおける温水の温度変化に比べて温水蓄槽28における温水の温度変化は単位時間当たりにおいて緩やかとなる。
【0041】
冷凍機30は冷媒が温水蓄槽28に配置した凝縮器31と冷水蓄槽29に配置した蒸発器32と冷凍機本体33に配置した圧縮機および膨張弁とからなる冷凍サイクルにおいて循環することで、蒸発器32での熱交換により冷水蓄槽29の冷水を冷却し、凝縮器32での熱交換により温水蓄槽28の温水を加熱する。
【0042】
したがって、脱水汚泥2の性状や含水率の変動等に起因して空気調和機5に還流する循環空気の湿度、温度等が変化し、空気調和機での熱負荷が変化しても、冷水蓄槽29において冷水の温度変化を緩和し、温水蓄槽28において温水の温度変化を緩和することで、脱水汚泥2が空気調和機5に与える熱負荷の変化は直接に冷凍機30の熱負荷の変化とならない。このため、循環空気の熱量が少なくても冷凍サイクルにおいて冷媒が蒸発しきれずに液状のまま圧縮機へ還流することがなくなり、圧縮機の損傷を防止できる。さらに、熱負荷変動を抑制することで冷媒の循環液量が安定し、自動膨張弁の作動頻度を抑制してその寿命を延命できる。また、冷凍機30が温水蓄槽28に配置した凝縮器31と冷水蓄槽29に配置した蒸発器32と冷凍機本体33に配置した圧縮機および膨張弁とで冷凍サイクルを形成することで、冷媒の循環経路が短くなり、冷媒と一緒に循環する潤滑油がサイクル内に留まることなく円滑に圧縮機に還流する。
【0043】
【発明の効果】
以上のように本発明によれば、乾燥機に投入する乾燥対象物の性状や含水率の変動等に起因して空気調和機に還流する循環空気の湿度、温度等が変化して空気調和機での熱負荷が変化しても、冷水蓄槽において冷水の温度変化を緩和し、温水蓄槽において温水の温度変化を緩和することで、乾燥対象物が空気調和機に与える熱負荷の変化が直接に冷凍機の熱負荷の変化とならず、循環空気の熱量が少なくても冷凍サイクルにおいて冷媒が蒸発しきれずに液状のまま圧縮機へ還流することがなくなり、圧縮機の損傷を防止できる。熱負荷変動を抑制することで冷媒の循環液量が安定し、自動膨張弁の作動頻度を抑制してその寿命を延命できる。冷媒の循環経路が短くなることで、冷媒と一緒に循環する潤滑油がサイクル内に留まることなく円滑に圧縮機に還流する。搬送軌道が複数のネットコンベアで形成された九十九折れの多層状をなすことで、ハウジングの限られた空間内で搬送軌道を長く形成して循環空気による乾燥対象物の乾燥に必要な時間を確保することができる。ネットコンベア上に投下する乾燥対象物を多数の線形状物に形成することで、循環空気に対する乾燥対象物の接触面積を高めて乾燥効率を向上させることができる。乾燥対象物の性状を疎密なものに改質し、乾燥時に乾燥対象物から発生する水蒸気等のガスの脱気を促進して乾燥効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における産業用除湿乾燥機を示す模式図である。
【図2】遠心脱水機で脱水したし尿脱水汚泥の見掛比重と含水率の関係を示すグラフ図である。
【図3】遠心脱水機で脱水したし尿脱水汚泥の含水率の変化の実験結果を示すグラフ図である。
【図4】遠心脱水機で脱水したし尿脱水汚泥の含水率の変化の実験結果を示すグラフ図である。
【符号の説明】
1 乾燥機本体
2 脱水汚泥
3 投入装置
5 空気調和機
8 冷温水供給装置
9 ハウジング
10 空気供給口
11 空気排出口
12 ネットコンベア
13 対象物投入口
14 乾燥物排出口
18 解砕手段
19 調和室
20 冷却除湿コイル
21 再加熱コイル
22 送風機
28 温水蓄槽
29 冷水蓄槽
30 冷凍機
31 凝縮器
32 蒸発器
33 冷凍機本体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an industrial dehumidifying dryer, and relates to a technique for drying sludge, excess sludge, garbage, and the like generated in a human waste treatment facility.
[0002]
[Prior art]
There are approximately 1,100 human waste treatment facilities nationwide, and most facilities heat and dry sludge and incinerate the dried sludge in a sludge incinerator. As a method for drying sludge, there is dehumidification drying in addition to heat drying. The dehumidifying dryer supplies circulating air for drying into the housing, and brings the sludge to be dried having a water content of 75 to 85% into contact with the circulating air to dry the sludge to a moisture content of 50% or less, and evaporates from the sludge. The circulating air containing the moisture is led to an air conditioner for cooling and dehumidification, and after reheating, is circulated to a dehumidifying dryer.
[0003]
In the air conditioner, the refrigerant of the refrigerator is circulated to the cooling and dehumidifying coil that cools and dehumidifies the circulating air and the reheating coil that reheats the circulating air, and the cooling and dehumidifying coil performs the evaporation function of the refrigeration cycle and reheats. The coil performs the condensation function of the refrigeration cycle.
[0004]
Prior arts of the dryer include those described in Patent Documents 1 and 2.
[0005]
[Patent Document 1] JP-A-5-103590
[Patent Document 2] JP-A-6-281330
[Problems to be solved by the invention]
By the way, the sludge to be dried, which is put into the dryer, is dehydrated in advance, but the dewatered sludge of the excess sludge generated in the night soil treatment facility varies in properties and moisture content, and is, for example, in the range of 75 to 85%. It is in.
[0008]
In recent years, it has been practiced to mix and treat septic tank sludge with surplus sludge, and the properties and water content of the dewatered sludge also change due to the change in the mixing ratio. There are several other factors that cause the properties and moisture content of the dewatered sludge to fluctuate, one of which is the period during which excess sludge is stored in the sludge storage tank, and usually the excess sludge is stored in the sludge storage tank for two days. The excess sludge is stored temporarily, and the older the excess sludge, the more difficult it is to dry, and the more the new excess sludge, the easier it is to dry. Other factors include seasonal fluctuations, with excess sludge in winter having a high moisture content and excess sludge in summer having a low moisture content.
[0009]
If the properties or moisture content of the dewatered sludge fluctuates, the amount of drying heat required to dry the sludge to a predetermined moisture content changes, and the humidity, temperature, etc., of the circulating air returning to the air conditioner change, resulting in a change in the air conditioner. The heat load changes. Factors that cause the required amount of drying heat in the dryer to fluctuate include the ingress and egress of workers into and out of the housing of the dryer. External cold air flows into the housing by opening and closing the entrance for maintenance of the housing. When the warm air flows out to the outside, the heat load applied to the air conditioner changes.
[0010]
In a conventional air conditioner, the refrigerant in the refrigerator is directly circulated to the cooling and dehumidifying coil and the reheating coil, so that the refrigerant directly and instantaneously receives fluctuations in the heat load of the circulating air, and the amount of heat in the circulating air. If the refrigerant is returned to the compressor of the refrigerator as it is in a liquid state without being completely evaporated, the compressor may be damaged. The lubricating oil of the compressor of the refrigerator circulates together with the refrigerant, but if the circulation path of the refrigerant is long, the amount of circulating oil returning to the compressor via the cooling and dehumidifying coil and the reheating coil is reduced, and the heat exchange of each coil The function may be impaired and the compressor may malfunction due to lack of lubricating oil. Although an automatic expansion valve for controlling the amount of circulating fluid of the refrigerant is provided for the purpose of automatically adjusting the fluctuation of the heat load, the automatic expansion valve frequently operates with the fluctuation of the heat load, and its life is shortened.
[0011]
The present invention solves the above-mentioned problems, and an object of the present invention is to provide an industrial dehumidifier / dryer capable of suppressing a variation in heat load applied to a refrigerator.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, an industrial dehumidifying dryer according to the present invention according to claim 1, comprises a dryer main body, a charging device for charging a drying target into the dryer main body, and circulating air for drying to the dryer main body. And a cold / hot water supply device for supplying cold and hot water to the air conditioner, drying the object to be dried with circulating air with the dryer main body, and circulating air humidity and temperature with the air conditioner. The air conditioner is equipped with a cooling / dehumidifying coil and a reheating coil arranged in order along the flow direction of the circulating air inside the harmony room, and the circulating air passing through the harmony room passes through the dryer body. The air return port of the harmony chamber communicates with the air discharge port of the housing of the dryer main body through the return air path, and the air supply port of the blower is connected to the air dryer through the air flow path. It communicates with the air supply port of the housing, A hot water storage tank that stores hot water to form a hot water circulation path with the reheating coil of the air conditioner, and stores cold water to form a cold water circulation path with the cooling and dehumidification coil of the air conditioner. It has a cold water storage tank and a refrigerator, and the refrigerator forms a refrigeration cycle with the condenser disposed in the hot water storage tank, the evaporator disposed in the cold water storage tank, the compressor and the expansion valve disposed in the refrigerator main body. It is made.
[0013]
In the above-described configuration, the circulating air supplied from the air conditioner to the dryer main body dries the object to be dried in the dryer main body, and then returns to the air conditioner including moisture evaporated from the object to be dried. In the air conditioner, the circulating air is cooled and dehumidified by a cooling and dehumidifying coil, and then the circulating air is reheated by a reheating coil.
[0014]
In the cooling and dehumidifying coil, the circulating air is cooled and dehumidified by the cold heat of the chilled water circulating between the chilled water storage tank, and the chilled water whose temperature has risen by depriving the heat of the circulating air is retained in the chilled water storage tank in a predetermined volume of chilled water. To spread. Therefore, the temperature change of the chilled water in the chilled water storage tank is more gradual per unit time than the temperature change of the chilled water at the inlet and the outlet of the cooling and dehumidifying coil. In the reheating coil, the circulating air is reheated by the heat of the hot water circulating between the hot water storage tank, and the hot water whose temperature has fallen due to the loss of heat by the circulating air is stored in a predetermined volume of hot water mass that stays in the hot water storage tank. Spread. Therefore, the temperature change of the hot water in the hot water storage tank is more gradual per unit time than the temperature change of the hot water at the inlet and the outlet of the reheating coil.
[0015]
In the refrigerator, the refrigerant circulates in a refrigeration cycle consisting of a condenser arranged in a hot water storage tank, an evaporator arranged in a cold water storage tank, a compressor and an expansion valve arranged in the refrigerator body, and heat exchange in the evaporator. The cold water in the cold water storage tank is cooled, and the hot water in the hot water storage tank is heated by heat exchange in a condenser.
[0016]
Humidity, temperature, etc. of the circulating air returning to the air conditioner change due to fluctuations in properties, moisture content, and the like of the drying target put into the dryer, and the heat load in the air conditioner changes. However, by reducing the temperature change of the cold water in the cold water storage tank and the temperature change of the hot water in the hot water storage tank, the change in the heat load given to the air conditioner by the object to be dried is directly reduced by the heat load of the refrigerator. Even if the amount of heat of the circulating air is small, the refrigerant does not completely evaporate in the refrigeration cycle and does not return to the compressor in a liquid state, and damage to the compressor can be prevented. Further, by suppressing the fluctuation of the heat load, the amount of the circulating liquid of the refrigerant is stabilized, the operation frequency of the automatic expansion valve is suppressed, and the life thereof can be extended.
[0017]
By forming a refrigerating cycle with the condenser arranged in the hot water storage tank, the evaporator arranged in the cold water storage tank, and the compressor and expansion valve arranged in the refrigerator main body, the circulation path of the refrigerant is shortened, The lubricating oil circulating with the refrigerant smoothly returns to the compressor without remaining in the cycle.
[0018]
In the industrial dehumidifying dryer according to the present invention, the dryer main body has an air supply port for supplying circulating air to a ceiling of the housing, and an air outlet for discharging circulating air to a lower portion of the housing. A plurality of net conveyors are arranged in the housing in multiple stages, and a transport track for transporting the drying object is formed in a multilayer shape of ninety-nine folds, and the housing is opposed to the track start end of the uppermost layer of the transport track. An object inlet for charging the object to be dried is formed on the ceiling of the housing, and a dry material outlet for discharging the dried material is formed at the bottom of the housing facing the end of the lowermost track of the transport track, and the object is charged. A charging device is arranged at the mouth, the charging device has a pair of rolls with a multi-groove formed on the outer peripheral surface, and the drying target material to be charged between the rolls is extended in a plane and a large number of linear objects. And drop it on the transport track.
[0019]
With the above-described configuration, the object to be dried is dried while coming into contact with the circulating air while moving on the transport path in the housing. At this time, the transport track is formed in a multi-layer structure of 99-folds formed by a plurality of net conveyors, so that the transport track is formed long in the limited space of the housing to dry the drying target by circulating air. The necessary time can be secured.
[0020]
By forming the drying object dropped on the net conveyor into a large number of linear objects, the contact area of the drying object with the circulating air can be increased, and the drying efficiency can be improved.
[0021]
The industrial dehumidifying dryer according to the third aspect of the present invention is provided with a crushing means for crushing an object to be dried as a pre-process of the charging device.
With the above-described configuration, the properties of the object to be dried can be modified to be sparse and dense, and degassing of a gas such as water vapor generated from the object to be dried during drying can be promoted to improve the drying efficiency.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a dehumidifying dryer includes a dryer main body 1, an input device 3 for supplying dehydrated sludge 2 as a drying target to the dryer main body 1, and a circulation for drying through the air circulation path 4 to the dryer main body 1. The air conditioner 5 includes an air conditioner 5 that supplies air, and a cold / hot water supply device 8 that supplies cold and hot water to the air conditioner 5 through a cold water circulation path 6 and a hot water circulation path 7. The dewatered sludge 2 is surplus sludge, septic tank sludge, or garbage generated in the night soil treatment facility, and is previously dehydrated to a water content of 75 to 85% before being put into the dehumidifying dryer.
[0023]
The dryer main body 1 has an air supply port 10 for supplying circulating air 4 at the ceiling of a housing (drying chamber) 9, and an air discharge port 11 for discharging circulating air 4 at a lower portion of the housing 9. . A plurality of net conveyors 12 for transporting the dewatered sludge are arranged in multiple stages inside the housing 9. The net conveyor 12 has a transport surface made of a wire mesh material or the like, and the net conveyor 12 has 90 It forms a nine-fold, multi-layered transport trajectory. An object input port 13 formed in the ceiling of the housing 9 for inputting the dehydrated sludge 2 is opposed to the orbital start end of the uppermost layer of the transport orbit, and is a dried product formed on the bottom of the housing 9 for discharging the dried product. The discharge port 14 faces the end of the lowermost track of the transport track.
[0024]
The charging device 3 disposed at the target charging port 13 has a pair of rolls 17 inside a casing 16, and the rolls 17 have a multi-groove formed on an outer peripheral surface thereof. The sludge 2 is spread in a plane and formed into a large number of linear objects (udon-shaped) and dropped onto a transport track. A crushing means 18 for crushing the dewatered sludge 2 is provided in a process preceding the charging device 3.
[0025]
In the air conditioner 5, the cooling / dehumidifying coil 20 and the reheating coil 21 are sequentially arranged in the inside of the conditioning room 19 along the flow direction of the circulating air. The blower 22 is connected. In the harmony chamber 19, the return air port 23 communicates with the air discharge port 11 of the housing 9 of the dryer main body 1 via the return air path 24 of the air circulation path 4, and the air supply port 26 of the blower 22 connects with the air circulation path. 4 is connected to the air supply port 10 of the housing 9 of the dryer main body 1 through the air supply path 27.
[0026]
The cold / hot water supply device 8 has a hot water storage tank 28, a cold water storage tank 29, and a refrigerator 30. The hot water storage tank 28 stores hot water and supplies hot water between the hot water storage tank 28 and the reheating coil 21 of the air conditioner 5. The circulation path 7 is formed, and the cold water storage tank 29 stores the cold water, and forms the cold water circulation path 6 with the cooling and dehumidifying coil 20 of the air conditioner 5. The refrigerator 30 includes a condenser 31 disposed in the hot water storage tank 28, an evaporator 32 disposed in the cold water storage tank 29, a compressor (not shown) disposed in the refrigerator main body 33, and an expansion valve (not shown). Is formed.
[0027]
Hereinafter, the operation of the above configuration will be described. The dewatered sludge 2 is dewatered to a water content of 75 to 85%, but the properties and the water content differ depending on the method of dewatering. The sludge dewatered by the centrifugal dewatering machine has a water content of about 85%, and a filter press and a screw are used. The sludge dewatered by a compression dehydrator such as a press has a water content of about 75%, and the dewatered sludge of the compression dehydrator is more compact than the dewatered sludge of the centrifugal dehydrator.
[0028]
The present inventors have found that the dewatered sludge of the compression type dehydrator having a low water content is not always excellent in drying property, and the dewatered sludge of the centrifugal dehydrator having a high water content is not necessarily inferior in drying property. The reason for this is that the higher the compression ratio in the dewatering step, the higher the dewatering effect, but the more dense the properties of the dewatered sludge 2, the more degassing of gas such as steam generated from the dewatered sludge 2 during drying is hindered. I think that the.
[0029]
For this reason, as a pretreatment of the raw material input, the moisture content of the dewatered sludge is adjusted to 75 to 85%, and the apparent specific gravity is adjusted to 0.8 or less. Add additives (sawdust, paper waste, etc.). There is no need to add additives in the centrifuge.
[0030]
FIG. 2 illustrates the relationship between the apparent specific gravity and the water content of the human urine dewatered sludge dehydrated by the centrifugal dehydrator as an empirical rule. The apparent specific gravity is 0.8 when the water content is 75 to 85%, and the moderate specific gravity is 0.8. It becomes a porous state.
[0031]
In addition, in order to improve the properties of the dewatered sludge 2, the dewatering sludge 2 is crushed by the crushing means 18 as a pre-drying step, and the properties are changed to sparse and dense. Since the crushing means 18 itself may be a known technique, description thereof will be omitted. By modifying the properties of the dewatered sludge 2, degassing of gas such as water vapor generated from the dewatered sludge 2 during drying is promoted to improve the drying efficiency.
[0032]
The feeding device 3 feeds the dewatered sludge 2 between the pair of rolls 17, spreads the dewatered sludge 2 in a planar shape, forms a large number of linear objects (udon), and transfers the dewatered sludge 2 from the object input port 13 to the transport track. Drop. In the present embodiment, when the linear object is dropped onto the transport track from the object input port 13, the entire width of the linear object is adjusted to be about 10 cm smaller than the width of the net conveyor 12 and about 10 to 30 mm.
[0033]
The circulating air supplied from the air conditioner 5 by the blower 22 is supplied from the air supply port 26 to the dryer main body 1 through the air supply path 27, and is supplied as dry air for drying the dewatered sludge. The dry air is adjusted to a linear velocity of about 1 m / sec, a temperature at the air supply port 10 of 40 to 45 degrees, and a humidity of 15 to 25%.
[0034]
FIG. 3 shows the results of experiments on changes in the moisture content of human waste dewatered sludge dehydrated by a centrifugal dehydrator. When the moisture content of the dewatered sludge is 85%, the linear velocity of the dry air is 1 m / sec, and the temperature of the dry air is 40 degrees and 45 degrees, a water content of 10 to 30% can be achieved in a drying time of 3 hours. As a result, the temperature of the dry air is suitably 40 to 45 degrees, and this temperature can be easily controlled without increasing the scale of the apparatus.
[0035]
By the above adjustment, the humidity inside the housing (drying chamber) 9 is maintained at 85% or less, and the moisture content of the dried sludge discharged from the dried material outlet 14 to the outside of the housing 9 is set at 50% or less. . The water content of 50% is a value necessary to prevent dry sludge from adhering to the net conveyor 12.
[0036]
FIG. 4 shows the results of an experiment on the change in the water content of human waste dewatered sludge dehydrated by a centrifugal dehydrator. The moisture content of the dewatered sludge was maintained at 85%, and the humidity inside the housing (drying room) 9 was maintained at 86%, 91%, 80%, 45% and 42%. As the humidity inside the housing (drying chamber) 9 increases, the drying time to reach a predetermined moisture content becomes longer, and in order to secure a predetermined drying speed, the humidity inside the housing (drying chamber) 9 must be 85%. It is necessary to maintain:
[0037]
The circulating air adjusted as described above flows from the air supply port 10 into the inside of the housing 9, and flows downward toward the bottom of the housing 9. The dewatered sludge 2 is dried by coming into contact with the circulating air while moving along the transport path inside the housing 9. At this time, since the dewatered sludge 2 dropped on the net conveyor 12 forms a linear object, the contact area of the dewatered sludge 2 with the circulating air is increased, and the drying efficiency is improved. The transport track is formed in a multi-layered form composed of a plurality of net conveyers 12 so that the transport track is long in the limited space of the housing 9 and is necessary for drying the dewatered sludge 2 by circulating air. Time. The dried product is discharged from the dried product outlet 14 to the outside of the housing 9.
[0038]
The circulating air contains the moisture evaporated from the dewatered sludge 2 by drying the dewatered sludge 2 in the dryer main body 1 and returns to the air conditioner 5 from the air return port 23 through the air return port 23 through the air return port 23. . In the air conditioner 5, the circulating air is cooled and dehumidified by the cooling and dehumidifying coil 20, and thereafter, the circulating air is reheated by the reheating coil 21 and circulated to the dryer main body 1 by the blower 22.
[0039]
In the cooling and dehumidifying coil 20, the circulating air is cooled and dehumidified by the cold heat of the chilled water circulating between the chilled water circulation path 6 and the chilled water storage tank 29. It diffuses into a stagnant volume of cold water. Therefore, the temperature change of the cold water in the cold water storage tank 29 is more gradual per unit time than the temperature change of the cold water at the inlet and the outlet of the cooling and dehumidifying coil 20.
[0040]
In the reheating coil 21, the circulating air is reheated by the heat of the hot water circulating between the hot water circulating path 7 and the hot water storage tank 28, and the hot water whose temperature has been reduced by the heat of the circulating air stays in the hot water storage tank 28. Into a predetermined volume of hot water. Therefore, the temperature change of the hot water in the hot water storage tank 28 is more gradual per unit time than the temperature change of the hot water at the inlet and the outlet of the reheating coil 21.
[0041]
The refrigerator 30 circulates refrigerant in a refrigeration cycle including a condenser 31 disposed in a hot water storage tank 28, an evaporator 32 disposed in a cold water storage tank 29, and a compressor and an expansion valve disposed in a refrigerator main body 33. Then, the cold water in the cold water storage tank 29 is cooled by heat exchange in the evaporator 32, and the hot water in the hot water storage tank 28 is heated by heat exchange in the condenser 32.
[0042]
Therefore, even if the humidity, temperature, etc. of the circulating air circulating to the air conditioner 5 due to fluctuations in the properties and moisture content of the dewatered sludge 2 change, and even if the heat load in the air conditioner changes, the cold water storage By reducing the temperature change of the cold water in the tank 29 and the temperature change of the hot water in the hot water storage tank 28, the change of the heat load given to the air conditioner 5 by the dewatered sludge 2 is directly reduced by the heat load of the refrigerator 30. It does not change. Therefore, even if the amount of heat of the circulating air is small, the refrigerant does not return to the compressor in a liquid state without being completely evaporated in the refrigeration cycle, and damage to the compressor can be prevented. Further, by suppressing the fluctuation of the heat load, the amount of the circulating liquid of the refrigerant is stabilized, the operation frequency of the automatic expansion valve is suppressed, and the life thereof can be extended. Further, the refrigerator 30 forms a refrigeration cycle by the condenser 31 disposed in the hot water storage tank 28, the evaporator 32 disposed in the cold water storage tank 29, and the compressor and expansion valve disposed in the refrigerator main body 33. The circulation path of the refrigerant is shortened, and the lubricating oil circulating with the refrigerant is smoothly returned to the compressor without remaining in the cycle.
[0043]
【The invention's effect】
As described above, according to the present invention, the humidity, temperature, etc., of the circulating air returned to the air conditioner due to fluctuations in properties, moisture content, and the like of the drying target put into the dryer, change the air conditioner. Even if the heat load changes, the temperature change of the cold water in the cold water storage tank and the temperature change of the hot water in the hot water storage tank The heat load of the refrigerator does not directly change, and even if the amount of heat of the circulating air is small, the refrigerant does not completely evaporate in the refrigeration cycle and does not return to the compressor in a liquid state, so that damage to the compressor can be prevented. By suppressing the heat load fluctuation, the circulating liquid amount of the refrigerant is stabilized, and the operation frequency of the automatic expansion valve can be suppressed to extend the life of the automatic expansion valve. By shortening the circulation path of the refrigerant, the lubricating oil circulating with the refrigerant is smoothly returned to the compressor without remaining in the cycle. The time required for drying the object to be dried by circulating air by forming a long conveyance path within the limited space of the housing by forming a multi-layered ninety-nine-fold conveyance path formed by multiple net conveyors Can be secured. By forming the drying object dropped on the net conveyor into a large number of linear objects, the contact area of the drying object with the circulating air can be increased, and the drying efficiency can be improved. It is possible to improve the drying efficiency by improving the properties of the object to be dried to be sparse and dense and promoting the degassing of gas such as water vapor generated from the object to be dried during drying.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an industrial dehumidifier / dryer according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between apparent specific gravity and moisture content of human waste dewatered sludge dehydrated by a centrifugal dehydrator.
FIG. 3 is a graph showing an experimental result of a change in moisture content of human waste dewatered sludge dehydrated by a centrifugal dehydrator.
FIG. 4 is a graph showing an experimental result of a change in moisture content of human waste dewatered sludge dehydrated by a centrifugal dehydrator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dryer main body 2 Dehydration sludge 3 Input device 5 Air conditioner 8 Cold and hot water supply device 9 Housing 10 Air supply port 11 Air discharge port 12 Net conveyor 13 Object input port 14 Dry substance discharge port 18 Crushing means 19 Harmonization room 20 Cooling and dehumidifying coil 21 Reheating coil 22 Blower 28 Hot water storage tank 29 Cold water storage tank 30 Refrigerator 31 Condenser 32 Evaporator 33 Refrigerator body

Claims (3)

乾燥機本体と乾燥機本体へ乾燥対象物を投入する投入装置と乾燥機本体へ乾燥用の循環空気を供給する空気調和機と空気調和機に冷水および温水を供給する冷温水供給装置とを有し、乾燥機本体で乾燥対象物を循環空気で乾燥させ、空気調和機で循環空気の湿度および温度を調整するものであって、空気調和機が、内部に循環空気の流れ方向に沿って順次に冷却除湿コイル、再加熱コイルを配置した調和室と、調和室を通過した循環空気を乾燥機本体に供給する送風機を有し、調和室の還気口が還気路を介して乾燥機本体のハウジングの空気排出口に連通し、送風機の送気口が送気路を介して乾燥機本体のハウジングの空気供給口に連通してなり、冷温水供給装置が、温水を貯留して空気調和機の再加熱コイルとの間に温水循環路を形成する温水蓄槽と、冷水を貯留して空気調和機の冷却除湿コイルとの間に冷水循環路を形成する冷水蓄槽と、冷凍機とを有し、冷凍機が温水蓄槽に配置した凝縮器と冷水蓄槽に配置した蒸発器と冷凍機本体に配置した圧縮機および膨張弁とで冷凍サイクルを形成してなることを特徴とする産業用除湿乾燥機。It has a dryer main body, an input device for supplying the object to be dried to the dryer main body, an air conditioner for supplying circulating air for drying to the main body of the dryer, and a cold / hot water supply device for supplying cold and hot water to the air conditioner. The object to be dried is dried with circulating air by the dryer body, and the humidity and temperature of the circulating air are adjusted by the air conditioner. A cooling chamber with cooling and dehumidifying coils and a reheating coil, and a blower that supplies the circulating air that has passed through the conditioning chamber to the main body of the dryer. The air outlet of the blower communicates with the air outlet of the housing of the dryer, and the air outlet of the blower communicates with the air supply port of the housing of the dryer body through the air passage. A hot water circuit between the machine and the reheating coil A condenser having a water storage tank, a cold water storage tank for storing cold water and forming a cold water circulation path between a cooling and dehumidifying coil of the air conditioner, and a refrigerator, wherein the refrigerator is disposed in the hot water storage tank. And an evaporator disposed in a cold water storage tank and a compressor and an expansion valve disposed in a refrigerator main body to form a refrigeration cycle. ハウジングの天井部に循環空気を供給する空気供給口を有し、ハウジングの下部に循環空気を排出する空気排出口を有し、ハウジング内に複数のネットコンベアを多段に配置して乾燥対象物を搬送する搬送軌道を九十九折れの多層状に形成し、搬送軌道の最上層の軌道始端に対向してハウジングの天井部に乾燥対象物を投入する対象物投入口を形成し、搬送軌道の最下層の軌道終端に対向してハウジングの底部に乾燥物を排出する乾燥物排出口を形成し、対象物投入口に投入装置を配置してなり、投入装置が、外周面に多条溝を形成した一対のロールを有し、ロール間に投入する乾燥対象物を面状に延展するとともに多数の線形状物に形成して搬送軌道に投下することを特徴とする請求項1に記載の産業用除湿乾燥機。It has an air supply port for supplying circulating air to the ceiling of the housing, has an air discharge port for discharging circulating air at the bottom of the housing, and arranges multiple net conveyors in the housing in multiple stages to dry objects. The transport track to be transported is formed in a multi-layered multi-layered form, and an object input port for inputting the drying target into the ceiling of the housing is formed opposite the track start end of the uppermost layer of the transport track. A dry matter discharge port for discharging dry matter is formed at the bottom of the housing in opposition to the end of the lowermost track, and a charging device is disposed at the object input port, and the charging device has a multi-slot on the outer peripheral surface. 2. The industry according to claim 1, further comprising a pair of formed rolls, wherein a drying target to be put between the rolls is extended in a planar shape, formed into a large number of linear objects, and dropped onto a transport track. 3. For dehumidifying dryer. 投入装置の前工程として乾燥対象物を解砕する解砕手段を設けたことを特徴とする請求項2に記載の産業用除湿乾燥機。The industrial dehumidifying / drying machine according to claim 2, wherein a crushing means for crushing the object to be dried is provided as a pre-process of the charging device.
JP2003083954A 2003-03-26 2003-03-26 Industrial dehumidifying dryer Expired - Fee Related JP3957652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083954A JP3957652B2 (en) 2003-03-26 2003-03-26 Industrial dehumidifying dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083954A JP3957652B2 (en) 2003-03-26 2003-03-26 Industrial dehumidifying dryer

Publications (2)

Publication Number Publication Date
JP2004293831A true JP2004293831A (en) 2004-10-21
JP3957652B2 JP3957652B2 (en) 2007-08-15

Family

ID=33399244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083954A Expired - Fee Related JP3957652B2 (en) 2003-03-26 2003-03-26 Industrial dehumidifying dryer

Country Status (1)

Country Link
JP (1) JP3957652B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291697A (en) * 2008-06-04 2009-12-17 Central Res Inst Of Electric Power Ind Treating method of sludge
JP2011048340A (en) * 2009-07-31 2011-03-10 Hoya Corp Process for producing dyed plastic lens
JP2011137613A (en) * 2009-12-28 2011-07-14 Kenki Kk Drying device
JP2011174654A (en) * 2010-02-24 2011-09-08 Jfe Engineering Corp Band type viscous substance drying device
JP2013505815A (en) * 2009-09-28 2013-02-21 グアンチョウ、ピュデ、エンバイロンメンタル、プロテクション、エキップメント、リミテッド Method and apparatus for aerobically air drying sludge filter cake
JP2013505816A (en) * 2009-09-28 2013-02-21 グアンチョウ、ピュデ、エンバイロンメンタル、プロテクション、エキップメント、リミテッド A method for integrating sewage sludge concentration-dehydration and aerobic air drying
CN104677078A (en) * 2015-01-05 2015-06-03 佛山市海天(高明)调味食品有限公司 Continuous drying machine for drying bean dregs
JP2015208707A (en) * 2014-04-25 2015-11-24 新日鐵住金株式会社 Apparatus and method for reducing water content of dehydrated cake
CN108534482A (en) * 2018-05-07 2018-09-14 江西理工大学 One grows tobacco radiative oven dry dehumidification system
CN109293209A (en) * 2017-07-25 2019-02-01 株式会社西原环境 Dehumidification drying device
JP2019027774A (en) * 2018-06-28 2019-02-21 株式会社西原環境 Dehumidification dryer
CN109485222A (en) * 2018-10-26 2019-03-19 广东工业大学 A kind of pump type heat divides warm area drying system
CN109626792A (en) * 2019-02-18 2019-04-16 韩国综合技术有限公司 Sludge dewatering and drying unit
CN111253042A (en) * 2020-03-19 2020-06-09 中国华能集团清洁能源技术研究院有限公司 A low-temperature belt drying system for sludge with graded heat utilization
CN115925219A (en) * 2022-11-30 2023-04-07 南京理工大学 Full heat recovery temperature distributing type sludge drying device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291697A (en) * 2008-06-04 2009-12-17 Central Res Inst Of Electric Power Ind Treating method of sludge
JP2011048340A (en) * 2009-07-31 2011-03-10 Hoya Corp Process for producing dyed plastic lens
KR101479958B1 (en) * 2009-09-28 2015-01-08 광저우 뉴 익스텐드 라이징 인바이어런먼털 프로텍션 테크놀로지스 머시너리 이큅먼트 씨오., 엘티디. Method and apparatus for aerobically air-drying sludge filter cakes
JP2013505815A (en) * 2009-09-28 2013-02-21 グアンチョウ、ピュデ、エンバイロンメンタル、プロテクション、エキップメント、リミテッド Method and apparatus for aerobically air drying sludge filter cake
JP2013505816A (en) * 2009-09-28 2013-02-21 グアンチョウ、ピュデ、エンバイロンメンタル、プロテクション、エキップメント、リミテッド A method for integrating sewage sludge concentration-dehydration and aerobic air drying
EP2484640A4 (en) * 2009-09-28 2014-07-02 Guangzhou Pude Environmental Prot Equipment Ltd Method and apparatus for aerobically air-drying sludge filter cakes
JP2011137613A (en) * 2009-12-28 2011-07-14 Kenki Kk Drying device
JP2011174654A (en) * 2010-02-24 2011-09-08 Jfe Engineering Corp Band type viscous substance drying device
JP2015208707A (en) * 2014-04-25 2015-11-24 新日鐵住金株式会社 Apparatus and method for reducing water content of dehydrated cake
CN104677078A (en) * 2015-01-05 2015-06-03 佛山市海天(高明)调味食品有限公司 Continuous drying machine for drying bean dregs
JP2019027599A (en) * 2017-07-25 2019-02-21 株式会社西原環境 Dehumidifying and drying equipment
CN109293209A (en) * 2017-07-25 2019-02-01 株式会社西原环境 Dehumidification drying device
CN109293209B (en) * 2017-07-25 2021-05-07 株式会社西原环境 Dehumidifying and drying device
CN108534482A (en) * 2018-05-07 2018-09-14 江西理工大学 One grows tobacco radiative oven dry dehumidification system
JP2019027774A (en) * 2018-06-28 2019-02-21 株式会社西原環境 Dehumidification dryer
CN109485222A (en) * 2018-10-26 2019-03-19 广东工业大学 A kind of pump type heat divides warm area drying system
CN109485222B (en) * 2018-10-26 2023-11-24 广东工业大学 Heat pump type temperature division area drying system
CN109626792A (en) * 2019-02-18 2019-04-16 韩国综合技术有限公司 Sludge dewatering and drying unit
CN111253042A (en) * 2020-03-19 2020-06-09 中国华能集团清洁能源技术研究院有限公司 A low-temperature belt drying system for sludge with graded heat utilization
CN115925219A (en) * 2022-11-30 2023-04-07 南京理工大学 Full heat recovery temperature distributing type sludge drying device

Also Published As

Publication number Publication date
JP3957652B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP3957652B2 (en) Industrial dehumidifying dryer
US6742284B2 (en) Energy efficient tobacco curing and drying system with heat pipe heat recovery
JP3696224B2 (en) Drying system
US4532720A (en) Drying process and its apparatus utilizing a refrigeration cycle
CN106430901B (en) Sludge dehumidifying and drying system
US8978269B2 (en) Hybrid drying system and method for controlling a hybrid drying system
USRE31633E (en) Lumber conditioning kiln
EP1169603A1 (en) Dehumidifier/air-conditioning system
KR101525880B1 (en) Controler of heat pump system for drying agricultural products
EP3417222B1 (en) System and process for drying loose bulk material
CN110127984A (en) A kind of sludge at low temperature heat pump drying equipment
US5428904A (en) Method and apparatus for drying sewage sludge with a drying gas that is itself dried and recirculated
CN107560397A (en) Multi-layer belt type drying system based on multi-stage heat pump series connection
KR101795770B1 (en) vacuum dryer using heat pump and drying method
WO2000036344A1 (en) A modular heat pump system for drying and air-conditioning
WO2019014750A1 (en) Method for efficient and effective drying
US4519217A (en) Supermarket environmental control system
EP0686252A1 (en) Method and apparatus for drying of materials containing volatile components
Yuan et al. Heat pump drying of industrial wastewater sludge
RU2303213C1 (en) Method of stabilizing characteristics of grain during drying
RU2372781C2 (en) Heat pumping device for fish seasoning
CN111912211A (en) A sludge heat pump drying system based on air handling unit
JPS58183998A (en) Method for drying sludge
RU2425304C1 (en) Method to stabilise heat and moisture characteristics of cereal and oil plant seeds in process of drying and storage
SU1725042A1 (en) Installation for drying and cooling grain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees