[go: up one dir, main page]

JP2004293639A - Axis sealing device - Google Patents

Axis sealing device Download PDF

Info

Publication number
JP2004293639A
JP2004293639A JP2003085745A JP2003085745A JP2004293639A JP 2004293639 A JP2004293639 A JP 2004293639A JP 2003085745 A JP2003085745 A JP 2003085745A JP 2003085745 A JP2003085745 A JP 2003085745A JP 2004293639 A JP2004293639 A JP 2004293639A
Authority
JP
Japan
Prior art keywords
sealing device
shaft sealing
rotating shaft
shaft
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003085745A
Other languages
Japanese (ja)
Other versions
JP4009547B2 (en
Inventor
Masaki Matsukuma
正樹 松隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003085745A priority Critical patent/JP4009547B2/en
Publication of JP2004293639A publication Critical patent/JP2004293639A/en
Application granted granted Critical
Publication of JP4009547B2 publication Critical patent/JP4009547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Of Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axis sealing device capable of reducing the amount of leaked operating gas without contacting a rotating shaft. <P>SOLUTION: An axis sealing device 1 comprises a pressurized gas guiding path 30 that comprises an open end 2 which faces an axis sealing space 21 within a casing 11 in which a rotating shaft 16 is positioned; an O ring 3 which is inserted in the inner wall of the casing 11 forming the axis sealing space 21 on both sides of the open end 2; and a cylindrical body 4 that is inserted in the inner wall, for play, through a minute gap outside the rotating shaft 16, to tightly contact the inside of the O ring 3 while allows flowing of the gas from the open end 2 to the outer peripheral part of the rotating shaft 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非接触タイプの軸封装置に関するものである。
【0002】
【従来の技術】
従来、非接触タイプの軸封装置は公知である(例えば、非特許文献1参照。)。
【0003】
【非特許文献1】
小茂鳥和生著「非接触シール論」株式会社コロナ社、昭和48年12月20日、p.245−255
【0004】
図2及び3に示すスクリュ圧縮機SCを一例として挙げると、このスクリュ圧縮機SCはケーシング11内にスクリュロータ12を有し、スクリュロータ12の吸込み側には軸受13により回転可能に支持された回転軸14が延び、吐出側には軸受15により回転可能に支持された回転軸16とが延びている。そして、スクリュロータ12と軸受13との間の軸封空間17には、スクリュロータ12側にラビリンスシール18、軸受13側にビスコシール19が嵌挿され、スクリュロータ12と軸受15との間の軸封空間21には、スクリュロータ12側にラビリンスシール22、軸受15側にビスコシール23が嵌挿されている。
【0005】
軸受13及び15には、給油路24及び25により潤滑油が供給される。ビスコシール19,23の内面にはねじが形成されており、高速回転する軸14,16との間に生じるガス粘性によって、ポンプ作用を生じる。ガス導入路28,29より吸引されたガスは軸受13,15の方へ押し込まれ、潤滑油の漏洩が防止される。
一方、ラビリンスシール18と回転軸14との間、ラビリンスシール22と回転軸16との間には、微小隙間(例:20μm〜30μm程度)が保たれ、加圧ガスの充満するスクリュロータ12側からの漏洩ガスの漏洩量を制限することができる。この漏洩ガスの大部分はラビリンスシール18,22の途中より、ガス排出路26,27を介して排出され、残りはラビリンスシール18,22の終端よりビスコシール19,23に吸引される。
【0006】
【発明が解決しようとする課題】
上述したラビリンス構造の軸封装置の場合、ラビリンスシール18と回転軸14との間、及びラビリンスシール23と回転軸16との間に隙間を保つ必要があり、この隙間は小さい程好ましい。しかしながら、ラビリンスシール18及び23は固定されて不動の状態にあるのに対して、回転軸14或いは16は振動し、かつ荷重により変形する故、上記隙間を小さくし過ぎるとラビリンスシール18と回転軸14、及びラビリンスシール23と回転軸16とが接触するようになるため、この接触を避け得る程度迄、上記隙間を大きくせざるを得ないのが現状である。このため、オイルフリースクリュ圧縮機の場合、軸封装置からの作動ガスの漏洩量が、中形機で4.5%、小形機では10〜15%にも達し、このことが圧縮機性能を大幅に低下させているという問題がある。
本発明は、斯る従来の問題をなくすことを課題としてなされたもので、回転軸に接触することなく、作動ガスの漏洩量の減少を可能とした軸封装置を提供しようとするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、第1発明は、回転軸が位置するケーシング内の軸封空間に面した開口端を有する加圧ガス導入路と、この開口端の両側にて、上記軸封空間を形成する上記ケーシングの内壁に嵌挿されたOリングと、上記回転軸の外側に微小隙間を介して遊嵌状態で上記内壁内に嵌入され、上記Oリングの内側に密着し、かつ上記開口端から上記回転軸の外周部へのガスの流れを許容する筒状本体とからなる構成とした。
【0008】
第2発明は、第1発明の構成に加えて、上記筒状本体が、上記開口端と連通する貫通孔を有する外筒と、この外筒内に嵌入し、ガス透過性材料からなる内筒とからなる構成とした。
【0009】
第3発明は、第2発明の構成に加えて、上記外筒が金属材料からなり、上記内筒が多孔質材料からなる構成とした。
【0010】
第4発明は、第3発明の構成に加えて、上記外筒がALからなり、上記内筒が多孔質カーボンからなる構成とした。
【0011】
【発明の実施の形態】
次に、本発明の実施形態を図面にしたがって説明する。
図1は本発明に係る軸封装置1を上述したスクリュ圧縮機SCに適用した例を示し、図3に示す構成と互いに共通する部分については、同一番号を付して説明を省略する。
この軸封装置1では、軸封空間21への加圧ガス導入路30の開口端2の両側にて、軸封空間21を形成するケーシング11の内壁にOリング3が嵌挿されている。また、回転軸16の外側に微小隙間を介して遊嵌状態で、上記内壁内に筒状本体4が嵌入され、Oリング3の内側に密着している。この筒状本体4は、金属材料、例えばALからなる外筒5と、多孔質材料、例えば多孔質カーボンからなる内筒6とからなっており、外筒5には、開口端2からの加圧ガスを内筒6の外周に導く貫通孔7が穿設されている。従って、開口端2からの加圧ガスは貫通孔7を経て、内筒6を通り抜けて内筒6と回転軸16との間の微小隙間に充満した状態を保ちつつ、加圧ガス排出路31から排出されてゆく。
【0012】
そして、上記構成からなる軸封装置1では、筒状本体4は軸封空間21内の定位置に不動の状態に固定されるのではなく、上記微小空間を保ちつつ、Oリング3が弾性変形し得る範囲で移動可能となっている。換言すれば、軸封装置1における筒状本体4については、フローティング構造になっており、回転軸16の振動、荷重による変形が生じても回転軸16との接触は回避され、しかも加圧ガスが満たされた微小隙間からの作動ガスや作動液体の漏洩も防止される。この結果、軸封装置1を用いた機械の性能向上も可能となる。
【0013】
なお、上記説明では、軸封装置1をスクリュロータ12と軸受15との間の軸封空間21に適用した例を挙げたが、本発明はこれに限定するものでなく、軸封装置1をスクリュロータ12と軸受13との間の軸封空間17にも適用し得ることは言うまでもない。
【0014】
また、軸封装置1における筒状本体4は上述した構成のものに限定されるものでなく、必ずしも二重筒構造である必要はなく、材質についてもAL、多孔質カーボンでなくとも、加圧ガスを透過させるもので、開口端2からの加圧ガスを回転軸の外周部に導き得るものであればよい。
さらに、本発明は必ずしもスクリュ圧縮機のみに適用を限定されるのではなく、回転軸外周部からの作動ガスの漏洩防止が必要な機械全般にわたって適用され得るものである。
【0015】
【発明の効果】
以上の説明より明らかなように、第1発明によれば、回転軸が位置するケーシング内の軸封空間に面した開口端を有する加圧ガス導入路と、この開口端の両側にて、上記軸封空間を形成する上記ケーシングの内壁に嵌挿されたOリングと、上記回転軸の外側に微小隙間を介して遊嵌状態で上記内壁内に嵌入され、上記Oリングの内側に密着し、かつ上記開口端から上記回転軸の外周部へのガスの流れを許容する筒状本体とからなる構成としてある。
【0016】
また、第2発明によれば、第1発明の構成に加えて、上記筒状本体が、上記開口端と連通する貫通孔を有する外筒と、この外筒内に嵌入し、ガス透過性材料からなる内筒とからなる構成としてある。
【0017】
さらに、第3発明によれば、第2発明の構成に加えて、上記外筒が金属材料からなり、上記内筒が多孔質材料からなる構成としてある。
【0018】
さらに、第4発明によれば、第3発明の構成に加えて、上記外筒がALからなり、上記内筒が多孔質カーボンからなる構成としてある。
【0019】
このように、筒状本体は軸封空間内に不動の状態に固定されるのではなく、Oリングの弾性変形の範囲内で移動可能に支持され、しかも筒状本体と回転軸との間には加圧ガスが常に供給され、微小隙間が保持され、回転軸の振動、荷重による変形が生じても筒状本体と回転軸との接触は回避され、しかも回転軸の外周部に沿った作動ガスの漏洩は防止され、本発明に係る軸封装置を適用した機械の性能向上に寄与し得るという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る軸封装置を示す断面図である。
【図2】従来のスクリュ圧縮機を示す断面図である。
【図3】図2に示すスクリュ圧縮機における吐出側の軸封部を示す部分拡大断面図である。
【符号の説明】
1 軸封装置
2 開口端
3 Oリング
4 筒状本体
5 外筒
6 内筒
7 貫通孔
11 ケーシング
12 スクリュロータ
13 軸受
14 回転軸
15 軸受
16 回転軸
17 軸封空間
18 ラビリンスシール
19 ビスコシール
21 軸封空間
22 ラビリンスシール
23 ビスコシール
24,25 給油路
26,27 ガス排出路
28,29 ガス導入路
30 加圧ガス導入路
31 加圧ガス排出路
SC スクリュ圧縮機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-contact type shaft sealing device.
[0002]
[Prior art]
Conventionally, a non-contact type shaft sealing device is known (for example, see Non-Patent Document 1).
[0003]
[Non-patent document 1]
Kazuo Komotori, Non-contact Seal Theory, Corona Co., Ltd., December 20, 1973, p. 245-255
[0004]
Taking the screw compressor SC shown in FIGS. 2 and 3 as an example, the screw compressor SC has a screw rotor 12 in a casing 11, and is rotatably supported by a bearing 13 on the suction side of the screw rotor 12. A rotating shaft 14 extends, and a rotating shaft 16 rotatably supported by a bearing 15 extends on the discharge side. In the shaft sealing space 17 between the screw rotor 12 and the bearing 13, a labyrinth seal 18 is inserted on the screw rotor 12 side, and a visco seal 19 is inserted on the bearing 13 side. In the shaft sealing space 21, a labyrinth seal 22 is fitted on the screw rotor 12 side, and a visco seal 23 is fitted on the bearing 15 side.
[0005]
Lubricating oil is supplied to the bearings 13 and 15 by oil supply passages 24 and 25. Screws are formed on the inner surfaces of the visco-seals 19 and 23, and a pump action is produced by gas viscosity generated between the shafts 14 and 16 rotating at high speed. The gas sucked from the gas introduction paths 28 and 29 is pushed toward the bearings 13 and 15 to prevent leakage of the lubricating oil.
On the other hand, a small gap (for example, about 20 μm to 30 μm) is maintained between the labyrinth seal 18 and the rotating shaft 14 and between the labyrinth seal 22 and the rotating shaft 16, and the screw rotor 12 side filled with the pressurized gas is maintained. The amount of leaked gas from the fuel cell can be limited. Most of the leaked gas is discharged from the middle of the labyrinth seals 18 and 22 through gas discharge passages 26 and 27, and the remainder is sucked into the visco seals 19 and 23 from the ends of the labyrinth seals 18 and 22.
[0006]
[Problems to be solved by the invention]
In the case of the shaft sealing device having the labyrinth structure described above, it is necessary to maintain gaps between the labyrinth seal 18 and the rotating shaft 14, and between the labyrinth seal 23 and the rotating shaft 16, and the smaller the gap, the better. However, while the labyrinth seals 18 and 23 are fixed and immobile, the rotating shaft 14 or 16 vibrates and is deformed by a load. Therefore, if the gap is made too small, the labyrinth seal 18 and the rotating shaft 14 and the labyrinth seal 23 and the rotating shaft 16 come into contact with each other, and at present, the gap has to be increased to such an extent that this contact can be avoided. Therefore, in the case of an oil-free screw compressor, the leakage of working gas from the shaft sealing device reaches 4.5% for a medium-sized machine and 10 to 15% for a small-sized machine, which increases the compressor performance. There is a problem that it is greatly reduced.
An object of the present invention is to eliminate such a conventional problem, and an object of the present invention is to provide a shaft sealing device capable of reducing a leakage amount of a working gas without contacting a rotating shaft. .
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first invention is to provide a pressurized gas introduction passage having an open end facing a shaft sealing space in a casing in which a rotating shaft is located, and the shaft sealing space on both sides of the opening end. And an O-ring inserted into the inner wall of the casing, which is fitted into the inner wall in a loosely-fitted state outside the rotary shaft via a small gap, closely adheres to the inside of the O-ring, and And a cylindrical main body that allows gas to flow from the end to the outer periphery of the rotating shaft.
[0008]
According to a second aspect of the invention, in addition to the configuration of the first aspect, the cylindrical body has an outer cylinder having a through-hole communicating with the opening end, and an inner cylinder made of a gas-permeable material fitted into the outer cylinder. And a configuration consisting of:
[0009]
According to a third aspect, in addition to the configuration of the second aspect, the outer cylinder is made of a metal material, and the inner cylinder is made of a porous material.
[0010]
In a fourth aspect, in addition to the configuration of the third aspect, the outer cylinder is made of AL and the inner cylinder is made of porous carbon.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an example in which a shaft sealing device 1 according to the present invention is applied to the above-described screw compressor SC. Portions common to those in the configuration shown in FIG.
In the shaft sealing device 1, the O-ring 3 is fitted on the inner wall of the casing 11 forming the shaft sealing space 21 on both sides of the open end 2 of the pressurized gas introduction path 30 to the shaft sealing space 21. In addition, the tubular main body 4 is fitted into the inner wall in a loosely fitted state on the outside of the rotary shaft 16 via a minute gap, and is in close contact with the inside of the O-ring 3. The cylindrical main body 4 includes an outer cylinder 5 made of a metal material, for example, AL, and an inner cylinder 6 made of a porous material, for example, porous carbon. A through-hole 7 for guiding the pressurized gas to the outer periphery of the inner cylinder 6 is provided. Accordingly, the pressurized gas from the open end 2 passes through the through-hole 7, passes through the inner cylinder 6, and fills the minute gap between the inner cylinder 6 and the rotating shaft 16 while maintaining a state filled with the pressurized gas discharge passage 31. It is discharged from.
[0012]
In the shaft sealing device 1 having the above-described configuration, the O-ring 3 is not fixed to the fixed position in the shaft sealing space 21 in an immovable state. It is possible to move as far as possible. In other words, the cylindrical main body 4 of the shaft sealing device 1 has a floating structure, so that even if the rotating shaft 16 is deformed by vibration or load, contact with the rotating shaft 16 is avoided, and the pressurized gas The leakage of the working gas or the working liquid from the minute gap filled with is also prevented. As a result, the performance of the machine using the shaft sealing device 1 can be improved.
[0013]
In the above description, an example in which the shaft sealing device 1 is applied to the shaft sealing space 21 between the screw rotor 12 and the bearing 15 has been described. However, the present invention is not limited to this. It goes without saying that the present invention can be applied to the shaft sealing space 17 between the screw rotor 12 and the bearing 13.
[0014]
Further, the cylindrical main body 4 in the shaft sealing device 1 is not limited to the above-described configuration, and does not necessarily have to have a double cylindrical structure. Any material may be used as long as it can transmit gas and can guide the pressurized gas from the opening end 2 to the outer peripheral portion of the rotating shaft.
Furthermore, the present invention is not necessarily limited to the screw compressor alone, but can be applied to all machines that need to prevent leakage of working gas from the outer periphery of the rotary shaft.
[0015]
【The invention's effect】
As is clear from the above description, according to the first invention, the pressurized gas introduction path having an open end facing the shaft sealing space in the casing where the rotating shaft is located, An O-ring that is inserted into the inner wall of the casing that forms a shaft-sealed space, and is fitted into the inner wall in a loosely-fitted state outside the rotary shaft through a small gap, and is closely attached to the inside of the O-ring; Further, it is configured to include a cylindrical main body that allows a gas flow from the opening end to the outer peripheral portion of the rotating shaft.
[0016]
According to the second invention, in addition to the configuration of the first invention, the tubular body has an outer cylinder having a through-hole communicating with the opening end, and is fitted into the outer cylinder to form a gas-permeable material. And an inner cylinder made of
[0017]
Further, according to the third invention, in addition to the structure of the second invention, the outer cylinder is made of a metal material, and the inner cylinder is made of a porous material.
[0018]
Further, according to the fourth invention, in addition to the structure of the third invention, the outer cylinder is made of AL and the inner cylinder is made of porous carbon.
[0019]
In this manner, the cylindrical body is not fixed in the shaft-sealed space but is movably supported within the range of elastic deformation of the O-ring, and furthermore, between the cylindrical body and the rotating shaft. The pressurized gas is always supplied, a minute gap is maintained, and even if the rotating shaft is deformed due to vibration or load, contact between the cylindrical body and the rotating shaft is avoided, and operation along the outer periphery of the rotating shaft Leakage of gas is prevented, and there is an effect that the performance of a machine to which the shaft sealing device according to the present invention is applied can be improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a shaft sealing device according to the present invention.
FIG. 2 is a sectional view showing a conventional screw compressor.
FIG. 3 is a partially enlarged sectional view showing a shaft sealing portion on a discharge side in the screw compressor shown in FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Shaft sealing device 2 Open end 3 O-ring 4 Cylindrical main body 5 Outer cylinder 6 Inner cylinder 7 Through hole 11 Casing 12 Screw rotor 13 Bearing 14 Rotating shaft 15 Bearing 16 Rotating shaft 17 Shaft sealing space 18 Labyrinth seal 19 Visco seal 21 Shaft Sealed space 22 Labyrinth seal 23 Visco seal 24, 25 Oil supply path 26, 27 Gas discharge path 28, 29 Gas introduction path 30 Pressurized gas introduction path 31 Pressurized gas discharge path SC Screw compressor

Claims (4)

回転軸が位置するケーシング内の軸封空間に面した開口端を有する加圧ガス導入路と、この開口端の両側にて、上記軸封空間を形成する上記ケーシングの内壁に嵌挿されたOリングと、上記回転軸の外側に微小隙間を介して遊嵌状態で上記内壁内に嵌入され、上記Oリングの内側に密着し、かつ上記開口端から上記回転軸の外周部へのガスの流れを許容する筒状本体とからなることを特徴とする軸封装置。A pressurized gas introduction path having an open end facing the shaft sealing space in the casing where the rotation shaft is located, and O fitted on the inner wall of the casing forming the shaft sealing space on both sides of the opening end. A gas flow from the ring to the outer periphery of the rotary shaft, which is loosely fitted into the inner wall through a minute gap outside the rotary shaft, closely adheres to the inside of the O-ring, and from the opening end to the outer peripheral portion of the rotary shaft. A shaft sealing device comprising: a cylindrical main body that allows pressure. 上記筒状本体が、上記開口端と連通する貫通孔を有する外筒と、この外筒内に嵌入し、ガス透過性材料からなる内筒とからなることを特徴とする請求項1に記載の軸封装置。2. The cylindrical body according to claim 1, wherein the cylindrical body includes an outer cylinder having a through-hole communicating with the opening end, and an inner cylinder fitted into the outer cylinder and made of a gas-permeable material. Shaft sealing device. 上記外筒が金属材料からなり、上記内筒が多孔質材料からなることを特徴とする請求項2に記載の軸封装置。The shaft sealing device according to claim 2, wherein the outer cylinder is made of a metal material, and the inner cylinder is made of a porous material. 上記外筒がALからなり、上記内筒が多孔質カーボンからなることを特徴とする請求項3に記載の軸封装置。The shaft sealing device according to claim 3, wherein the outer cylinder is made of AL, and the inner cylinder is made of porous carbon.
JP2003085745A 2003-03-26 2003-03-26 Shaft seal device Expired - Lifetime JP4009547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085745A JP4009547B2 (en) 2003-03-26 2003-03-26 Shaft seal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085745A JP4009547B2 (en) 2003-03-26 2003-03-26 Shaft seal device

Publications (2)

Publication Number Publication Date
JP2004293639A true JP2004293639A (en) 2004-10-21
JP4009547B2 JP4009547B2 (en) 2007-11-14

Family

ID=33400584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085745A Expired - Lifetime JP4009547B2 (en) 2003-03-26 2003-03-26 Shaft seal device

Country Status (1)

Country Link
JP (1) JP4009547B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531142A (en) * 2014-09-29 2017-10-19 ニュー ウェイ マシーン コンポーネンツ、インコーポレイテッド Thrust bearing as seal
WO2023275964A1 (en) * 2021-06-29 2023-01-05 Compagnie Generale Des Etablissements Michelin A sealing device for a rotor shaft of a kneader
WO2023275963A1 (en) * 2021-06-29 2023-01-05 Compagnie Generale Des Etablissements Michelin A sealing device for a rotor shaft of a kneader
WO2023275965A1 (en) * 2021-06-29 2023-01-05 Compagnie Generale Des Etablissements Michelin A sealing device for a rotor shaft of a kneader

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531142A (en) * 2014-09-29 2017-10-19 ニュー ウェイ マシーン コンポーネンツ、インコーポレイテッド Thrust bearing as seal
WO2023275964A1 (en) * 2021-06-29 2023-01-05 Compagnie Generale Des Etablissements Michelin A sealing device for a rotor shaft of a kneader
WO2023275963A1 (en) * 2021-06-29 2023-01-05 Compagnie Generale Des Etablissements Michelin A sealing device for a rotor shaft of a kneader
WO2023275965A1 (en) * 2021-06-29 2023-01-05 Compagnie Generale Des Etablissements Michelin A sealing device for a rotor shaft of a kneader

Also Published As

Publication number Publication date
JP4009547B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4251679B2 (en) Screw type compressor equipped with a device for sealing the rotor shaft and such a device
US20200182299A1 (en) Sliding part
US20180355866A1 (en) Dry vacuum scroll pump
JP5577297B2 (en) Scroll type fluid machine
CN103348148A (en) Tilting pad journal bearing and rotary machine equipped with same
JP5548596B2 (en) Shaft seal device for submersible pump
JPH0370891A (en) Shaft seal device for oil-sealed rotary vacuum pump
US10161399B2 (en) Scroll pump
TWI629415B (en) Oil-free screw compressor
JP2004293639A (en) Axis sealing device
KR20040036685A (en) Enclosed mechanical booster
KR20010042719A (en) Positive displacement machine
WO2018117276A1 (en) Screw compressor
JPH0389080A (en) Seal mechanism for vacuum pump lubricating oil
JP5865960B2 (en) Compressor
WO2005040649A1 (en) Non-contact oil seal mechanism for rotating shaft
CN212690341U (en) Oil-free screw compressor sealing structure
JP3920856B2 (en) A component unit having a casing filled with oil and a shaft passing through the casing
RU2103553C1 (en) Pump
JP5207822B2 (en) Screw compressor
JP2000314383A (en) Scroll fluid machine
JPS61132797A (en) Bearing unit for turbo molecular pump
JPH04171370A (en) Noncontact type shaft seal device
GB2621827A (en) Scroll pump seal, scroll pump and method
JP2024130382A (en) Shaft seal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4009547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term