[go: up one dir, main page]

JP2004292247A - Joining method of glass substrate - Google Patents

Joining method of glass substrate Download PDF

Info

Publication number
JP2004292247A
JP2004292247A JP2003087713A JP2003087713A JP2004292247A JP 2004292247 A JP2004292247 A JP 2004292247A JP 2003087713 A JP2003087713 A JP 2003087713A JP 2003087713 A JP2003087713 A JP 2003087713A JP 2004292247 A JP2004292247 A JP 2004292247A
Authority
JP
Japan
Prior art keywords
glass
glass substrates
laser
bonding
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003087713A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsui
浩志 松井
Nobuo Tanabe
信夫 田辺
Kenichi Okada
顕一 岡田
Takuya Kawashima
卓也 川島
Tetsuya Ezure
哲也 江連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003087713A priority Critical patent/JP2004292247A/en
Publication of JP2004292247A publication Critical patent/JP2004292247A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform joining with excellent durability, safety, etc., through an easy operation for joining and sealing glass substrates for manufacturing various elements such as a dye-sensitized solar cell having a structure wherein at least two glass substrates are laminated facing with each other and their edges are joined together. <P>SOLUTION: A first glass substrate 11 and a second glass substrate 12 are superposed and joined by applying a laser beam from the side of their edges and melting the glass substrates themselves. Alternatively, the glass substrates can be joined by placing a laser absorbent material around the edges of the glass substrates, irradiating it with the laser beam and melting this. As the laser absorbent material, a material containing a glass component such as a low-melting glass paste or a metallic thin film is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ガラス基板の接合方法に関し、色素増感太陽電池などの光電変換素子、エレクトロクロミック素子、エレクトロルミネッセンス素子、液晶表示素子などの少なくとも2枚のガラス基板を対向せしめ、その周辺端部を接合した構造を有する各種素子の製造に用いられるものである。
【0002】
【従来の技術】
色素増感太陽電池は、スイスのグレツェルらが開発したもので、光電変換効率が高く、製造コストが安く、環境に優しいなどの利点があり、新しいタイプの太陽電池として注目を浴びている(特許文献1参照)。
【0003】
図4は、この色素増感太陽電池の例を示すものである。図中符号1は、作用極をなす第1の基板を示す。この第1の基板1は、ガラス板、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネイト、ポリエーテルスルホンなどの透明樹脂などのシートからなるものである。
【0004】
この第1の基板1上には、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)などの透明導電膜2が形成されている。この透明導電膜2上には集電用の格子状の金属配線層3が光透過性を損ねないように形成されている。
【0005】
この金属配線層3上には、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化ネオジムなどの金属酸化物半導体からなる酸化物半導体多孔膜4が形成され、この酸化物半導体多孔膜4にはビピリジン系、ターピリジン系などの光増感用色素が担持されている。このようにして、第1の基板1上に透明導電膜2、金属配線層3、酸化物半導体多孔膜4および光増感用色素が設けられて、作用極を構成している。
【0006】
また、図中符号5は、対極をなす第2の基板を示す。この第2の基板5は、ガラス板、樹脂シート、金属シートなどからなるもので、ガラス板、樹脂シートなどの絶縁性材料からなるものでは、この上に白金などの金属薄膜やFTO、ITOなどを単独あるいは複合して用いた導電膜6が形成されたものである。
【0007】
さらに、作用極を構成する第1の基板1と対極を構成する第2の基板5との間の隙間には、電解液7が充填されている。この電解液7には、溶媒としてアセトニトリル、プロピオニトリル、プロピレンカーボネイトなど揮発性溶媒や1−エチル−3−メチルイミダゾリウムカチオンとビス(トリフロロメチルスルホニル)イミドアニオンからなる塩などのイオン性液体等に、レドックス対としてヨウ化物イオン/ヨウ素、臭化物イオン/臭素などを溶解したもの、あるいはこれら電解液をゲル化した固体状の電解液などが用いられる。また、電解液7にかわりに、ヨウ化銅、チオシアン化銅などのp型半導体などを電荷移送層として用いることもできる。
【0008】
また、第1の基板1と第2の基板5とは、その周縁部において、エポキシ樹脂、紫外線硬化型樹脂、オレフィン系樹脂などの樹脂からなる封止材8で接合、封止されており、セル内部の電解液7の外部への漏洩や外部からの異物、水分の内部への侵入が防止されるように構成されている。
【0009】
このような構造の色素増感太陽電池にあっては、主に屋外で使用されることになるが、その場合には、その表面温度が80℃を越える高温に曝されることになる。また、長期間風雨にさらされることにもなる。このような使用条件下では、基板1、5の封止が有機材料の樹脂からなる封止材8によってなされているので、耐久性や安全性などの不安が残る。
【0010】
このような問題点を解決するため、色素増感太陽電池を構成するガラス基板の接合に無機材料であるガラスフリットを用い、これをガラス基板間に配置して加熱、溶融することでガラス基板間を接合、封止する方法が提案されている(特許文献2参照)。
しかしながら、この方法は、ガラスフリットを溶融するため、セル全体を少なくとも400℃程度に加熱する必要がある。ガラス基板をこのような高温に曝すと、酸化物半導体多孔膜に担持した光増感用色素が熱劣化、分解することになる。このため、この方法では、ガラス基板を接合する際に、小穴を形成しておき、この小穴を利用して色素溶液をセル内部に導入、循環する操作がとられており、製造工程が複雑になり、コストが嵩む欠点があった。
【0011】
【特許文献1】
特許第2664194号公報
【特許文献2】
特開2001−185244号公報
【0012】
【発明が解決しようとする課題】
よって、この発明における課題は、色素増感太陽電池などの少なくとも2枚のガラス基板を対向せしめ、その周辺端部を接合した構造を有する各種素子において、そのガラス基板を接合、封止する際に、簡単な操作により、耐久性、安全性等に優れた接合が行われるようにすることにある。
【0013】
【課題を解決するための手段】
かかる課題を解決するため、
請求項1にかかる発明は、少なくとも2枚のガラス基板を対向させ、これらガラス基板の周辺端部の側方からレーザー光を照射してこれらガラス基板を接合することを特徴とするガラス基板の接合方法である。
【0014】
請求項2にかかる発明は、ガラス基板を溶融して接合することを特徴とする請求項1記載のガラス基板の接合方法である。
請求項3にかかる発明は、ガラス基板をなす材料に吸収される波長のレーザー光を用いることを特徴とする請求項2記載のガラス基板の接合方法である。
請求項4にかかる発明は、ガラス基板の周辺端部にレーザー吸収材を配し、このレーザー吸収材を溶融してガラス基板を接合することを特徴とする請求項1記載のガラス基板の接合方法である。
【0015】
請求項5にかかる発明は、レーザー吸収材をなす材料に吸収される波長のレーザー光を用いることを特徴とする請求項4記載のガラス基板の接合方法である。
請求項6にかかる発明は、レーザー吸収材が、ガラス成分を含む材料であることを特徴とする請求項4に記載のガラス基板の接合方法である。
請求項7にかかる発明は、レーザー吸収材が、金属薄膜であることを特徴とする請求項4記載のガラス基板の接合方法である。
【0016】
請求項8にかかる発明は、請求項1ないし7のいずれかに記載の接合方法によって接合された構造を有することを特徴とする素子である。
請求項9にかかる発明は、色素増感太陽電池であることを特徴とする請求項8記載の素子である。
【0017】
【発明の実施の形態】
以下、本発明を詳しく説明する。以下に説明する接合方法は、色素増感太陽電池をなす2枚のガラス基板の接合を例とするもので、図1ないし図3では、説明の簡略化のために、第1のガラス基板上の透明導電膜、金属配線層、光増感用色素担持酸化物半導体多孔膜および第2のガラス基板上の導電膜の図示を省略してあり、これらの各構成部材は、第1のガラス基板および第2のガラス基板を含めて先に説明した図4に示したものと同様のものでありその説明は省略する。
図1は、このガラス基板の接合方法の第1の例を示すもので、図中符号11は第1のガラス基板、符号12は第2のガラス基板をそれぞれ示す。
【0018】
この第1および第2のガラス基板11、12は、ソーダガラス、耐熱ガラス、シリカガラスなどの各種の透明ガラスからなる厚さ0.5〜10mmの板状のものである。
この2枚のガラス基板11、12は、互いに対向して、1〜200μmの間隙を介して重ね合わせられている。
【0019】
そして、この2枚のガラス基板11、12の周辺端部13の側方からレーザー光が照射される。この時用いられるレーザー光としては、ガラス基板11、12をなすガラスに吸収され、熱エネルギーに変換される波長のレーザー光が用いられ、好ましくは照射されたレーザー光の光エネルギーの50%以上が吸収されて熱エネルギーに変る波長のレーザー光であり、具体的には波長10.6μmの炭酸ガスレーザからのレーザー光が用いられる。
【0020】
このレーザー光の照射に先立ち、ガラス基板11、12を予め100〜200℃に予備加熱しておくと良好な接合が行える。
このレーザー光の照射により、両方のガラス基板11、12の周辺端部13が溶融し、両方のガラス基板11、12同士が接合する。そして、このレーザー光の照射部位を周辺端部13に沿って移動しつつ照射することで、2枚のガラス基板11、12の周辺端部13全体が接合される。
【0021】
図2は、このガラス基板の接合方法の第2の例を示すもので、第1の例と同一構成部分には同一符号を付してその説明を省略する。
この例では、まず2枚のガラス基板11、12の周辺端部13にレーザー吸収材14を設ける。このレーザー吸収材14としては、ガラス成分を含むものがまず挙げられる。
【0022】
このガラス成分を含むレーザー吸収材14の具体的なものには、酸化鉛、酸化ホウ素、酸化ナトリウム、酸化バリウム、酸化ケイ素、酸化アルミニウム、酸化鉄、酸化カルシウム、酸化マグネシウム、酸化チタンなどのガラスの1種以上からなるガラス成分とバインダ樹脂とこれらを溶解、分散する溶剤とからなる低融点ガラスペーストなどが用いられ、この低融点ガラスペーストを周辺端部13に塗布、乾燥することで、レーザー吸収材14を設けることができる。
【0023】
また、これ以外のレーザー吸収材14としては、金属膜が挙げられる。この金属膜には、クロム、ニッケル、鉄、コバルト、銀、チタンなどからなる厚さ10Å〜5μm程度の膜が用いられ、スパッタ法、蒸着法、メッキ法などの手法によって周辺端部13に膜形成することができる。さらには、これらの金属の厚さ30μm以下程度の箔を周辺端部13に貼付してレーザー吸収材14としてもよい。
【0024】
レーザー吸収材14の幅、厚さは、特に限定されず、基板の寸法、仕様、使用環境等によって適宜選択されるが、幅は2枚のガラス基板11、12の合計厚さの1/2以上が好ましく、厚さは30μm以下程度が好ましい。また、その形成位置も特に限定されず、2枚のガラス基板11、12の隙間を完全に塞ぐことができる位置で適宜決めればよい。
【0025】
ついで、レーザー光を周辺端部13に設けられたレーザー吸収材14に照射する。この時のレーザー光としては、レーザー吸収材14がガラス成分を含むものである場合には、このレーザ吸収材14に光エネルギーの50%以上が吸収されて、これを加熱、溶融せしめる波長域のレーザー光であればよく、例えばGaAsAl系半導体レーザからの波長840nmのレーザー光やYAGレーザからの波長1060nmのレーザー光が使用できる。
【0026】
また、レーザー吸収材14が金属膜である場合には、同様にこのレーザー吸収材14にその光エネルギーの50%以上が吸収されてこれを加熱、溶融せしめる波長域のレーザー光であればよく、例えばGaAsAl系半導体レーザからの波長840nmのレーザー光やYAGレーザからの波長1060nmのレーザー光が使用できる。
【0027】
そして、このレーザー光の照射部位をガラス基板11、12の周辺端部13に沿って移動させれば、レーザー吸収材14が順次溶融し、固化することで2枚のガラス基板11、12の周辺端部13の全体が接合される。
この例の接合方法では、ガラス基板11、12間の間隔が大きい場合には、レーザー吸収材14を2枚のガラス基板11、12の間の隙間の内方にまで、多めに充填することで対処できる。
【0028】
図3は、こののガラス基板の接合方法の第3の例を示すもので、図2に示した第2の例と同様にガラス基板11、12の周辺端部13にレーザー吸収材14を設けるものである。
この例の接合方法では、ガラス基板11および12のそれぞれの厚さ方向の一方の隅部を斜めに切断あるいは研削し、V溝状の凹部を形成し、この凹部にレーザー吸収材14を充填する。
【0029】
ついで、先の例と同様にして、レーザー光を照射してレーザー吸収材4を溶融して接合を行う。この方法では、固化後のレーザー吸収材14とガラス基板11、12との接合面積が増加し、ガラス基板11、12間の接合強度や耐久性を大きく高めることができる。
【0030】
ついで、電解液を2枚のガラス基板11、12間の間隙に充填、封入することで、色素増感太陽電池が完成する。この電解液の充填は、2枚のガラス基板11、12間の間隙に細いパイプを通して、2枚のガラス基板11、12を接合しておき、その後にこのパイプを介して電解液を注入する方法や対極となる第2のガラス基板12に予め形成しておいた小穴を介して注入する方法などで行われる。電解液が高粘度である場合には、セル内を減圧排気しておき、これによって形成される圧力差を利用してセル内部に注入することもできる。
【0031】
このような接合方法によれば、2枚のガラス基板間の接合部分が無機材料のガラス、金属で構成されているので、その接合部分は強固に接合され、化学的、機械的、熱的に高い特性を有し、優れた耐久性、安全性を示すものとなる。また、このような接合方法を適用して得られた色素増感太陽電池を長期間屋外において過酷な使用条件の下で使用しても、その封止部分から電解液が漏洩したり、水分や異物が侵入したりすることがない。
【0032】
また、ガラス基板の周辺端部のみにレーザー光を照射しているので、第1のガラス基板上に形成した酸化物半導体多孔膜に担持されている光増感用色素が加熱されて劣化することがなく、該色素が担持された第1のガラス基板を接合できることになり、製造操作が簡便となる。
【0033】
本発明の接合方法では、上述の接合方法と、従来の樹脂を用いる接合方法などの種々の接合方法とを併用することができる。
また、本発明の接合方法は、上述の色素増感太陽電池をなすガラス基板の接合に限られず、少なくとも2枚のガラス基板を接合した構造を有するエレクトロクロミック素子、エレクトロルミネッセンス素子、液晶表示素子などの各種素子にも適用できることは言うまでもない。
【0034】
以下、具体例を示す。
(例1)
市販のソーダガラス板を2枚互いに押し合わせ、100℃に予備加熱したのち、ただちにこれらガラス板の周縁部に、炭酸ガスレーザー光を照射部位を移動させながら照射した。その結果、2枚のソーダガラス板は、その周辺端部が溶融して、強固に接合されていた。
【0035】
(例2)
市販のソーダガラス板を用意し、その周辺端部を図3に示すように研削してテーパー状とした後、互いに重ね合わせ、形成された周辺端部の凹部に、ディスペンサを用いて、市販の低融点ガラススペースト(主成分:酸化鉛、バインダ樹脂、溶剤)を塗布し、乾燥した上で、波長840nmのGaAsAl系半導体レーザからのレーザー光を照射部位を移動させつつ照射した。その結果、2枚のソーダガラス板は、低融点ガラスペーストが溶融することで、強固に接合されていた。
【0036】
(例3)
例1で得られた接合済みのソーダガラス板を試料として、紫外線照射試験を行い、接合状態の耐久性を検査した。紫外線照射には、UVテスターを使用した。連続紫外線照射時間100時間後の貼り合わせ面の引き剥がし試験を行った。その結果、紫外線照射前とほとんど変化はなかった。
これに対して、従来の熱可塑性樹脂シート(「ハイミラン」三井化学社製)を用いて接合したものでは、接合強度が大幅に低下していた。
【0037】
(例4)
厚さ25μmのスペーサを2枚のソーダガラス板の間に間挿した以外は、例2と同様にして接合した。予め開けておいた微少孔からヨウ素電解液を注液し、封孔したのち、例3と同様にして紫外線を照射して変化を検討した。ヨウ素電解液には、ヨウ素とヨウ化物塩を含むメトキシアセトニトリル溶液を用い、微少孔に直接紫外線が照射されないように、これをマスクで覆った。
【0038】
紫外線照射終了後の試料を確認したところ、外観の変化は認められなかった。これに対して、熱可塑性樹脂シートを用いて接合した試料では、照射後に接合強度の低下により電解液が揮発、飛散したために生じたと思われる気泡が多数認められた。
【0039】
(例5)
フッ素添加酸化スズからなる透明導電膜を有するガラス板上に、平均粒径25nmの酸化チタン分散液を塗布、乾燥し、450℃で1時間加熱焼結した。このれをルテニウムビピリジン錯体(N3色素)のエタノール溶液に8時間浸漬して、色素担持して、作用極とした。
【0040】
また、フッ素添加酸化スズからなる透明導電膜を有するガラス板上にスパッタ法により白金薄膜を形成して、対極とした。
これらガラス板を対向して貼り合わせた。ここでの貼り合わせは、例2に示した低融点ガラスペーストを用い、半導体レーザからのレーザー光を照射する方法と同様にして行った。但し、端子取り出し口部分の封止のみ、熱可塑性樹脂とエポキシ樹脂により簡易的に行った。
電解液には、例4と同じものを使用し、同様の操作により注液、封止した。
【0041】
得られたセルについて、例3と同様に紫外線照射試験を行い、照射後のセルの光電変換効率を求めたところ、全試料について初期値の70%以上の値が保持されていた。
これに対して、ガラス板の接合を熱可塑性樹脂によって行ったセルでは、全試料につて初期値の50%以下の値まで変換特性が低下していた。
【0042】
【発明の効果】
以上説明したように、本発明のガラス基板の接合方法によれば、ガラス基板間の接合、封止をガラス、金属の無機材料によって行うので、長期間にわたり高い耐久性、安全性を有する色素増感太陽電池などの光電変換素子を製造することができる。
【0043】
また、レーザー光を照射してガラス基板自体あるいはガラス成分を含む材料または金属薄膜を溶融し、接合するようにしているので、色素増感太陽電池に適用したときに、ガラス基板に形成された酸化物半導体多孔膜が加熱されないので、酸化物半導体多孔膜に光増感用色素が担持された基板を対象とすることができるので、製造操作が面倒になることもない。
【図面の簡単な説明】
【図1】本発明の接合方法の第1の例を示す概略構成図である。
【図2】本発明の接合方法の第2の例を示す概略構成図である。
【図3】本発明の接合方法の第2の例を示す概略構成図である。
【図4】本発明の接合方法の対象の一例となる色素増感太陽電池を示す概略断面図である。
【符号の説明】
11・・・第1の基板、12・・・第2の基板、14・・・レーザー吸収材。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for bonding glass substrates, wherein at least two glass substrates such as a photoelectric conversion element such as a dye-sensitized solar cell, an electrochromic element, an electroluminescence element, and a liquid crystal display element are opposed to each other, and a peripheral edge thereof is formed. It is used for manufacturing various elements having a joined structure.
[0002]
[Prior art]
Dye-sensitized solar cells have been developed by Gretzell et al. In Switzerland and have the advantages of high photoelectric conversion efficiency, low manufacturing cost, and environmental friendliness. Reference 1).
[0003]
FIG. 4 shows an example of this dye-sensitized solar cell. In the figure, reference numeral 1 denotes a first substrate serving as a working electrode. The first substrate 1 is made of a sheet such as a glass plate, a transparent resin such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, and polyether sulfone.
[0004]
On the first substrate 1, a transparent conductive film 2 such as tin-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO) is formed. On the transparent conductive film 2, a grid-like metal wiring layer 3 for current collection is formed so as not to impair the light transmittance.
[0005]
An oxide semiconductor porous film 4 made of a metal oxide semiconductor such as titanium oxide, tin oxide, tungsten oxide, zinc oxide, and neodymium oxide is formed on the metal wiring layer 3. A photosensitizing dye such as a bipyridine or terpyridine is supported. In this manner, the transparent conductive film 2, the metal wiring layer 3, the oxide semiconductor porous film 4, and the photosensitizing dye are provided on the first substrate 1 to form a working electrode.
[0006]
In addition, reference numeral 5 in the drawing indicates a second substrate serving as a counter electrode. The second substrate 5 is made of a glass plate, a resin sheet, a metal sheet, or the like. When the second substrate 5 is made of an insulating material such as a glass plate, a resin sheet, or the like, a metal thin film such as platinum, FTO, ITO, or the like is formed thereon. Are formed singly or in combination.
[0007]
Further, a gap between the first substrate 1 forming the working electrode and the second substrate 5 forming the counter electrode is filled with the electrolyte 7. The electrolytic solution 7 includes, as a solvent, a volatile solvent such as acetonitrile, propionitrile, and propylene carbonate; For example, a solution of iodide ion / iodine or bromide ion / bromine as a redox pair, or a solid electrolytic solution obtained by gelling these electrolytic solutions is used. Further, instead of the electrolytic solution 7, a p-type semiconductor such as copper iodide or copper thiocyanate may be used as the charge transfer layer.
[0008]
Further, the first substrate 1 and the second substrate 5 are joined and sealed at their peripheral edges with a sealing material 8 made of a resin such as an epoxy resin, an ultraviolet curable resin, or an olefin resin. The configuration is such that leakage of the electrolyte solution 7 inside the cell to the outside, foreign matter from the outside, and intrusion of moisture into the inside are prevented.
[0009]
The dye-sensitized solar cell having such a structure is mainly used outdoors. In this case, the surface temperature of the solar cell is higher than 80 ° C. Moreover, it will be exposed to wind and rain for a long time. Under such use conditions, since the substrates 1 and 5 are sealed by the sealing material 8 made of an organic resin, there remain concerns about durability and safety.
[0010]
In order to solve such problems, a glass frit, which is an inorganic material, is used to join the glass substrates constituting the dye-sensitized solar cell, and the glass frit is arranged between the glass substrates, and heated and melted to form a glass frit. Have been proposed (see Patent Document 2).
However, this method requires heating the entire cell to at least about 400 ° C. to melt the glass frit. When the glass substrate is exposed to such a high temperature, the photosensitizing dye supported on the porous oxide semiconductor film is thermally degraded and decomposed. For this reason, in this method, when bonding the glass substrates, small holes are formed, and the operation of introducing and circulating the dye solution into the cell using the small holes is taken, which complicates the manufacturing process. However, there is a disadvantage that the cost increases.
[0011]
[Patent Document 1]
Japanese Patent No. 2664194 [Patent Document 2]
JP 2001-185244 A
[Problems to be solved by the invention]
Therefore, an object of the present invention is to bond and seal glass substrates in various devices having a structure in which at least two glass substrates such as a dye-sensitized solar cell are opposed to each other and their peripheral ends are bonded. Another object of the present invention is to make it possible to perform joining excellent in durability, safety and the like by a simple operation.
[0013]
[Means for Solving the Problems]
To solve this problem,
The invention according to claim 1 is characterized in that at least two glass substrates are opposed to each other, and the glass substrates are bonded by irradiating a laser beam from a side of a peripheral edge of the glass substrates. Is the way.
[0014]
The invention according to claim 2 is the method for bonding glass substrates according to claim 1, wherein the glass substrates are melted and bonded.
The invention according to claim 3 is the glass substrate bonding method according to claim 2, wherein a laser beam having a wavelength that is absorbed by a material forming the glass substrate is used.
According to a fourth aspect of the present invention, there is provided a method of bonding a glass substrate according to the first aspect, wherein a laser absorbing material is disposed at a peripheral end of the glass substrate, and the glass substrate is bonded by melting the laser absorbing material. It is.
[0015]
The invention according to claim 5 is the method for bonding glass substrates according to claim 4, wherein a laser beam having a wavelength that is absorbed by a material forming a laser absorbing material is used.
The invention according to claim 6 is the method for bonding glass substrates according to claim 4, wherein the laser absorbing material is a material containing a glass component.
The invention according to claim 7 is the method for bonding glass substrates according to claim 4, wherein the laser absorbing material is a metal thin film.
[0016]
The invention according to claim 8 is an element having a structure joined by the joining method according to any one of claims 1 to 7.
The invention according to claim 9 is the device according to claim 8, which is a dye-sensitized solar cell.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. The bonding method described below exemplifies the bonding of two glass substrates forming a dye-sensitized solar cell. FIGS. 1 to 3 illustrate a method of bonding a first glass substrate on a first glass substrate for simplification of description. The transparent conductive film, the metal wiring layer, the photosensitizing dye-carrying oxide semiconductor porous film, and the conductive film on the second glass substrate are not shown in the drawing. This is the same as that shown in FIG. 4 described above, including the second glass substrate, and a description thereof will be omitted.
FIG. 1 shows a first example of this method of bonding glass substrates. In the figure, reference numeral 11 denotes a first glass substrate, and reference numeral 12 denotes a second glass substrate.
[0018]
Each of the first and second glass substrates 11 and 12 is a plate having a thickness of 0.5 to 10 mm and made of various transparent glasses such as soda glass, heat-resistant glass, and silica glass.
The two glass substrates 11 and 12 face each other and are overlapped with a gap of 1 to 200 μm therebetween.
[0019]
Then, a laser beam is irradiated from the side of the peripheral edge 13 of the two glass substrates 11 and 12. As the laser light used at this time, a laser light having a wavelength that is absorbed by the glass forming the glass substrates 11 and 12 and converted into heat energy is used. Preferably, 50% or more of the light energy of the irradiated laser light is used. This is a laser beam having a wavelength that is absorbed and converted into heat energy, and specifically, a laser beam from a carbon dioxide gas laser having a wavelength of 10.6 μm is used.
[0020]
Good bonding can be performed by preheating the glass substrates 11 and 12 to 100 to 200 ° C. before irradiation with the laser light.
By the irradiation of the laser beam, the peripheral end portions 13 of both the glass substrates 11 and 12 are melted, and the two glass substrates 11 and 12 are joined to each other. Then, by irradiating the irradiated portion of the laser beam along the peripheral edge 13 while irradiating the same, the entire peripheral edge 13 of the two glass substrates 11 and 12 is joined.
[0021]
FIG. 2 shows a second example of this method of bonding glass substrates, and the same components as those in the first example are denoted by the same reference numerals and description thereof is omitted.
In this example, first, a laser absorber 14 is provided on the peripheral edge 13 of the two glass substrates 11 and 12. As the laser absorbing material 14, a material containing a glass component is first mentioned.
[0022]
Specific examples of the laser absorber 14 containing this glass component include glass such as lead oxide, boron oxide, sodium oxide, barium oxide, silicon oxide, aluminum oxide, iron oxide, calcium oxide, magnesium oxide, and titanium oxide. A low-melting glass paste composed of at least one kind of glass component, a binder resin, and a solvent for dissolving and dispersing the same is used. The low-melting glass paste is applied to the peripheral edge portion 13 and dried to obtain laser absorption. Material 14 can be provided.
[0023]
Further, as the other laser absorbing material 14, a metal film can be used. As this metal film, a film made of chromium, nickel, iron, cobalt, silver, titanium, or the like and having a thickness of about 10 to 5 μm is used, and a film is formed on the peripheral end portion 13 by a method such as a sputtering method, a vapor deposition method, or a plating method. Can be formed. Further, a foil having a thickness of about 30 μm or less of these metals may be attached to the peripheral end portion 13 to form the laser absorbing material 14.
[0024]
The width and thickness of the laser absorber 14 are not particularly limited, and are appropriately selected depending on the dimensions, specifications, use environment, and the like of the substrate, but the width is 1 / of the total thickness of the two glass substrates 11 and 12. The thickness is preferably about 30 μm or less. Further, the formation position is not particularly limited, and may be appropriately determined at a position where the gap between the two glass substrates 11 and 12 can be completely closed.
[0025]
Next, a laser beam is applied to the laser absorber 14 provided at the peripheral end 13. In this case, when the laser absorbing material 14 contains a glass component, 50% or more of the light energy is absorbed by the laser absorbing material 14, and the laser light in a wavelength range for heating and melting the laser energy is used. For example, laser light having a wavelength of 840 nm from a GaAsAl-based semiconductor laser or laser light having a wavelength of 1060 nm from a YAG laser can be used.
[0026]
In the case where the laser absorbing material 14 is a metal film, the laser absorbing material 14 may similarly be a laser beam having a wavelength range in which 50% or more of the light energy is absorbed and heated and melted. For example, laser light having a wavelength of 840 nm from a GaAsAl-based semiconductor laser or laser light having a wavelength of 1060 nm from a YAG laser can be used.
[0027]
Then, when the laser light irradiation part is moved along the peripheral edge portion 13 of the glass substrates 11 and 12, the laser absorbing material 14 is sequentially melted and solidified, so that the peripheral portions of the two glass substrates 11 and 12 are melted. The entire end 13 is joined.
In the bonding method of this example, when the distance between the glass substrates 11 and 12 is large, the laser absorbing material 14 is filled more into the gap between the two glass substrates 11 and 12. I can deal with it.
[0028]
FIG. 3 shows a third example of this method of bonding glass substrates, in which a laser absorbing material 14 is provided on the peripheral edges 13 of the glass substrates 11 and 12 as in the second example shown in FIG. Things.
In the bonding method of this example, one corner in the thickness direction of each of the glass substrates 11 and 12 is cut or ground diagonally to form a V-groove-shaped concave portion, and the concave portion is filled with the laser absorbing material 14. .
[0029]
Next, in the same manner as in the previous example, the laser beam is irradiated to melt the laser absorbing material 4 and the bonding is performed. In this method, the bonding area between the solidified laser absorber 14 and the glass substrates 11 and 12 increases, and the bonding strength and durability between the glass substrates 11 and 12 can be greatly increased.
[0030]
Next, a dye-sensitized solar cell is completed by filling and sealing the electrolyte between the two glass substrates 11 and 12. The filling of the electrolytic solution is performed by joining the two glass substrates 11 and 12 through a thin pipe in a gap between the two glass substrates 11 and 12, and then injecting the electrolytic solution through the pipe. And a method of injecting through a small hole previously formed in the second glass substrate 12 serving as a counter electrode. When the electrolytic solution has a high viscosity, the inside of the cell can be evacuated to a reduced pressure, and the inside of the cell can be injected by utilizing the pressure difference formed by this.
[0031]
According to such a joining method, since the joining portion between the two glass substrates is made of an inorganic material such as glass or metal, the joining portion is firmly joined and chemically, mechanically and thermally. It has high properties and exhibits excellent durability and safety. In addition, even if the dye-sensitized solar cell obtained by applying such a bonding method is used outdoors under a severe use condition for a long period of time, the electrolyte leaks from the sealed portion, or moisture or No foreign matter enters.
[0032]
In addition, since the laser light is applied only to the peripheral edge of the glass substrate, the photosensitizing dye carried on the oxide semiconductor porous film formed over the first glass substrate may be heated and deteriorated. Therefore, the first glass substrate carrying the dye can be bonded, and the manufacturing operation is simplified.
[0033]
In the bonding method of the present invention, the above-described bonding method and various bonding methods such as a conventional bonding method using a resin can be used in combination.
Further, the bonding method of the present invention is not limited to the bonding of the glass substrates forming the above-described dye-sensitized solar cell, but includes an electrochromic device, an electroluminescent device, a liquid crystal display device, and the like having a structure in which at least two glass substrates are bonded. It is needless to say that the present invention can also be applied to the various elements.
[0034]
Hereinafter, specific examples will be described.
(Example 1)
Two commercially available soda glass plates were pressed against each other and preheated to 100 ° C., and immediately thereafter, the periphery of these glass plates was irradiated with carbon dioxide laser light while moving the irradiation site. As a result, the two soda glass plates were melted at their peripheral ends and were strongly joined.
[0035]
(Example 2)
A commercially available soda glass plate is prepared, and its peripheral edge is ground and tapered as shown in FIG. 3, then superimposed on each other, and a commercially available soda glass plate is formed in a concave portion of the peripheral edge using a dispenser. A low melting glass space (main component: lead oxide, binder resin, solvent) was applied, dried, and then irradiated with a laser beam from a GaAsAl-based semiconductor laser having a wavelength of 840 nm while moving the irradiation area. As a result, the two soda glass plates were firmly joined by melting the low-melting glass paste.
[0036]
(Example 3)
Using the bonded soda glass plate obtained in Example 1 as a sample, an ultraviolet irradiation test was performed to examine the durability of the bonded state. A UV tester was used for ultraviolet irradiation. A peeling test was performed on the bonded surfaces after 100 hours of continuous ultraviolet irradiation. As a result, there was almost no change from before the ultraviolet irradiation.
On the other hand, in the case of joining using a conventional thermoplastic resin sheet (“Himilan” manufactured by Mitsui Chemicals, Inc.), the joining strength was significantly reduced.
[0037]
(Example 4)
Bonding was performed in the same manner as in Example 2 except that a spacer having a thickness of 25 μm was inserted between the two soda glass plates. The iodine electrolyte was injected from the previously opened micropores, sealed, and irradiated with ultraviolet rays in the same manner as in Example 3 to examine changes. A methoxyacetonitrile solution containing iodine and an iodide salt was used as an iodine electrolyte, and the micropores were covered with a mask so as not to be directly irradiated with ultraviolet rays.
[0038]
When the sample after the completion of the ultraviolet irradiation was confirmed, no change in the appearance was observed. On the other hand, in the sample joined using the thermoplastic resin sheet, a number of bubbles considered to have been generated due to the volatilization and scattering of the electrolyte due to a decrease in the joining strength after irradiation were observed.
[0039]
(Example 5)
A titanium oxide dispersion having an average particle size of 25 nm was applied to a glass plate having a transparent conductive film made of fluorine-added tin oxide, dried, and heated and sintered at 450 ° C. for 1 hour. This was immersed in an ethanol solution of a ruthenium bipyridine complex (N3 dye) for 8 hours to carry the dye, thereby forming a working electrode.
[0040]
In addition, a platinum thin film was formed on a glass plate having a transparent conductive film made of fluorine-added tin oxide by a sputtering method to serve as a counter electrode.
These glass plates were bonded to face each other. The bonding here was performed in the same manner as in the method of irradiating laser light from a semiconductor laser using the low melting point glass paste shown in Example 2. However, only the terminal outlet portion was simply sealed with a thermoplastic resin and an epoxy resin.
The same electrolyte as in Example 4 was used, and the electrolyte was injected and sealed by the same operation.
[0041]
The obtained cell was subjected to an ultraviolet irradiation test in the same manner as in Example 3, and the photoelectric conversion efficiency of the cell after irradiation was determined. As a result, a value of 70% or more of the initial value was maintained for all the samples.
On the other hand, in the cell in which the glass plates were joined by the thermoplastic resin, the conversion characteristics of all the samples were lowered to 50% or less of the initial value.
[0042]
【The invention's effect】
As described above, according to the method for bonding glass substrates of the present invention, since the bonding and sealing between the glass substrates is performed using an inorganic material such as glass or metal, the dye sensitizer having high durability and safety for a long period of time. A photoelectric conversion element such as a solar cell can be manufactured.
[0043]
In addition, since the glass substrate itself or a material containing a glass component or a metal thin film is melted by irradiating a laser beam and bonded, the oxidation formed on the glass substrate when applied to a dye-sensitized solar cell is performed. Since the target semiconductor porous film is not heated, it is possible to target a substrate in which the photosensitizing dye is supported on the oxide semiconductor porous film, so that the production operation is not complicated.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first example of a bonding method of the present invention.
FIG. 2 is a schematic configuration diagram showing a second example of the joining method of the present invention.
FIG. 3 is a schematic configuration diagram showing a second example of the joining method of the present invention.
FIG. 4 is a schematic cross-sectional view showing a dye-sensitized solar cell as an example of an object of the bonding method of the present invention.
[Explanation of symbols]
11: first substrate, 12: second substrate, 14: laser absorber.

Claims (9)

少なくとも2枚のガラス基板を対向させ、これらガラス基板の周辺端部の側方からレーザー光を照射してこれらガラス基板を接合することを特徴とするガラス基板の接合方法。A method for bonding glass substrates, wherein at least two glass substrates are opposed to each other, and the glass substrates are bonded by irradiating a laser beam from a side of a peripheral edge of the glass substrates. ガラス基板を溶融して接合することを特徴とする請求項1記載のガラス基板の接合方法。2. The method for joining glass substrates according to claim 1, wherein the glass substrates are joined by melting. ガラス基板をなす材料に吸収される波長のレーザー光を用いることを特徴とする請求項2記載のガラス基板の接合方法。3. The method according to claim 2, wherein a laser beam having a wavelength that is absorbed by a material forming the glass substrate is used. ガラス基板の周辺端部にレーザー吸収材を配し、このレーザー吸収材を溶融してガラス基板を接合することを特徴とする請求項1記載のガラス基板の接合方法。2. The method for bonding glass substrates according to claim 1, wherein a laser absorbing material is disposed at a peripheral edge of the glass substrate, and the glass substrate is bonded by melting the laser absorbing material. レーザー吸収材をなす材料に吸収される波長のレーザー光を用いることを特徴とする請求項4記載のガラス基板の接合方法。5. The method for bonding glass substrates according to claim 4, wherein a laser beam having a wavelength that is absorbed by a material forming the laser absorber is used. レーザー吸収材が、ガラス成分を含む材料であることを特徴とする請求項4に記載のガラス基板の接合方法。The method according to claim 4, wherein the laser absorbing material is a material containing a glass component. レーザー吸収材が、金属薄膜であることを特徴とする請求項4記載のガラス基板の接合方法。The method for bonding glass substrates according to claim 4, wherein the laser absorber is a metal thin film. 請求項1ないし7のいずれかに記載の接合方法によって接合された構造を有することを特徴とする素子。An element having a structure joined by the joining method according to claim 1. 色素増感太陽電池であることを特徴とする請求項8記載の素子。The device according to claim 8, which is a dye-sensitized solar cell.
JP2003087713A 2003-03-27 2003-03-27 Joining method of glass substrate Withdrawn JP2004292247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087713A JP2004292247A (en) 2003-03-27 2003-03-27 Joining method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087713A JP2004292247A (en) 2003-03-27 2003-03-27 Joining method of glass substrate

Publications (1)

Publication Number Publication Date
JP2004292247A true JP2004292247A (en) 2004-10-21

Family

ID=33402036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087713A Withdrawn JP2004292247A (en) 2003-03-27 2003-03-27 Joining method of glass substrate

Country Status (1)

Country Link
JP (1) JP2004292247A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232641A (en) * 2005-02-28 2006-09-07 Stlab Inc Microchip manufacturing method and manufacturing apparatus, and microchip
JP2006315902A (en) * 2005-05-12 2006-11-24 Tsutae Shinoda Apparatus for manufacturing display device
JP2007042460A (en) * 2005-08-03 2007-02-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its sealing method
JP2007048674A (en) * 2005-08-11 2007-02-22 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its sealing method
JP2007335197A (en) * 2006-06-14 2007-12-27 Fujikura Ltd Photoelectric conversion element
WO2008038452A1 (en) * 2006-09-27 2008-04-03 Shinmaywa Industries, Ltd. Glass member fusing device and glass fusing system using it
US7570422B2 (en) 2005-05-13 2009-08-04 Mitsubishi Denki Kabushiki Kaisha Display device, multi-screen display device, and display device manufacturing method
JP2009196859A (en) * 2008-02-22 2009-09-03 Hamamatsu Photonics Kk Fusing adhesion method of glass
WO2009128527A1 (en) 2008-04-18 2009-10-22 日本電気硝子株式会社 Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
JP2010280554A (en) * 2009-06-08 2010-12-16 Nippon Electric Glass Co Ltd Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell
US8106294B2 (en) 2008-04-18 2012-01-31 Nippon Electric Glass Co., Ltd. Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
CN102568866A (en) * 2011-12-23 2012-07-11 彩虹集团公司 Method for packaging dye sensitized solar cell by low glass powder
WO2013179530A1 (en) * 2012-05-30 2013-12-05 パナソニック株式会社 Photoelectric conversion device
EP2397450A3 (en) * 2010-06-18 2014-06-18 First Solar Malaysia SDN.BHD System and method for modifying a glass article
US8871348B2 (en) 2009-07-24 2014-10-28 Nippon Electric Glass Co. Ltd. Glass substrate with conductive film for solar cell
JP2015030625A (en) * 2013-07-31 2015-02-16 三星ダイヤモンド工業株式会社 Glass substrate fusing method by laser beam, and laser processing device
WO2015027534A1 (en) * 2013-08-28 2015-03-05 深圳市华星光电技术有限公司 Method for packaging glass substrates
JP2015057362A (en) * 2013-08-09 2015-03-26 日本電気硝子株式会社 Method for manufacturing glass tube and glass tube
JP2015512057A (en) * 2012-01-25 2015-04-23 アップル インコーポレイテッド Fused glass device housing
WO2015166823A1 (en) * 2014-05-02 2015-11-05 三星ダイヤモンド工業株式会社 Method of glass plate fusion mediated by laser beam and laser processing device
US9202957B2 (en) 2010-11-30 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Photoelectric converter device and method for its manufacture
US9725359B2 (en) 2011-03-16 2017-08-08 Apple Inc. Electronic device having selectively strengthened glass
US10133156B2 (en) 2012-01-10 2018-11-20 Apple Inc. Fused opaque and clear glass for camera or display window
US10185113B2 (en) 2009-03-02 2019-01-22 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
US10189743B2 (en) 2010-08-18 2019-01-29 Apple Inc. Enhanced strengthening of glass
US10401904B2 (en) 2011-05-04 2019-09-03 Apple Inc. Housing for portable electronic device with reduced border region
CN113345983A (en) * 2021-06-08 2021-09-03 天津爱旭太阳能科技有限公司 Manufacturing method of double-glass assembly preventing water vapor from entering and double-glass assembly

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232641A (en) * 2005-02-28 2006-09-07 Stlab Inc Microchip manufacturing method and manufacturing apparatus, and microchip
JP2006315902A (en) * 2005-05-12 2006-11-24 Tsutae Shinoda Apparatus for manufacturing display device
US7570422B2 (en) 2005-05-13 2009-08-04 Mitsubishi Denki Kabushiki Kaisha Display device, multi-screen display device, and display device manufacturing method
JP2007042460A (en) * 2005-08-03 2007-02-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its sealing method
JP2007048674A (en) * 2005-08-11 2007-02-22 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its sealing method
JP2007335197A (en) * 2006-06-14 2007-12-27 Fujikura Ltd Photoelectric conversion element
WO2008038452A1 (en) * 2006-09-27 2008-04-03 Shinmaywa Industries, Ltd. Glass member fusing device and glass fusing system using it
JP2009196859A (en) * 2008-02-22 2009-09-03 Hamamatsu Photonics Kk Fusing adhesion method of glass
US8106294B2 (en) 2008-04-18 2012-01-31 Nippon Electric Glass Co., Ltd. Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
WO2009128527A1 (en) 2008-04-18 2009-10-22 日本電気硝子株式会社 Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
US10185113B2 (en) 2009-03-02 2019-01-22 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
JP2010280554A (en) * 2009-06-08 2010-12-16 Nippon Electric Glass Co Ltd Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell
US8871348B2 (en) 2009-07-24 2014-10-28 Nippon Electric Glass Co. Ltd. Glass substrate with conductive film for solar cell
EP2397450A3 (en) * 2010-06-18 2014-06-18 First Solar Malaysia SDN.BHD System and method for modifying a glass article
US10189743B2 (en) 2010-08-18 2019-01-29 Apple Inc. Enhanced strengthening of glass
US9202957B2 (en) 2010-11-30 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Photoelectric converter device and method for its manufacture
US12043571B2 (en) 2011-03-16 2024-07-23 Apple Inc. Electronic device having selectively strengthened glass
US11518708B2 (en) 2011-03-16 2022-12-06 Apple Inc. Electronic device having selectively strengthened glass
US10676393B2 (en) 2011-03-16 2020-06-09 Apple Inc. Electronic device having selectively strengthened glass
US9725359B2 (en) 2011-03-16 2017-08-08 Apple Inc. Electronic device having selectively strengthened glass
US10401904B2 (en) 2011-05-04 2019-09-03 Apple Inc. Housing for portable electronic device with reduced border region
US12079032B2 (en) 2011-05-04 2024-09-03 Apple Inc. Housing for portable electronic device with reduced border region
US11681326B2 (en) 2011-05-04 2023-06-20 Apple Inc. Housing for portable electronic device with reduced border region
US10983557B2 (en) 2011-05-04 2021-04-20 Apple Inc. Housing for portable electronic device with reduced border region
US10656674B2 (en) 2011-05-04 2020-05-19 Apple Inc. Housing for portable electronic device with reduced border region
CN102568866A (en) * 2011-12-23 2012-07-11 彩虹集团公司 Method for packaging dye sensitized solar cell by low glass powder
US10551722B2 (en) 2012-01-10 2020-02-04 Apple Inc. Fused opaque and clear glass for camera or display window
US10133156B2 (en) 2012-01-10 2018-11-20 Apple Inc. Fused opaque and clear glass for camera or display window
JP2015512057A (en) * 2012-01-25 2015-04-23 アップル インコーポレイテッド Fused glass device housing
KR101773735B1 (en) 2012-01-25 2017-08-31 애플 인크. Fused glass device housings
WO2013179530A1 (en) * 2012-05-30 2013-12-05 パナソニック株式会社 Photoelectric conversion device
JP2015030625A (en) * 2013-07-31 2015-02-16 三星ダイヤモンド工業株式会社 Glass substrate fusing method by laser beam, and laser processing device
JP2015057362A (en) * 2013-08-09 2015-03-26 日本電気硝子株式会社 Method for manufacturing glass tube and glass tube
WO2015027534A1 (en) * 2013-08-28 2015-03-05 深圳市华星光电技术有限公司 Method for packaging glass substrates
JP2015212208A (en) * 2014-05-02 2015-11-26 三星ダイヤモンド工業株式会社 Glass substrate fusion method with laser beam, and laser processing device
WO2015166823A1 (en) * 2014-05-02 2015-11-05 三星ダイヤモンド工業株式会社 Method of glass plate fusion mediated by laser beam and laser processing device
CN113345983A (en) * 2021-06-08 2021-09-03 天津爱旭太阳能科技有限公司 Manufacturing method of double-glass assembly preventing water vapor from entering and double-glass assembly
CN113345983B (en) * 2021-06-08 2023-01-03 天津爱旭太阳能科技有限公司 Manufacturing method of double-glass assembly preventing water vapor from entering and double-glass assembly

Similar Documents

Publication Publication Date Title
JP2004292247A (en) Joining method of glass substrate
JP4467879B2 (en) Manufacturing method of dye-sensitized solar cell
WO2010041729A1 (en) Functional device and manufacturing method therefor
TWI381535B (en) Pigment Sensitive Photoelectric Conversion Device and Manufacturing Method thereof
JP5286325B2 (en) Method for producing dye-sensitized solar cell
JP2012511236A (en) Glass sealing method for dye-sensitized solar cell
JP5398256B2 (en) Photoelectric conversion device
JP5574657B2 (en) Photoelectric conversion device
JP2007042460A (en) Dye-sensitized solar cell and its sealing method
JP5081405B2 (en) Method for manufacturing photoelectric conversion element
JP2015191986A (en) Dye-sensitized solar cell and method for producing the same
JP2007048674A (en) Dye-sensitized solar cell and its sealing method
JP5348475B2 (en) Solar cell module
JP5465446B2 (en) Photoelectric conversion element
JP5160045B2 (en) Photoelectric conversion element
JP2008235104A (en) Photoelectric conversion element and manufacturing method thereof
JP4830323B2 (en) Method for producing dye-sensitized solar cell module
JP2008041258A (en) Substrate for action electrode, and photoelectric conversion element
JP4531388B2 (en) Method for manufacturing photoelectric conversion element
JP7518658B2 (en) Photoelectric conversion element
CN104576073B (en) DSSC hot melt fitting method for packing
KR101187112B1 (en) Method of manufacturing dye-sensitized solar cell using laser and dye-sensitized solar cell
JP2007287483A (en) Dye-sensitized solar cell
JP2007335197A (en) Photoelectric conversion element
US20130340809A1 (en) Dye-sensitized photovoltaic device and fabrication method for the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606