[go: up one dir, main page]

JP2004291490A - Write-once optical information recording medium and method for manufacturing it - Google Patents

Write-once optical information recording medium and method for manufacturing it Download PDF

Info

Publication number
JP2004291490A
JP2004291490A JP2003088952A JP2003088952A JP2004291490A JP 2004291490 A JP2004291490 A JP 2004291490A JP 2003088952 A JP2003088952 A JP 2003088952A JP 2003088952 A JP2003088952 A JP 2003088952A JP 2004291490 A JP2004291490 A JP 2004291490A
Authority
JP
Japan
Prior art keywords
write
optical information
recording medium
information recording
once optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003088952A
Other languages
Japanese (ja)
Other versions
JP4070650B2 (en
Inventor
Masaru Magai
勝 真貝
Michiaki Shinozuka
道明 篠塚
Hiroyuki Iwasa
博之 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003088952A priority Critical patent/JP4070650B2/en
Publication of JP2004291490A publication Critical patent/JP2004291490A/en
Application granted granted Critical
Publication of JP4070650B2 publication Critical patent/JP4070650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a write-once optical information recording medium using an inorganic recording material which is capable of corresponding to a high density mark edge recording, having a simpler constitution in comparison with a case where a phase change material is used, having a good storage stability in a long time in comparison with a case where an organic coloring matter is used. <P>SOLUTION: The write-once optical information recording medium (1) has a recording layer comprising a mixture of a metal carbide and a metal oxide and capable of optically changing by irradiating it with a light with a wave length of 600-800 nm and recording a signal and reading it out on a transparent base. In addition, it includes (2) the write-once optical information recording medium described in (1) having a dielectric layer adjoining the recording layer, (3) the write-once optical information recording medium described in (1) or (2) wherein the metal is at least one selected from Si, Ti, Ta, Zr, V and W, and (4) the optical information recording medium described in either one of (1)-(3) wherein a light transmittance of the recording layer is 20-70%, and a refractive index n is ≥2.0. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、記録時及び非記録時における環境劣化の生じない無機材料により構成された追記型光情報記録媒体に関する。
【0002】
【従来技術】
近年、映像用、音楽用又はコンピューター用のストレージとして、光記録媒体が頻繁に用いられる様になっている。特に、CD−R/RW、DVD−R/RW、DVD+R/RWなどである。光ディスクは作り易く製造工程が安定している点及びCD−ROM、DVD−ROMとの互換性の良い点から広く普及するに至っている。これら記録可能な光記録媒体の中でも、追記型記録媒体は工程が簡略であり製造コストが安価である点や、使用される際の改ざん防止性が良好である点などから最も普及が進んでいる。上記CD−R、DVD−R、DVD+Rは記録材料的には、主に有機色素を用いた記録層を感熱発色させる方法により記録がなされている。
有機色素を用いたタイプは、一般に、基板上に有機色素等からなる記録層(光吸収層)を設け、更にその上にアルミ、金、銀等からなる反射層を設けた構成となっている。外部エネルギーとしてレーザ光を照射することにより、上記記録層を変形或いは変性させて光学特性を変化させ、情報を記録するものである。そして、記録部分と未記録部分との反射率差を利用して情報を光学的に再生する。
【0003】
一方で、無機材料によりこの追記型情報光記録媒体を構成しようという試みがある。無機材料による追記型光記録方式が注目されるに至った経緯は、CDからDVDへと記録密度が高くなるに従い、有機色素では相変化型に代表される無機材料に比較してマークエッジ記録の制御性が悪く、エッジが設定位置に正しい形状で且つ鮮明に形成され難いと考えられたためである。(特許文献1)
この無機材料による追記型光情報記録媒体に関する最近の特許公報としては、反応により分解しガスを発生するタイプの材料構成によるもの(特許文献2)、反応により光学特性が変化し記録部と非記録部との反射率差によるもの(特許文献3〜5)、その中でも特に、反応のための機能層を有するもの(特許文献6)や光照射に伴う変形により記録を行うもの(特許文献7)、相変化材料の光学特性の変化により記録するもの(特許文献1)などが挙げられる。
【0004】
【特許文献1】
国際公開99/30908号パンフレット、第4頁、18〜26行
【特許文献2】
特開平5−40959号公報
【特許文献3】
特開平5−334720号公報
【特許文献4】
特開平11−227334号公報
【特許文献5】
国際公開00/4536号パンフレット
【特許文献6】
特開2002−117576号公報
【特許文献7】
特開2002−298431号公報
【0005】
【発明が解決しようとする課題】
本発明は、高密度のマークエッジ記録に対応でき、相変化材料を用いた場合に比べて構成が単純であり、有機色素を用いた場合に比べて長期保存性の良い、無機記録材料を用いた追記型光情報記録媒体及びその製造方法の提供を目的とする。
【0006】
【課題を解決するための手段】
上記課題は、次の1)〜10)の発明(以下、本発明1〜10という)によって解決される。
1) 透明基板上に、金属の炭化物と酸化物の混合体からなり、波長600〜800nmの光を照射することにより光学的に変化し信号の記録及び読み出しを行うことができる記録層を有することを特徴とする追記型光情報記録媒体。
2) 記録層に隣接した誘電体層を有することを特徴とする1)記載の追記型光情報記録媒体。
3) 金属がSi、Ti、Ta、Zr、V、Wから選ばれる少なくとも一つであることを特徴とする1)又は2)記載の追記型光情報記録媒体。
4) 記録層の光透過率が20〜70%であり、かつ屈折率nが2.0以上であることを特徴とする1)〜3)の何れかに記載の追記型光情報記録媒体。
5) 2層以上の記録層を有し、最初に光が入射する記録層の光透過率が40〜70%であり、かつ屈折率nが2.0以上であることを特徴とする1)〜3)の何れかに記載の追記型光情報記録媒体。
6) 誘電体層がZnSを主成分とし、TiO、SiO、ZrOから選ばれる少なくとも一つを含む材料からなることを特徴とする2)〜5)の何れかに記載の追記型光情報記録媒体。
7) 誘電体層中のZnSの比率が60〜95モル%であることを特徴とする6)記載の追記型光情報記録媒体。
8) 金属の炭化物と酸化物の混合物をターゲットとしRFスパッタ法で記録層を成膜することを特徴とする1)〜7)の何れかに記載の追記型光情報記録媒体の製造方法。
9) 金属の炭化物と酸化物の混合物(但し、比抵抗0.5Ω・cm以下)をターゲットとして直流又はパルス状の電圧波形を持つ直流スパッタにより記録層を成膜することを特徴とする1)〜7)の何れかに記載の追記型光情報記録媒体の製造方法。
10) 金属の炭化物のみ、又は、炭化物と酸化物(但し、比抵抗0.5Ω・cm以下)の混合物をターゲットとし、酸素を導入した雰囲気下で直流又はパルス状の電圧波形を持つ直流スパッタにより記録層を成膜することを特徴とする1)〜7)の何れかに記載の追記型光情報記録媒体の製造方法。
【0007】
以下、上記本発明について詳しく説明する。
本発明者等は、相変化材料を用いる場合に比べて構成が単純で、しかも長期保存特性を確保できる材料として、光吸収があり融点が高く安定な材料を検討した。このような材料としては各金属の窒化物又は炭化物を挙げることができるが、単に窒化物又は炭化物を用いただけでは融点と光吸収性は高いものの導電性もあるため所定のエネルギーを加えた場合に、その導電性により熱の拡散が生じ、本発明の目的であるマークエッジ制御性を得る点で有効でないと考えられた。更に、炭化物はガラス・プレス・レンズの型材にも使われる材料であり、光情報記録媒体で通常良く用いられる誘電体材料(カルコゲン成分を含みSiO、TiOやZnO等ガラスを含む混合体)或いは酸素原子を有する有機基板との密着性が必ずしも良好でない。そこで、光吸収性があり導電性を小さくでき、更に誘電体ガラス及び有機材料(透明基板及び耐環境保護層を想定)との密着性を併せ持つ記録材料を探求した結果、金属の炭化物と酸化物の混合体が好ましいことを突き止め本発明に至った。この混合体を用いると、炭化物により光吸収性を確保でき酸化物の混合によって導電性の低下及び誘電体や有機材料との密着性向上を図ることができる。記録及び読み出しに用いる光としては広い波長範囲のものを使用できるが、600〜800nm程度が好ましい。
【0008】
更に、反射率の調整やダイナミックレンジ(記録有無の反射率差)向上のために、記録層に隣接して誘電体層を設けることが好ましい。
また、金属としてはSi、Ti、Ta、Zr、V、W、から選ばれる少なくとも一つを用いることが好ましい。これらの元素は、それぞれの炭化物の融点が非常に高く(2810〜3880℃)、室温程度では極めて安定であるため優れている。
また、上記記録層は、光透過率が20〜70%であり、かつ混合体の屈折率nが2.0以上であることが好ましい。光透過率が20%未満では、取り出せる信号反射率が極端に低くなり、反射率差を読み取るのに誤差を生じてしまう。また、70%を越えると、照射した光エネルギーが記録層に充分に吸収されず透過してしまうので、記録した信号の反射率差を取り出し難くなる。そこで透過と吸収のバランスの上でこの反射率差を有効に利用できる範囲として上記20〜70%の範囲が良い。また、記録層の屈折率nに関して、nが2.0未満では所定の光エネルギーを照射した際の光学変化が絶対値として小さくなり、信号振幅が取り難くなる。炭化物と酸化物の組成割合だけで単純に光透過率が同じになる訳ではないので、組成割合ではなく光透過率、即ち光吸収の比率により規定するのが好ましい。また、2層以上の記録層を有する多層光情報記録媒体を作製することも可能であるが、その場合には、最初に光が入射する記録層の光透過率がレーザ光照射方向奥側に位置する記録層の記録特性に大きく影響するので、該最初に光が入射する記録層の光透過率を40〜70%とすることが好ましい。
記録層の膜厚は、通常5〜30nm程度、好ましくは10〜20nmとする。
【0009】
誘電体層としては、ZnSを主成分とし、TiO、SiO、ZrOから選ばれる少なくとも一つを含む材料を用いると良い。また、誘電体層中のZnSの比率は60〜95モル%とすることが好ましい。95モル%を越えると、青紫波長である405nmの光透過率が低くなると共に、ZnS単体の特性とほぼ同じとなるため結晶化し易く耐環境性が悪くなってしまう。また、60モル%未満では成膜速度及び屈折率nが小さくなり過ぎるため生産効率が落ちると共に、同じ光学膜厚を得るためには膜厚を厚くする必要が出てくる。
誘電体層の膜厚は、通常、下部誘電体層(記録層と基板の間)が30〜200nm程度、上部誘電体層が10〜20nm程度である。
記録層の成膜方法としては、金属の炭化物と酸化物の混合物をターゲットとしRFスパッタ法で形成する方法、比抵抗0.5Ω・cm以下の金属の炭化物と酸化物の混合物をターゲットとし、直流又はパルス状の電圧波形を持つ直流スパッタにより成膜する方法、比抵抗0.5Ω・cm以下の金属の炭化物又は、炭化物と酸化物の混合物をターゲットとし、酸素を導入した雰囲気下で直流又はパルス状の電圧波形を持つ直流スパッタにより成膜する方法などがある。
【0010】
【実施例】
以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。例えばレーザ光波長は660nmに限らず、780nmなどでも同等の結果が得られる。
【0011】
実施例1
図1に示す層構造の追記型光ディスクを次のようにして作製した。
先ず、案内溝を設けた清浄で透明なポリカーボネート基板1(厚さ0.6mm、トラックピッチ0.74μm、溝幅0.37μm、溝深さ310Å)の上に、記録層3として、厚さ20nmのSiCとSiOの混合膜を形成した。
次に、記録層の上面に紫外線硬化型樹脂を塗布した後、塗布面に紫外線を照射し、厚さ4μmの耐環境保護層6を形成した。
更に、UV接着剤を用いて同じ0.6mmのブランク板と貼り合わせ、厚さが1.2mmのディスクを完成させた。
記録層は、SiCとSiOの混合体ターゲットを用いて、Arをその分圧が5×10−3Torrとなるように導入し、酸素は導入せずに、デュティー80%のパルス状電圧波形を持つ直流スパッタにより形成した。このターゲットの組成は、SiC:SiO=95:5(モル%)であり、比抵抗は5mΩ・cmであった。
記録層の屈折率nは波長660nmで2.1であり、光透過率は波長660nmで65%であった。
作製された光ディスクの記録層は非晶質状態であった。
この光ディスクを線速度3.5m/secで回転させ、波長660nm、NA0.65、照射パワー8〜10mW、単純矩形波で、パルス幅が20〜25nsecのレーザ光を照射して記録を行い、最短マーク長が0.4μm(CD系の約1/2のマーク長)の、8−16変調方式のランダム信号を記録した。反射率は15%、モジュレーション60%である。
このランダムパターン記録を行ったときのジッターは8.3%であり、書き込み、再生共に特にトラブルは発生しなかった。再生用レーザ光のパワーは0.5mWとした。
次に、記録チェック後の光ディスクを80℃85%RHの高温高湿槽に400時間保管し、再度ジッターを測定したところ、それぞれ0.2%以下の変化であり問題となるレベルではなかった。また、膜の浮き・膜の剥がれや異常と思われる班点状変色の発現などは観察されなかった。
【0012】
実施例2
図2に示す層構造の追記型光ディスクを作製した。
先ず、案内溝を設けた清浄で透明なポリカーボネート基板1(厚さ0.6mm、トラックピッチ0.74μm、溝幅0.37μm、溝深さ310Å)の上に、ZnS・SiO〔70:30(モル%)〕からなる誘電体層2を膜厚50〜100nmの範囲で10nmきざみで各条件1枚ずつRFスパッタリングにより形成した。
次に、記録層3として厚さ20nmのZrCとZrOの混合膜を形成した。
次に、記録層の上面に紫外線硬化型樹脂を塗布した後、塗布面に紫外線を照射し、厚さ4μmの耐環境保護層6を形成した。
更に、UV接着剤を用いて同じ0.6mmのブランク板と貼り合わせ、厚さが1.2mmのディスクを完成させた。
記録層3は、ZrCとZrO混合体のターゲットを用いて、Ar分圧が5×10−3Torrとなるように導入し、デュティー80%のパルス状電圧波形を持つ直流スパッタにより形成した。このターゲットの組成は、ZrC80原子%、ZrO20原子%であり、比抵抗は6.5mΩ・cmであった。出来上がった記録層の屈折率nは波長660nmで2.5であった。また、光透過率は波長660nmで30%であった。
作製された光ディスクの記録層は、別途作製した記録層の単膜をX線回折することにより評価した結果、非晶質状態であった。
この光ディスクを線速度3.5m/secで回転させ、波長660nm、NA0.65、照射パワー8〜10mW、単純矩形波で、パルス幅が20〜25nsecのレーザ光を照射して記録を行い、最短マーク長が0.4μm(CD系の約1/2のマーク長)の、8−16変調方式のランダム信号を記録した。反射率はZnS・SiO誘電体層の厚みによって変化し70〜80nmでボトム値が約6%となり、相変化光記録媒体のように誘電体層の厚みにより反射率の調整が可能であることが解った。更に、ボトム値でモジュレーションが最大となり73%が得られた。反射率の変化とモジュレーションの変化を図4及び図5に示す。
このランダムパターン記録を行ったときのジッターは8.2%であり、書き込み、再生共に特にトラブルは発生しなかった。再生用レーザ光のパワーは0.5mWとした。
次に、記録チェック後の光ディスクを80℃85%RHの高温高湿槽に400時間保管し、再度ジッターを測定したところ、それぞれ0.3%以下の変化であり問題となるレベルではなかった。また、膜の浮き・膜の剥がれや異常と思われる班点状変色の発現などは観察されなかった。
【0013】
実施例3
本発明の光情報記録媒体の記録原理を検討するため、次のようなテストを行った。
実施例2で誘電体層の上に積層した記録層の上側に、更に、熱変形を阻止する目的でZnS・SiOからなる膜厚12〜14nmの誘電体層を形成した。
更に、その上面に紫外線硬化型樹脂を塗布した後、塗布面に紫外線を照射して厚さ4μmの耐環境保護層6を形成し、厚さ0.6mmの単板ディスクを作製した。そして、レーザ照射による熱変形が光学的コントラストを生ずる原因なのか、それとも他の光学的特性変化が原因なのかをチェックした。
その結果、光記録層の上に誘電体層を積層した場合は、若干モジュレーションが増大した。そこで、本発明者等は本発明の光記録の原理は熱変形ではないものと判断した。また、相変化を起こす材料とも考えられないため、まだ記録原理の特定はできていないが、レーザ光照射により確実に反射率変化が読み取れるので、炭化物・酸化物混合体中のフォトダークニング(原子配列変化による記録)によるものではないかと予想される。
【0014】
実施例4(最初に光が入射する記録層の光透過率が40〜70%である例)
実施例1で用いたポリカーボネート樹脂基板からなる第1基板上に、下部誘電体層(膜厚80nm)、記録層(膜厚10nm)、上部誘電体層(膜厚12nm)の各層をスパッタリングにより順次形成し、記録層を誘電体層で挟んだ図3に示す層構成の光ディスクを作製した(以下、第1情報層という)。誘電体層はZnS・SiO〔80:20(モル%)〕とした。記録層はTiC55原子%、TiO45原子%からなるターゲットを用いて酸素を導入しないRFスパッタリングにより形成した。別途測定したところでは、第1情報層の記録層の光透過率は波長660nmで60%であった。
次に、第1基板と同様の基板を第2基板として、その上に反射層(膜厚100nm)、誘電体層(膜厚12nm)、光記録層(膜厚12nm)、誘電体層(膜厚100nm)の各層を順次形成した(以下、第2情報層という)。誘電体層にはZnS・SiO〔80:20(モル%)〕、記録層には第1情報層と同様な組成の材料、反射層にはAgの比率が95原子%以上のAg合金を用いてスパッタリングにより形成した。
次に、第1情報層の膜面上に紫外線硬化樹脂を塗布し、第2基板の第2情報層面側を貼り合わせてスピンコートし、第1基板側から紫外線を照射して紫外線硬化樹脂を硬化させて中間層とし、2つの情報層を有する2層光ディスク(2層追記型光情報記録媒体)を作製した。中間層の厚さは50μmとした。
作成された各光ディスクについて、波長660nmで、実施例1〜2と同様に第1情報層の評価を行ったところ、実施例2と比べて、反射率が約10%以上向上し18〜22%になった。その他の特性は、モジュレーションが63%、ランダムパターンを記録したときのジッターが8.3%であり、書き込み、再生共に特にトラブルは発生しなかった。再生用レーザ光のパワーは0.8mWとした。更に、第2情報層についても、同様の波形パターンにより記録を行い評価したところ反射率が10〜15%になった。その他の特性は、モジュレーションが60%、ランダムパターンを記録したときのジッターが8.7%であり、書き込み、再生共に特にトラブルは発生しなかった。
次に、記録チェック後の光ディスクを80℃85%RHの高温高湿槽に400時間保管し、再度ジッターを測定したところ、それぞれ0.2%以下の変化であり問題となるレベルではなかった。また、膜の浮き・膜の剥がれや異常と思われる班点状変色の発現などは観察されなかった。
【0015】
実施例5
TiC95原子%、TiO5原子%からなるターゲットを用い、Arガスに加え2.5sccmの流量で酸素を導入して(Ar分圧が5×10−3Torr、酸素分圧が5.2×10−4Torr)スパッタリングを行い記録層を形成した他は、実施例4と同様にして光ディスクを作製した。上記組成のターゲットの比抵抗は4.5mΩ・cmであった。
上記のようにして形成した記録層(Tiの炭化物と酸化物混合膜)の特性は、実施例4で形成した記録層の特性とほぼ同じであった。即ち、屈折率nは波長660nmで2.74であり、nの値は高くなったが、光透過率は波長660nmで59%と実施例4と同等であった。
また、実施例4と同様にして第1情報層の評価を行ったところ、反射率18〜22%、モジュレーション62%、ランダムパターンを記録したときのジッターは8.35%であり、書き込み、再生共に特にトラブルは発生しなかった。再生用レーザ光のパワーは0.8mWとした。更に、第2情報層についても、実施例4と同様に、書き込み、再生共に特にトラブルは発生しなかった。
高温高湿槽による保存特性評価を行った結果も実施例4と同じであった。
【0016】
実施例6
TaC80原子%、Ta20原子%からなるターゲットを用い、Arガスに加え3.5sccmの流量で酸素を導入して(Ar分圧が4×10−3Torr、酸素分圧が7.2×10−4Torr)スパッタリングを行って記録層を形成した他は、実施例4と同様にして光ディスクを作製した。上記組成のターゲットの比抵抗は0.51mΩ・cmであった。
上記のようにして形成した記録層(Taの炭化物と酸化物混合膜)の特性は、実施例4で形成した記録層の特性とほぼ同じであった。即ち、屈折率nは波長660nmで2.3であり、光透過率は波長660nmで61%と実施例4と同等であった。
また、実施例4と同様にして第1情報層の評価を行ったところ、反射率18.5〜22.5%、モジュレーション61.5%、ランダムパターンを記録したときのジッターは8.3%であり、書き込み、再生共に特にトラブルは発生しなかった。再生用レーザ光のパワーは0.8mWとした。更に、第2情報層についても、実施例4と同様に、書き込み、再生共に特にトラブルは発生しなかった。
高温高湿槽による保存特性評価を行った結果も実施例4と同じであった。
【0017】
実施例7
記録層用のターゲットとして、SiCとTiOの混合体ターゲットを用いた他は、全て実施例1と同様にして光ディスクを製作した。このターゲットの組成は、SiC:TiO=80:20(モル%)であり、比抵抗は7mΩ・cmであった。スパッタガスとして、Arをその分圧が5×10−3Torrとなるように導入し、酸素は導入せずに、デュティー80%のパルス状電圧波形を持つ直流スパッタにより形成した。
記録層の屈折率nは波長660nmで2.3であり、光透過率は波長660nmで65%であった。
作製された光ディスクの記録層は非晶質状態であった。
この光ディスクを線速度3.5m/secで回転させ、波長660nm、NA0.65、照射パワー8〜10mW、単純矩形波で、パルス幅が20〜25nsecのレーザ光を照射して記録を行い、最短マーク長が0.4μm(CD系の約1/2のマーク長)の、8−16変調方式のランダム信号を記録した。反射率は16%、モジュレーション60%である。
このランダムパターン記録を行ったときのジッターは8.4%であり、書き込み、再生共に特にトラブルは発生しなかった。再生用レーザ光のパワーは0.5mWとした。
次に、記録チェック後の光ディスクを80℃85%RHの高温高湿槽に400時間保管し、再度ジッターを測定したところ、それぞれ0.2%以下の変化であり問題となるレベルではなかった。また、膜の浮き・膜の剥がれや異常と思われる班点状変色の発現などは観察されなかった。
また、ターゲットをSiCとZrO〔SiC:ZrO=80:20(モル%)〕、又はSiCとTa〔SiC:Ta=80:20(モル%)〕に変えた場合についても、ほぼ同様の結果が得られた。
【0018】
実施例8
誘電体層2の材料をZnS・SiO〔70:30(モル%)〕からZnS・TiO〔70:30(モル%)〕に変えた他は、実施例2と同様にして追記型光ディスクを作製したところ、SiOに比較してTiOの方が屈折率が大きいので、図4及び図5のカーブが14nm左にズレたカーブとなった。
同様に、ZnS・ZrO〔70:30(モル%)〕を用い場合は、図4及び図5のカーブが5nm左にズレたカーブとなった。
次に、記録チェック後の光ディスクを80℃85%RHの高温高湿槽に400時間保管し、再度ジッターを測定したところ、それぞれ0.3%以下の変化であり問題となるレベルではなかった。また、膜の浮き・膜の剥がれや異常と思われる班点状変色の発現などは観察されなかった。
【0019】
比較例1
記録層用のターゲットをSiC単体とした他は、実施例1と同様にして光ディスクを作製した。このターゲットの比抵抗はSiCとSiOの混合体ターゲットよりも小さく2mΩ・cmであった。このターゲットを用いて、実施例1と同様にして記録層を形成した。この記録層の特性は、膜厚20nmの場合、屈折率nが波長660nmで2.5であった。このときの光透過率は、波長660nmで55%であった。
次いで、実施例1と同様にして1.2mm厚の光ディスクを完成させた。
この光ディスクを波長660nmのレーザを用いて評価したところ、ジッター値が12〜20%であり、しかも安定した値が得られなかった。そこで、この光ディスクと同一構造のテストサンプルを再度作製し、同じ条件で記録した後に分解して走査型電子顕微鏡で観察したところ、盛り上がるような変形と膜の剥離と思われる膜浮きが生じていた。
また、貼り合わせ・ジッター評価を行った光ディスクの反射率は18%、モジュレーションは45%であった。
更に、この光ディスクを80℃85%RHの高温高湿槽に400時間保管したところ、記録したマークの反射率反転等が生じて、明瞭なアイパターンが観察できないばかりか、ジッターを測定できるレベルではなかった。
【0020】
比較例2
SiC単体の記録膜を光透過率が18%(即ち20%未満)となるように厚く成膜した他は、実施例1と同様にして光ディスクを作製し評価した。
その結果、反射率は22%となったがモジュレーションは40%と低かった。また、比較例1と同様にして高温高湿槽での保存試験を行ったところ、比較例1と同様に明瞭なアイパターンが観察できないばかりか、ジッターを測定できるレベルではなかった。
【0021】
比較例3
SiC単体の記録膜を光透過率が77%(即ち70%を越える値)となるように薄く成膜した他は、実施例1と同様にして光ディスクを作製し評価した。
その結果、反射率は22%となったがモジュレーションは40%と低かった。また、比較例1と同様にして高温高湿槽での保存試験を行ったところ、比較例1と同様に明瞭なアイパターンが観察できないばかりか、ジッターを測定できるレベルではなかった。
【0022】
【発明の効果】
本発明によれば、高密度のマークエッジ記録に対応でき、相変化材料を用いた場合に比べて構成が単純であり、有機色素を用いた場合に比べて長期保存性の良い、無機記録材料を用いた追記型光情報記録媒体を提供できる。また、反射率を調整することにより多層の光情報記録媒体とすることもできる。
更に、本発明8〜10によれば、本発明の追記型光情報記録媒体を容易に製造できる他、炭化物と酸化物の比率を自由に選択することができる。
【図面の簡単な説明】
【図1】実施例1の光ディスクの層構造の断面を示す図。
【図2】実施例2の光ディスクの層構造の断面を示す図(基板側のみ誘電体有り)。
【図3】実施例4の光ディスクの層構造の断面を示す図(誘電体で光記録層を挟んだ図)。
【図4】実施例2の光ディスクの反射率の変化を示す図。
【図5】実施例2の光ディスクのモジュレーションの変化を示す図。
【符号の説明】
1 基板
2 下部誘電体層
3 炭化物と酸化物の混合体からなる記録層
4 上部誘電体層
5 反射層
6 耐環境保護層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a write-once optical information recording medium composed of an inorganic material that does not cause environmental degradation during recording and non-recording.
[0002]
[Prior art]
In recent years, optical recording media have been frequently used as storage for video, music, or computers. In particular, there are CD-R / RW, DVD-R / RW, DVD + R / RW, and the like. Optical discs have come into widespread use because they are easy to make, the manufacturing process is stable, and they have good compatibility with CD-ROMs and DVD-ROMs. Among these recordable optical recording media, write-once recording media are most widely used because of their simple processes and low manufacturing costs, and their good tampering prevention when used. . As for the CD-R, DVD-R and DVD + R, recording is mainly performed by a method of thermally coloring a recording layer using an organic dye.
The type using an organic dye generally has a configuration in which a recording layer (light absorbing layer) made of an organic dye or the like is provided on a substrate, and a reflective layer made of aluminum, gold, silver, or the like is further provided thereon. . By irradiating a laser beam as external energy, the recording layer is deformed or denatured to change optical characteristics and record information. Then, information is optically reproduced using the difference in reflectance between the recorded portion and the unrecorded portion.
[0003]
On the other hand, there is an attempt to constitute this write-once type information optical recording medium using an inorganic material. The write-once optical recording method using inorganic materials has attracted attention because, as the recording density has increased from CD to DVD, mark edge recording has become more difficult with organic dyes than with phase change type inorganic materials. This is because it is considered that the controllability is poor, and it is difficult for the edge to be formed in a correct shape and sharply at the set position. (Patent Document 1)
A recent patent publication relating to this write-once type optical information recording medium using an inorganic material is based on a material configuration of a type that decomposes by reaction to generate a gas (Patent Document 2). (Patent Documents 3 to 5), particularly those having a functional layer for reaction (Patent Document 6), and those performing recording by deformation due to light irradiation (Patent Document 7). And a device that records by changing the optical characteristics of a phase change material (Patent Document 1).
[0004]
[Patent Document 1]
WO 99/30908 pamphlet, page 4, lines 18 to 26
[Patent Document 2]
JP-A-5-40959
[Patent Document 3]
JP-A-5-334720
[Patent Document 4]
JP-A-11-227334
[Patent Document 5]
WO 00/4536 pamphlet
[Patent Document 6]
JP-A-2002-117576
[Patent Document 7]
JP-A-2002-298431
[0005]
[Problems to be solved by the invention]
The present invention uses an inorganic recording material that can cope with high-density mark edge recording, has a simpler configuration than when a phase change material is used, and has a long-term storage property compared to a case where an organic dye is used. And a method of manufacturing the same.
[0006]
[Means for Solving the Problems]
The above object is achieved by the following inventions 1) to 10) (hereinafter, referred to as inventions 1 to 10).
1) Having a recording layer made of a mixture of a metal carbide and an oxide, which can be optically changed by irradiating light having a wavelength of 600 to 800 nm on a transparent substrate to record and read signals. A write-once optical information recording medium characterized by the above-mentioned.
2) The write-once optical information recording medium according to 1), further comprising a dielectric layer adjacent to the recording layer.
3) The write-once optical information recording medium according to 1) or 2), wherein the metal is at least one selected from Si, Ti, Ta, Zr, V, and W.
4) The write-once optical information recording medium according to any one of 1) to 3), wherein the recording layer has a light transmittance of 20 to 70% and a refractive index n of 2.0 or more.
5) It has two or more recording layers, and the recording layer on which light first enters has a light transmittance of 40 to 70% and a refractive index n of 2.0 or more. 1) 3. The write-once optical information recording medium according to any one of items 1 to 3,
6) The dielectric layer contains ZnS as a main component and TiO 2 , SiO 2 , ZrO 2 The write-once optical information recording medium according to any one of 2) to 5), comprising a material containing at least one selected from the group consisting of:
7) The write-once optical information recording medium according to 6), wherein the ratio of ZnS in the dielectric layer is 60 to 95 mol%.
8) The method for manufacturing a write-once optical information recording medium according to any one of 1) to 7), wherein the recording layer is formed by RF sputtering using a mixture of a metal carbide and an oxide as a target.
9) The recording layer is formed by direct current or direct current sputtering having a pulsed voltage waveform using a mixture of a metal carbide and an oxide (specific resistance of 0.5 Ω · cm or less) as a target 1). 7. The method for manufacturing a write-once optical information recording medium according to any one of 7) to 7).
10) Targeting only a metal carbide or a mixture of a carbide and an oxide (provided that the specific resistance is 0.5 Ω · cm or less) by DC sputtering having a DC or pulsed voltage waveform in an oxygen-introduced atmosphere. The method for manufacturing a write-once optical information recording medium according to any one of 1) to 7), wherein a recording layer is formed.
[0007]
Hereinafter, the present invention will be described in detail.
The present inventors have studied a material that has a simple structure as compared with the case where a phase change material is used and can secure long-term storage characteristics, has high light absorption and a high melting point, and is stable. As such a material, a nitride or a carbide of each metal can be cited, but if only a nitride or a carbide is used, the melting point and the light absorption are high, but there is also conductivity, so when a predetermined energy is applied. It is considered that heat is diffused due to the conductivity, and is not effective in obtaining mark edge controllability which is the object of the present invention. Further, carbide is a material used also as a molding material for glass press lenses, and a dielectric material (SiO 2 containing a chalcogen component, which is commonly used in optical information recording media) is commonly used. 2 , TiO 2 Or a mixture containing glass such as ZnO) or an organic substrate having an oxygen atom. Therefore, as a result of exploring a recording material that has a light absorbing property and can reduce the conductivity, and further has an adhesive property with a dielectric glass and an organic material (assuming a transparent substrate and an environmental protection layer), as a result, metal carbides and oxides were found. The present inventors have found that a mixture of the above is preferable and have led to the present invention. When this mixture is used, light absorption can be ensured by the carbide, and the conductivity can be reduced and the adhesion to the dielectric or the organic material can be improved by mixing the oxide. Although light having a wide wavelength range can be used as light for recording and reading, it is preferably about 600 to 800 nm.
[0008]
Further, it is preferable to provide a dielectric layer adjacent to the recording layer in order to adjust the reflectivity and improve the dynamic range (reflectance difference between recording and non-recording).
Further, it is preferable to use at least one selected from Si, Ti, Ta, Zr, V, and W as the metal. These elements are excellent because the melting points of the respective carbides are extremely high (2810 to 3880 ° C.) and extremely stable at about room temperature.
The recording layer preferably has a light transmittance of 20 to 70% and a refractive index n of the mixture of 2.0 or more. If the light transmittance is less than 20%, the signal reflectivity that can be extracted is extremely low, and an error occurs in reading the difference in reflectivity. On the other hand, if it exceeds 70%, the irradiated light energy is not sufficiently absorbed by the recording layer and is transmitted therethrough, so that it is difficult to take out the difference in the reflectance of the recorded signal. Therefore, the above range of 20 to 70% is preferable as a range in which the reflectance difference can be effectively used on the balance between transmission and absorption. When the refractive index n of the recording layer is less than 2.0, the optical change upon irradiation with predetermined light energy becomes small as an absolute value, and it becomes difficult to obtain a signal amplitude. Since the light transmittance does not simply become the same only by the composition ratio of the carbide and the oxide, it is preferable to specify the light transmittance, that is, the light absorption ratio, instead of the composition ratio. It is also possible to manufacture a multilayer optical information recording medium having two or more recording layers. In this case, the light transmittance of the recording layer on which light is first incident is set to the depth side in the laser beam irradiation direction. Since the recording characteristics of the located recording layer are greatly affected, it is preferable to set the light transmittance of the recording layer on which light first enters to 40 to 70%.
The thickness of the recording layer is usually about 5 to 30 nm, preferably 10 to 20 nm.
[0009]
The dielectric layer is composed mainly of ZnS and TiO 2 , SiO 2 , ZrO 2 It is preferable to use a material containing at least one selected from the group consisting of: Further, the ratio of ZnS in the dielectric layer is preferably set to 60 to 95 mol%. If it exceeds 95 mol%, the light transmittance at a wavelength of 405 nm, which is a blue-violet wavelength, becomes low, and the characteristics are almost the same as those of ZnS alone. If it is less than 60 mol%, the film formation rate and the refractive index n become too small, so that the production efficiency is lowered and the film thickness needs to be increased in order to obtain the same optical film thickness.
The thickness of the dielectric layer is usually about 30 to 200 nm for the lower dielectric layer (between the recording layer and the substrate) and about 10 to 20 nm for the upper dielectric layer.
As a method for forming the recording layer, a method in which a mixture of a metal carbide and an oxide is used as a target to form by a RF sputtering method, a mixture of a metal carbide and an oxide having a specific resistance of 0.5 Ω · cm or less, Or a method of forming a film by DC sputtering having a pulse-like voltage waveform, a target of a metal carbide or a mixture of a carbide and an oxide having a specific resistance of 0.5 Ω · cm or less, a DC or a pulse under an atmosphere in which oxygen is introduced. And a method of forming a film by direct current sputtering having a voltage waveform in a shape.
[0010]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. For example, the same result can be obtained when the wavelength of the laser beam is not limited to 660 nm but is 780 nm or the like.
[0011]
Example 1
A write-once optical disc having the layer structure shown in FIG. 1 was produced as follows.
First, a recording layer 3 having a thickness of 20 nm was formed on a clean and transparent polycarbonate substrate 1 having a guide groove (thickness: 0.6 mm, track pitch: 0.74 μm, groove width: 0.37 μm, groove depth: 310 °). SiC and SiO 2 Was formed.
Next, after applying an ultraviolet curable resin to the upper surface of the recording layer, the applied surface was irradiated with ultraviolet rays to form an environment-resistant protective layer 6 having a thickness of 4 μm.
Further, the same blank plate having a thickness of 0.6 mm was bonded using a UV adhesive to complete a disk having a thickness of 1.2 mm.
The recording layer is made of SiC and SiO 2 And a partial pressure of Ar of 5 × 10 -3 Torr was introduced, oxygen was not introduced, and the film was formed by DC sputtering having a pulse-like voltage waveform with a duty of 80%. The composition of this target is SiC: SiO 2 = 95: 5 (mol%), and the specific resistance was 5 mΩ · cm.
The refractive index n of the recording layer was 2.1 at a wavelength of 660 nm, and the light transmittance was 65% at a wavelength of 660 nm.
The recording layer of the manufactured optical disk was in an amorphous state.
The optical disk was rotated at a linear velocity of 3.5 m / sec, and the recording was performed by irradiating a laser beam having a wavelength of 660 nm, NA of 0.65, an irradiation power of 8 to 10 mW, a simple rectangular wave, and a pulse width of 20 to 25 nsec. An 8-16 modulation random signal having a mark length of 0.4 μm (a mark length about half that of the CD system) was recorded. The reflectance is 15% and the modulation is 60%.
The jitter when performing the random pattern recording was 8.3%, and no particular trouble occurred in both writing and reproducing. The power of the reproducing laser beam was 0.5 mW.
Next, the optical disk after the recording check was stored in a high-temperature and high-humidity bath at 80 ° C. and 85% RH for 400 hours, and the jitter was measured again. As a result, each change was 0.2% or less, which was not a problematic level. In addition, no floating of the film, no peeling of the film, and no occurrence of spot-like discoloration considered to be abnormal were observed.
[0012]
Example 2
A write-once optical disc having the layer structure shown in FIG. 2 was produced.
First, on a clean and transparent polycarbonate substrate 1 having a guide groove (thickness 0.6 mm, track pitch 0.74 μm, groove width 0.37 μm, groove depth 310 °), ZnS.SiO 2 The dielectric layer 2 of [70:30 (mol%)] was formed by RF sputtering one by one under each condition in a range of 50 to 100 nm in increments of 10 nm.
Next, as the recording layer 3, ZrC and ZrO having a thickness of 20 nm were used. 2 Was formed.
Next, after applying an ultraviolet curable resin to the upper surface of the recording layer, the applied surface was irradiated with ultraviolet rays to form an environment-resistant protective layer 6 having a thickness of 4 μm.
Further, the same blank plate having a thickness of 0.6 mm was bonded using a UV adhesive to complete a disk having a thickness of 1.2 mm.
The recording layer 3 is made of ZrC and ZrO 2 Using a mixture target, Ar partial pressure is 5 × 10 -3 Torr was introduced, and the film was formed by DC sputtering having a pulsed voltage waveform with a duty of 80%. The composition of this target is 80 atomic% of ZrC, ZrO 2 It was 20 atomic%, and the specific resistance was 6.5 mΩ · cm. The refractive index n of the completed recording layer was 2.5 at a wavelength of 660 nm. The light transmittance was 30% at a wavelength of 660 nm.
The recording layer of the manufactured optical disk was evaluated by X-ray diffraction of a single film of the separately manufactured recording layer, and as a result, it was in an amorphous state.
This optical disk was rotated at a linear velocity of 3.5 m / sec, and a laser beam having a wavelength of 660 nm, NA of 0.65, an irradiation power of 8 to 10 mW, a simple rectangular wave, and a pulse width of 20 to 25 nsec was recorded to perform recording. An 8-16 modulation random signal having a mark length of 0.4 μm (a mark length about half that of the CD system) was recorded. Reflectance is ZnS / SiO 2 It changes depending on the thickness of the dielectric layer, and the bottom value becomes about 6% at 70 to 80 nm. It can be seen that the reflectance can be adjusted by the thickness of the dielectric layer like a phase change optical recording medium. Further, the modulation was maximized at the bottom value, and 73% was obtained. The change in the reflectance and the change in the modulation are shown in FIGS.
The jitter when performing the random pattern recording was 8.2%, and no particular trouble occurred in both writing and reproduction. The power of the reproducing laser beam was 0.5 mW.
Next, the optical disk after the recording check was stored in a high-temperature and high-humidity bath at 80 ° C. and 85% RH for 400 hours, and the jitter was measured again. In addition, no floating of the film, no peeling of the film, and no occurrence of spot-like discoloration considered to be abnormal were observed.
[0013]
Example 3
The following test was performed to study the recording principle of the optical information recording medium of the present invention.
In order to prevent thermal deformation, ZnS.SiO 2 A dielectric layer having a thickness of 12 to 14 nm was formed.
Further, after applying an ultraviolet-curable resin to the upper surface, the applied surface was irradiated with ultraviolet rays to form an environment-resistant protective layer 6 having a thickness of 4 μm, thereby producing a single-plate disk having a thickness of 0.6 mm. Then, it was checked whether the thermal deformation caused by the laser irradiation caused the optical contrast or a change in other optical characteristics.
As a result, when the dielectric layer was laminated on the optical recording layer, the modulation was slightly increased. Therefore, the present inventors have determined that the principle of optical recording of the present invention is not thermal deformation. In addition, the recording principle has not been specified yet because it is not considered to be a material that causes a phase change. However, since the change in reflectance can be reliably read by irradiating a laser beam, photodarkening (atomic (Recording due to sequence change).
[0014]
Example 4 (Example in which the light transmittance of the recording layer on which light first enters is 40 to 70%)
Each layer of a lower dielectric layer (thickness: 80 nm), a recording layer (thickness: 10 nm), and an upper dielectric layer (thickness: 12 nm) was sequentially formed on a first substrate made of the polycarbonate resin substrate used in Example 1 by sputtering. Then, an optical disk having a layer configuration shown in FIG. 3 in which the recording layer was sandwiched between dielectric layers was manufactured (hereinafter, referred to as a first information layer). The dielectric layer is ZnS.SiO 2 [80:20 (mol%)]. The recording layer is composed of 55 atomic% of TiC, TiO 2 It was formed by RF sputtering without introducing oxygen using a target consisting of 45 atomic%. When measured separately, the light transmittance of the recording layer of the first information layer was 60% at a wavelength of 660 nm.
Next, a substrate similar to the first substrate is used as a second substrate, and a reflective layer (thickness: 100 nm), a dielectric layer (thickness: 12 nm), an optical recording layer (thickness: 12 nm), a dielectric layer (film) Each layer having a thickness of 100 nm was sequentially formed (hereinafter, referred to as a second information layer). ZnS.SiO for dielectric layer 2 [80:20 (mol%)] The recording layer was formed by sputtering using a material having the same composition as that of the first information layer, and the reflective layer was formed using an Ag alloy having an Ag ratio of 95 atomic% or more.
Next, an ultraviolet curable resin is applied on the film surface of the first information layer, the second information layer surface side of the second substrate is bonded and spin-coated, and the ultraviolet curable resin is irradiated by irradiating ultraviolet light from the first substrate side. This was cured to form an intermediate layer, thereby producing a two-layer optical disk (two-layer write-once optical information recording medium) having two information layers. The thickness of the intermediate layer was 50 μm.
When the first information layer was evaluated at a wavelength of 660 nm in the same manner as in Examples 1 and 2 for each of the prepared optical discs, the reflectivity was improved by about 10% or more compared to Example 2, and 18 to 22%. Became. As for other characteristics, the modulation was 63% and the jitter when a random pattern was recorded was 8.3%, and no trouble occurred in both writing and reproduction. The power of the reproducing laser beam was 0.8 mW. Further, with respect to the second information layer, recording was performed using the same waveform pattern and evaluated, and the reflectance was 10 to 15%. As for other characteristics, the modulation was 60% and the jitter when a random pattern was recorded was 8.7%, and no trouble occurred in both writing and reproduction.
Next, the optical disk after the recording check was stored in a high-temperature and high-humidity bath at 80 ° C. and 85% RH for 400 hours, and the jitter was measured again. As a result, each change was 0.2% or less, which was not a problematic level. In addition, no floating of the film, no peeling of the film, and no occurrence of spot-like discoloration considered to be abnormal were observed.
[0015]
Example 5
95 atomic% of TiC, TiO 2 Using a 5 atomic% target, oxygen was introduced at a flow rate of 2.5 sccm in addition to Ar gas (Ar partial pressure was 5 × 10 5 -3 Torr, oxygen partial pressure 5.2 × 10 -4 An optical disk was manufactured in the same manner as in Example 4, except that the recording layer was formed by performing Torr) sputtering. The specific resistance of the target having the above composition was 4.5 mΩ · cm.
The characteristics of the recording layer (mixed film of Ti carbide and oxide) formed as described above were almost the same as the characteristics of the recording layer formed in Example 4. That is, the refractive index n was 2.74 at a wavelength of 660 nm, and the value of n became higher, but the light transmittance was 59% at a wavelength of 660 nm, which was equivalent to that of Example 4.
When the first information layer was evaluated in the same manner as in Example 4, the reflectance was 18 to 22%, the modulation was 62%, and the jitter when a random pattern was recorded was 8.35%. No trouble occurred in either case. The power of the reproducing laser beam was 0.8 mW. Furthermore, no trouble occurred in both writing and reproduction in the second information layer as in Example 4.
The result of evaluating the storage characteristics in a high-temperature and high-humidity tank was the same as that in Example 4.
[0016]
Example 6
80 atomic% of TaC, Ta 2 O 5 Using a target consisting of 20 atomic%, introducing oxygen at a flow rate of 3.5 sccm in addition to Ar gas (Ar partial pressure is 4 × 10 -3 Torr, oxygen partial pressure 7.2 × 10 -4 An optical disk was manufactured in the same manner as in Example 4, except that the recording layer was formed by performing Torr) sputtering. The specific resistance of the target having the above composition was 0.51 mΩ · cm.
The characteristics of the recording layer (a mixed film of carbide and oxide of Ta) formed as described above were almost the same as the characteristics of the recording layer formed in Example 4. That is, the refractive index n was 2.3 at a wavelength of 660 nm, and the light transmittance was 61% at a wavelength of 660 nm, which was equivalent to that of Example 4.
When the first information layer was evaluated in the same manner as in Example 4, the reflectance was 18.5 to 22.5%, the modulation was 61.5%, and the jitter when a random pattern was recorded was 8.3%. No trouble occurred in both writing and reproduction. The power of the reproducing laser beam was 0.8 mW. Furthermore, no trouble occurred in both writing and reproduction in the second information layer as in Example 4.
The result of evaluating the storage characteristics in a high-temperature and high-humidity tank was the same as that in Example 4.
[0017]
Example 7
SiC and TiO as targets for the recording layer 2 An optical disk was manufactured in the same manner as in Example 1 except that the mixture target of Example 1 was used. The composition of this target is SiC: TiO 2 = 80: 20 (mol%), and the specific resistance was 7 mΩ · cm. Ar is used as a sputtering gas at a partial pressure of 5 × 10 -3 Torr was introduced, oxygen was not introduced, and the film was formed by DC sputtering having a pulse-like voltage waveform with a duty of 80%.
The refractive index n of the recording layer was 2.3 at a wavelength of 660 nm, and the light transmittance was 65% at a wavelength of 660 nm.
The recording layer of the manufactured optical disk was in an amorphous state.
The optical disk was rotated at a linear velocity of 3.5 m / sec, and the recording was performed by irradiating a laser beam having a wavelength of 660 nm, NA of 0.65, an irradiation power of 8 to 10 mW, a simple rectangular wave, and a pulse width of 20 to 25 nsec. An 8-16 modulation random signal having a mark length of 0.4 μm (a mark length about half that of the CD system) was recorded. The reflectance is 16% and the modulation is 60%.
The jitter when this random pattern recording was performed was 8.4%, and no particular trouble occurred in both writing and reproduction. The power of the reproducing laser beam was 0.5 mW.
Next, the optical disk after the recording check was stored in a high-temperature and high-humidity bath at 80 ° C. and 85% RH for 400 hours, and the jitter was measured again. As a result, each change was 0.2% or less, which was not a problematic level. In addition, no floating of the film, no peeling of the film, and no occurrence of spot-like discoloration considered to be abnormal were observed.
The target is SiC and ZrO. 2 [SiC: ZrO 2 = 80: 20 (mol%)], or SiC and Ta 2 O 5 [SiC: Ta 2 O 5 = 80: 20 (mol%)], almost the same results were obtained.
[0018]
Example 8
The material of the dielectric layer 2 is ZnS.SiO 2 [70:30 (mol%)] to ZnS.TiO. 2 A write-once optical disc was produced in the same manner as in Example 2 except that the amount was changed to [70:30 (mol%)]. 2 Compared to TiO 2 4 has a higher refractive index, and thus the curves in FIGS. 4 and 5 are shifted to the left by 14 nm.
Similarly, ZnS.ZrO 2 When [70:30 (mol%)] was used, the curves in FIGS. 4 and 5 were shifted to the left by 5 nm.
Next, the optical disk after the recording check was stored in a high-temperature and high-humidity bath at 80 ° C. and 85% RH for 400 hours, and the jitter was measured again. In addition, no floating of the film, no peeling of the film, and no occurrence of spot-like discoloration considered to be abnormal were observed.
[0019]
Comparative Example 1
An optical disk was manufactured in the same manner as in Example 1, except that the target for the recording layer was SiC alone. The resistivity of this target is SiC and SiO 2 Was smaller than that of the mixture target of 2 mΩ · cm. Using this target, a recording layer was formed in the same manner as in Example 1. The characteristics of this recording layer were such that when the film thickness was 20 nm, the refractive index n was 2.5 at a wavelength of 660 nm. The light transmittance at this time was 55% at a wavelength of 660 nm.
Next, an optical disk having a thickness of 1.2 mm was completed in the same manner as in Example 1.
When this optical disc was evaluated using a laser having a wavelength of 660 nm, the jitter value was 12 to 20%, and a stable value was not obtained. Therefore, a test sample having the same structure as that of the optical disc was prepared again, recorded under the same conditions, disassembled, and observed with a scanning electron microscope. .
The reflectance of the optical disk subjected to the lamination / jitter evaluation was 18% and the modulation was 45%.
Further, when this optical disk was stored in a high-temperature and high-humidity bath at 80 ° C. and 85% RH for 400 hours, the recorded mark was inverted in reflectivity and the like. Did not.
[0020]
Comparative Example 2
An optical disk was prepared and evaluated in the same manner as in Example 1, except that a recording film of SiC alone was formed thickly so that the light transmittance was 18% (that is, less than 20%).
As a result, the reflectance was 22%, but the modulation was as low as 40%. When a storage test was performed in a high-temperature and high-humidity chamber in the same manner as in Comparative Example 1, not only a clear eye pattern could not be observed but also a level at which jitter could be measured, as in Comparative Example 1.
[0021]
Comparative Example 3
An optical disk was prepared and evaluated in the same manner as in Example 1, except that a recording film of SiC alone was formed so as to have a light transmittance of 77% (that is, a value exceeding 70%).
As a result, the reflectance was 22%, but the modulation was as low as 40%. When a storage test was performed in a high-temperature and high-humidity chamber in the same manner as in Comparative Example 1, not only a clear eye pattern could not be observed but also a level at which jitter could be measured, as in Comparative Example 1.
[0022]
【The invention's effect】
According to the present invention, an inorganic recording material that can support high-density mark edge recording, has a simpler configuration than when a phase change material is used, and has a long-term storage property as compared with a case where an organic dye is used. And a write-once optical information recording medium using the same. Further, by adjusting the reflectance, a multilayer optical information recording medium can be obtained.
Further, according to the present inventions 8 to 10, the write-once optical information recording medium of the present invention can be easily manufactured, and the ratio of carbide to oxide can be freely selected.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross section of a layer structure of an optical disc according to a first embodiment.
FIG. 2 is a diagram showing a cross section of the layer structure of the optical disc of Example 2 (a dielectric is present only on the substrate side).
FIG. 3 is a diagram illustrating a cross section of a layer structure of an optical disc of Example 4 (a diagram in which an optical recording layer is sandwiched between dielectrics).
FIG. 4 is a diagram showing a change in the reflectance of the optical disc of Example 2.
FIG. 5 is a diagram showing a change in modulation of the optical disc of the second embodiment.
[Explanation of symbols]
1 substrate
2 Lower dielectric layer
3. Recording layer composed of a mixture of carbide and oxide
4 Upper dielectric layer
5 Reflective layer
6 Environmental protection layer

Claims (10)

透明基板上に、金属の炭化物と酸化物の混合体からなり、波長600〜800nmの光を照射することにより光学的に変化し信号の記録及び読み出しを行うことができる記録層を有することを特徴とする追記型光情報記録媒体。On a transparent substrate, it has a recording layer made of a mixture of a metal carbide and an oxide, which can be optically changed by irradiation with light having a wavelength of 600 to 800 nm to record and read signals. Write-once optical information recording medium. 記録層に隣接した誘電体層を有することを特徴とする請求項1記載の追記型光情報記録媒体。2. The write-once optical information recording medium according to claim 1, further comprising a dielectric layer adjacent to the recording layer. 金属がSi、Ti、Ta、Zr、V、Wから選ばれる少なくとも一つであることを特徴とする請求項1又は2記載の追記型光情報記録媒体。3. The write-once optical information recording medium according to claim 1, wherein the metal is at least one selected from Si, Ti, Ta, Zr, V, and W. 記録層の光透過率が20〜70%であり、かつ屈折率nが2.0以上であることを特徴とする請求項1〜3の何れかに記載の追記型光情報記録媒体。4. The write-once optical information recording medium according to claim 1, wherein the recording layer has a light transmittance of 20% to 70% and a refractive index n of 2.0 or more. 2層以上の記録層を有し、最初に光が入射する記録層の光透過率が40〜70%であり、かつ屈折率nが2.0以上であることを特徴とする請求項1〜3の何れかに記載の追記型光情報記録媒体。2. A recording layer having two or more recording layers, wherein the first recording layer on which light is first incident has a light transmittance of 40 to 70% and a refractive index n of 2.0 or more. 3. The write-once optical information recording medium according to any one of 3. 誘電体層がZnSを主成分とし、TiO、SiO、ZrOから選ばれる少なくとも一つを含む材料からなることを特徴とする請求項2〜5の何れかに記載の追記型光情報記録媒体。Dielectric layer is mainly composed of ZnS, TiO 2, SiO 2, write-once optical information recording according to that made of a material containing at least one selected from ZrO 2 in any one of claims 2-5, wherein Medium. 誘電体層中のZnSの比率が60〜95モル%であることを特徴とする請求項6記載の追記型光情報記録媒体。7. The write-once optical information recording medium according to claim 6, wherein a ratio of ZnS in the dielectric layer is 60 to 95 mol%. 金属の炭化物と酸化物の混合物をターゲットとしRFスパッタ法で記録層を成膜することを特徴とする請求項1〜7の何れかに記載の追記型光情報記録媒体の製造方法。8. The method for manufacturing a write-once optical information recording medium according to claim 1, wherein the recording layer is formed by an RF sputtering method using a mixture of a metal carbide and an oxide as a target. 金属の炭化物と酸化物の混合物(但し、比抵抗0.5Ω・cm以下)をターゲットとして直流又はパルス状の電圧波形を持つ直流スパッタにより記録層を成膜することを特徴とする請求項1〜7の何れかに記載の追記型光情報記録媒体の製造方法。The recording layer is formed by direct current or direct current sputtering having a pulsed voltage waveform using a mixture of a metal carbide and an oxide (specific resistance of 0.5 Ω · cm or less) as a target. 8. The method for manufacturing a write-once optical information recording medium according to any one of 7. 金属の炭化物のみ、又は、炭化物と酸化物(但し、比抵抗0.5Ω・cm以下)の混合物をターゲットとし、酸素を導入した雰囲気下で直流又はパルス状の電圧波形を持つ直流スパッタにより記録層を成膜することを特徴とする請求項1〜7の何れかに記載の追記型光情報記録媒体の製造方法。The recording layer is formed by direct current sputtering having a DC or pulsed voltage waveform in an oxygen-introduced atmosphere, targeting only a metal carbide or a mixture of a carbide and an oxide (provided that the specific resistance is 0.5 Ω · cm or less). The method for manufacturing a write-once optical information recording medium according to claim 1, wherein a film is formed.
JP2003088952A 2003-03-27 2003-03-27 Write-once optical information recording medium and manufacturing method thereof Expired - Fee Related JP4070650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088952A JP4070650B2 (en) 2003-03-27 2003-03-27 Write-once optical information recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088952A JP4070650B2 (en) 2003-03-27 2003-03-27 Write-once optical information recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004291490A true JP2004291490A (en) 2004-10-21
JP4070650B2 JP4070650B2 (en) 2008-04-02

Family

ID=33402954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088952A Expired - Fee Related JP4070650B2 (en) 2003-03-27 2003-03-27 Write-once optical information recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4070650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701349A3 (en) * 2005-03-10 2007-03-21 Sony Corporation Write once optical recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701349A3 (en) * 2005-03-10 2007-03-21 Sony Corporation Write once optical recording medium
CN100412971C (en) * 2005-03-10 2008-08-20 索尼株式会社 Write once optical recording medium
US7468200B2 (en) 2005-03-10 2008-12-23 Sony Corporation Write once optical recording medium
KR101189984B1 (en) * 2005-03-10 2012-10-12 소니 주식회사 Write once optical recording medium

Also Published As

Publication number Publication date
JP4070650B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
KR100734641B1 (en) Optical Recording Medium, Optical Recording/Reproducing Apparatus, Optical Recording Apparatus and Optical Reproducing Apparatus, Data Recording/Reproducing Method for Optical Recording Medium, and Data Recording Method and Data Reproducing Method
KR100770808B1 (en) Optical recording medium, manufacturing method thereof, method for recording data on optical recording medium, and data reproducing method
TWI264715B (en) Optical recording medium and production thereof
WO2005010878A1 (en) Optical recording medium and process for producing the same, and data recording method and data reproducing method for optical recording medium
JP2004158145A (en) Optical recording medium
JP2004296055A (en) Optical recording and reproducing method and optical recording medium
JPWO2004030919A1 (en) Optical information record carrier and recording / reproducing apparatus using the same
CN101256790B (en) Optical information recording medium and information reproduction method
JP5148629B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing apparatus
JP4070650B2 (en) Write-once optical information recording medium and manufacturing method thereof
JP4793313B2 (en) Optical information recording medium and recording and / or reproducing method thereof
KR100678300B1 (en) Optical record reproducing method and optical recording medium
JP2004171631A (en) Optical recording medium
RU2488178C2 (en) Optical information recording medium and method of recording/reproduction for it
JP5029280B2 (en) Optical recording medium and method for manufacturing optical recording medium
JP2005339761A (en) Optical recording medium
JP2008090964A (en) Write-once two-layer type optical recording medium
JP3980544B2 (en) Optical information recording medium
JP3138506B2 (en) Write-once optical recording medium and recording / reproducing method thereof
JP2005178085A (en) Optical recording medium
JP2005014274A (en) Optical recording medium
JP2004025496A (en) Optical information recording medium
JP2004319067A (en) Optical recording medium
JP2004253086A (en) Two-layer recording layer type optical recording medium
JP2009026430A (en) Optical information medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees