[go: up one dir, main page]

JP2004289186A - Forming method of insulating film, and manufacturing method of semiconductor device - Google Patents

Forming method of insulating film, and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2004289186A
JP2004289186A JP2004208093A JP2004208093A JP2004289186A JP 2004289186 A JP2004289186 A JP 2004289186A JP 2004208093 A JP2004208093 A JP 2004208093A JP 2004208093 A JP2004208093 A JP 2004208093A JP 2004289186 A JP2004289186 A JP 2004289186A
Authority
JP
Japan
Prior art keywords
nitrogen
oxygen
gas
substrate
radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004208093A
Other languages
Japanese (ja)
Other versions
JP4088275B2 (en
Inventor
Masanobu Igeta
真信 井下田
Shintaro Aoyama
真太郎 青山
Hiroshi Jinriki
博 神力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2004208093A priority Critical patent/JP4088275B2/en
Publication of JP2004289186A publication Critical patent/JP2004289186A/en
Application granted granted Critical
Publication of JP4088275B2 publication Critical patent/JP4088275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a very thin oxynitride film on a silicon substrate surface in almost one process, and to control the oxynitride film so as to be any desired nitrogen concentration in a depth direction to be formed. <P>SOLUTION: There are provided a remote plasma source 26 forming a nitrogen radical and an oxygen radical by using a high frequency plasma, and a processing vessel 21 for holding a substrate to be processed. On the processed substrate an insulating film is formed by a substrate processing unit 100 provided with a gas supplying provision 30 for controlling a supplying ratio of the nitrogen radical and the oxygen radical. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は半導体装置に係り、特に高誘電体膜を有する、超微細化高速半導体装置の製造方法に関する。   The present invention relates to a semiconductor device, and more particularly to a method for manufacturing an ultra-miniaturized high-speed semiconductor device having a high dielectric film.

今日の超高速半導体装置では、微細化プロセスの進歩とともに、0.1μm以下のゲート長が可能になりつつある。一般に微細化とともに半導体装置の動作速度は向上するが、このように非常に微細化された半導体装置では、ゲート絶縁膜の膜厚を、微細化によるゲート長の短縮に伴って、スケーリング則に従って減少させる必要がある。   In today's ultrahigh-speed semiconductor devices, a gate length of 0.1 μm or less is becoming possible with the progress of the miniaturization process. In general, the operating speed of a semiconductor device increases with miniaturization.However, in such a very miniaturized semiconductor device, the thickness of the gate insulating film is reduced according to a scaling rule as the gate length is reduced by miniaturization. Need to be done.

しかしゲート長が0.1μm以下になると、ゲート絶縁膜の厚さも、従来の熱酸化膜を使った場合、1〜2nm、あるいはそれ以下に設定する必要があるが、このように非常に薄いゲート絶縁膜ではトンネル電流が増大し、その結果ゲートリーク電流が増大する問題を回避することができない。   However, when the gate length is 0.1 μm or less, the thickness of the gate insulating film must be set to 1 to 2 nm or less when a conventional thermal oxide film is used. In the insulating film, a problem that a tunnel current increases and a gate leakage current increases as a result cannot be avoided.

このような事情で従来より、比誘電率が熱酸化膜のものよりもはるかに大きく、このため実際の膜厚が大きくてもSiO2膜に換算した場合の膜厚が小さいTa25やAl23,ZrO2,HfO2、さらにはZrSiO4あるいはHfSiO4のような高誘電体材料をゲート絶縁膜に対して適用することが提案されている。このような高誘電体材料を使うことにより、ゲート長が0.1μm以下と、非常に短い超高速半導体装置においても10nm程度の物理的膜厚のゲート絶縁膜を使うことができ、トンネル効果によるゲートリーク電流を抑制することができる。 Conventionally In these circumstances, much larger than that of the dielectric constant of the thermal oxide film, Ya thickness is less of Ta 2 O 5 which has a case in terms of SiO 2 film be actual film thickness for this large It has been proposed to apply a high dielectric material such as Al 2 O 3 , ZrO 2 , HfO 2 , or ZrSiO 4 or HfSiO 4 to a gate insulating film. By using such a high-dielectric material, a gate insulating film having a physical thickness of about 10 nm can be used even in an ultra-high-speed semiconductor device having a gate length of 0.1 μm or less, which is extremely short. Gate leak current can be suppressed.

例えば従来よりTa25膜はTa(OC255およびO2を気相原料としたCVD法により形成できることが知られている。典型的な場合、CVDプロセスは減圧環境下、約480°C、あるいはそれ以上の温度で実行される。このようにして形成されたTa25膜は、さらに酸素雰囲気中において熱処理され、その結果、膜中の酸素欠損が解消され、また膜自体が結晶化する。このようにして結晶化されたTa25膜は大きな比誘電率を示す。 For example, it is conventionally known that a Ta 2 O 5 film can be formed by a CVD method using Ta (OC 2 H 5 ) 5 and O 2 as a gas phase material. Typically, the CVD process is performed in a vacuum environment at a temperature of about 480 ° C. or higher. The Ta 2 O 5 film thus formed is further heat-treated in an oxygen atmosphere, so that oxygen deficiency in the film is eliminated and the film itself is crystallized. The Ta 2 O 5 film thus crystallized exhibits a large relative dielectric constant.

チャネル領域中のキャリアモビリティーを向上させる観点からは、高誘電体ゲート酸化膜とシリコン基板との間に、1nm以下、好ましくは0.8nm以下の厚さのきわめて薄いベース酸化膜を介在させるのが好ましい。ベース酸化膜は非常に薄い必要があり、厚さが厚いと高誘電体膜をゲート絶縁膜に使った効果が相殺される。一方、かかる非常に薄いベース酸化膜は、シリコン基板表面を一様に覆う必要があり、また界面準位等の欠陥を形成しないことが要求される。   From the viewpoint of improving carrier mobility in the channel region, an extremely thin base oxide film having a thickness of 1 nm or less, preferably 0.8 nm or less is interposed between the high dielectric gate oxide film and the silicon substrate. preferable. The base oxide film needs to be very thin, and if the thickness is large, the effect of using the high dielectric film as the gate insulating film is offset. On the other hand, such a very thin base oxide film needs to uniformly cover the surface of the silicon substrate, and is required not to form defects such as interface states.

図1は高誘電体ゲート絶縁膜を有する高速半導体装置10の概略的な構成を、示す。   FIG. 1 shows a schematic configuration of a high-speed semiconductor device 10 having a high dielectric gate insulating film.

図1を参照するに、半導体装置10はシリコン基板11上に形成されており、シリコン基板11上には薄いベース酸化膜12を介して、Ta25,Al23,ZrO2,HfO2,ZrSiO4,HfSiO4等の高誘電体ゲート絶縁膜13が形成され、さらに前記高誘電体ゲート絶縁膜13上にはゲート電極14が形成されている。
特開2002−100627号公報 WO 02/23614号公報 特開平09−148543号公報
Referring to FIG. 1, a semiconductor device 10 is formed on a silicon substrate 11, and Ta 2 O 5 , Al 2 O 3 , ZrO 2 , and HfO are formed on the silicon substrate 11 via a thin base oxide film 12. 2 , a high dielectric gate insulating film 13 of ZrSiO 4 , HfSiO 4 or the like is formed, and a gate electrode 14 is formed on the high dielectric gate insulating film 13.
JP-A-2002-100267 WO 02/23614 JP 09-148543 A

しかし、前記半導体装置10においては、ベース酸化膜12上に形成される高誘電体ゲート絶縁膜13の機能を発現させるためには、堆積した高誘電体膜13を熱処理により結晶化し、また酸素欠損補償を行う必要がある。このような熱処理を高誘電体膜13に対して行った場合、ベース酸化膜12の膜厚が増大してしまうという問題があった。
このような熱処理に伴うベース酸化膜12の膜厚の増大の原因の一つとして、熱処理を行った際に、前記ベース酸化膜層12のシリコンと前記高誘電体膜13の金属が相互拡散してシリケート層を形成していることが推察される。このようなベース酸化膜12の熱処理に伴う膜厚増大の問題は、特にベース酸化膜12の膜厚が、ベース酸化膜として望ましい数原子層以下の膜厚まで低減された場合、非常に深刻な問題になる。
前記のベース酸化膜の膜厚の増大を抑える対策として、前記ベース酸化膜層の表面を窒化して酸窒化膜を形成したものが、図2に示す半導体装置20である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図2を参照するに、前記ベース酸化膜層12の表面部分に、シリコン基板11とベース酸化膜12との間の界面の平坦性が保たれるような範囲で窒素(N)がドープされ、酸窒化膜12Aが形成されており、前記したようなシリケート層が形成されて前記ベース酸化膜12の増膜が生じるのを防止している。
しかしながら、前記半導体装置20の場合は、前記ベース酸化膜層12を窒化して前記酸窒化膜12Aを窒化する工程を新たに追加する必要が生じて生産性が低下してしまうという問題が生じる。さらに、前記ベース酸化膜層12の深さ方向における窒素濃度の制御は非常に困難であるという問題があった。特にシリコン基板11とベース酸化膜12との界面近傍に窒素が濃集すると界面準位が形成され、キャリアの捕獲やリーク電流経路の形成などの問題を生じることが知られている。
However, in the semiconductor device 10, in order to exhibit the function of the high dielectric gate insulating film 13 formed on the base oxide film 12, the deposited high dielectric film 13 is crystallized by heat treatment, It is necessary to compensate. When such a heat treatment is performed on the high dielectric film 13, there is a problem that the thickness of the base oxide film 12 increases.
One of the causes of the increase in the thickness of the base oxide film 12 due to the heat treatment is that when the heat treatment is performed, the silicon of the base oxide film layer 12 and the metal of the high dielectric film 13 interdiffuse. It is inferred that a silicate layer was formed. Such a problem of an increase in the film thickness due to the heat treatment of the base oxide film 12 is very serious particularly when the film thickness of the base oxide film 12 is reduced to a thickness of several atomic layers or less, which is desirable as the base oxide film. It becomes a problem.
As a measure to suppress the increase in the thickness of the base oxide film, the semiconductor device 20 shown in FIG. 2 is formed by nitriding the surface of the base oxide film layer to form an oxynitride film. However, in the figure, the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
Referring to FIG. 2, the surface portion of the base oxide film layer 12 is doped with nitrogen (N) in a range where the flatness of the interface between the silicon substrate 11 and the base oxide film 12 is maintained. The oxynitride film 12A is formed to prevent the formation of the silicate layer as described above and increase in the thickness of the base oxide film 12.
However, in the case of the semiconductor device 20, there is a need to newly add a step of nitriding the base oxide film layer 12 and nitriding the oxynitride film 12A, which causes a problem that productivity is reduced. Further, there is a problem that it is very difficult to control the nitrogen concentration in the depth direction of the base oxide film layer 12. In particular, it is known that when nitrogen is concentrated near the interface between the silicon substrate 11 and the base oxide film 12, an interface state is formed, which causes problems such as capture of carriers and formation of a leak current path.

そこで本発明は上記の課題を解決した、新規で有用な基板処理方法および基板装置を提供することを概括的課題とする。   Accordingly, it is a general object of the present invention to provide a new and useful substrate processing method and substrate apparatus which solve the above-mentioned problems.

本発明のより具体的な課題は、シリコン基板表面に非常に薄い、典型的には1〜3原子層の酸窒化膜を単一の工程で形成することのできる基板処理方法および基板処理装置を提供することにある。   A more specific object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of forming a very thin, typically 1 to 3 atomic layer oxynitride film on a silicon substrate surface in a single step. To provide.

本発明の他の課題は、シリコン基板表面に非常に薄い、典型的には1〜3原子層の酸窒化膜を、形成される深さ方向において所望の窒素濃度に制御できる基板処理方法および基板処理装置を提供することにある。   Another object of the present invention is to provide a substrate processing method and a substrate processing method capable of controlling an extremely thin, typically 1 to 3 atomic layer oxynitride film on a silicon substrate surface to a desired nitrogen concentration in a formed depth direction. An object of the present invention is to provide a processing device.

本発明は上記の課題を、
請求項1に記載したように、
窒素ガスまたは窒素化合物であるガスと酸素ガスまたは酸素化合物であるガスを混合して混合ガスを形成する第1の工程と、
前記混合ガスを高周波プラズマにより励起して窒素ラジカルおよび酸素ラジカルを形成する第2の工程と、
前記窒素ラジカルおよび前記酸素ラジカルをシリコンを含む被処理基板表面に供給する第3の工程と、
前記窒素ラジカルおよび前記酸素ラジカルにより、前記被処理基板表面に窒素を含む絶縁膜を形成する第4の工程を含む絶縁膜の形成方法であって、
前記窒素ラジカルと前記酸素ラジカルは、前記被処理基板の表面に沿って流れるように形成されたガスの流れに乗って供給されることを特徴とする絶縁膜の形成方法により、また、
請求項2に記載したように、
前記被処理基板はシリコン基板よりなり、前記絶縁膜は酸窒化膜であることを特徴とする請求項1記載の絶縁膜の形成方法により、また、
請求項3に記載したように、
前記ガスの流れは、前記被処理基板の第1の側から、径方向上で対向する第2の側へと流れることを特徴とする請求項1または2記載の絶縁膜の形成方法により、また、
請求項4に記載したように、
前記高周波プラズマは、窒素ガスおよび酸素ガスを400〜500kHzの周波数で励起することにより形成されることを特徴とする請求項1乃至3のうち、いずれか一項記載の絶縁膜の形成方法により、また、
請求項5に記載したように、
前記絶縁膜の厚さは1nm以下であることを特徴とする請求項1乃至4のうち、いずれか一項記載の絶縁膜の形成方法により、また、
請求項6に記載したように、
前記混合ガスの酸素濃度が、10ppm〜600ppmであることを特徴とする請求項1乃至5のうち、いずれか一項記載の絶縁膜の形成方法により、また、
請求項7に記載したように、
窒素ガスまたは窒素化合物であるガスと酸素ガスまたは酸素化合物であるガスを混合して混合ガスを形成する第1の工程と、
前記混合ガスを高周波プラズマにより励起して窒素ラジカルおよび酸素ラジカルを形成する第2の工程と、
前記窒素ラジカルおよび前記酸素ラジカルをシリコンを含む被処理基板表面に供給する第3の工程と、
前記窒素ラジカルおよび前記酸素ラジカルにより、前記被処理基板表面に窒素を含む絶縁膜を形成する第4の工程を含む絶縁膜の形成方法であって、
前記高周波プラズマは、窒素ガスおよび酸素ガスを400〜500kHzの周波数で励起することにより形成されることを特徴とする絶縁膜の形成方法により、また、
請求項8に記載したように、
前記被処理基板はシリコン基板よりなり、前記絶縁膜は酸窒化膜であることを特徴とする請求項7記載の絶縁膜の形成方法により、また、
請求項9に記載したように、
前記絶縁膜の厚さは1nm以下であることを特徴とする請求項7または8記載の絶縁膜の形成方法により、また、
請求項10に記載したように、
前記混合ガスの酸素濃度が、10ppm〜600ppmであることを特徴とする請求項7乃至9のうち、いずれか一項記載の絶縁膜の形成方法により、また、
請求項11に記載したように、
窒素ガスまたは窒素化合物であるガスと酸素ガスまたは酸素化合物であるガスを混合して混合ガスを形成する第1の工程と、
前記混合ガスを高周波プラズマにより励起して窒素ラジカルおよび酸素ラジカルを形成する第2の工程と、
前記窒素ラジカルおよび前記酸素ラジカルをシリコンを含む被処理基板表面に供給する第3の工程と、
前記窒素ラジカルおよび前記酸素ラジカルにより、前記被処理基板表面に窒素を含む絶縁膜を形成する第4の工程を含む半導体装置の製造方法であって、
前記窒素ラジカルと前記酸素ラジカルは、前記被処理基板の表面に沿って流れるように形成されたガスの流れに乗って供給されることを特徴とする半導体装置の製造方法により、また、
請求項12に記載したように、
前記被処理基板はシリコン基板よりなり、前記絶縁膜は酸窒化膜であることを特徴とする請求項11記載の半導体装置の製造方法により、また、
請求項13に記載したように、
前記ガスの流れは、前記被処理基板の第1の側から、径方向上で対向する第2の側へと流れることを特徴とする請求項11または12記載の半導体装置の製造方法により、また、
請求項14に記載したように、
前記高周波プラズマは、窒素ガスおよび酸素ガスを400〜500kHzの周波数で励起することにより形成されることを特徴とする請求項11乃至13のうち、いずれか一項記載の半導体装置の製造方法により、また、
請求項15に記載したように、
前記絶縁膜の厚さは1nm以下であることを特徴とする請求項11乃至14のうち、いずれか一項記載の半導体装置の製造方法により、また、
請求項16に記載したように、
前記混合ガスの酸素濃度が、10ppm〜600ppmであることを特徴とする請求項11乃至15のうち、いずれか一項記載の半導体装置の製造方法により、また、
請求項17に記載したように、
窒素ガスまたは窒素化合物であるガスと酸素ガスまたは酸素化合物であるガスを混合して混合ガスを形成する第1の工程と、
前記混合ガスを高周波プラズマにより励起して窒素ラジカルおよび酸素ラジカルを形成する第2の工程と、
前記窒素ラジカルおよび前記酸素ラジカルをシリコンを含む被処理基板表面に供給する第3の工程と、
前記窒素ラジカルおよび前記酸素ラジカルにより、前記被処理基板表面に窒素を含む絶縁膜を形成する第4の工程を含む半導体装置の製造方法であって、
前記高周波プラズマは、窒素ガスおよび酸素ガスを400〜500kHzの周波数で励起することにより形成されることを特徴とする半導体装置の製造方法により、また、
請求項18に記載したように、
前記被処理基板はシリコン基板よりなり、前記絶縁膜は酸窒化膜であることを特徴とする請求項17記載の半導体装置の製造方法により、また、
請求項19に記載したように、
前記絶縁膜の厚さは1nm以下であることを特徴とする請求項17または18記載の半導体装置の製造方法により、また、
請求項20に記載したように、
前記混合ガスの酸素濃度が、10ppm〜600ppmであることを特徴とする請求項17乃至19のうち、いずれか一項記載の半導体装置の製造方法により、解決する。
[作用]
本発明によれば、高周波プラズマ励起された窒素ラジカルおよび酸素ラジカルを使って、非常に薄い酸窒化膜を単一の工程で形成することが可能になり、酸化膜を窒化して酸窒化膜を形成する場合に比べて工程数を減らして生産性を向上することが可能となる。また本発明によれば、酸窒化膜形成工程において、供給される窒素ラジカルに添加する酸素ラジカルの量を、酸窒化膜形成中に制御することが可能となった。その結果、形成される酸窒化膜中の窒素濃度を、形成される酸窒化膜の深さ方向において所望のプロファイルに制御することが可能になる。
The present invention solves the above problems,
As described in claim 1,
A first step of mixing a gas that is nitrogen gas or a nitrogen compound and a gas that is oxygen gas or an oxygen compound to form a mixed gas;
A second step of exciting the mixed gas with high-frequency plasma to form nitrogen radicals and oxygen radicals;
A third step of supplying the nitrogen radicals and the oxygen radicals to the surface of the substrate including silicon,
A method for forming an insulating film, comprising: a fourth step of forming an insulating film containing nitrogen on the surface of the substrate to be processed by the nitrogen radical and the oxygen radical,
The nitrogen radicals and the oxygen radicals are supplied along with a flow of a gas formed to flow along the surface of the substrate to be processed.
As described in claim 2,
The method according to claim 1, wherein the substrate to be processed is a silicon substrate, and the insulating film is an oxynitride film.
As described in claim 3,
The method according to claim 1, wherein the flow of the gas flows from a first side of the substrate to be processed to a second side radially opposed to the first side. 4. ,
As described in claim 4,
The method according to any one of claims 1 to 3, wherein the high-frequency plasma is formed by exciting nitrogen gas and oxygen gas at a frequency of 400 to 500 kHz. Also,
As described in claim 5,
The method of forming an insulating film according to any one of claims 1 to 4, wherein the thickness of the insulating film is 1 nm or less.
As described in claim 6,
The oxygen concentration of the mixed gas is 10 ppm to 600 ppm, and the method of forming an insulating film according to any one of claims 1 to 5,
As described in claim 7,
A first step of mixing a gas that is nitrogen gas or a nitrogen compound and a gas that is oxygen gas or an oxygen compound to form a mixed gas;
A second step of exciting the mixed gas with high-frequency plasma to form nitrogen radicals and oxygen radicals;
A third step of supplying the nitrogen radicals and the oxygen radicals to the surface of the substrate including silicon,
A method for forming an insulating film, comprising: a fourth step of forming an insulating film containing nitrogen on the surface of the substrate to be processed by the nitrogen radical and the oxygen radical,
The high-frequency plasma is formed by exciting a nitrogen gas and an oxygen gas at a frequency of 400 to 500 kHz.
As described in claim 8,
The method according to claim 7, wherein the substrate to be processed is a silicon substrate, and the insulating film is an oxynitride film.
As described in claim 9,
9. The method according to claim 7, wherein the thickness of the insulating film is 1 nm or less.
As described in claim 10,
The method according to any one of claims 7 to 9, wherein the oxygen concentration of the mixed gas is 10 ppm to 600 ppm.
As described in claim 11,
A first step of mixing a gas that is nitrogen gas or a nitrogen compound and a gas that is oxygen gas or an oxygen compound to form a mixed gas;
A second step of exciting the mixed gas with high-frequency plasma to form nitrogen radicals and oxygen radicals;
A third step of supplying the nitrogen radicals and the oxygen radicals to the surface of the substrate including silicon,
A method for manufacturing a semiconductor device, comprising: a fourth step of forming an insulating film containing nitrogen on a surface of a substrate to be processed by using the nitrogen radicals and the oxygen radicals,
The method for manufacturing a semiconductor device, wherein the nitrogen radicals and the oxygen radicals are supplied on a flow of gas formed to flow along the surface of the substrate to be processed,
As described in claim 12,
The method according to claim 11, wherein the substrate to be processed is a silicon substrate, and the insulating film is an oxynitride film.
As described in claim 13,
13. The method of manufacturing a semiconductor device according to claim 11, wherein the flow of the gas flows from a first side of the substrate to be processed to a second side radially opposed to the first side. ,
As described in claim 14,
The method according to any one of claims 11 to 13, wherein the high-frequency plasma is formed by exciting nitrogen gas and oxygen gas at a frequency of 400 to 500 kHz. Also,
As described in claim 15,
The method of manufacturing a semiconductor device according to claim 11, wherein the thickness of the insulating film is 1 nm or less.
As described in claim 16,
The method according to any one of claims 11 to 15, wherein the oxygen concentration of the mixed gas is 10 ppm to 600 ppm.
As described in claim 17,
A first step of mixing a gas that is nitrogen gas or a nitrogen compound and a gas that is oxygen gas or an oxygen compound to form a mixed gas;
A second step of exciting the mixed gas with high-frequency plasma to form nitrogen radicals and oxygen radicals;
A third step of supplying the nitrogen radicals and the oxygen radicals to the surface of the substrate including silicon,
A method for manufacturing a semiconductor device, comprising: a fourth step of forming an insulating film containing nitrogen on the surface of the substrate to be processed by the nitrogen radical and the oxygen radical,
The high-frequency plasma is formed by exciting a nitrogen gas and an oxygen gas at a frequency of 400 to 500 kHz.
As described in claim 18,
18. The method according to claim 17, wherein the substrate to be processed is a silicon substrate, and the insulating film is an oxynitride film.
As described in claim 19,
19. The method according to claim 17, wherein the thickness of the insulating film is 1 nm or less.
As described in claim 20,
20. The method according to claim 17, wherein the mixed gas has an oxygen concentration of 10 ppm to 600 ppm.
[Action]
According to the present invention, a very thin oxynitride film can be formed in a single step using nitrogen radicals and oxygen radicals excited by high-frequency plasma, and an oxynitride film is formed by nitriding an oxide film. The number of steps can be reduced as compared with the case of forming, and the productivity can be improved. Further, according to the present invention, in the oxynitride film forming step, the amount of oxygen radicals added to the supplied nitrogen radicals can be controlled during the formation of the oxynitride film. As a result, the nitrogen concentration in the formed oxynitride film can be controlled to a desired profile in the depth direction of the formed oxynitride film.

またこの場合、従来用いられていたシリコン酸化膜に比較して酸窒化膜の誘電率が大きいため、熱酸化膜換算膜厚を減少させることが可能になる。   In this case, since the dielectric constant of the oxynitride film is larger than that of the conventionally used silicon oxide film, the equivalent oxide thickness of the thermal oxide film can be reduced.

本発明により、シリコン基板表面に非常に薄い、典型的には1〜3原子層の酸窒化膜を単一の工程で形成することが可能となる。   According to the present invention, it is possible to form a very thin, typically 1 to 3 atomic layer oxynitride film on a silicon substrate surface in a single step.

また、前記酸窒化膜を、形成される深さ方向において所望の窒素濃度に制御することが可能となる。   Further, it is possible to control the oxynitride film to a desired nitrogen concentration in a depth direction in which the oxynitride film is formed.

次に、発明を実施する形態について説明する。   Next, an embodiment of the invention will be described.

図3は、図2のシリコン基板11上に酸窒化膜を形成するための、本発明の実施例1による基板処理装置100の概略的構成を示す。   FIG. 3 shows a schematic configuration of a substrate processing apparatus 100 for forming an oxynitride film on the silicon substrate 11 of FIG. 2 according to the first embodiment of the present invention.

図3を参照するに、基板処理装置100は、ヒータ22Aを備えプロセス位置と基板搬入・搬出位置との間を上下動自在に設けられた基板保持台22を収納し、前記基板保持台22と共にプロセス空間21Bを画成する処理容器21を備えており、前記基板保持台22は駆動機構22Cにより回動される。なお、前記処理容器21の内壁面は石英ガラスよりなる内部ライナ21Gにより覆われており、これにより、露出金属面からの被処理基板の金属汚染を1×1010原子/cm2以下のレベルに抑制している。 Referring to FIG. 3, the substrate processing apparatus 100 stores a substrate holding table 22 provided with a heater 22 </ b> A and provided to be vertically movable between a process position and a substrate loading / unloading position. The apparatus includes a processing vessel 21 defining a process space 21B, and the substrate holding table 22 is rotated by a driving mechanism 22C. The inner wall surface of the processing vessel 21 is covered with an inner liner 21G made of quartz glass, whereby metal contamination of the substrate to be processed from the exposed metal surface is reduced to a level of 1 × 10 10 atoms / cm 2 or less. Restrained.

また前記基板保持台22と駆動機構22Cとの結合部には磁気シール28が形成され、磁気シール28は真空環境に保持される磁気シール室22Bと大気環境中に形成される駆動機構22Cとを分離している。磁気シール28は液体であるため、前記基板保持台22は回動自在に保持される。   A magnetic seal 28 is formed at the joint between the substrate holding table 22 and the driving mechanism 22C. The magnetic seal 28 connects the magnetic sealing chamber 22B held in a vacuum environment and the driving mechanism 22C formed in the atmospheric environment. Are separated. Since the magnetic seal 28 is a liquid, the substrate holder 22 is rotatably held.

図示の状態では、前記基板保持台22はプロセス位置にあり、下側に被処理基板の搬入・搬出のための搬入・搬出室21Cが形成されている。前記処理容器21はゲートバルブ27Aを介して基板搬送ユニット27に結合されており、前記基板保持台22が搬入・搬出時に21C中に下降した状態において、前記ゲートバルブ27Aを介して基板搬送ユニット27から被処理基板Wが基板保持台22上に搬送され、また処理済みの基板Wが基板保持台22から基板搬送ユニット27に搬送される。   In the illustrated state, the substrate holding table 22 is at the process position, and a loading / unloading chamber 21C for loading / unloading the substrate to be processed is formed below. The processing container 21 is connected to the substrate transfer unit 27 via a gate valve 27A. When the substrate holding table 22 is lowered into and out of 21C during loading / unloading, the substrate transfer unit 27 is connected via the gate valve 27A. Then, the substrate W to be processed is transferred onto the substrate holder 22, and the processed substrate W is transferred from the substrate holder 22 to the substrate transfer unit 27.

図3の基板処理装置100では、前記処理容器21のゲートバルブ27Aに近い部分に排気口21Aが形成されており、前記排気口21Aにはバルブ23Aを介してターボ分子ポンプ23Bが結合されている。前記ターボ分子ポンプ23Bには、さらにドライポンプおよびメカニカルブースターポンプを結合して構成したポンプ24がバルブ23Cを介して結合されており、前記ターボ分子ポンプ23Bおよびドライポンプ24を駆動することにより、前記プロセス空間21Bの圧力を1.33×10-1〜1.33×10-4Pa(10-3〜10-6Torr)まで減圧することが可能になる
一方、前記排気口21Aはバルブ24AおよびAPC24Bを介して直接にもポンプ24に結合されており、前記バルブ24Aを開放することにより、前記プロセス空間は、前記ポンプ24により1.33Pa〜13.3kPa(0.01〜100Torr)の圧力まで減圧される。
In the substrate processing apparatus 100 of FIG. 3, an exhaust port 21A is formed in a portion of the processing container 21 near the gate valve 27A, and a turbo molecular pump 23B is connected to the exhaust port 21A via a valve 23A. . The turbo molecular pump 23B is further connected with a pump 24 configured by combining a dry pump and a mechanical booster pump via a valve 23C. By driving the turbo molecular pump 23B and the dry pump 24, the turbo molecular pump 23B The pressure in the process space 21B can be reduced to 1.33 × 10 −1 to 1.33 × 10 −4 Pa (10 −3 to 10 −6 Torr), while the exhaust port 21A is connected to the valve 24A and The process space is also directly connected to the pump 24 via the APC 24B, and by opening the valve 24A, the process space is increased by the pump 24 to a pressure of 1.33 to 13.3 kPa (0.01 to 100 Torr). The pressure is reduced.

また前記処理容器21には前記被処理基板Wに対して排気口21Aと対向する側にリモートプラズマ源26が設置されており、さらに前記リモートプラズマ源26には窒素および酸素を供給するためのガス供給装置30が接続されている。前記ガス供給装置30では、供給される窒素に対して、図9〜図13にて後述の方法で微量の酸素を混合して所定の混合比(酸素濃度で約10ppm〜600ppm程度)に調整する。前記の方法で調整された窒素と酸素の混合気を前記リモートプラズマ源26にArなどの不活性ガスと共に供給し、これをプラズマにより活性化することにより、所定の混合比で窒素ラジカルおよび酸素ラジカルが形成される。このように、前記リモートプラズマ源26に供給される窒素と酸素の混合比を調整することにより、前記リモートプラズマ源26にて生成される窒素ラジカルと酸素ラジカルの比を調整することが可能となり、その結果被処理基板W上に所望の窒素濃度に調整された酸窒化膜を形成することができる。   The processing vessel 21 is provided with a remote plasma source 26 on the side of the substrate W facing the exhaust port 21A. The remote plasma source 26 is further provided with a gas for supplying nitrogen and oxygen. The supply device 30 is connected. In the gas supply device 30, a slight amount of oxygen is mixed with the supplied nitrogen by a method described later with reference to FIGS. 9 to 13 to adjust the mixture to a predetermined mixing ratio (about 10 ppm to 600 ppm in oxygen concentration). . A mixture of nitrogen and oxygen adjusted by the above-described method is supplied to the remote plasma source 26 together with an inert gas such as Ar, and the mixture is activated by plasma. Is formed. Thus, by adjusting the mixture ratio of nitrogen and oxygen supplied to the remote plasma source 26, it is possible to adjust the ratio of nitrogen radicals to oxygen radicals generated by the remote plasma source 26, As a result, an oxynitride film adjusted to a desired nitrogen concentration can be formed on the target substrate W.

図3の基板処理装置100では、さらに前記搬入・搬出室21Cを窒素ガスによりパージするパージライン21cが設けられ、さらに前記磁気シール室22Bを窒素ガスによりパージするパージライン22bおよびその排気ライン22cが設けられている。より詳細に説明すると、前記排気ライン22cにはバルブ29Aを介してターボ分子ポンプ29Bが結合され、前記ターボ分子ポンプ29Bはバルブ29Cを介してポンプ24に結合されている。また、前記排気ライン22cはポンプ24とバルブ29Dを介しても直接に結合されており、これにより磁気シール室22Bを様々な圧力に保持することが可能になる。   In the substrate processing apparatus 100 of FIG. 3, a purge line 21c for purging the loading / unloading chamber 21C with nitrogen gas is further provided, and a purge line 22b for purging the magnetic seal chamber 22B with nitrogen gas and an exhaust line 22c thereof are provided. Is provided. More specifically, a turbo-molecular pump 29B is connected to the exhaust line 22c via a valve 29A, and the turbo-molecular pump 29B is connected to the pump 24 via a valve 29C. Further, the exhaust line 22c is directly connected to the pump 24 via a valve 29D, so that the magnetic seal chamber 22B can be maintained at various pressures.

前記搬入・搬出室21Cはポンプ24によりバルブ24Cを介して排気され、あるいはターボ分子ポンプ23Bによりバルブ23Dを介して排気される。前記プロセス空間21B中において汚染が生じるのを回避するために、前記搬入・搬出室21Cはプロセス空間21Bよりも低圧に維持され、また前記磁気シール室22Bは差動排気されることで前記搬入・搬出室21Cよりもさらに低圧に維持される。
次に、前記基板処理装置100に設けられた前記リモートプラズマ源26の構成を示す。
The loading / unloading chamber 21C is exhausted by a pump 24 via a valve 24C or exhausted by a turbo molecular pump 23B via a valve 23D. In order to avoid the occurrence of contamination in the process space 21B, the loading / unloading chamber 21C is maintained at a lower pressure than the process space 21B, and the magnetic sealing chamber 22B is differentially evacuated so that the loading / unloading is performed. The pressure is kept lower than that of the discharge chamber 21C.
Next, the configuration of the remote plasma source 26 provided in the substrate processing apparatus 100 will be described.

図4は、図3の基板処理装置40において使われるリモートプラズマ源26の構成を示す。   FIG. 4 shows a configuration of the remote plasma source 26 used in the substrate processing apparatus 40 of FIG.

図4を参照するに、リモートプラズマ源26は、内部にガス循環通路26aとこれに連通したガス入り口26bおよびガス出口26cを形成された、典型的にはアルミニウムよりなるブロック26Aを含み、前記ブロック26Aの一部にはフェライトコア26Bが形成されている。   Referring to FIG. 4, the remote plasma source 26 includes a block 26A, typically made of aluminum, in which a gas circulation passage 26a and a gas inlet 26b and a gas outlet 26c communicating therewith are formed. A ferrite core 26B is formed in a part of 26A.

前記ガス循環通路26aおよびガス入り口26b、ガス出口26cの内面にはフッ素樹脂コーティング26dが施され、前記フェライトコア26Bに巻回されたコイルに周波数が400kHzの高周波を供給することにより、前記ガス循環通路26a内にプラズマ26Cが形成される。   The inner surface of the gas circulation passage 26a, the gas inlet 26b, and the gas outlet 26c is coated with a fluororesin coating 26d, and the coil wound around the ferrite core 26B is supplied with a high frequency having a frequency of 400 kHz. Plasma 26C is formed in passage 26a.

プラズマ26Cの励起に伴って、前記ガス循環通路26a中には窒素ラジカル、酸素ラジカルおよび窒素イオン、酸素イオンが形成されるが、窒素イオンと酸素イオンは前記循環通路26aを循環する際に消滅し、前記ガス出口26cからは主に窒素ラジカルN2*と酸素ラジカルO2*が放出される。さらに図4の構成では前記ガス出口26cに接地されたイオンフィルタ26eを設けることにより、窒素イオンをはじめとする荷電粒子が除去され、前記処理空間21Bには窒素ラジカルと酸素ラジカルのみが供給される。また、前記イオンフィルタ26eを接地させない場合においても、前記イオンフィルタ26eの構造は拡散板として作用するため、十分に窒素イオンをはじめとする荷電粒子を除去することができる。 With the excitation of the plasma 26C, nitrogen radicals, oxygen radicals, nitrogen ions and oxygen ions are formed in the gas circulation passage 26a, but the nitrogen ions and oxygen ions disappear when circulating through the circulation passage 26a. From the gas outlet 26c, nitrogen radicals N 2 * and oxygen radicals O 2 * are mainly released. Further, in the configuration of FIG. 4, by providing an ion filter 26e grounded to the gas outlet 26c, charged particles including nitrogen ions are removed, and only nitrogen radicals and oxygen radicals are supplied to the processing space 21B. . Further, even when the ion filter 26e is not grounded, the structure of the ion filter 26e functions as a diffusion plate, so that charged particles including nitrogen ions can be sufficiently removed.

図5は、図4のリモートプラズマ源26により形成されるイオンの数と電子エネルギの関係を、マイクロ波プラズマ源の場合と比較して示す。   FIG. 5 shows the relationship between the number of ions formed by the remote plasma source 26 in FIG. 4 and the electron energy in comparison with the case of the microwave plasma source.

図5を参照するに、マイクロ波によりプラズマを励起した場合には窒素分子と酸素分子のイオン化が促進され、多量の窒素イオンと酸素イオンが形成されることになる。これに対し500kHz以下の高周波によりプラズマを励起した場合には、形成される窒素イオンと酸素イオンの数が大幅に減少する。マイクロ波によりプラズマ処理を行う場合には、図6に示すように、1.33×10-3〜1.33×10-6Pa(10-1〜10-4Torr)の高真空が必要になるが、高周波プラズマ処理は、13.3〜13.3kPa(0.1〜100Torr)の比較的高い圧力で実行可能である。 Referring to FIG. 5, when plasma is excited by microwaves, ionization of nitrogen molecules and oxygen molecules is promoted, and a large amount of nitrogen ions and oxygen ions are formed. On the other hand, when the plasma is excited by a high frequency of 500 kHz or less, the number of formed nitrogen ions and oxygen ions is greatly reduced. In the case of performing plasma processing by microwaves, as shown in FIG. 6, a high vacuum of 1.33 × 10 −3 to 1.33 × 10 −6 Pa (10 −1 to 10 −4 Torr) is required. However, the high-frequency plasma processing can be performed at a relatively high pressure of 13.3 to 13.3 kPa (0.1 to 100 Torr).

次に図7では、マイクロ波によりプラズマを励起する場合と、高周波によりプラズマを励起する場合との間での、イオン化エネルギ変換効率、放電可能圧力範囲、プラズマ消費電力、プロセスガス流量の比較を示す。   Next, FIG. 7 shows a comparison of ionization energy conversion efficiency, dischargeable pressure range, plasma power consumption, and process gas flow rate between the case where plasma is excited by microwaves and the case where plasma is excited by high frequencies. .

図7を参照するに、イオン化エネルギ変換効率は、マイクロ波励起の場合に約1×10-2程度であるのに対し、RF励起の場合、約1×10-7まで減少しており、また放電可能圧力はマイクロ波励起の場合0.1mTorr〜0.1Torr(133mPa〜13.3Pa)程度であるのに対し、RF励起の場合には、0.1〜100Torr(13.3Pa〜13.3kPa)程度であることがわかる。これに伴い、プラズマ消費電力はRF励起の場合の方がマイクロ波励起の場合よりも大きく、プロセスガス流量は、RF励起の場合の方がマイクロ波励起の場合よりもはるかに大きくなっている。 Referring to FIG. 7, the ionization energy conversion efficiency is about 1 × 10 −2 in the case of microwave excitation, while it is reduced to about 1 × 10 −7 in the case of RF excitation, and The dischargeable pressure is about 0.1 mTorr to 0.1 Torr (133 mPa to 13.3 Pa) in the case of microwave excitation, whereas 0.1 to 100 Torr (13.3 Pa to 13.3 kPa) in the case of RF excitation. ). Accordingly, the plasma power consumption is larger in the case of RF excitation than in the case of microwave excitation, and the process gas flow rate is much larger in the case of RF excitation than in the case of microwave excitation.

図3の基板処理装置では、酸窒化膜の形成を窒素イオンおよび酸素イオンではなく窒素ラジカルおよび酸素ラジカルで行っており、このため励起される窒素イオンと酸素イオンの数は少ない方が好ましい。また被処理基板に加えられるダメージを最小化する観点からも、励起される窒素イオンと酸素イオンの数は少ないのが好ましい。さらに図3の基板処理装置では、励起される窒素ラジカルと酸素ラジカルの数も少なく、高誘電体ゲート絶縁膜下の非常に薄い酸窒化膜を形成するのに好適である。   In the substrate processing apparatus shown in FIG. 3, the oxynitride film is formed not by nitrogen ions and oxygen ions but by nitrogen radicals and oxygen radicals. Therefore, it is preferable that the number of excited nitrogen ions and oxygen ions is small. Also, from the viewpoint of minimizing damage to the substrate to be processed, it is preferable that the number of excited nitrogen ions and oxygen ions is small. Further, in the substrate processing apparatus of FIG. 3, the number of excited nitrogen radicals and oxygen radicals is small, which is suitable for forming an extremely thin oxynitride film under the high-dielectric gate insulating film.

図8(A),(B)は、それぞれ図3の基板処理装置100を使って被処理基板Wに酸窒化膜を形成する場合を示す側面図および平面図である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。   FIGS. 8A and 8B are a side view and a plan view showing a case where an oxynitride film is formed on a substrate W to be processed using the substrate processing apparatus 100 of FIG. However, in the figure, the parts described above are denoted by the same reference numerals, and description thereof will be omitted.

実際に前記被処理基板Wに酸窒化膜が形成される手順は以下の通りとなる。
まず、リモートプラズマラジカル源26にはArガスと、前記ガス供給装置30から前記したように所定の混合比に調整された窒素ガスおよび酸素が供給され、プラズマを数100kHzの周波数で高周波励起することにより、所定の混合比の窒素ラジカルおよび酸素ラジカルが形成される。形成された窒素ラジカルと酸素ラジカルは前記被処理基板Wの表面に沿って流れ、前記排気口21Aおよびポンプ24を介して排気される。その結果前記プロセス空間21Bは、基板Wのラジカル酸窒化に適当な、6.65Pa〜1.33kPa(0.05〜10Torr)の範囲のプロセス圧に設定される。このようにして、窒素ラジカルと酸素ラジカルが前記被処理基板Wの表面に沿って流れる際に、回動している前記被処理基板Wの表面に非常に薄い、典型的には1〜3原子層の酸窒化膜を形成する。
The procedure for actually forming the oxynitride film on the target substrate W is as follows.
First, Ar gas, nitrogen gas and oxygen adjusted to a predetermined mixing ratio as described above are supplied from the gas supply device 30 to the remote plasma radical source 26, and high frequency excitation of the plasma is performed at a frequency of several hundred kHz. As a result, nitrogen radicals and oxygen radicals having a predetermined mixing ratio are formed. The formed nitrogen radicals and oxygen radicals flow along the surface of the target substrate W, and are exhausted through the exhaust port 21A and the pump 24. As a result, the process space 21B is set to a process pressure in a range of 6.65 Pa to 1.33 kPa (0.05 to 10 Torr), which is suitable for radical oxynitriding of the substrate W. In this way, when the nitrogen radicals and the oxygen radicals flow along the surface of the substrate to be processed W, the surface of the substrate to be processed W which is rotating is very thin, typically 1 to 3 atoms. An oxynitride layer is formed.

図8(A),(B)の酸窒化膜形成工程では、酸窒化膜形成に先立ち以下に示すパージ工程を行うことも可能である。前記パージ工程では、前記バルブ23Aおよび23Cが開放され、バルブ24Aが閉鎖されることで前記処理空間21Bの圧力が1.33×10-1〜1.33×10-4Paの圧力まで減圧されるが、その後の酸窒化膜形成工程ではバルブ23Aおよび23Cは閉鎖され、ターボ分子ポンプ23Bはプロセス空間21Bの排気経路には含まれない。 In the oxynitride film forming process of FIGS. 8A and 8B, the following purging process can be performed prior to the oxynitride film formation. In the purge step, the pressure in the processing space 21B is reduced to a pressure of 1.33 × 10 −1 to 1.33 × 10 −4 Pa by opening the valves 23A and 23C and closing the valve 24A. However, in the subsequent oxynitride film forming step, the valves 23A and 23C are closed, and the turbo molecular pump 23B is not included in the exhaust path of the process space 21B.

前記パージ工程を加えることで処理空間21B中に残留している酸素や水分をパージすることが可能である。   By adding the purging step, it is possible to purge oxygen and moisture remaining in the processing space 21B.

また、図8(B)の平面図よりわかるように、ターボ分子ポンプ23Bは、基板搬送ユニット27を避けて、処理容器21の横に突出するような形で配置されている。この場合、次の図9(A),(B)に示すように、ターボ分子ポンプ23Bの配置を変更することも可能である。   In addition, as can be seen from the plan view of FIG. 8B, the turbo molecular pump 23B is arranged so as to protrude to the side of the processing container 21, avoiding the substrate transfer unit 27. In this case, as shown in the following FIGS. 9A and 9B, the arrangement of the turbo molecular pump 23B can be changed.

図9(A),(B)は、基板処理装置40の構成を示す、それぞれ側面図および平面図である。ただし図9(A),(B)中、先に説明した部分には同一の参照符号を付し、説明を省略する。   9A and 9B are a side view and a plan view, respectively, showing the configuration of the substrate processing apparatus 40. However, in FIGS. 9A and 9B, the same reference numerals are given to the parts described above, and the description will be omitted.

図9(A),(B)を参照するに、基板処理装置40はターボ分子ポンプ23Bを、図29のように処理容器21の外側、すなわち前記基板搬送ユニット27と反対の側に配置する。これに伴い、前記処理容器21には前記ターボ分子ポンプ23Bに協働する排気口21Eが、前記基板搬送室と反対の側に形成される。   9A and 9B, in the substrate processing apparatus 40, the turbo molecular pump 23B is disposed outside the processing container 21, that is, on the side opposite to the substrate transfer unit 27 as shown in FIG. Accordingly, an exhaust port 21E cooperating with the turbo molecular pump 23B is formed in the processing container 21 on the side opposite to the substrate transfer chamber.

前記ターボ分子ポンプ23Bは前記処理容器21の下部に垂直な向きで、すなわち吸気口と排気口とが上下に配列するような向きで、バルブ23Aを介して結合されており、前記ターボ分子ポンプ23Bの排気口は、前記処理容器21の排気口21Aからバルブ24Aを経て前記ポンプ24に至る排気ラインに、バルブ24Aの後ろで結合されている。   The turbo-molecular pump 23B is coupled via a valve 23A in a direction perpendicular to the lower part of the processing vessel 21, that is, in a direction in which an intake port and an exhaust port are vertically arranged. Is connected to the exhaust line from the exhaust port 21A of the processing container 21 to the pump 24 via the valve 24A after the valve 24A.

基板処理装置40ではターボ分子ポンプ23Bが前記処理容器21の下側に配置されるため、前記した基板処理装置100と比べて基板処理装置の省スペース化が可能となる。   In the substrate processing apparatus 40, since the turbo-molecular pump 23B is disposed below the processing container 21, the space of the substrate processing apparatus can be reduced as compared with the substrate processing apparatus 100 described above.

実際に前記被処理基板Wに酸窒化膜が形成される手順は以下の通りとなる。
まず、リモートプラズマラジカル源26にはArガスと、前記ガス供給装置30から前記したように所定の混合比に調整された窒素ガスおよび酸素が供給され、プラズマを数100kHzの周波数で高周波励起することにより、所定の混合比の窒素ラジカルおよび酸素ラジカルが形成される。形成された窒素ラジカルと酸素ラジカルは前記被処理基板Wの表面に沿って流れ、前記排気口21Aおよびポンプ24を介して排気される。その結果前記プロセス空間21Bは、基板Wのラジカル酸窒化に適当な、6.65Pa〜1.33kPa(0.05〜10Torr)の範囲のプロセス圧に設定される。このようにして、窒素ラジカルと酸素ラジカルが前記被処理基板Wの表面に沿って流れる際に、回動している前記被処理基板Wの表面に非常に薄い、典型的には1〜3原子層の酸窒化膜を形成する。
The procedure for actually forming the oxynitride film on the target substrate W is as follows.
First, Ar gas, nitrogen gas and oxygen adjusted to a predetermined mixing ratio as described above are supplied from the gas supply device 30 to the remote plasma radical source 26, and high frequency excitation of the plasma is performed at a frequency of several hundred kHz. As a result, nitrogen radicals and oxygen radicals having a predetermined mixing ratio are formed. The formed nitrogen radicals and oxygen radicals flow along the surface of the target substrate W, and are exhausted through the exhaust port 21A and the pump 24. As a result, the process space 21B is set to a process pressure in a range of 6.65 Pa to 1.33 kPa (0.05 to 10 Torr), which is suitable for radical oxynitriding of the substrate W. In this way, when the nitrogen radicals and the oxygen radicals flow along the surface of the substrate to be processed W, the surface of the substrate to be processed W which is rotating is very thin, typically 1 to 3 atoms. An oxynitride layer is formed.

図9(A),(B)の酸窒化膜形成工程では、酸窒化膜形成に先立ち以下に示すパージ工程を行うことも可能である。前記パージ工程では、前記バルブ23Aおよび23Cが開放され、バルブ24Aが閉鎖されることで前記処理空間21Bの圧力が1.33×10-1〜1.33×10-4Paの圧力まで減圧されるが、その後の酸窒化処理ではバルブ23Aおよび23Cは閉鎖され、ターボ分子ポンプ23Bはプロセス空間21Bの排気経路には含まれない。 In the oxynitride film forming process of FIGS. 9A and 9B, a purge process described below can be performed prior to the formation of the oxynitride film. In the purge step, the pressure in the processing space 21B is reduced to a pressure of 1.33 × 10 −1 to 1.33 × 10 −4 Pa by opening the valves 23A and 23C and closing the valve 24A. However, in the subsequent oxynitriding process, the valves 23A and 23C are closed, and the turbo molecular pump 23B is not included in the exhaust path of the process space 21B.

前記パージ工程を加えることで処理空間21B中に残留している酸素や水分をパージすることが可能である。   By adding the purging step, it is possible to purge oxygen and moisture remaining in the processing space 21B.

次に、前記リモートプラズマ源26に窒素および酸素を供給する前記ガス供給装置30の構成図を示す。   Next, a configuration diagram of the gas supply device 30 that supplies nitrogen and oxygen to the remote plasma source 26 is shown.

図10を参照するに、前記ガス供給装置30は、窒素導入バルブ31Aを含む窒素導入ライン31、酸素導入バルブ32Aを含む酸素導入ライン32、混合タンク30A、混合気供給バルブ33Aを含む混合気供給ライン33より構成される。前記窒素導入ライン31において前記窒素導入バルブ31Aを開放することにより、前記混合タンク30Aに窒素が導入される。前記混合タンク30Aに酸素を混合する場合は、窒素が供給されている間に、前記酸素導入バルブ32Aを短時間だけ開放し、酸素導入ライン32より微量酸素を前記混合タンク内に混合する。混合される酸素の濃度は、前記酸素導入バルブ32Aの開放時間により、調整される。前記混合タンク30Aにおいて混合された窒素と酸素は、混合ガス供給ライン33より、混合ガス供給バルブ33Aを開放することにより、前記リモートプラズマ源26に供給される。   Referring to FIG. 10, the gas supply device 30 includes a nitrogen supply line 31 including a nitrogen supply valve 31A, an oxygen supply line 32 including an oxygen supply valve 32A, a mixing tank 30A, and a mixture supply including a mixture supply valve 33A. It is composed of a line 33. By opening the nitrogen introduction valve 31A in the nitrogen introduction line 31, nitrogen is introduced into the mixing tank 30A. When mixing oxygen in the mixing tank 30A, the oxygen introduction valve 32A is opened for a short time while nitrogen is being supplied, and a trace amount of oxygen is mixed into the mixing tank through the oxygen introduction line 32. The concentration of oxygen to be mixed is adjusted by the opening time of the oxygen introduction valve 32A. The nitrogen and oxygen mixed in the mixing tank 30A are supplied from the mixed gas supply line 33 to the remote plasma source 26 by opening the mixed gas supply valve 33A.

前記したように、前記リモートプラズマ源26に供給される混合ガス中の、窒素に対する酸素の濃度を調整することにより、形成される窒素ラジカルと酸素ラジカル比を調整することが可能となり、前記処理容器21内において所望の窒素濃度であって非常に薄い、典型的には1〜3原子層の酸窒化膜を形成することが可能となる。   As described above, by adjusting the concentration of oxygen to nitrogen in the mixed gas supplied to the remote plasma source 26, it is possible to adjust the ratio of nitrogen radicals to oxygen radicals to be formed. It is possible to form a very thin, typically 1 to 3 atomic layer oxynitride film with a desired nitrogen concentration in 21.

また、酸化膜を形成した後で表面を窒化して酸窒化膜を形成する場合と比較すると、酸窒化膜を1工程で形成することが可能であるために工程数が1工程少なくてすみ、生産性を向上させることができる。   In addition, compared to the case where the oxynitride film is formed by nitriding the surface after forming the oxide film, the number of steps can be reduced by one because the oxynitride film can be formed in one step. Productivity can be improved.

次に、形成される酸窒化膜の窒素濃度を制御する方法を具体的に説明する。   Next, a method for controlling the nitrogen concentration of the formed oxynitride film will be specifically described.

図11に、時間経過を横軸にとり、前記窒素ガス供給バルブ31Aと、酸素ガス供給バルブ32Aの開閉のタイミングを示すタイミングチャートを示す。   FIG. 11 is a timing chart showing the timing of opening and closing the nitrogen gas supply valve 31A and the oxygen gas supply valve 32A on the horizontal axis with the passage of time.

図11を参照するに、前記窒素ガス31Aは、窒素と酸素の混合ガスを供給する間は開放しておく。前記酸素供給バルブ32Aは、短時間開放して閉じ、一定時間経過後再び短時間開放して閉じるという動作を繰り返して、窒素中に所定の酸素を添加して所望の酸素濃度に調整する。このときの前記酸素供給バルブ32Aの開放時間をt1、前記酸素供給バルブ32Aが開放してから再び開放するまでの時間をS1とすると、前記t1とS1の値を調整することにより、窒素に混合される酸素濃度を調整することができる。その結果前記リモートプラズマ源26において生成される窒素ラジカルと酸素ラジカルの比を調整することができ、前記被処理基板Wに形成される酸窒化膜の窒素濃度を所望の値に調整するこことが可能となる。   Referring to FIG. 11, the nitrogen gas 31A is kept open while supplying a mixed gas of nitrogen and oxygen. The oxygen supply valve 32A is repeatedly opened and closed for a short period of time and then opened and closed again for a short period of time after a lapse of a predetermined time, thereby adding predetermined oxygen to nitrogen to adjust the oxygen concentration to a desired value. Assuming that the opening time of the oxygen supply valve 32A at this time is t1 and the time from when the oxygen supply valve 32A is opened to when it is opened again is S1, the values of t1 and S1 are adjusted to mix with nitrogen. Oxygen concentration can be adjusted. As a result, the ratio of nitrogen radicals to oxygen radicals generated in the remote plasma source 26 can be adjusted, and the nitrogen concentration of the oxynitride film formed on the substrate W can be adjusted to a desired value. It becomes possible.

また、この場合窒化にくらべて酸化の反応速度が速いため、窒素に添加する酸素濃度は10ppm〜600ppm程度で酸窒化膜の窒素濃度は約10〜40%に制御できる。   In this case, since the oxidation reaction rate is higher than that of nitriding, the concentration of oxygen added to nitrogen can be controlled to about 10 ppm to 600 ppm, and the nitrogen concentration of the oxynitride film can be controlled to about 10 to 40%.

この場合の酸窒化膜の形成条件は例えば、処理容器21の圧力を6.65Pa〜1.33kPa(0.05〜10Torr)、Arガス流量0.7〜2slm、窒素流量0.05〜0.9slm、酸素流量0〜0.1slm、窒素と酸素の混合気中の酸素濃度10ppm〜600ppm、もしくは窒素とArと酸素の混合気中の酸素濃度10〜300ppm、被処理基板温度400〜700℃とすると、形成される酸窒化膜中の窒素濃度は10〜40%程度となる。   The conditions for forming the oxynitride film in this case include, for example, a pressure of the processing container 21 of 6.65 Pa to 1.33 kPa (0.05 to 10 Torr), an Ar gas flow of 0.7 to 2 slm, and a nitrogen flow of 0.05 to 0. 9 slm, an oxygen flow rate of 0 to 0.1 slm, an oxygen concentration of 10 to 600 ppm in a mixture of nitrogen and oxygen, or an oxygen concentration of 10 to 300 ppm in a mixture of nitrogen, Ar and oxygen, and a substrate temperature of 400 to 700 ° C. Then, the nitrogen concentration in the formed oxynitride film becomes about 10 to 40%.

次に、図12に、本発明の実施例2である前記窒素供給バルブ31Aと、酸素供給バルブ32Aの時間経過を横軸にとったタイミングチャートを示す。   Next, FIG. 12 shows a timing chart in which the time lapse of the nitrogen supply valve 31A and the oxygen supply valve 32A according to the second embodiment of the present invention is plotted on the horizontal axis.

図12を参照するに、図11の実施例1の場合と比較して、前記S1は同一であるが、前記酸素供給バルブ32Aが開放されている時間t1が本例の場合t2となってt1にくらべて短くなっている。このために混合される酸素の量が減少する。その結果前記リモートプラズマ源26において生成される酸素ラジカルの量が減少し、前記被処理基板W上に酸窒化膜を形成する際の酸化反応が抑えられる。その結果酸窒化膜形成の工程で、前記実施例1の場合に比べて窒化が進んだ形となり、形成される酸窒化膜中の窒素濃度を増加させることが可能となる。   Referring to FIG. 12, as compared with the case of the first embodiment in FIG. 11, S1 is the same, but the time t1 during which the oxygen supply valve 32A is open becomes t2 and t1 in the present example. It is shorter than. This reduces the amount of oxygen mixed. As a result, the amount of oxygen radicals generated in the remote plasma source 26 is reduced, and an oxidation reaction when forming an oxynitride film on the substrate W to be processed is suppressed. As a result, in the step of forming the oxynitride film, the nitridation is advanced compared to the case of the first embodiment, and the nitrogen concentration in the formed oxynitride film can be increased.

次に、図13に、本発明の実施例3である前記窒素供給バルブ31Aと、酸素供給バルブ32Aの時間経過を横軸にとったタイミングチャートを示す。   Next, FIG. 13 shows a timing chart in which the time lapse of the nitrogen supply valve 31A and the oxygen supply valve 32A according to the third embodiment of the present invention is plotted on the horizontal axis.

図13を参照するに、図11の実施例1の場合と比較して、前記t1は同一であるが、前記酸素供給バルブ32Aが開放されてから再び開放されるまでの時間S1が、本例の場合S2となってS1にくらべて長くなっている。このために混合される酸素の量が減少する。その結果前記リモートプラズマ源26において生成される酸素ラジカルの量が減少し、前記被処理基板W上に酸窒化膜を形成する際の酸化反応が抑えられる。その結果酸窒化膜形成の工程で、前記実施例1の場合に比べて窒化が進んだ形となり、形成される酸窒化膜中の窒素濃度を増加させることが可能となる。   Referring to FIG. 13, the time t1 is the same as in the case of the first embodiment in FIG. 11, but the time S1 from the time when the oxygen supply valve 32A is opened to the time when the oxygen supply valve 32A is opened again is the same as in the present embodiment. In the case of, S2 is longer than S1. This reduces the amount of oxygen mixed. As a result, the amount of oxygen radicals generated in the remote plasma source 26 is reduced, and an oxidation reaction when forming an oxynitride film on the substrate W to be processed is suppressed. As a result, in the step of forming the oxynitride film, the nitridation is advanced compared to the case of the first embodiment, and the nitrogen concentration in the formed oxynitride film can be increased.

次に、図14に、本発明の実施例4である前記窒素供給バルブ31Aと、酸素供給バルブ32Aの時間経過を横軸にとったタイミングチャートを示す。 Next, FIG. 14 shows a timing chart in which the time lapse of the nitrogen supply valve 31A and the oxygen supply valve 32A according to the fourth embodiment of the present invention is plotted on the horizontal axis.

図14を参照するに、前記図11の実施例1の場合と比較して、供給開始直後から本図中、Aで示される酸窒化工程前半は、前記t1、S1が実施例1の場合と同一である。本図中Bで示される酸窒化工程後半において、前記t1が前記t2に変更され、 前記酸素供給バルブ32Aの開放時間が短くなって酸素の混合量が減少している。このため、実施例2の説明で前記したように、酸窒化膜形成の工程で、前記実施例1の場合に比べて窒化が進んだ形となり、形成される酸窒化膜中の窒素濃度を増加させることが可能となる。この場合、酸窒化膜形成工程前半で窒素濃度が低く、酸窒化形成工程後半で窒素濃度が高くなる。   Referring to FIG. 14, in the first half of the oxynitridation process indicated by A in the figure immediately after the start of the supply, compared to the case of Example 1 in FIG. Identical. In the latter half of the oxynitriding step indicated by B in the figure, t1 is changed to t2, the open time of the oxygen supply valve 32A is shortened, and the amount of oxygen mixed is reduced. For this reason, as described in the description of the second embodiment, in the step of forming the oxynitride film, the nitridation is advanced compared to the case of the first embodiment, and the nitrogen concentration in the formed oxynitride film is increased. It is possible to do. In this case, the nitrogen concentration is low in the first half of the oxynitride film formation step, and is high in the second half of the oxynitride formation step.

実際の半導体装置においては、前記したような酸窒化膜の形成工程を考えた場合、デバイス特性を考慮するとSi基板に近い部分、すなわち酸窒化工程前半においてはシリコンと酸窒化膜の界面が平坦に形成されやすいために窒素濃度が低いことが要求される。また、形成される酸窒化膜中で、酸窒化膜の上に形成される高誘電体膜に近い部分、すなわち酸窒化工程後半に形成される部分においては、金属とシリコンの相互拡散を防止するため窒素濃度が高いほうがよい。本実施例においては酸窒化膜の深さ方向おいて、前記したようなデバイス特性の要求を満たす窒素濃度に調整された酸窒化膜を形成することが可能である。   In an actual semiconductor device, when considering the above-described oxynitride film formation process, considering the device characteristics, the portion close to the Si substrate, that is, the interface between the silicon and the oxynitride film becomes flat in the first half of the oxynitride process. A low nitrogen concentration is required for easy formation. In the oxynitride film to be formed, in a portion close to the high dielectric film formed on the oxynitride film, that is, in a portion formed in the latter half of the oxynitridation step, mutual diffusion of metal and silicon is prevented. Therefore, a higher nitrogen concentration is better. In this embodiment, it is possible to form an oxynitride film adjusted to a nitrogen concentration that satisfies the above-mentioned requirements for device characteristics in the depth direction of the oxynitride film.

次に、図15に、本発明の実施例5である前記窒素供給バルブ31Aと、酸素供給バルブ32Aの時間経過を横軸にとったタイミングチャートを示す。 Next, FIG. 15 shows a timing chart in which the time lapse of the nitrogen supply valve 31A and the oxygen supply valve 32A according to the fifth embodiment of the present invention is plotted on the horizontal axis.

図15を参照するに、前記図11の実施例1の場合と比較して、供給開始直後から本図中、Aで表される酸窒化工程前半は、前記t1、S1が実施例1の場合と同一である。本図中Bで示される酸窒化工程後半において、前記S1が前記S2に変更され、 前記酸素供給バルブ32Aを開放してから再び開放するまでの時間が長くなって酸素の混合量が増加している。このため、供給後半では前記実施例3の説明で前記したように、酸窒化膜形成の工程で、前記実施例1の場合に比べて窒化が進んだ形となり、形成される酸窒化膜中の窒素濃度を増加させることが可能となる。この場合、酸窒化工程前半で窒素濃度が低く、酸窒化工程後半で窒素濃度が高くなる。   Referring to FIG. 15, compared to the case of Example 1 in FIG. 11, immediately after the start of the supply, the first half of the oxynitridation process represented by A in FIG. Is the same as In the latter half of the oxynitriding step indicated by B in the figure, S1 is changed to S2, the time from opening the oxygen supply valve 32A to opening it again is increased, and the mixed amount of oxygen increases. I have. For this reason, in the latter half of the supply, as described in the description of the third embodiment, in the step of forming the oxynitride film, the nitridation is advanced as compared with the case of the first embodiment. It is possible to increase the nitrogen concentration. In this case, the nitrogen concentration is low in the first half of the oxynitriding step, and the nitrogen concentration is high in the second half of the oxynitriding step.

実際の半導体装置においては、前記したような酸窒化膜の形成工程を考えた場合、デバイス特性を考慮するとSi基板に近い部分、すなわち酸窒化工程前半においてはシリコンと酸窒化膜の界面が平坦に形成されやすいために窒素濃度が低いことが要求される。また、形成される酸窒化膜中で、酸窒化膜の上に形成される高誘電体膜に近い部分、すなわち酸窒化工程後半に形成される部分においては、金属とシリコンの相互拡散を防止するため窒素濃度が高いほうがよい。本実施例においては酸窒化膜の深さ方向おいて、前記したようなデバイス特性の要求を満たす、窒素濃度に調整された酸窒化膜を形成することが可能である。   In an actual semiconductor device, when considering the above-described oxynitride film formation process, considering the device characteristics, the portion close to the Si substrate, that is, the interface between the silicon and the oxynitride film becomes flat in the first half of the oxynitride process. A low nitrogen concentration is required for easy formation. In the oxynitride film to be formed, in a portion close to the high dielectric film formed on the oxynitride film, that is, in a portion formed in the latter half of the oxynitridation step, mutual diffusion of metal and silicon is prevented. Therefore, a higher nitrogen concentration is better. In this embodiment, in the depth direction of the oxynitride film, it is possible to form an oxynitride film adjusted to a nitrogen concentration that satisfies the above-described requirements for device characteristics.

また、窒素ラジカル中に酸素ラジカルを添加する方法としては、窒素ガスに酸素を添加する方法に限定されるものではなく、窒素と酸素を含むガスの組み合わせにおいて可能である。例えば、窒素ガスにNOガスを添加する、NOガスに酸素を添加するなどの方法が可能である。   Further, the method of adding oxygen radicals to nitrogen radicals is not limited to the method of adding oxygen to nitrogen gas, but can be a combination of a gas containing nitrogen and oxygen. For example, a method of adding NO gas to nitrogen gas or adding oxygen to NO gas is possible.

以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。   As described above, the present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the above-described specific embodiments, and various modifications and changes can be made within the scope of the claims.

本発明により、シリコン基板表面に非常に薄い、典型的には1〜3原子層の酸窒化膜を単一の工程で形成することが可能となる。   According to the present invention, it is possible to form a very thin, typically 1 to 3 atomic layer oxynitride film on a silicon substrate surface in a single step.

また、前記酸窒化膜を、形成される深さ方向において所望の窒素濃度に制御することが可能となる。   Further, it is possible to control the oxynitride film to a desired nitrogen concentration in a depth direction in which the oxynitride film is formed.

高誘電体ゲート絶縁膜とベース酸化膜有する半導体装置の構成を示す図である。FIG. 3 is a diagram showing a configuration of a semiconductor device having a high dielectric gate insulating film and a base oxide film. 高誘電体ゲート絶縁膜とベース酸化膜および酸窒化膜を有する半導体装置の構成を示す図である。FIG. 3 is a diagram showing a configuration of a semiconductor device having a high dielectric gate insulating film, a base oxide film, and an oxynitride film. 本発明の実施例1による基板処理装置の構成を説明する図である。FIG. 1 is a diagram illustrating a configuration of a substrate processing apparatus according to a first embodiment of the present invention. 図3の基板処理装置において使われるリモートプラズマ源の構成を示す図である。FIG. 4 is a diagram illustrating a configuration of a remote plasma source used in the substrate processing apparatus of FIG. 3. RFリモートプラズマとマイクロ波プラズマの特性を比較する図である。FIG. 4 is a diagram comparing characteristics of RF remote plasma and microwave plasma. RFリモートプラズマとマイクロ波プラズマの放電に関する特性を比較する図である。FIG. 3 is a diagram comparing characteristics regarding discharge of RF remote plasma and microwave plasma. マイクロ波によりプラズマを励起する場合と、高周波によりプラズマを励起する場合との比較である。This is a comparison between a case where plasma is excited by a microwave and a case where plasma is excited by a high frequency. (A),(B)は、本発明による基板処理装置による酸窒化膜の形成を示す図である。(A), (B) is a diagram showing the formation of an oxynitride film by the substrate processing apparatus according to the present invention. (A),(B)は、本発明による基板処理装置による酸窒化膜の形成を示す別の図である。(A), (B) is another figure which shows formation of an oxynitride film by the substrate processing apparatus by this invention. ガス供給装置の構成を示す図である。It is a figure showing composition of a gas supply device. 本発明の実施例1において用いられる窒素と酸素の混合方式を示す図である。FIG. 2 is a diagram illustrating a method of mixing nitrogen and oxygen used in Example 1 of the present invention. 本発明の第2実施例において用いられる窒素と酸素の混合方式を示す図である。FIG. 6 is a diagram showing a mixing system of nitrogen and oxygen used in a second embodiment of the present invention. 本発明の第3実施例において用いられる窒素と酸素の混合方式を示す図である。FIG. 11 is a diagram showing a mixing system of nitrogen and oxygen used in a third embodiment of the present invention. 本発明の第4実施例において用いられる窒素と酸素の混合方式を示す図である。FIG. 11 is a diagram illustrating a method of mixing nitrogen and oxygen used in a fourth embodiment of the present invention. 本発明の第5実施例において用いられる窒素と酸素の混合方式を示す図である。FIG. 14 is a diagram showing a mixing system of nitrogen and oxygen used in a fifth embodiment of the present invention.

符号の説明Explanation of reference numerals

10,20 半導体装置
11 シリコン基板
12 ベース酸化膜
12A 酸窒化膜
13 高誘電体膜
14 ゲート電極
40,100 基板処理装置
21 処理容器
21A 排気口
21E 排気口
21B プロセス空間
21C 基板搬入・搬出室
21c、22b、22c パージライン
21G 石英ライナ
22 基板保持台
22A ヒータ
22B 磁気シール槽
22C 基板回転機構
23A,23C,23D,24A,24B,24C,29A,29D バルブ
23B,29B ターボ分子ポンプ
24 ポンプ
26 リモートプラズマ源
26A ブロック
26B フェライトコア
26C プラズマ
26a ガス循環通路
26b ガス入り口
26c ガス出口
26d コーティング
26e イオンフィルタ
27 基板搬送ユニット
27A ゲートバルブ
30 ガス供給装置
30A 混合タンク
31 窒素供給ライン
32 酸素供給ライン
33 混合気供給ライン
31A,32A,33A バルブ
DESCRIPTION OF SYMBOLS 10, 20 Semiconductor device 11 Silicon substrate 12 Base oxide film 12A Oxynitride film 13 High dielectric film 14 Gate electrode 40, 100 Substrate processing apparatus 21 Processing container 21A Exhaust port 21E Exhaust port 21B Process space 21C Substrate loading / unloading chamber 21c, 22b, 22c Purge line 21G Quartz liner 22 Substrate holder 22A Heater 22B Magnetic seal tank 22C Substrate rotation mechanism 23A, 23C, 23D, 24A, 24B, 24C, 29A, 29D Valve 23B, 29B Turbo molecular pump 24 Pump 26 Remote plasma source 26A Block 26B Ferrite core 26C Plasma 26a Gas circulation passage 26b Gas inlet 26c Gas outlet 26d Coating 26e Ion filter 27 Substrate transfer unit 27A Gate valve 30 Gas supply device 30A Mixing tank 31 Nitrogen supply line 32 Oxygen supply line 33 Mixture supply line 31A, 32A, 33A Valve

Claims (20)

窒素ガスまたは窒素化合物であるガスと酸素ガスまたは酸素化合物であるガスを混合して混合ガスを形成する第1の工程と、
前記混合ガスを高周波プラズマにより励起して窒素ラジカルおよび酸素ラジカルを形成する第2の工程と、
前記窒素ラジカルおよび前記酸素ラジカルをシリコンを含む被処理基板表面に供給する第3の工程と、
前記窒素ラジカルおよび前記酸素ラジカルにより、前記被処理基板表面に窒素を含む絶縁膜を形成する第4の工程を含む絶縁膜の形成方法であって、
前記窒素ラジカルと前記酸素ラジカルは、前記被処理基板の表面に沿って流れるように形成されたガスの流れに乗って供給されることを特徴とする絶縁膜の形成方法。
A first step of mixing a gas that is nitrogen gas or a nitrogen compound and a gas that is oxygen gas or an oxygen compound to form a mixed gas;
A second step of exciting the mixed gas with high-frequency plasma to form nitrogen radicals and oxygen radicals;
A third step of supplying the nitrogen radicals and the oxygen radicals to the surface of the substrate including silicon,
A method for forming an insulating film, comprising: a fourth step of forming an insulating film containing nitrogen on the surface of the substrate to be processed by the nitrogen radical and the oxygen radical,
The method for forming an insulating film, wherein the nitrogen radicals and the oxygen radicals are supplied along with a flow of a gas formed to flow along a surface of the substrate to be processed.
前記被処理基板はシリコン基板よりなり、前記絶縁膜は酸窒化膜であることを特徴とする請求項1記載の絶縁膜の形成方法。   2. The method according to claim 1, wherein the substrate to be processed is a silicon substrate, and the insulating film is an oxynitride film. 前記ガスの流れは、前記被処理基板の第1の側から、径方向上で対向する第2の側へと流れることを特徴とする請求項1または2記載の絶縁膜の形成方法。   3. The method according to claim 1, wherein the flow of the gas flows from a first side of the substrate to be processed to a second side radially opposed to the first side. 4. 前記高周波プラズマは、窒素ガスおよび酸素ガスを400〜500kHzの周波数で励起することにより形成されることを特徴とする請求項1乃至3のうち、いずれか一項記載の絶縁膜の形成方法。   4. The method of claim 1, wherein the high-frequency plasma is formed by exciting a nitrogen gas and an oxygen gas at a frequency of 400 to 500 kHz. 5. 前記絶縁膜の厚さは1nm以下であることを特徴とする請求項1乃至4のうち、いずれか一項記載の絶縁膜の形成方法。   The method for forming an insulating film according to claim 1, wherein a thickness of the insulating film is 1 nm or less. 前記混合ガスの酸素濃度が、10ppm〜600ppmであることを特徴とする請求項1乃至5のうち、いずれか一項記載の絶縁膜の形成方法。   The method for forming an insulating film according to any one of claims 1 to 5, wherein the oxygen concentration of the mixed gas is 10 ppm to 600 ppm. 窒素ガスまたは窒素化合物であるガスと酸素ガスまたは酸素化合物であるガスを混合して混合ガスを形成する第1の工程と、
前記混合ガスを高周波プラズマにより励起して窒素ラジカルおよび酸素ラジカルを形成する第2の工程と、
前記窒素ラジカルおよび前記酸素ラジカルをシリコンを含む被処理基板表面に供給する第3の工程と、
前記窒素ラジカルおよび前記酸素ラジカルにより、前記被処理基板表面に窒素を含む絶縁膜を形成する第4の工程を含む絶縁膜の形成方法であって、
前記高周波プラズマは、窒素ガスおよび酸素ガスを400〜500kHzの周波数で励起することにより形成されることを特徴とする絶縁膜の形成方法。
A first step of mixing a gas that is nitrogen gas or a nitrogen compound and a gas that is oxygen gas or an oxygen compound to form a mixed gas;
A second step of exciting the mixed gas with high-frequency plasma to form nitrogen radicals and oxygen radicals;
A third step of supplying the nitrogen radicals and the oxygen radicals to the surface of the substrate including silicon,
A method for forming an insulating film, comprising: a fourth step of forming an insulating film containing nitrogen on the surface of the substrate to be processed by the nitrogen radical and the oxygen radical,
The method for forming an insulating film, wherein the high-frequency plasma is formed by exciting a nitrogen gas and an oxygen gas at a frequency of 400 to 500 kHz.
前記被処理基板はシリコン基板よりなり、前記絶縁膜は酸窒化膜であることを特徴とする請求項7記載の絶縁膜の形成方法。   8. The method according to claim 7, wherein the substrate to be processed is a silicon substrate, and the insulating film is an oxynitride film. 前記絶縁膜の厚さは1nm以下であることを特徴とする請求項7または8記載の絶縁膜の形成方法。   9. The method according to claim 7, wherein the thickness of the insulating film is 1 nm or less. 前記混合ガスの酸素濃度が、10ppm〜600ppmであることを特徴とする請求項7乃至9のうち、いずれか一項記載の絶縁膜の形成方法。   The method for forming an insulating film according to any one of claims 7 to 9, wherein the oxygen concentration of the mixed gas is 10 ppm to 600 ppm. 窒素ガスまたは窒素化合物であるガスと酸素ガスまたは酸素化合物であるガスを混合して混合ガスを形成する第1の工程と、
前記混合ガスを高周波プラズマにより励起して窒素ラジカルおよび酸素ラジカルを形成する第2の工程と、
前記窒素ラジカルおよび前記酸素ラジカルをシリコンを含む被処理基板表面に供給する第3の工程と、
前記窒素ラジカルおよび前記酸素ラジカルにより、前記被処理基板表面に窒素を含む絶縁膜を形成する第4の工程を含む半導体装置の製造方法であって、
前記窒素ラジカルと前記酸素ラジカルは、前記被処理基板の表面に沿って流れるように形成されたガスの流れに乗って供給されることを特徴とする半導体装置の製造方法。
A first step of mixing a gas that is nitrogen gas or a nitrogen compound and a gas that is oxygen gas or an oxygen compound to form a mixed gas;
A second step of exciting the mixed gas with high-frequency plasma to form nitrogen radicals and oxygen radicals;
A third step of supplying the nitrogen radicals and the oxygen radicals to the surface of the substrate including silicon,
A method for manufacturing a semiconductor device, comprising: a fourth step of forming an insulating film containing nitrogen on a surface of a substrate to be processed by using the nitrogen radicals and the oxygen radicals,
The method of manufacturing a semiconductor device, wherein the nitrogen radicals and the oxygen radicals are supplied along with a flow of a gas formed to flow along a surface of the substrate to be processed.
前記被処理基板はシリコン基板よりなり、前記絶縁膜は酸窒化膜であることを特徴とする請求項11記載の半導体装置の製造方法。   The method according to claim 11, wherein the substrate to be processed is a silicon substrate, and the insulating film is an oxynitride film. 前記ガスの流れは、前記被処理基板の第1の側から、径方向上で対向する第2の側へと流れることを特徴とする請求項11または12記載の半導体装置の製造方法。   13. The method according to claim 11, wherein the flow of the gas flows from a first side of the substrate to be processed to a second side radially opposed to the first side. 前記高周波プラズマは、窒素ガスおよび酸素ガスを400〜500kHzの周波数で励起することにより形成されることを特徴とする請求項11乃至13のうち、いずれか一項記載の半導体装置の製造方法。   14. The method of manufacturing a semiconductor device according to claim 11, wherein the high-frequency plasma is formed by exciting nitrogen gas and oxygen gas at a frequency of 400 to 500 kHz. 前記絶縁膜の厚さは1nm以下であることを特徴とする請求項11乃至14のうち、いずれか一項記載の半導体装置の製造方法。   15. The method according to claim 11, wherein the thickness of the insulating film is 1 nm or less. 前記混合ガスの酸素濃度が、10ppm〜600ppmであることを特徴とする請求項11乃至15のうち、いずれか一項記載の半導体装置の製造方法。   The method according to claim 11, wherein an oxygen concentration of the mixed gas is 10 ppm to 600 ppm. 窒素ガスまたは窒素化合物であるガスと酸素ガスまたは酸素化合物であるガスを混合して混合ガスを形成する第1の工程と、
前記混合ガスを高周波プラズマにより励起して窒素ラジカルおよび酸素ラジカルを形成する第2の工程と、
前記窒素ラジカルおよび前記酸素ラジカルをシリコンを含む被処理基板表面に供給する第3の工程と、
前記窒素ラジカルおよび前記酸素ラジカルにより、前記被処理基板表面に窒素を含む絶縁膜を形成する第4の工程を含む半導体装置の製造方法であって、
前記高周波プラズマは、窒素ガスおよび酸素ガスを400〜500kHzの周波数で励起することにより形成されることを特徴とする半導体装置の製造方法。
A first step of mixing a gas that is nitrogen gas or a nitrogen compound and a gas that is oxygen gas or an oxygen compound to form a mixed gas;
A second step of exciting the mixed gas with high-frequency plasma to form nitrogen radicals and oxygen radicals;
A third step of supplying the nitrogen radicals and the oxygen radicals to the surface of the substrate including silicon,
A method for manufacturing a semiconductor device, comprising: a fourth step of forming an insulating film containing nitrogen on a surface of a substrate to be processed by using the nitrogen radicals and the oxygen radicals,
The method for manufacturing a semiconductor device, wherein the high-frequency plasma is formed by exciting nitrogen gas and oxygen gas at a frequency of 400 to 500 kHz.
前記被処理基板はシリコン基板よりなり、前記絶縁膜は酸窒化膜であることを特徴とする請求項17記載の半導体装置の製造方法。   The method according to claim 17, wherein the substrate to be processed is a silicon substrate, and the insulating film is an oxynitride film. 前記絶縁膜の厚さは1nm以下であることを特徴とする請求項17または18記載の半導体装置の製造方法。   19. The method according to claim 17, wherein the thickness of the insulating film is 1 nm or less. 前記混合ガスの酸素濃度が、10ppm〜600ppmであることを特徴とする請求項17乃至19のうち、いずれか一項記載の半導体装置の製造方法。   20. The method of manufacturing a semiconductor device according to claim 17, wherein an oxygen concentration of the mixed gas is 10 ppm to 600 ppm.
JP2004208093A 2004-07-15 2004-07-15 Insulating film formation method Expired - Fee Related JP4088275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208093A JP4088275B2 (en) 2004-07-15 2004-07-15 Insulating film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208093A JP4088275B2 (en) 2004-07-15 2004-07-15 Insulating film formation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002273709A Division JP3594947B2 (en) 2002-09-19 2002-09-19 Method for forming insulating film, method for manufacturing semiconductor device, substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2004289186A true JP2004289186A (en) 2004-10-14
JP4088275B2 JP4088275B2 (en) 2008-05-21

Family

ID=33297243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208093A Expired - Fee Related JP4088275B2 (en) 2004-07-15 2004-07-15 Insulating film formation method

Country Status (1)

Country Link
JP (1) JP4088275B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049215A (en) * 2009-08-25 2011-03-10 Toshiba Corp Method of manufacturing semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217922A (en) * 1991-09-30 1993-08-27 Siemens Ag Plasma deposition method from gas phase
JP2000294550A (en) * 1999-04-05 2000-10-20 Tokyo Electron Ltd Manufacture of semiconductor and manufacturing apparatus of semiconductor
JP2001085427A (en) * 1999-09-13 2001-03-30 Nec Corp Oxynitride film and forming method therefor
JP2002134503A (en) * 2000-10-18 2002-05-10 Applied Materials Inc Film forming method and apparatus
JP3594947B2 (en) * 2002-09-19 2004-12-02 東京エレクトロン株式会社 Method for forming insulating film, method for manufacturing semiconductor device, substrate processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217922A (en) * 1991-09-30 1993-08-27 Siemens Ag Plasma deposition method from gas phase
JP2000294550A (en) * 1999-04-05 2000-10-20 Tokyo Electron Ltd Manufacture of semiconductor and manufacturing apparatus of semiconductor
JP2001085427A (en) * 1999-09-13 2001-03-30 Nec Corp Oxynitride film and forming method therefor
JP2002134503A (en) * 2000-10-18 2002-05-10 Applied Materials Inc Film forming method and apparatus
JP3594947B2 (en) * 2002-09-19 2004-12-02 東京エレクトロン株式会社 Method for forming insulating film, method for manufacturing semiconductor device, substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049215A (en) * 2009-08-25 2011-03-10 Toshiba Corp Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4088275B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP3594947B2 (en) Method for forming insulating film, method for manufacturing semiconductor device, substrate processing apparatus
TWI383448B (en) Method and apparatus for forming silicon-containing insulating film
TWI641067B (en) Substrate processing device and plasma generating mechanism
CN100459061C (en) Substrate treating apparatus and method of substrate treatment
US20130078789A1 (en) Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device and Non-Transitory Computer-Readable Recording Medium
WO2010074076A1 (en) Substrate processing method and substrate processing apparatus
JP4647499B2 (en) Film-forming method and computer-readable recording medium
US7858509B2 (en) High-dielectric film substrate processing method
JP4048048B2 (en) Substrate processing method
JP4088275B2 (en) Insulating film formation method
JP4526995B2 (en) Method for forming gate insulating film, computer-readable storage medium, and computer program
JP2009224772A (en) Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, and semiconductor device manufacturing system
JP2005175408A (en) Method of forming oxidized/nitrified insulating thin-film
WO2005059986A1 (en) Film-forming method, method for generating plasma, and substrate processing apparatus
KR100966388B1 (en) Method for forming metal silicate film and recording medium
JP2025066851A (en) Film forming method and film forming apparatus
JP2007201507A (en) Substrate processing device and method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees