[go: up one dir, main page]

JP2004288824A - Calibration method for electronic component mounting device and device using the method - Google Patents

Calibration method for electronic component mounting device and device using the method Download PDF

Info

Publication number
JP2004288824A
JP2004288824A JP2003078201A JP2003078201A JP2004288824A JP 2004288824 A JP2004288824 A JP 2004288824A JP 2003078201 A JP2003078201 A JP 2003078201A JP 2003078201 A JP2003078201 A JP 2003078201A JP 2004288824 A JP2004288824 A JP 2004288824A
Authority
JP
Japan
Prior art keywords
component
jig
board
recognition camera
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003078201A
Other languages
Japanese (ja)
Inventor
Hiroaki Morooka
師岡博明
Yuji Ishizawa
石沢勇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP2003078201A priority Critical patent/JP2004288824A/en
Priority to CNB2004100295201A priority patent/CN1318820C/en
Publication of JP2004288824A publication Critical patent/JP2004288824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

【課題】部品認識カメラの座標系と基板認識カメラの座標系との相互間における偏差を、簡単かつ迅速に補正することができるカメラ位置補正用方法を提供することを目的とする。
【解決手段】両認識方法で可能な冶具部品30を用い、まずは、冶具部品30を部品認識カメラ16で撮像する撮像工程と、次に、冶具基板を基板認識カメラ17で撮像する撮像工程と、次に、冶具部品を装着する装着工程と、続いて、装着後の冶具部品30のマークを基板認識カメラにより部品中心を求め、各々求めた基板認識カメラ17の認識中心位置とのずれ量を算出する算出工程と、ずれ量に基づいて、基板認識カメラ17または部品認識カメラ16の座標系を補正する補正工程とを備えたものである。
【選択図】 図2
An object of the present invention is to provide a camera position correcting method capable of easily and quickly correcting a deviation between a coordinate system of a component recognition camera and a coordinate system of a board recognition camera.
An imaging step of imaging a jig component with a component recognition camera, and an imaging step of imaging a jig board with a substrate recognition camera. Next, the mounting process of mounting the jig component, and subsequently, the component center of the mark of the mounted jig component 30 is determined by the board recognition camera, and the amount of deviation from the obtained recognition center position of the board recognition camera 17 is calculated. And a correction step of correcting the coordinate system of the board recognition camera 17 or the component recognition camera 16 based on the amount of displacement.
[Selection] Fig. 2

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品装着装置などにおいて、部品認識カメラの座標系と基板認識カメラの座標系との相互間における偏差を補正するカメラ位置の偏差補正方法およびその装置、並びにカメラ位置補正用の治具基板と治具部品に関するものである。
【0002】
【従来の技術】
電子部品装着装置では、装置本体に搬入した基板上の基板マークあるいはICマークを基板認識カメラで撮像して基板の位置認識を行うと共に、基板に装着する電子部品を部品認識カメラで撮像して位置認識を行い、これらの認識結果に基づいて、電子部品の位置補正を行った後これを基板に装着するようにしている。
この場合、部品認識カメラの座標系と基板認識カメラの座標系とが、X・Y方向および角度θ(以下「θ」として表現する)において完全に一致していないと、たとえ補正を行っても基板に電子部品を正確に装着することはできない。
【0003】
このため、特開平5−10746の段落「0004」に記載されてるように、従来の電子部品装着装置では、装置を設置したとき或いは温度変化等を考慮して定期的(装置稼働時等)に、部品認識カメラの座標系と基板認識カメラの座標系との相互間の偏差を補正するようにしている。具体的には、装置本体に搬入した治具基板に、治具部品を上記の手順で装着し、治具基板上における設計上の装着位置と実際の装着位置とのずれ量を、別途用意した計測装置で計測し、この計測結果を電子部品装着装置に入力して、部品認識カメラの座標系および基板認識カメラの座標系の偏差の補正を行うようにしている(同時に装置本体の絶対基準座標系に対する補正も行う)。
【特許文献1】
特開平5−10746
【0004】
【発明が解決しようとする課題】
このように従来の電子部品装置では、両認識カメラの座標系を補正するのに、計測装置が必要となると共に、治具基板の移送や計測等、その補正作業が煩雑かつ時間がかかるものとなっていた。しかも、複数の治具部品を用いて上記の装着および計測を複数回行い、ずれ量の平均値を出す必要があった。
本発明は、部品認識カメラの座標系と基板認識カメラの座標系との相互間における偏差を、簡単かつ迅速に補正することができると共に、精度良く補正することができる認識カメラ位置の偏差補正方法およびその装置、並びにカメラ位置補正用の治具部品および治具基板を提供することをその目的としている。
【0005】
【課題を解決するための手段】
本発明の各カメラ位置の偏差補正方法は、図1に示す電子部品装着装置1の基板固定部に搬入された治具基板20上のマークを位置認識する基板認識カメラ17の座標系と、治具基板20上に装着する治具部品30を位置認識する部品認識カメラ16の座標系との相互間の偏差を補正するカメラ位置の偏差補正方法において、
撮像することにより各認識カメラの認識中心に対する部品中心の座標系上のずれ量を求めるため、各認識カメラで認識可能な治具部品30を用い、治具部品を吸着した状態で既座標系上で、治具部品30を部品認識カメラ16で撮像する撮像工程と、撮像工程で撮像した撮像結果から治具部品の部品中心を求める工程と、次に基板認識カメラ17で治具基板20上にある各種マークを認識し治具基板の基準位置からのずれ量と治具部品30を装着する位置をそれぞれ算出するずれ量算出工程と、ずれ量算出工程で算出したずれ量に基づいて、治具基板20に治具部品30を装着させる装着工程と、次に、装着した治具部品30と治具基板20上での装着ずれ量を求めるため、基板認識カメラ17でマークを撮像し認識した治具基板20上の治具部品の中心位置と、治具基板上のマークから求めた治具部品を装着すべき中心位置とのずれを計算し、そのずれ量から基板認識カメラ17と部品認識カメラ16の座標系を補正する補正工程とを備えている。
【0006】
この構成によれば、先ずそれぞれの既座標系上において、治具基板20を基板固定位置に搬入された、治具基板20上のマークを基板認識カメラ17により撮像することで、基板認識カメラ17の認識中心に対する各マーク中心の座標系上のずれ量が認識される。この撮像により治具基板の総合ずれ量と傾きが求まる。次に、治具部品30を治具基板20の所定位置に装着するため治具部品30を吸着し、部品認識カメラ16で撮像した結果から治具部品30の部品中心を求め、その結果と治具基板20の総合ずれ量と傾きを基に治具基板の所定位置に治具部品30を装着する。
【0007】
続いて、基板認識カメラ17で該装着した治具部品30に付加されている複数個のマークを撮像しその結果から、治具基板20上の治具部品30の中心位置を求める。治具基板20のマークから求めた治具部品装着中心位置と、装着された治具部品30から求めた治具基板20上の治具部品中心位置のずれ量が、各認識カメラ相互間の偏位となる。そして、この偏位に基づいて基板認識カメラ17または部品認識カメラ16の座標系を補正すれば、基板認識カメラ17の座標系と部品認識カメラ16の座標系とが合致する。すなわち、既座標系(設計上の座標系)の偏差を、各認識カメラにより治具基板20と治具部品30を認識し治具基板20に装着し、さらに、装着された治具部品30を基板認識カメラ17により認識することで各座標系の補正をすることができる。
この構成によれば、装置本体の絶対基準座標系に対し、水平面内における基板認識カメラの取付角度および部品認識カメラの取付角度の誤差に基づく偏差をも補正することができる。
【0008】
この構成によれば、装着ヘッドが、絶対基準座標系に基づいて支持部材に固定されているため、電子部品の基板への装着を、より高精度で行うことができる。
請求項3の治具部品において、被撮像パターンは、それぞれが前記ずれ量を認識可能で且つ中心を同一とする部品パターン部と部品マーク群で構成されていることが好ましい。
【0009】
【発明の実施の形態】
以下、添付図面を参照して、本発明の一実施形態に係る認識カメラ位置の偏差補正方法およびその装置、並びに認識カメラ位置補正用の治具基板と治具部品を適用した電子部品装着装置について説明する。この電子部品装着装置1は、一般的に呼ばれている多機能部品装着機であり、チップコンデンサやチップ抵抗などの表面実装部品、およびQFPICなどの多リード部品などの各種の電子部品を実装可能に構成されている。
図1は電子部品装着装置の概略図であり、同図に示すように、電子部品装着装置1は、部品供給部12と、中央部から少し後方で左右方向に延在する基板搬送路15と、電子部品装着装置1の前部(図示の下側)に配設した部品供給部12と、電子部品装着装置1の前部に移動自在に配設したXY移送部14を備えている。
【0010】
XY移送部14には、電子部品を吸着および装着するための吸着ヘッド部13にノズル13aが搭載されている。ノズル13aは垂直方向方向に移動可能な機構を備えている。また、吸着ヘッド部13には、支持部材に取り付けるようにして、基板認識カメラ17が搭載されている。この装置では部品供給部12の脇部の位置に部品認識カメラ16が配設されている。
【0011】
この電子部品装着装置1では、表面実装部品などの小さい電子部品は、部品供給部12から供給され、多リード部品など大きい電子部品は、図示しないトレイ形式の部品供給部から供給される。また、基板は、基板搬送路15により左方から供給されて電子部品装着装置1の中央の基板固定部に搬入され、右方に排出される。例えば、XY移送部14を用いての電子部品の実装では、XY移送部14により、吸着ヘッド部13を部品供給部12から、所望の電子部品を吸着し、次にこの電子部品を部品認識カメラ16の位置まで移送させ位置認識し、更に吸着ヘッド部13aを基板の所定の位置まで移送させて、基板認識カメラ17で基板に付いているマーク等を認識し基板位置を求めた後、電子部品を基板に装着する。その際、部品認識カメラ16の認識結果に基づいて、設計値A(吸着ヘッド部のノズル位置)と吸着した電子部品との間の位置補正が行われ、基板認識カメラ16の認識結果に基づいて、設計値B(基準位置からの位置)と基板の実装位置との間の位置補正が行われる。
【0012】
基板搬送路15は、中央の基板固定部と、左側の搬入搬送路と、右側の搬出搬送路とを有している(図示では省略)。基板は、基板搬送路15により左方から供給されて電子部品装着装置1の中央の基板固定部に搬入される。そして、電子部品の装着が完了した基板は、基板固定部から右方に排出される。この場合、基板搬送路15の搬入側には供給待機状態の基板が有り、また基板搬送路15の排出側には排出待機状態の基板が有り(図示では省略)、これら基板は順送りで搬送される。なお、基板固定部における基板に電子部品を装着する場合、装置全体の絶対基準座標系の原点は基板先端付近にある突起部(図示では省略)である。
部品供給部12は、多数のテープフィーダ11aを横並びに配設したものである。各テープフィーダ11aには、キャリアテープ(図示では省略)に装填された状態で電子部品が収容され、電子部品はテープフィーダ11aの先端から1つずつ供給される。
【0013】
XY移送部14は、装置1の左右両端部に配設した一対の軸に案内されて、前後方向(Y軸方向)に移動するY軸3を有している。XY移送部14の軸右部のボールねじおよびこれを回転させるY軸モータ(いずれも図示省略)により、Y軸方向(前後方向)に進退する。
一方、X軸2を有し、上記の駆動系と同様に、ボールねじおよびX軸モータ(いずれも図示省略)の構成で、上記の吸着ヘッド部13をX軸方向(左右方向)に進退させる。このように、吸着ヘッド部13は、X軸方向およびY軸方向、すなわち水平面内において移動自在となっている。
【0014】
吸着ヘッド部13には、ノズル13aおよび基板認識カメラ17とを備えている。また、ノズル13aは、垂直方向方向に移動可能な機構を備えている。基板認識カメラ17は、各基板のマーク等を認識するものであり、マーク等の特定なものが電子部品の装着位置の基準マークとなる。そして、吸着ヘッド部13の下端部取り付けられているノズル13aには、図外の真空吸引装置に接続している。なお、吸着ヘッド部13には、ノズル13aを介して電子部品を水平面内で回転させるモータ(図示省略)が組み込まれている。
図2、3に示す治具部品30および治具基板20は、基板を位置認識する基板認識カメラ17の座標系と、電子部品を位置認識する部品認識カメラ16の座標系との相互間の偏差を補正するためのものであり、この補正は、吸着ヘッド部13で移送した治具部品30を、部品認識カメラ16で撮像し、これを認識する。続いて、基板固定部に搬入されている治具基板20の所定の部位を基板認識カメラ17で認識して、装置の絶対基準座標系に対する基板認識カメラ17の座標系の偏差を補正するようにすると共に、治具基板20の所定位置に部品認識カメラ16で撮像し、認識した治具部品30を装着する。次に、治具基板20に装着された治具部品30を基板認識カメラ17で撮像し、治具基板上の治具部品の中心位置を認識する。そして前記求めた位置と治具基板上の基準マークから求めた位置から相互間の偏差を求める。
【0015】
治具部品30は、図2に示すように、方形のベース面に描いた部品パターン34と部品マーク群33a、b、c、dで構成されている。ベースは、剛性を考慮して1〜2mm厚程度のガラスで構成され、部品パターン34は、このベースに酸化クロムを蒸着して構成されている。部品パターン34は、中心を同一位置35とする部品マーク群33a、b、c、dと、中抜き部分で構成されている。部品マーク群33a、b、c、dは基板認識カメラ17で認識し易い丸パターン4個の図柄となっている、また部品パターン部34は部品認識カメラ16で認識し易いリード部品に似せた図柄となっており、外周部にリードに相当する方形の多数のパターン要素35を等間隔に並べ、全体として方形の輪郭を有している。
治具基板20は、図3に示すように方形に形成されている。
【0016】
治具基板20上の表面には、治具基板固定時の傾き及び絶対基準座標系の原点からの補正量を求めるため、図3に示すように3隅にマーク20a、b、cを描きその中の1つが治具基板の基板基準マーク20aとして描かれている。また治具基板20の中央付近に前期治具部品30を装着するための装着基準マーク21a、b、c、dが描かれている。装着基準マーク21a、b、c、dは基板基準マーク20aを原点として各位置関係が設定されている。
次に、治具部品30および治具基板20を用いた上記の補正方法を説明する前に、図4を参照して、この電子部品装着装置1の制御装置100について簡単に説明する。同図に示すように、制御装置100には、XY移送部14介して吸着ヘッド部13をXY方向に移動させるXモータ101およびYモータ102と、吸着ヘッド部13に搭載したθモータ(回転)103とが接続されている。Xモータ101、Yモータ102およびθモータ103は、それぞれXモータドライバ104、Yモータドライバ105およびθモータドライバ106を介して、これらを統括制御するCPU107に接続されている。同様に、基板認識カメラ16および部品認識カメラ17は、それぞれ基板映像処理部108および部品映像処理部109を介して、CPU107に接続されている。
【0017】
また、CPU107にはメモリ110が接続されており、メモリ110には、これらモータ104,105,106や認識カメラ16,17を制御するための設計値データやその他の各種データが記憶されると共に、後述する補正データが記憶されるようになっている。補正データは、後述する偏位の算出作業により更新され、CPU107は設計値データを補正データで補正して、これらモータ104,105,106や認識カメラ16,17を制御する。なお、各認識カメラ(CCDカメラ)16,17による撮像対象物の認識は、撮像結果を各画像処理部108,109で各種処理等を行った後、これをCPU107で演算処理することで、行われる。
【0018】
次に、基板認識カメラ16および部品認識カメラ17の偏差補正方法について、説明する。この偏差補正方法では、図2に示す治具部品30を図3に示す治具基板20に装着し、治具部品の装着中心位置と治具基板の所定装着位置とのずれ量を求める事により、絶対基準座標系に対する基板認識カメラ17の座標系の偏位の補正が行われると共に、絶対基準座標系に対するXY移送部14の移動時の座標系の角度偏差の補正も含まれ行われ、基板認識カメラ17の座標系に対する部品認識カメラ16の座標系の偏位の補正も行われる。したがって、同時に、実際の座標系の補正では、ノズル13aの中心位置の補正も行われる。
【0019】
図5は、基板固定部に搬入された治具基板20上に治具部品30を装着したイメージ図であり、治具基板20は、絶対基準座標系(基板位置決め座標系)上で位置決めされている。この場合、基板位置決めXY座標からみたXY移送部14の駆動XY座標の設計寸法に対する治具部品30の位置ずれおよび角度ずれを調整するための補正データを求め、この補正データに基づいて、XY 座標系を基準として補正を行う。なお、XY移送部14に搭載された基板認識カメラ17の走査座標センターが、XY移送部14(すなわち吸着ヘッド部13)14の駆動XY座標の位置座標と一致する。
具体的には、治具基板20を基板固定部に搬入し、図6の動作フローで補正データを求める。図6のS1(治具基板マーク認識)では、XY移送部14に搭載された基板認識カメラ17を、そのセンター位置が基板基準マーク20a、マークb、cの位置に合致するように、順次設計値に従って移動させ、撮像して、その認識を行う。そして、図6のS2(基板誤差量「Δx1、Δy1、θ1」の算出)では、一時保存するこの認識結果の内基板基準マーク20aのずれ量と治具基板20の傾き(基板認識カメラ17の走査座標でのカメラセンターからみたマークセンター位置座標の差)をメモリ110に 「Δx1、Δy1、θ1」として、一時保存する。
【0020】
「Δx1、Δy1、θ1」は下記の計算で求める。
マーク20a、20b、20cの論理座標をそれぞれA(Xa、Ya)、B(Xb、Yb)、C(Xc、Yc)とし、それぞれの座標でのマーク認識結果(マークずれ量)をA1(Xa1、Ya1)、B1(Xb1、Yb1)、C1(Xc1、Yc1)とする。
絶対座標のXY軸は直交であり、基板認識カメラ17のXY軸もまた直交とする。絶対座標のXY軸に対し基板認識カメラ17がθ(C0)傾いて取り付けてあるとすると、A1、B1、C1は、絶対座標のXY軸を基準にすると以下のように変換される。
A2(Xa1*cos(C0)−Ya1*sin(C0)、Xa1*sin(C0)+Ya1*cos(C0))
B2(Xb1*cos(C0)−Yb1*sin(C0)、Xb1*sin(C0)+Yb1*cos(C0))
C2(Xc1*cos(C0)−Yc1*sin(C0)、Xc1*sin(C0)+Yc1*cos(C0))
計算式が煩雑になるためそれぞれの変換結果を
A2(Xa2、Ya2)、B2(Xb2、Yb2)、C2(Xc2、Yc2)とする。
基板基準マーク20a、マーク20b、20cの絶対座標A0、B0、C0はそれぞれ以下のようになる。
A0(Xa+Xa2、Ya+Ya2)
B0(Xb+Xb2、Yb+Yb2)
C0(Xc+Xc2、Yc+Yc2)
次に、論理座標と絶対座標の角度差分は即ち基板搬入角度θ1であり、以下のようにして求めることが出来る。
基板基準マーク20aから見たマーク20cの論理座標のベクトルは、VL(Xc−Xa、Yc−Ya)であり、基板基準マーク20aから見たマーク20cの絶対座標のベクトルは、VR(Xc+Xc2−Xa−Xa2、Yc+Yc2−Ya−Ya2)である。
各々のベクトル角度θL、θRは以下のように計算できる。
θL= tan−1((Yc−Ya)/(Xc−Xa))
θR= tan−1((Yc+Yc2−Ya−Ya2)/(Xc+Xc2−Xa−Xa2))
【0021】
論理座標と絶対座標の角度差分θ1はθ1=θR−θL
以上から、「Δx1、Δy1、θ1」が算出される。
Δx1=Xa1*cos(C0)−Ya1*sin(C0)
Δy1=Xa1*sin(C0)+Ya1*cos(C0)
θ1=θR−θL
次に、図6のS3(治具部品認識準備)では、治具部品30を治具基板20に装着するため吸着ヘッド部13を部品供給部12へ移動させ、吸着ヘッド部13にあるノズル13aで治具部品30を吸着し、部品認識カメラ16のセンター位置(視野中心)にノズル13aの位置が合致するように、設計値に従って移動させる。
ここで、図6のS4(治具部品認識)では、部品認識カメラ16により治具部品30の認識を行う、図6のS5(部品誤差量「Δx2、Δy2、θ2」の算出)では、この認識結果(部品認識カメラ16の走査座標でのカメラセンターからみた治具部品センター位置座標の差と傾き)をメモリ110に 「Δx2、Δy2、θ2」として、一時保存する。
誤差量「Δx2、Δy2、θ2」は下記の計算で求める。
絶対座標のXY軸は直交であり、部品認識カメラ16のXY軸もまた直交とする。絶対座標のXY軸に対し部品認識カメラ16がθ(C1)傾いて取り付けてあるとすると、部品認識結果(カメラ中心に対するオフセット量)をR1(Xr、Yr、θr)とするとR1は、絶対座標のXY軸を基準にすると以下のように変換される。
【0022】
R2(Xr*cos(C1)−Yr*sin(C1)、Xr*sin(C1)+Yr*cos(C1)、θr+C1)
従って、
Δx2=Xr*cos(C1)−Yr*sin(C1)
Δy2=Xr*sin(C1)+Yr*cos(C1)
θ2=θr+C1となる。
次に、図6のS6(治具基板へ治具部品の装着)では、ヘッド部13に取り付けてある基板認識カメラ17のセンター位置(視野中心)に部品装着のマーク位置が合致するように、設計値に従って移動させ、認識してS5で取得した結果(21a〜21d)を基に演算し、治具部品30を垂直方向方向に移動可能なノズル13aで装着(駆動部図示せず)する。
装着位置を求める計算方法の一例を下記に表す。
21bの基板マークを認識するための移動目標座標は、21bの論理座標をD(Xd、Yd)として、20aから見た21bの論理座標のベクトルVL1は、VL1(Xd−Xa、Yd−Ya)となる。
【0023】
基板は絶対座標のXY軸に対しθ1傾いていることがS2で検証されているから、20aから見た21bの絶対座標のベクトルVR1はVL1に対してθ1回転していることになる。
VR1((Xd−Xa)*cos(θ1)−(Yd−Ya)*sin(θ1)、((Xd−Xa)*sin(θ1)+(Yd−Ya)*cos(θ1))
一方20aのマークは絶対座標に対し(Δx1、Δy1)オフセットしているため、マークの移動目標となる21bの絶対座標D0(Xd0、Yd
0)は以下の通りとなる。
Xd0=(Xd−Xa)*cos(θ1)−(Yd−Ya)*sin(θ1)+Δx1
Yd0=(Xd−Xa)*sin(θ1)+(Yd−Ya)*cos(θ1) + Δy1
絶対座標D0(Xd0、Yd0)でのマーク認識結果をD01(Xd01、Yd01)とする。
基板認識カメラ17は絶対座標のXY軸に対してθ(C0)傾いて取り付けてあるから、
D01は、絶対座標のXY軸を基準にすると以下のように変換される。
D02(Xd01*cos(C0)−Yd01*sin(C0)、Xd01*sin(C0)+Yd01*cos(C0))
【0024】
最終的なマークの絶対座標D00(Xd00、Yd00)は以下のとおり
Xd00=Xd0+Xd01*cos(C0)−Yd01*sin(C0)
Yd00=Yd0+Xd01*sin(C0)+Yd01*cos(C0)
装着座標と21bのマーク座標は同一であることから、吸着ヘッド部13にあるノズル13aの回転中心が移動すべき最終搭載絶対座標P(Xp、Yp)は以下のようにして計算出来る。
ノズル13aの回転中心から見た部品中心の絶対座標とその傾きは、S6よりΔx2、Δy2、θ2として求められている。
部品は絶対座標に対してθ2傾いており、基板は絶対座標に対してθ1傾いているから、装着姿勢をθP、認識姿勢をθRとすると
最終的に回転補正すべき角度θP0、
θP0=θP+θ1−θR−θ2となり、
回転補正後のノズル13aの回転中心から見た部品中心の絶対座標は、
Δx2z=Δx2*cos(θP0)−Δy2*sin(θP0)
Δy2z=Δx2*sin(θP0)+Δy2*cos(θP0)
になる。
最終的なノズル13aの回転中心の装着目標絶対座標は、
Xp=Xd00−Δx2z
Yp=Yd00−Δy2zになる
他の方法として装着位置のマークを認識せず、S2で取得した結果とS5の結果を基に演算し、治具部品30を垂直方向方向に移動可能なノズル13aで装着しても良い。
【0025】
次に、図6のS7(基板認識カメラによるIC位置認識)では、吸着ヘッド部13に取り付けてある基板認識カメラ17のセンター位置(視野中心)に治具基板20上に装着された治具部品30に描かれているICマーク33a、cの位置に合致するように、順次設計値に従って移動させ、撮像してその認識を行う。
計算方法の一例を下記に示す。
部品上のマーク33a、33cが、部品中心に対してそれぞれ、AA(Xaa、Yaa)、CC(Xcc、Ycc)
の相対位置にあるとすると、基板と部品にずれが無いものとした場合に、基板認識カメラ17が移動すべき目標絶対座標AAA(Xaac、Yaac)、CCC(Xccc、Yccc)は以下のように計算される。
基板は絶対座標に対してθ1傾いているから、AA(Xaa、Yaa)、CC(Xcc、Ycc)もθ1回転している事になり、変換を行った結果AAz、CCzは以下の通りとなる。
【0026】
AAz(Xaa*cos(θ1)−Yaa*sin(θ1)、Xaa*sin(θ1)+Yaa*cos(θ1))
CCz(Xcc*cos(θ1)−Ycc*sin(θ1)、Xcc*sin(θ1)+Ycc*cos(θ1))
続いて、基板上の部品中心位置は既にS6で求められているD00(Xd00、Yd00)なのであり、
Xaac=Xd00+Xaa*cos(θ1)−Yaa*sin(θ1)
Yaac=Yd00+Xaa*sin(θ1)+Yaa*cos(θ1)
Xccc=Xd00+Xcc*cos(θ1)−Ycc*sin(θ1)
Yccc=Yd00+Xcc*sin(θ1)+Ycc*cos(θ1)
が求められる。
AAC(Xaac、Yaac)、CCC(Xccc、Yccc)を論理座標として、S2と同様の計算過程を行えば、部品上のマーク33a、33cの絶対座標が求められる。
【0027】
つまり、図6のS8(各種装着補正データの算出)では、S7で求めた絶対座標系(基板位置決め座標系)上で位置決め中心位置とS6で求めた部品装着中心位置との差分が基板認識カメラ17の座標系に対する部品認識カメラ16のXY座標系の装着補正データとなり、角度差分が傾き装着補正データとなる。
以上のように、本実施形態によれば、治具部品30と治具基板20を用いて、絶対基準座標系に対する基板認識カメラ17の座標系と部品認識カメラ16の座標系の偏位の補正が行われるため、基板認識カメラ17の座標系と部品認識カメラ16の座標系との間の偏位、つまりこれら認識カメラ16,17の座標系と絶対基準座標系との間の偏位を、極めて正確に補正することができる。
特に、基板認識カメラ17の座標系と部品認識カメラ16との間の偏位は、治具部品30をそれぞれの認識カメラ16,17で認識することで検出可能となるため、簡単かつ迅速に補正することができる。また、専用の治具部品30と治具基板20を用い、且つこれを認識し易いように製作しているために正確に行われ、全体として補正を精度良く行うことができる。したがって、電子部品を基板に高精度で且つ安定して実装することができる。
【0028】
【発明の効果】
以上のように本発明のカメラ位置の偏差補正方法およびその装置によれば、治具部品と治具基板を用い、両認識カメラのそれぞれの既座標系(設計上の座標系)を、各認識カメラにより治具部品と治具基板を認識し装着し、再度基板認識カメラで認識することで補正することができる。
部品認識カメラの座標系と基板認識カメラの座標系との相互間における偏差を、装置に余分な機構を付加することをしないため、既に出荷した装置においても、簡単かつ迅速に補正データを取得することができると共に、精度良く位置補正することができる。したがって、電子部品を基板に高精度で且つ安定して装着することができ、装置の信頼性を高めることができる。
また、本発明のカメラ位置補正用の治具部品の厚みの影響は既存の技術で充分補うことが可能であり、本発明では、パターン認識を正確に行うことができ、電子部品等における位置補正等の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電子部品装着装置の平面図である。
【図2】実施形態の偏差補正方法に用いる治具部品の平面図である。
【図3】実施形態の偏差補正方法に用いる治具基板の平面図である。
【図4】電子部品装着装置の制御系を表したブロック図である。
【図5】治具基板に治具部品を装着した状態を表したイメージ図である。
【図6】絶対基準座標系におけるXY移送部の移動角度ずれとを考慮した状態で、基板認識カメラの座標系および部品認識カメラの座標系の偏位を求める動作フロー図である。
【符号の説明】
1 電子部品装着装置
2 X軸
3 Y軸
11 リール
11a テープフィーダ
12 部品供給部
13 吸着ヘッド部
13a ノズル
14 XY移送部
15 基板搬送路
16 部品認識カメラ
17 基板認識カメラ
20 治具基板
20a 基板基準マーク
20b、c マーク
21a、b、c、d 装着基準マーク
30 治具部品
32 被撮像パターン
33a、b、c、d 部品マーク群
34 部品パターン部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a camera position deviation correction method and apparatus for correcting a deviation between a coordinate system of a component recognition camera and a coordinate system of a board recognition camera in an electronic component mounting apparatus and the like, and a camera position correction jig. This relates to a fixture substrate and jig components.
[0002]
[Prior art]
In the electronic component mounting apparatus, the position of the board is recognized by capturing the board mark or the IC mark on the board carried into the apparatus body by the board recognition camera, and the electronic component mounted on the board is captured by the component recognition camera. Recognition is performed, the position of the electronic component is corrected based on the recognition result, and then the electronic component is mounted on a substrate.
In this case, if the coordinate system of the component recognition camera does not completely match the coordinate system of the board recognition camera in the X and Y directions and the angle θ (hereinafter represented as “θ”), even if the correction is performed. Electronic components cannot be accurately mounted on a substrate.
[0003]
For this reason, as described in paragraph “0004” of JP-A-5-10746, in a conventional electronic component mounting apparatus, when the apparatus is installed or periodically (for example, when the apparatus is operated) in consideration of a temperature change or the like. The deviation between the coordinate system of the component recognition camera and the coordinate system of the board recognition camera is corrected. Specifically, the jig components were mounted on the jig board carried into the apparatus body by the above procedure, and the amount of deviation between the designed mounting position and the actual mounting position on the jig board was separately prepared. Measurement is performed by a measuring device, and the measurement result is input to an electronic component mounting device to correct the deviation between the coordinate system of the component recognizing camera and the coordinate system of the board recognizing camera. Correction for the system is also performed)
[Patent Document 1]
JP-A-5-10746
[0004]
[Problems to be solved by the invention]
As described above, in the conventional electronic component device, a measuring device is required to correct the coordinate system of both recognition cameras, and the correction work such as the transfer and measurement of the jig substrate is complicated and time-consuming. Had become. In addition, it is necessary to perform the mounting and the measurement a plurality of times using a plurality of jig components to obtain an average value of the deviation amount.
The present invention provides a method of correcting a deviation of a position of a recognition camera that can easily and quickly correct a deviation between a coordinate system of a component recognition camera and a coordinate system of a board recognition camera and that can accurately correct the deviation. It is an object of the present invention to provide a jig component and a jig board for camera position correction.
[0005]
[Means for Solving the Problems]
The method for correcting the deviation of each camera position according to the present invention includes a coordinate system of the board recognition camera 17 for recognizing a mark on the jig board 20 carried into the board fixing portion of the electronic component mounting apparatus 1 shown in FIG. In a camera position deviation correction method for correcting a deviation between the coordinate system of the component recognition camera 16 and the position recognition of the jig component 30 mounted on the component substrate 20,
In order to obtain the amount of shift in the coordinate system of the component center with respect to the recognition center of each recognition camera by taking an image, a jig component 30 that can be recognized by each recognition camera is used. Then, an imaging process of imaging the jig component 30 with the component recognition camera 16, a process of obtaining the component center of the jig component from the imaging result obtained in the imaging process, and then the jig component 20 is placed on the jig board 20 by the board recognition camera 17. A shift amount calculating step of recognizing various marks and calculating a shift amount from a reference position of the jig board and a position at which the jig component 30 is mounted, and a jig based on the shift amount calculated in the shift amount calculating step. A mounting process for mounting the jig component 30 on the substrate 20 and then a process of capturing and recognizing the mark by the substrate recognition camera 17 in order to determine a mounting displacement amount between the mounted jig component 30 and the jig substrate 20. Cure on fixture substrate 20 A shift between the center position of the component and the center position where the jig component is to be mounted, which is obtained from the mark on the jig board, is calculated, and the coordinate system of the board recognition camera 17 and the component recognition camera 16 is corrected based on the shift amount. Correction step.
[0006]
According to this configuration, first, on each coordinate system, the mark on the jig board 20 carried into the board fixing position by the jig board 20 is imaged by the board recognition camera 17. Is recognized on the coordinate system of the center of each mark with respect to the recognition center of. By this imaging, the total shift amount and inclination of the jig substrate are obtained. Next, in order to mount the jig component 30 at a predetermined position on the jig substrate 20, the jig component 30 is sucked and the component center of the jig component 30 is obtained from the result of imaging by the component recognition camera 16, and the result and the jig are determined. The jig component 30 is mounted at a predetermined position on the jig board based on the total shift amount and inclination of the jig board 20.
[0007]
Subsequently, a plurality of marks added to the mounted jig component 30 are imaged by the board recognition camera 17, and the center position of the jig component 30 on the jig board 20 is obtained from the result. The deviation between the jig component mounting center position determined from the mark on the jig substrate 20 and the jig component center position on the jig substrate 20 determined from the mounted jig component 30 is a bias between the recognition cameras. Rank. If the coordinate system of the board recognition camera 17 or the component recognition camera 16 is corrected based on the deviation, the coordinate system of the board recognition camera 17 and the coordinate system of the component recognition camera 16 match. That is, the deviation of the existing coordinate system (designed coordinate system) is determined by recognizing the jig board 20 and the jig component 30 by each recognition camera, mounting the jig board 20 on the jig substrate 20, and further mounting the mounted jig component 30. Recognition by the board recognition camera 17 enables correction of each coordinate system.
According to this configuration, a deviation based on an error between the mounting angle of the board recognition camera and the mounting angle of the component recognition camera in the horizontal plane with respect to the absolute reference coordinate system of the apparatus main body can also be corrected.
[0008]
According to this configuration, since the mounting head is fixed to the support member based on the absolute reference coordinate system, the mounting of the electronic component on the substrate can be performed with higher accuracy.
In the jig component according to the third aspect, it is preferable that the imaging target pattern is constituted by a component pattern portion and a component mark group each of which can recognize the shift amount and have the same center.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, with reference to the accompanying drawings, a method and an apparatus for correcting a deviation of a recognition camera position according to an embodiment of the present invention, and an electronic component mounting apparatus using a jig substrate and a jig component for correcting a recognition camera position will be described. explain. The electronic component mounting apparatus 1 is a general-purpose multi-function component mounting machine that can mount various electronic components such as surface mount components such as chip capacitors and chip resistors, and multi-lead components such as QFPICs. Is configured.
FIG. 1 is a schematic diagram of an electronic component mounting apparatus. As shown in FIG. 1, the electronic component mounting apparatus 1 includes a component supply unit 12 and a board transfer path 15 extending in the left-right direction slightly behind the center. A component supply unit 12 disposed at the front of the electronic component mounting apparatus 1 (lower side in the figure); and an XY transfer unit 14 movably disposed at the front of the electronic component mounting apparatus 1.
[0010]
The XY transfer unit 14 has a nozzle 13a mounted on a suction head unit 13 for sucking and mounting an electronic component. The nozzle 13a has a mechanism that can move in the vertical direction. Further, a substrate recognition camera 17 is mounted on the suction head section 13 so as to be attached to a support member. In this device, a component recognition camera 16 is disposed at a position beside the component supply unit 12.
[0011]
In the electronic component mounting apparatus 1, small electronic components such as surface mount components are supplied from a component supply unit 12, and large electronic components such as multi-lead components are supplied from a tray type component supply unit (not shown). Further, the substrate is supplied from the left side by the substrate transfer path 15, is carried into the substrate fixing portion in the center of the electronic component mounting apparatus 1, and is discharged to the right. For example, in mounting an electronic component using the XY transfer unit 14, the XY transfer unit 14 causes the suction head unit 13 to suction a desired electronic component from the component supply unit 12, and then transfers the electronic component to a component recognition camera. 16, the position of the substrate is recognized, the suction head 13a is further moved to a predetermined position on the substrate, and the substrate recognition camera 17 recognizes a mark or the like on the substrate to determine the substrate position. Is mounted on the substrate. At this time, the position between the design value A (the nozzle position of the suction head unit) and the sucked electronic component is corrected based on the recognition result of the component recognition camera 16, and based on the recognition result of the board recognition camera 16. , The position correction between the design value B (position from the reference position) and the mounting position of the board is performed.
[0012]
The substrate transport path 15 includes a central substrate fixing portion, a left carry-in transport path, and a right carry-out transport path (not shown). The board is supplied from the left side by the board transfer path 15 and is carried into the board fixing section in the center of the electronic component mounting apparatus 1. Then, the board on which the electronic components have been mounted is discharged rightward from the board fixing portion. In this case, there are substrates in a supply standby state on the loading side of the substrate transport path 15 and substrates in a discharge standby state on the discharge side of the substrate transport path 15 (not shown). You. When electronic components are mounted on the board in the board fixing section, the origin of the absolute reference coordinate system of the entire apparatus is a protrusion (not shown) near the front end of the board.
The component supply unit 12 has a large number of tape feeders 11a arranged side by side. Each of the tape feeders 11a accommodates electronic components in a state of being loaded on a carrier tape (not shown), and the electronic components are supplied one by one from the tip of the tape feeder 11a.
[0013]
The XY transfer section 14 has a Y-axis 3 that is guided by a pair of shafts disposed at both right and left ends of the apparatus 1 and moves in the front-rear direction (Y-axis direction). The XY transfer unit 14 is advanced and retracted in the Y-axis direction (front-rear direction) by a ball screw on the right side of the shaft of the XY transfer unit 14 and a Y-axis motor (not shown) for rotating the ball screw.
On the other hand, it has the X-axis 2 and moves the suction head unit 13 in the X-axis direction (left-right direction) with the configuration of a ball screw and an X-axis motor (both not shown), similarly to the above-mentioned drive system. . As described above, the suction head unit 13 is movable in the X-axis direction and the Y-axis direction, that is, in the horizontal plane.
[0014]
The suction head unit 13 includes a nozzle 13a and a board recognition camera 17. The nozzle 13a has a mechanism that can move in the vertical direction. The board recognition camera 17 recognizes a mark or the like of each board, and a specific thing such as a mark serves as a reference mark for the mounting position of the electronic component. The nozzle 13a attached to the lower end of the suction head 13 is connected to a vacuum suction device (not shown). The suction head 13 incorporates a motor (not shown) for rotating the electronic component in a horizontal plane via the nozzle 13a.
The jig component 30 and the jig board 20 shown in FIGS. 2 and 3 are differences between the coordinate system of the board recognition camera 17 for recognizing the position of the board and the coordinate system of the component recognition camera 16 for recognizing the position of the electronic component. In this correction, the component recognition camera 16 takes an image of the jig component 30 transferred by the suction head unit 13 and recognizes this. Subsequently, a predetermined portion of the jig substrate 20 carried into the substrate fixing portion is recognized by the substrate recognition camera 17, and the deviation of the coordinate system of the substrate recognition camera 17 from the absolute reference coordinate system of the apparatus is corrected. At the same time, the component recognition camera 16 picks up an image of the jig component 30 at a predetermined position on the jig substrate 20 and mounts the recognized jig component 30. Next, the jig component 30 mounted on the jig board 20 is imaged by the board recognition camera 17, and the center position of the jig component on the jig board is recognized. Then, a deviation between the determined position and the position determined from the reference mark on the jig substrate is determined.
[0015]
As shown in FIG. 2, the jig component 30 includes a component pattern 34 drawn on a rectangular base surface and component mark groups 33a, b, c, and d. The base is made of glass having a thickness of about 1 to 2 mm in consideration of rigidity, and the component pattern 34 is formed by depositing chromium oxide on the base. The component pattern 34 is composed of component mark groups 33a, b, c, and d with the center at the same position 35, and a hollow portion. The component mark groups 33a, b, c, and d are patterns of four round patterns that are easily recognized by the board recognition camera 17, and the component pattern portion 34 is a pattern that resembles a lead component that is easily recognized by the component recognition camera 16. A large number of rectangular pattern elements 35 corresponding to leads are arranged at equal intervals on the outer peripheral portion, and have a rectangular outline as a whole.
The jig substrate 20 is formed in a rectangular shape as shown in FIG.
[0016]
On the surface of the jig substrate 20, marks 20a, 20b and 20c are drawn at three corners as shown in FIG. 3 in order to obtain the inclination when the jig substrate is fixed and the correction amount from the origin of the absolute reference coordinate system. One of them is drawn as a substrate reference mark 20a of the jig substrate. Further, mounting reference marks 21a, b, c, and d for mounting the jig component 30 are drawn near the center of the jig substrate 20. The respective positional relationships of the mounting reference marks 21a, 21b, 21c, 21d are set with the substrate reference mark 20a as the origin.
Next, before describing the above-described correction method using the jig component 30 and the jig substrate 20, the control device 100 of the electronic component mounting apparatus 1 will be briefly described with reference to FIG. As shown in FIG. 1, the control device 100 includes an X motor 101 and a Y motor 102 for moving the suction head unit 13 in the XY directions via an XY transfer unit 14 and a θ motor (rotation) mounted on the suction head unit 13. 103 is connected. The X motor 101, the Y motor 102, and the θ motor 103 are connected to a CPU 107 that controls them through an X motor driver 104, a Y motor driver 105, and a θ motor driver 106, respectively. Similarly, the board recognition camera 16 and the component recognition camera 17 are connected to the CPU 107 via the board video processing unit 108 and the component video processing unit 109, respectively.
[0017]
A memory 110 is connected to the CPU 107. The memory 110 stores design value data for controlling the motors 104, 105, 106 and the recognition cameras 16, 17 and other various data. Correction data to be described later is stored. The correction data is updated by a deviation calculation operation described later, and the CPU 107 corrects the design value data with the correction data, and controls the motors 104, 105, 106 and the recognition cameras 16, 17. Recognition of an object to be imaged by each of the recognition cameras (CCD cameras) 16 and 17 is performed by performing various kinds of processing on the imaged result in each of the image processing units 108 and 109, and then performing arithmetic processing on the result by the CPU 107. Is
[0018]
Next, a method of correcting deviation between the board recognition camera 16 and the component recognition camera 17 will be described. In this deviation correction method, the jig component 30 shown in FIG. 2 is mounted on the jig board 20 shown in FIG. 3, and a shift amount between a mounting center position of the jig component and a predetermined mounting position of the jig board is obtained. The correction of the deviation of the coordinate system of the board recognition camera 17 with respect to the absolute reference coordinate system is performed, and the correction of the angular deviation of the coordinate system when the XY transfer unit 14 moves with respect to the absolute reference coordinate system is also performed. The deviation of the coordinate system of the component recognition camera 16 with respect to the coordinate system of the recognition camera 17 is also corrected. Therefore, at the same time, in the correction of the actual coordinate system, the correction of the center position of the nozzle 13a is also performed.
[0019]
FIG. 5 is an image diagram in which the jig component 30 is mounted on the jig substrate 20 carried into the substrate fixing unit. The jig substrate 20 is positioned on an absolute reference coordinate system (substrate positioning coordinate system). . In this case, correction data for adjusting the positional deviation and the angular deviation of the jig component 30 with respect to the design dimensions of the driving XY coordinates of the XY transfer unit 14 as viewed from the substrate positioning XY coordinates is obtained, and based on the correction data, the XY coordinates are obtained. Correction is performed based on the system. The scanning coordinate center of the board recognition camera 17 mounted on the XY transfer unit 14 matches the position coordinates of the driving XY coordinates of the XY transfer unit 14 (that is, the suction head unit 13).
Specifically, the jig substrate 20 is carried into the substrate fixing portion, and correction data is obtained according to the operation flow of FIG. In S1 (Jig board mark recognition) of FIG. 6, the board recognition camera 17 mounted on the XY transfer unit 14 is sequentially designed so that the center position thereof matches the positions of the board reference marks 20a, marks b, and c. It moves according to the value, takes an image, and recognizes it. In S2 of FIG. 6 (calculation of the board error amounts “Δx1, Δy1, θ1”), the shift amount of the inner board reference mark 20a and the inclination of the jig board 20 (the board recognition camera 17) The difference between the coordinates of the center of the mark and the coordinates of the center of the scan as viewed from the camera center is temporarily stored in the memory 110 as “Δx1, Δy1, θ1”.
[0020]
“Δx1, Δy1, θ1” is obtained by the following calculation.
The logical coordinates of the marks 20a, 20b, and 20c are A (Xa, Ya), B (Xb, Yb), and C (Xc, Yc), and the mark recognition result (mark shift amount) at each coordinate is A1 (Xa1). , Ya1), B1 (Xb1, Yb1), and C1 (Xc1, Yc1).
The XY axes of the absolute coordinates are orthogonal, and the XY axes of the board recognition camera 17 are also orthogonal. Assuming that the board recognition camera 17 is attached at an angle of θ (C0) with respect to the XY axes of the absolute coordinates, A1, B1, and C1 are converted as follows based on the XY axes of the absolute coordinates.
A2 (Xa1 * cos (C0) -Ya1 * sin (C0), Xa1 * sin (C0) + Ya1 * cos (C0))
B2 (Xb1 * cos (C0) -Yb1 * sin (C0), Xb1 * sin (C0) + Yb1 * cos (C0))
C2 (Xc1 * cos (C0) -Yc1 * sin (C0), Xc1 * sin (C0) + Yc1 * cos (C0))
Since the calculation formula becomes complicated, each conversion result
A2 (Xa2, Ya2), B2 (Xb2, Yb2), and C2 (Xc2, Yc2).
The absolute coordinates A0, B0, C0 of the substrate reference mark 20a, marks 20b, 20c are respectively as follows.
A0 (Xa + Xa2, Ya + Ya2)
B0 (Xb + Xb2, Yb + Yb2)
C0 (Xc + Xc2, Yc + Yc2)
Next, the angle difference between the logical coordinates and the absolute coordinates is the substrate carrying angle θ1, and can be obtained as follows.
The vector of the logical coordinates of the mark 20c viewed from the substrate reference mark 20a is VL (Xc-Xa, Yc-Ya), and the vector of the absolute coordinates of the mark 20c viewed from the substrate reference mark 20a is VR (Xc + Xc2-Xa). -Xa2, Yc + Yc2-Ya-Ya2).
Each vector angle θL, θR can be calculated as follows.
θL = tan -1 ((Yc-Ya) / (Xc-Xa))
θR = tan -1 ((Yc + Yc2-Ya-Ya2) / (Xc + Xc2-Xa-Xa2))
[0021]
The angle difference θ1 between the logical coordinates and the absolute coordinates is θ1 = θR−θL
From the above, “Δx1, Δy1, θ1” is calculated.
Δx1 = Xa1 * cos (C0) −Ya1 * sin (C0)
Δy1 = Xa1 * sin (C0) + Ya1 * cos (C0)
θ1 = θR-θL
Next, in S3 (preparation for jig component recognition) in FIG. 6, the suction head unit 13 is moved to the component supply unit 12 in order to mount the jig component 30 on the jig board 20, and the nozzle 13a in the suction head unit 13 is moved. Then, the jig component 30 is sucked and moved according to the design value so that the position of the nozzle 13a coincides with the center position (the center of the visual field) of the component recognition camera 16.
Here, in S4 (jig component recognition) in FIG. 6, the jig component 30 is recognized by the component recognition camera 16, and in S5 (calculation of component error amounts “Δx2, Δy2, θ2”) in FIG. The recognition result (difference and inclination of the jig component center position coordinates from the camera center at the scanning coordinates of the component recognition camera 16) is temporarily stored in the memory 110 as “Δx2, Δy2, θ2”.
The error amounts “Δx2, Δy2, θ2” are obtained by the following calculation.
The XY axes of the absolute coordinates are orthogonal, and the XY axes of the component recognition camera 16 are also orthogonal. Assuming that the component recognition camera 16 is attached at an inclination of θ (C1) with respect to the XY axes of the absolute coordinates, and if the component recognition result (offset amount with respect to the camera center) is R1 (Xr, Yr, θr), then R1 is Is converted as follows based on the XY axes of
[0022]
R2 (Xr * cos (C1) -Yr * sin (C1), Xr * sin (C1) + Yr * cos (C1), θr + C1)
Therefore,
Δx2 = Xr * cos (C1) −Yr * sin (C1)
Δy2 = Xr * sin (C1) + Yr * cos (C1)
θ2 = θr + C1.
Next, in S6 of FIG. 6 (mounting of the jig component to the jig substrate), the mark of the component mounting is aligned with the center position (center of the field of view) of the board recognition camera 17 mounted on the head unit 13. The jig component 30 is moved in accordance with the design value, calculated based on the results (21a to 21d) obtained and recognized in S5, and the jig component 30 is mounted (not shown) by the nozzle 13a movable in the vertical direction.
An example of a calculation method for obtaining the mounting position is shown below.
The movement target coordinates for recognizing the substrate mark of 21b are as follows: the logical coordinates of 21b are D (Xd, Yd), and the vector VL1 of the logical coordinates of 21b viewed from 20a is VL1 (Xd-Xa, Yd-Ya). It becomes.
[0023]
Since it is verified in S2 that the substrate is tilted by θ1 with respect to the XY axes of the absolute coordinates, the vector VR1 of the absolute coordinates of 21b viewed from 20a is rotated by θ1 with respect to VL1.
VR1 ((Xd−Xa) * cos (θ1) − (Yd−Ya) * sin (θ1), ((Xd−Xa) * sin (θ1) + (Yd−Ya) * cos (θ1))
On the other hand, the mark of 20a is offset from the absolute coordinates by (Δx1, Δy1), so the absolute coordinates D0 (Xd0, Yd
0) is as follows.
Xd0 = (Xd−Xa) * cos (θ1) − (Yd−Ya) * sin (θ1) + Δx1
Yd0 = (Xd−Xa) * sin (θ1) + (Yd−Ya) * cos (θ1) + Δy1
The mark recognition result at the absolute coordinates D0 (Xd0, Yd0) is set to D01 (Xd01, Yd01).
Since the board recognition camera 17 is attached at an angle θ (C0) with respect to the XY axes of the absolute coordinates,
D01 is converted as follows based on the XY axes of the absolute coordinates.
D02 (Xd01 * cos (C0) -Yd01 * sin (C0), Xd01 * sin (C0) + Yd01 * cos (C0))
[0024]
The absolute coordinates D00 (Xd00, Yd00) of the final mark are as follows:
Xd00 = Xd0 + Xd01 * cos (C0) -Yd01 * sin (C0)
Yd00 = Yd0 + Xd01 * sin (C0) + Yd01 * cos (C0)
Since the mounting coordinates and the mark coordinates of the mark 21b are the same, the final mounting absolute coordinates P (Xp, Yp) to which the rotation center of the nozzle 13a in the suction head section 13 should move can be calculated as follows.
The absolute coordinates and inclination of the center of the component as viewed from the rotation center of the nozzle 13a are obtained as Δx2, Δy2, and θ2 from S6.
Since the component is inclined by θ2 with respect to the absolute coordinates and the board is inclined by θ1 with respect to the absolute coordinates, if the mounting posture is θP and the recognition posture is θR,
The angle θP0 to be finally corrected for rotation,
θP0 = θP + θ1−θR−θ2, and
The absolute coordinates of the center of the component viewed from the rotation center of the nozzle 13a after the rotation correction is:
Δx2z = Δx2 * cos (θP0) −Δy2 * sin (θP0)
Δy2z = Δx2 * sin (θP0) + Δy2 * cos (θP0)
become.
The final mounting target absolute coordinates of the rotation center of the nozzle 13a are:
Xp = Xd00−Δx2z
Yp = Yd00−Δy2z
As another method, the jig component 30 may be mounted using the nozzle 13a that can move in the vertical direction, without performing recognition of the mark of the mounting position, calculating based on the result obtained in S2 and the result of S5.
[0025]
Next, in S7 of FIG. 6 (IC position recognition by the board recognition camera), the jig component mounted on the jig board 20 at the center position (center of the field of view) of the board recognition camera 17 attached to the suction head unit 13 In order to match the positions of the IC marks 33a and 33c drawn on the reference numeral 30, they are sequentially moved in accordance with the design values, imaged, and recognized.
An example of the calculation method is shown below.
Marks 33a and 33c on the part are respectively AA (Xaa, Yaa) and CC (Xcc, Ycc) with respect to the center of the part.
If there is no displacement between the board and the component, the target absolute coordinates AAA (Xaac, Yaac) and CCC (Xccc, Yccc) to be moved by the board recognition camera 17 are as follows. Is calculated.
Since the substrate is inclined by θ1 with respect to the absolute coordinates, AA (Xaa, Yaa) and CC (Xcc, Ycc) are also rotated by θ1, and as a result of the conversion, AAz and CCz are as follows. .
[0026]
AAz (Xaa * cos (θ1) −Yaa * sin (θ1), Xaa * sin (θ1) + Yaa * cos (θ1))
CCz (Xcc * cos (θ1) −Ycc * sin (θ1), Xcc * sin (θ1) + Ycc * cos (θ1))
Subsequently, the component center position on the board is D00 (Xd00, Yd00) already obtained in S6.
Xaac = Xd00 + Xaa * cos (θ1) −Yaa * sin (θ1)
Yaac = Yd00 + Xaa * sin (θ1) + Yaa * cos (θ1)
Xccc = Xd00 + Xcc * cos (θ1) −Ycc * sin (θ1)
Yccc = Yd00 + Xcc * sin (θ1) + Ycc * cos (θ1)
Is required.
If AAC (Xaac, Yaac) and CCC (Xccc, Yccc) are used as logical coordinates and the same calculation process as in S2 is performed, the absolute coordinates of the marks 33a and 33c on the part can be obtained.
[0027]
That is, in S8 (calculation of various mounting correction data) in FIG. 6, the difference between the positioning center position on the absolute coordinate system (board positioning coordinate system) obtained in S7 and the component mounting center position obtained in S6 is determined by the board recognition camera. The correction data becomes the mounting correction data of the XY coordinate system of the component recognition camera 16 with respect to the 17 coordinate system, and the angle difference becomes the tilt mounting correction data.
As described above, according to the present embodiment, the deviation of the coordinate system of the board recognition camera 17 and the coordinate system of the component recognition camera 16 with respect to the absolute reference coordinate system is corrected using the jig component 30 and the jig board 20. Is performed, the deviation between the coordinate system of the board recognition camera 17 and the coordinate system of the component recognition camera 16, that is, the deviation between the coordinate system of the recognition cameras 16 and 17 and the absolute reference coordinate system, It can be corrected very accurately.
In particular, since the deviation between the coordinate system of the board recognition camera 17 and the component recognition camera 16 can be detected by recognizing the jig component 30 with the respective recognition cameras 16 and 17, it can be easily and quickly corrected. can do. In addition, since the dedicated jig component 30 and the jig board 20 are used and are manufactured so that they can be easily recognized, the correction is accurately performed, and the correction can be performed with high accuracy as a whole. Therefore, the electronic component can be mounted on the substrate with high accuracy and stability.
[0028]
【The invention's effect】
As described above, according to the camera position deviation correction method and apparatus of the present invention, the jig parts and the jig board are used to recognize the respective coordinate systems (design coordinate systems) of both recognition cameras. Correction can be made by recognizing the jig component and the jig board with the camera, mounting the jig component, and recognizing with the board recognition camera.
The deviation between the coordinate system of the component recognition camera and the coordinate system of the board recognition camera can be obtained easily and quickly even in an already shipped device, without adding an extra mechanism to the device. And the position can be accurately corrected. Therefore, the electronic component can be stably mounted on the substrate with high accuracy, and the reliability of the device can be improved.
In addition, the effect of the thickness of the jig component for correcting the camera position according to the present invention can be sufficiently compensated for by the existing technology, and in the present invention, pattern recognition can be performed accurately, and position correction in electronic components and the like can be performed. And the like can be improved.
[Brief description of the drawings]
FIG. 1 is a plan view of an electronic component mounting apparatus according to an embodiment of the present invention.
FIG. 2 is a plan view of a jig component used in the deviation correction method according to the embodiment.
FIG. 3 is a plan view of a jig substrate used in a deviation correction method according to the embodiment.
FIG. 4 is a block diagram illustrating a control system of the electronic component mounting apparatus.
FIG. 5 is an image diagram showing a state where a jig component is mounted on a jig board.
FIG. 6 is an operation flowchart for obtaining deviations of the coordinate system of the board recognition camera and the coordinate system of the component recognition camera in consideration of the displacement angle of the XY transfer unit in the absolute reference coordinate system.
[Explanation of symbols]
1 Electronic component mounting device
2 X axis
3 Y axis
11 reel
11a Tape feeder
12 Parts supply unit
13 Suction head
13a nozzle
14 XY transfer unit
15 Substrate transport path
16 Parts recognition camera
17 Board Recognition Camera
20 jig board
20a Board reference mark
20b, c mark
21a, b, c, d Mounting reference mark
30 jig parts
32 pattern to be imaged
33a, b, c, d Parts mark group
34 Parts pattern part

Claims (3)

治具基板上のマークを位置認識する基板認識カメラの座標系と、治具基板に装着する治具部品の位置認識する部品認識カメラの座標系との相互間の偏差を補正する位置の偏差補正方法において、
前記各認識カメラにより治具部品の中心位置の座標系上のずれ量を認識可能な治具部品を用い、前記治具部品の姿勢を保持した状態で当該治具部品を前記部品認識カメラで撮像する撮像工程と、前記治具基板上のマークを前記基板認識カメラで撮像する撮像工程と、両認識カメラで撮像した撮像結果から、前記治具部品を前記治具基板に装着する装着工程と、装着した治具部品のマークを前記基板認識カメラで撮像し、求めた認識中心位置と前記治具基板のマークから前記基板認識カメラで求めた部品装着中心位置とのずれ量を算出するずれ量算出工程と、前記ずれ量算出工程で算出したずれ量に基づいて、前記基板認識カメラあるいは前記部品認識カメラの座標系を補正する補正工程とを備えたことを特徴とするカメラ位置の偏差補正方法。
Position deviation correction that corrects the deviation between the coordinate system of the board recognition camera that recognizes the position of the mark on the jig board and the coordinate system of the component recognition camera that recognizes the position of the jig component mounted on the jig board In the method,
Using a jig component capable of recognizing a shift amount of the center position of the jig component on the coordinate system by each of the recognition cameras, imaging the jig component with the component recognition camera while holding the posture of the jig component An imaging step to perform, an imaging step of imaging the mark on the jig board with the board recognition camera, and a mounting step of mounting the jig component on the jig board from an imaging result captured by both recognition cameras, A shift amount calculation for imaging the mark of the mounted jig component with the board recognition camera and calculating a shift amount between the obtained recognition center position and the component mounting center position obtained by the board recognition camera from the jig board mark. And a correction step of correcting a coordinate system of the board recognition camera or the component recognition camera based on the shift amount calculated in the shift amount calculation step.
治具基板上のマークを位置認識する基板認識カメラの座標系と、治具基板に装着する治具部品の位置認識する部品認識カメラの座標系との相互間の偏差を補正する位置の偏差補正装置において、
前記各認識カメラにより治具部品の中心位置の座標系上のずれ量を認識可能な治具部品を用い、前記治具部品の姿勢を保持した状態で当該治具部品を前記部品認識カメラで撮像する撮像手段と、前記治具基板上のマークを前記基板認識カメラで撮像する撮像手段と、両認識カメラで撮像した撮像結果から、前記治具部品を前記治具基板に装着する装着手段と、装着した治具部品のマークを前記基板認識カメラで撮像し、求めた認識中心位置と前記治具基板のマークから前記基板認識カメラで求めた部品装着中心位置とのずれ量を算出するずれ量算出手段と、前記ずれ量算出工程で算出したずれ量に基づいて、前記基板認識カメラあるいは前記部品認識カメラの座標系を補正する補正手段とを備えたことを特徴とするカメラ位置の偏差補正装置。
Position deviation correction that corrects the deviation between the coordinate system of the board recognition camera that recognizes the position of the mark on the jig board and the coordinate system of the component recognition camera that recognizes the position of the jig component mounted on the jig board In the device,
Using a jig component capable of recognizing a shift amount of the center position of the jig component on the coordinate system by each of the recognition cameras, imaging the jig component with the component recognition camera while holding the posture of the jig component Imaging means for performing, imaging means for imaging the mark on the jig board with the board recognition camera, mounting means for mounting the jig component on the jig board from the imaging results obtained by both recognition cameras, A shift amount calculation for imaging the mark of the mounted jig component with the board recognition camera and calculating a shift amount between the obtained recognition center position and the component mounting center position obtained by the board recognition camera from the jig board mark. Means for correcting the coordinate system of the board recognition camera or the component recognition camera based on the shift amount calculated in the shift amount calculation step.
前記治具部品上の被撮像パターンは、それぞれが前記ずれ量を認識可能で且つ中心を同一とする部品パターン部と部品マーク群で構成されていることを特徴とする請求項1、2に記載のカメラ位置補正用の治具部品。3. The imaging pattern on the jig component is configured by a component pattern portion and a component mark group, each of which can recognize the shift amount and have the same center. 4. Jig parts for camera position correction.
JP2003078201A 2003-03-20 2003-03-20 Calibration method for electronic component mounting device and device using the method Pending JP2004288824A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003078201A JP2004288824A (en) 2003-03-20 2003-03-20 Calibration method for electronic component mounting device and device using the method
CNB2004100295201A CN1318820C (en) 2003-03-20 2004-03-18 Correcting method for electronic part mounting device and device for using said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078201A JP2004288824A (en) 2003-03-20 2003-03-20 Calibration method for electronic component mounting device and device using the method

Publications (1)

Publication Number Publication Date
JP2004288824A true JP2004288824A (en) 2004-10-14

Family

ID=33292749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078201A Pending JP2004288824A (en) 2003-03-20 2003-03-20 Calibration method for electronic component mounting device and device using the method

Country Status (2)

Country Link
JP (1) JP2004288824A (en)
CN (1) CN1318820C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108541141A (en) * 2018-04-12 2018-09-14 江苏博敏电子有限公司 A kind of subregion alignment method of conducting aperture layer and circuitous pattern layer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616694B2 (en) * 2005-05-09 2011-01-19 Juki株式会社 Component mounting equipment
CN100358820C (en) * 2005-12-02 2008-01-02 友达光电股份有限公司 substrate correcting device
KR101113679B1 (en) * 2010-05-24 2012-02-14 기아자동차주식회사 Image correction method of camera system
JP6131045B2 (en) * 2012-12-28 2017-05-17 Juki株式会社 Electronic component mounting apparatus and electronic component mounting method
JP6594545B2 (en) * 2016-07-14 2019-10-23 三菱電機株式会社 Substrate measuring device and laser processing system
CN110091591B (en) * 2018-04-18 2020-07-10 广东聚华印刷显示技术有限公司 Offset correction method, device and system for glass clamp
JP2021113772A (en) * 2020-01-21 2021-08-05 Juki株式会社 Parts recognition device, parts mounting device, and parts recognition method
CN112597832B (en) * 2020-12-10 2022-08-16 上海闻泰信息技术有限公司 Rectangular piece installation deviation judgment method and device
CN115097664A (en) * 2022-07-11 2022-09-23 河南省华锐光电产业有限公司 Method and device for bonding substrates

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612980B2 (en) * 1991-08-22 1997-05-21 山武ハネウエル株式会社 Calibration method for surface mounter
JP3523480B2 (en) * 1998-01-27 2004-04-26 株式会社日立ハイテクインスツルメンツ Camera position correction device
JP3891825B2 (en) * 2001-11-05 2007-03-14 Juki株式会社 Electronic component mounting equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108541141A (en) * 2018-04-12 2018-09-14 江苏博敏电子有限公司 A kind of subregion alignment method of conducting aperture layer and circuitous pattern layer
CN108541141B (en) * 2018-04-12 2020-02-18 江苏博敏电子有限公司 Partition alignment method for conducting hole layer and circuit graphic layer

Also Published As

Publication number Publication date
CN1532520A (en) 2004-09-29
CN1318820C (en) 2007-05-30

Similar Documents

Publication Publication Date Title
KR101472434B1 (en) Electronic component mounting apparatus and mounting position correction data creating method
JP5721469B2 (en) Component mounting method and component mounting apparatus
US6986200B2 (en) Method for mounting parts
US20090252400A1 (en) Method for mounting electronic component
JP3523480B2 (en) Camera position correction device
JP4839535B2 (en) Coordinate correction method, coordinate correction apparatus, and reference correction jig
JP2000294992A (en) Electronic component mounting method
JP4860270B2 (en) Judgment Method for Simultaneous Adsorption of Electronic Components in Mounting Equipment
JP2004288824A (en) Calibration method for electronic component mounting device and device using the method
JP6831478B2 (en) Work device to be mounted
JP4587877B2 (en) Component mounting equipment
JP6438826B2 (en) Bonding apparatus and bonding method
JP6889778B2 (en) Component mounting device
JP2017168619A (en) Component loading method and component mounting device
JP4307036B2 (en) Method for correcting suction nozzle position in electronic component mounting apparatus
JP6462530B2 (en) Exchange cart and surface mounter
US11357146B2 (en) Component mounting machine
KR102205705B1 (en) Method of calculating correction value of industrial robot
JP5572247B2 (en) Image distortion correction method
JP3286105B2 (en) Mounting position correction method for mounting machine
JP4145580B2 (en) Electronic component mounting method
JP6985814B2 (en) Board work machine
JPH08195599A (en) Method and apparatus for detecting component mounting state in mounting apparatus
JP4248066B2 (en) Surface mount component mounting machine
JP2000353899A (en) Electronic component mounting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224