【0001】
【産業上の利用分野】
携帯電話にカメラが付き、その写真撮影用に発光ダイオード(LED)を光源としたストロボが付けられるようになってきた。本発明はこの携帯電話カメラ用ストロボの光を欲しい角度に、即ち欲しい距離の欲しい面積になるべく一様にかつ有効に広げる為に工夫した蝿の目レンズである。
【0002】
【従来の技術】
従来はレンズ作用を持たせず単に光を散らす為の拡散板、または単に内部の光源としてのLEDが直接見えないようにするための拡散板が用いられたり、或いは球面レンズまたは非球面レンズ等の単レンズ、またはフレネルレンズ等が用いられてきた。
【0003】
【発明が解決しようとする課題】
レンズ作用のない拡散板は論外として、球面レンズあるいは非球面レンズないしはフレネルレンズ等のいわゆる単眼レンズでは、一定距離はなれた位置で一定面積内を可能な限り一様に、かつ可能な限り明るくするには、携帯電話のように薄い構造体ではおのずと限界がある。この限界を超えようとするとたちまち明るさと一様性の二律背反に直面する。即ち、より明るくしようとすると、一様性が悪化し、より一様にしようとすると明るさを犠牲にしなければならない。本案は、もともとさして強くはないLED光源の光を有効に使い、指定位置を明るくかつ一様に照明する工夫を提案する。
【0004】
【課題を解決するための手段】
LED光源から若干離れた位置に以下に述べるようにマイクロ蝿の目レンズを置く。即ち、蝿の目レンズの一個一個の要素レンズは両凸レンズであって、この入射面を以下の便宜のため前面と呼び、射出面を後面とよぶ。また、要素レンズの断面形状は、被写体の照明野と相似形とし、照明野が例えば縦長の矩形であれば、要素レンズの断面形状もそれに相似な縦長の矩形とする。
【0005】
蝿の目レンズの構成は通常の蝿の目レンズと基本的には同様である。すなわち、前面単独のレンズ作用としての焦点が後面の位置に、また後面単独のレンズ作用としての焦点の位置が前面の位置にあるようにし、前後面の曲率半径の絶対値が同一なる両凸レンズである。さらに後面単独のレンズ作用としての焦点距離と、要素レンズの断面形状、および被写体までの距離と照明野の大きさ、とのあいだには、つぎのような相関関係にあるようにすることが基本である。即ち、後面単独でひとつのレンズと考えた場合、このレンズが(前面そのものを物体と考えたとき)前面の輪郭の像を、ちょうど被写体の位置に、照明野の大きさまで拡大した像を、結像するようにするのである。しかしこれはあくまでも基本としてである。本案の場合、携帯電話カメラという極めて薄く小型な構造の中に収めなければならず、蝿の目レンズの要素レンズも極めて短い焦点距離と高い開口数(NA)が要請され、往々にして上記の基本とおりには出来ない場合がある。その場合には、基本をどこかで崩した構造に甘んじなければならないが、実際には、シミュレーションを繰り返し、照明野の照度分布の状態を確認しながら、現実性の在る解を求めることになる。
【0006】
【作用】
上記のような構成をとることにより、蝿の目レンズの前面がLEDの発する光により一様に照らされ、前面を透過した光は前面のレンズ作用で蝿の目レンズの後面に集光してこれを透過し、後面のレンズ作用は一様に照らされた前面の拡大像を被写体付近に投影結像するように透過光線を屈折し、こうして照明野まで辿り着いた光が全体として蝿の目の数だけ加算されて被写体の位置に一様で明るい照明野を得る。
【0007】
【実施例−1】
実施例−1の R、D、n データを次に示す。光源はLEDで7mm□(実際は4個張り合わせ品)、光源発光面からEPOXY内への配光分布特性は余弦法則(cosθ)を仮定している。
蝿の目レンズのデータは:
要素レンズの大きさが、タテ:0.6mm(10個),ヨコ:0.45mm(14個)本実施例は上記のように、被写体までの距離が500mm、照明野の大きさが、500mm(タテ)X400mm(ヨコ)、の場合である。
【0008】
【発明の効果】
従来の技術においては、明るさと一様性の二律背反を破ることは極めて困難であったが、本案によってより明るく(集光効率がよく)かつ照明野内の一様性がより良い、LEDによるストロボ照明を達成することが可能になった。携帯電話カメラ用ストロボという極めて薄い小型機構の中に、本案によるマイクロ蝿の目レンズの技術は都合よくフィットしより良いストロボ照明を提供する。
【図面の簡単な説明】
【図1】
実施例−1の光学系で、被写体距離500mm、照明野タテ500mm、ヨコ400mmを照明した場合のシミュレーション結果。ただし、図示範囲は、タテ800mm、ヨコ800mm。
【図2】同じく実施例−1の光学系のシミュレーション結果。ただし、図示範囲は、設計上の照明野の範囲で、タテ500mm、ヨコ400mm。
【図3】実施例−1の光学系の断面拡大図。
【符号の説明】
1 LED光源発光面
2 LED発光面を覆うエポキシ樹脂
3 蝿の目レンズ[0001]
[Industrial applications]
Cameras have been attached to mobile phones, and strobes using light emitting diodes (LEDs) as light sources have come to be used for taking photographs. The present invention is a fly-eye lens devised to spread the light of the strobe for a cellular phone camera uniformly and effectively to a desired angle, that is, a desired area of a desired distance.
[0002]
[Prior art]
Conventionally, a diffuser for simply dispersing light without having a lens function, or a diffuser for simply preventing the LED as an internal light source from being directly seen, or using a spherical lens or an aspherical lens, etc. Single lenses or Fresnel lenses have been used.
[0003]
[Problems to be solved by the invention]
A diffuser plate without lens action is out of the question, and what is called a monocular lens such as a spherical lens, an aspherical lens, or a Fresnel lens is to make the inside of a certain area as uniform and bright as possible at a certain distance. Is naturally limited in thin structures such as mobile phones. Immediately beyond this limit, you face the tradeoff of brightness and uniformity. That is, to make it brighter, uniformity deteriorates, and to make it more uniform, brightness must be sacrificed. The present invention proposes a device for effectively and uniformly illuminating a designated position by effectively using light from an LED light source that is not so strong.
[0004]
[Means for Solving the Problems]
A micro fly's eye lens is placed slightly away from the LED light source as described below. That is, each element lens of the fly-eye lens is a biconvex lens, and the entrance surface is called a front surface for convenience of the following, and the exit surface is called a rear surface. The cross-sectional shape of the element lens is similar to the illumination field of the subject. If the illumination field is, for example, a vertically long rectangle, the cross-sectional shape of the element lens is also a vertically long rectangle similar thereto.
[0005]
The structure of the fly-eye lens is basically the same as that of a normal fly-eye lens. That is, the focal point as the lens function of the front surface alone is at the rear surface position, and the focal position as the lens function of the rear surface alone is at the front position, and the biconvex lens has the same absolute value of the radius of curvature of the front and rear surfaces. is there. Furthermore, it is essential that the following correlation be established between the focal length as the lens function of the rear surface alone, the cross-sectional shape of the element lens, and the distance to the subject and the size of the illumination field. It is. In other words, when the rear surface alone is considered as one lens, this lens forms an image of the outline of the front surface (when the front surface itself is considered as an object) exactly at the position of the subject, enlarged to the size of the illumination field. It is an image. But this is just the basis. In the case of the present invention, the lens must be housed in a very thin and small structure such as a mobile phone camera, and the element lens of the fly-eye lens is required to have an extremely short focal length and a high numerical aperture (NA). It may not be possible according to the basics. In that case, you have to be content with a structure that breaks the basics somewhere, but in practice, it is necessary to repeat the simulation and check the state of the illuminance distribution of the illumination field and find a realistic solution Become.
[0006]
[Action]
With the above configuration, the front surface of the fly-eye lens is uniformly illuminated by the light emitted from the LED, and the light transmitted through the front surface is condensed on the rear surface of the fly-eye lens by the action of the front lens. Through this, the rear lens function refracts the transmitted light so that the uniformly illuminated enlarged image of the front is projected and formed near the subject, and the light that reaches the illumination field as a whole is the fly's eye And a uniform bright illumination field is obtained at the position of the subject.
[0007]
Example-1
The R, D, and n data of Example-1 are shown below. The light source is an LED of 7 mm square (actually four bonded products), and the light distribution characteristic from the light source light emitting surface to the inside of the EPOXY assumes the cosine law (cos θ).

The fly-eye lens data is:
Element lens size: vertical: 0.6 mm (10), horizontal: 0.45 mm (14) In this embodiment, as described above, the distance to the subject is 500 mm, and the size of the illumination field is 500 mm. (Vertical) X400 mm (horizontal).
[0008]
【The invention's effect】
In the prior art, it was extremely difficult to violate the trade-off between brightness and uniformity. However, according to the present invention, a strobe lighting using LEDs that is brighter (has a good light-collecting efficiency) and has better uniformity in the illumination field. It became possible to achieve. The micro fly's eye lens technology according to the present invention fits conveniently and provides better strobe lighting in the ultra-thin miniature mechanism of strobe for mobile phone camera.
[Brief description of the drawings]
FIG.
12 shows a simulation result in the case where the optical system of Example 1 illuminates a subject distance of 500 mm, an illumination field length of 500 mm, and a horizontal width of 400 mm. However, the illustrated range is vertical 800 mm and horizontal 800 mm.
FIG. 2 is a simulation result of the optical system of Example 1; However, the illustrated range is the range of the illumination field in the design, and the length is 500 mm and the width is 400 mm.
FIG. 3 is an enlarged cross-sectional view of an optical system according to a first embodiment.
[Explanation of symbols]
1 LED light emitting surface 2 Epoxy resin covering LED emitting surface 3 Fly-eye lens