[go: up one dir, main page]

JP2004287322A - Mask defect correction method - Google Patents

Mask defect correction method Download PDF

Info

Publication number
JP2004287322A
JP2004287322A JP2003081988A JP2003081988A JP2004287322A JP 2004287322 A JP2004287322 A JP 2004287322A JP 2003081988 A JP2003081988 A JP 2003081988A JP 2003081988 A JP2003081988 A JP 2003081988A JP 2004287322 A JP2004287322 A JP 2004287322A
Authority
JP
Japan
Prior art keywords
defect
electron beam
pattern
extracted
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003081988A
Other languages
Japanese (ja)
Other versions
JP4219714B2 (en
Inventor
Osamu Takaoka
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2003081988A priority Critical patent/JP4219714B2/en
Publication of JP2004287322A publication Critical patent/JP2004287322A/en
Application granted granted Critical
Publication of JP4219714B2 publication Critical patent/JP4219714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

【課題】チャージアップのために電子ビームを用いたフォトマスク欠陥修正装置で観察しにくい微細な孤立したパターンやO PCパターンの高精度かつ高品位な欠陥修正を可能にする。
【解決手段】原子間力顕微鏡(AFM)で欠陥を含む領域の観察を行い、AFM像から欠陥の形状と位置あわせのためのパターンを抽出する。抽出されたパターンは電子ビームを用いたフォトマスク欠陥修正装置の図形フォーマットに変換し転送される。上記の抽出・変換した位置合わせパターンを二次電子像の該当するパターン6に合わせ込む。電子ビームを用いたフォトマスク欠陥修正装置の通常の二次電子像からのパターンマッチング加工に対する照射領域の補正と同様な補正を行い、AFMで抽出され、位置合わせ用のパターンの合わせ込みで位置を微調整された欠陥領域3bにガスを供給しながら、電子ビーム8で修正する。
【選択図】 図6
A high-precision and high-quality defect correction of a fine isolated pattern and an OPC pattern which are difficult to observe with a photomask defect correction apparatus using an electron beam for charge-up is made possible.
A region including a defect is observed with an atomic force microscope (AFM), and a pattern for defect shape and alignment is extracted from an AFM image. The extracted pattern is converted into a graphic format of a photomask defect correcting apparatus using an electron beam and transferred. The extracted / converted alignment pattern is aligned with the corresponding pattern 6 of the secondary electron image. The same correction as the irradiation area correction for the pattern matching processing from the normal secondary electron image of the photomask defect correction apparatus using the electron beam is performed, and the position is extracted by the AFM, and the position is adjusted by the alignment of the pattern for alignment. While the gas is supplied to the finely adjusted defect area 3b, the defect is corrected by the electron beam 8.
[Selection] Figure 6

Description

【0001】
【産業上の利用分野】
本発明は電子ビームを用いたフォトマスクまたはレチクルの欠陥修正方法に関するものである。
【0002】
【従来の技術】
液体金属Gaイオン源を用いた集束イオンビーム装置は、その微細な加工寸法によりレーザーを用いた欠陥修正装置に代わりマスク修正装置の主流となってきている。上記のイオンビームを用いた欠陥修正装置では、白欠陥修正時には表面に吸着した原料ガスを細く絞ったイオンビームが当たった所だけ分解させて薄膜を形成し(FIB−CVD)、また黒欠陥修正時には集束したイオンビームによるスパッタリング効果またはアシストガス存在下で細く絞ったイオンビームが当たった所だけエッチングする効果を利用して、高い加工精度を実現している。(特許文献1参照)
【0003】
また、従来用いられてきたフォトマスクは石英ガラス等のガラス上にCrなどの金属膜やMoSiONのようなハーフトーン材料をスパッタにより堆積して遮光膜とし、マスクパターンを光の透過率の違いに変換したものである。このため、荷電粒子であるイオンビームを用いた欠陥修正装置で観察・修正するときには、チャージアップにより一次イオンが曲げられ、二次イオン像や二次電子像が見えなくなるという問題がある。これを防ぐために、従来、電子を照射し電荷中和を行っていた(例えば、特許文献2参照)。
【特許文献1】
特開平03−015068号公報(第2−3頁)
【特許文献2】
特開2000−047371号公報(例えば、
【0005】〜
【0007】)
【発明が解決しようとする課題】
イオンビームを用いた欠陥修正装置では、どうしても集束イオンビームのGaイオンのガラス基板への注入が避けられず、ガラス基板のGaの注入された部分の透過率が低下するという問題がある。将来におけるマスクの露光波長の短波長化の更なる進展、すなわちKrF(波長248nm)やArF(波長193nm)などのDUV光からF(波長157nm)のVUV光へといった露光波長の短波長化の進展に伴い、上記透過率の低下はいっそう問題となる。
また、従来のイオンビーム欠陥修正装置において、デザインルールが厳しくないときには、電荷中和条件の最適化により欠陥領域の認識に十分実用的なイメージを得ることができる。しかし最近のデザインルールの微細化により孤立したパターンや、露光装置の光近接効果を補正するために導入されたパターン(OPCパターン)では、電子が電荷中和していても、パターンの端部の正しい形状を観察しにくかったり、パターン毎に電荷中和条件が異なっていたり、小さなものでは見えなかったりするようになってきている。上記のように微細な孤立したパターンやOPCパターンは、欠陥の正しい認識ができないため、欠陥修正に求められる仕様を満足できるような修正ができなくなりつつある。
【0004】
最近では、修正すべき欠陥サイズの低減に伴い、光学顕微鏡や触針式の膜厚計に代わって空間分解能の高い原子間力顕微鏡(AFM)で、イオンビームによる欠陥修正装置による白欠陥や黒欠陥の修正個所の加工品質を評価するようになってきている。AFMは、構造上チャージアップしやすいフォトマスクまたはレチクルに対しても高い空間分解能観察が可能であり、イオンビームを用いた欠陥修正装置の二次電子像観察では、チャージアップのため見えなかった微細な孤立したパターンやOPCパターンの細かい形状も観察することができている。
【0005】
近年のシステムLSIへの需要の高まりは、微細な孤立したパターンやOPCパターンの多用を推し進めており、これらの欠陥に対しても高精度かつ高品位な修正がイオンビームを用いた欠陥修正装置にも求められている。そのためには、欠陥形状や位置の正確な認識が必須である。
【0006】
【発明が解決しようとする課題】
本発明は、上記課題を解決し、マスク欠陥を修正した後、ガラス基板の透過率を低下させることなく、また、フォトマスク欠陥修正装置で観察しにくい微細な孤立したパターンやOPCパターンの高精度かつ高品位な欠陥修正を可能にしようとするものである。
【0007】
【課題を解決するための手段】
本願発明は、Gaイオンの注入によるガラス基板の透過率の低下を防ぐために電子ビームによりフォトマスクの欠陥修正を行う。そして、電子ビームを用いたマスク欠陥修正装置においても、チャージアップの影響を受けて欠陥の精確な形状が得られない場合があるので、原子間力顕微鏡が高い空間分解能を有することに加え、絶縁物でも高分解能な観察を行うことができることを利用する。まず、原子間力顕微鏡(AFM)で欠陥を含む領域の観察を行い、AFM像から欠陥の形状と位置あわせのためのパターンを抽出する。抽出されたパターンは電子ビームを用いた修正装置の図形フォーマットに変換され保存される。このとき、位置あわせのパターンは電子ビームを用いた修正装置でも観察可能なものを選んでおく。AFMで欠陥を認識したマスクを、電子ビームを用いた装置に移し、上記のAFM像から抽出・変換した欠陥を含むパターンを読み込んで、抽出したパターンの位置合わせのパターンを、欠陥を含む領域の二次電子像の該当するパターンに合わせ込む。電子ビームを用いた修正装置の通常の二次電子像からのパターンマッチング加工に対する照射領域の調整と同様な調整を行い、AFMで抽出し、位置合わせ用のパターンの合わせ込みで微調整された欠陥領域を、黒欠陥修正の場合にはエッチングガスを供給しながら、白欠陥修正の場合には遮光膜原料を供給しながら電子ビームで修正する。
【0008】
【作用】
欠陥の認識に絶縁性の物質でも高分解能観察ができるAFMを用い、位置合わせにチャージアップの影響を受けないパターンに合わせ込むので、電子ビームを用いた欠陥修正装置において、チャージアップの影響を受けた欠陥に対しても高精度の修正ができる。また、AFM観察時に得られる高さ情報を活用して電子ビーム照射量を制御すれば、パターンとガラスの二次電子の材料コントラスト差を用いなくても終点検出の問題が解決され、黒欠陥修正に対しても高品位な欠陥修正が行える。
【0009】
【発明の実施の形態】
以下に、本発明をチャージアップにより黒欠陥の形状を正しく認識できない場合に適応した例について説明する。
欠陥検査装置で欠陥が見つかった場所にステージを移動し、原子間力顕微鏡(AFM)で欠陥を含む領域の観察を行う。図1に示すようなAFM像から欠陥の領域1と位置あわせのためのパターン2を図2のように抽出する。抽出されたパターンは電子ビームを用いたフォトマスク欠陥修正装置特有の図形フォーマットに変換され保存される。このとき、位置あわせのパターン2は電子ビームを用いたフォトマスク欠陥修正装置でもチャージアップの影響を受けにくいものを選んでおく。AFM像から抽出・変換した欠陥領域3aと位置あわせのためのパターン4のデータを、電子ビームを用いたフォトマスク欠陥修正装置に転送する。
【0010】
AFMで欠陥領域を認識したマスクを、電子ビームを用いたフォトマスク欠陥修正装置に移し、欠陥検査装置で欠陥が見つかった場所にステージを移動する。電子ビームを用いたフォトマスク欠陥修正装置で欠陥を含む領域の二次電子像観察を行う。チャージアップが起こらないように入射電子と二次電子がバランスする700V〜1500Vの低加速電圧またはArイオン銃でArイオンを照射して電荷を中和しながら観察する。AFM像から抽出した位置合わせ用のパターン4を、図3に示すような欠陥を含む領域の二次電子像6の該当するパターンに図4に示すように合わせ込む。図5に示すようなパターン合わせ込みが終わった後に、更に電子ビームを用いたフォトマスク欠陥修正装置の通常の二次電子像からのパターンマッチング加工に対する電子ビームの形状を考慮した照射領域の補正と同様な補正を行う。二次電子像で見えている欠陥領域5ではなく、AFMで抽出した欠陥領域3aを上記の合わせ込みと補正を施した欠陥領域3bを図6に示すようにエッチング用ガス銃9からフッ化キセノンなどのエッチングガス10を供給しながら電子ビームを用いて除去修正する。
【0011】
二次電子の物質によるコントラスト差を利用した終点検出がうまく行かない場合は、図6に示すようにAFMによる欠陥認識時に欠陥領域の高さ情報も収集し、その情報をもとに電子ビームによるフォトマスク欠陥修正装置での黒欠陥修正時の電子ビーム照射量を決定し、削り残しや下地ガラス面7へのダメージが少なくなるようにする。
【0012】
次に、本発明をチャージアップにより黒欠陥が電子ビームを用いたフォトマスク欠陥修正装置で見えなくなった場合に適応した例について説明する。
チャージアップにより欠陥形状を正しく認識できない場合と同様の方法でAFM像から欠陥領域と位置合わせパターンを抽出し、電子ビームを用いた欠陥修正装置に変換したデータを転送する。電子ビームを用いた欠陥修正装置でチャージアップが起こらないように入射電子と二次電子がバランスする700V〜1500Vの低加速電圧またはArイオン銃でArイオンを照射して電荷を中和しながら欠陥を含む領域の二次電子像観察を行い、図7に示すようにAFMで抽出した位置合わせ用のパターン4を二次電子像で得られた位置合わせ用のパターン6へ合わせ込む。二次電子像では欠陥は見えていないが、AFMで抽出し、位置合わせと照射位置補正を行った領域3bのみ図8に示すようにエッチング用ガス銃9からフッ化キセノンなどのエッチングガス10を供給しながら電子ビームを照射し、黒欠陥を除去修正する。
【0013】
上記の説明は黒欠陥について行ってきたが、図9に示すようにマスク近傍に配置されたデポジション用ガス銃11からフェナントレンやナフタレン等の白欠陥修正膜用遮光膜原料ガス12を供給しながら、AFMで抽出し位置合わせと照射位置補正を行った領域3aに電子ビームを照射すれば、白欠陥修正膜13が堆積され、黒欠陥と同様の手順で白欠陥も修正することができる。
図10に本発明の欠陥修正の流れを示す。
電子ビームにより、フォトマスクの欠陥修正を行うにあたって、白欠陥に関しては、例えば、フェナントレンやナフタレンを原料ガスとして電子ビームCVDで遮光膜を形成して修正する。また、黒欠陥に関しては、例えばフッ化キセノンを流しながら電子ビームを欠陥部分のみに選択照射してCrやMoSiの黒欠陥部分を除去する。ガラスに関しても、フッ化キセノンを流しながら電子ビームを欠陥部分のみに選択照射して除去する。
【0014】
【発明の効果】
以上説明したように、この発明によれば、電子ビームでマスク欠陥を修正するので、高品位なマスク修正ができ、また、チャージアップしやすい欠陥の認識に、マスクのような絶縁性の物質でも高分解な能観察ができるAFMを用いるので、欠陥の正確な形状・位置が把握でき、電子ビームを用いた欠陥修正時には、位置合わせにチャージアップの影響を受けないパターンに合わせ込んで加工するので、電子ビームを用いた欠陥修正装置において、電子によるチャージアップの影響を受けた欠陥に対しても、高精度かつ高品位な修正ができる。
【図面の簡単な説明】
【図1】AFMで観察したときの欠陥領域と位置合わせパターンを示す図である。
【図2】電子ビームを用いたフォトマスク欠陥修正装置用の図形フォーマットに変換したAFMで抽出した欠陥領域と位置合わせパターンを示す図である。
【図3】電子ビームを用いたフォトマスク欠陥修正装置で観察したときの欠陥領域と位置合わせパターンを示す図である。
【図4】AFMで抽出した位置合わせパターンの電子ビームを用いたフォトマスク欠陥修正装置で観察した位置合わせパターンへの合わせ込みの説明する図である。
【図5】パターン合わせ込み後の実際に電子ビームで加工する領域を示す図である。
【図6】本発明の特徴を最も良く示すAFMで認識した欠陥領域を合わせ込んで電子ビームで加工することを示す概略断面図である。
【図7】電子ビームを用いたフォトマスク欠陥修正装置で欠陥が見えない場合のパターン合わせ込み後の実際に電子ビームで加工する領域を示す図である。
【図8】電子ビームを用いたフォトマスク欠陥修正装置で黒欠陥が見えない場合の電子ビームで加工する領域の概略断面図である。
【図9】本発明を用いて白欠陥を修正する場合を説明する概略断面図である。
【図10】本発明の欠陥修正の手順を示すフローチャートである。
【符号の説明】
1…AFM観察で認識した欠陥の領域
2…AFM観察で認識した位置あわせのためのパターン
3a…電子ビームを用いたフォトマスク欠陥修正装置の図形フォーマットに変換した欠陥の領域
3b…パターン重ね合わせと照射領域補正した欠陥の領域
4…電子ビームを用いたフォトマスク欠陥修正装置の図形フォーマットに変換した位置あわせのためのパターン
5…電子ビームを用いたフォトマスク欠陥修正装置で観察した欠陥の領域
6…電子ビームを用いたフォトマスク欠陥修正装置で観察した位置あわせのためのパターン
7…下地ガラス面
8…電子ビーム
9…エッチング用ガス銃
10…黒欠陥修正用エッチングガス(フッ化キセノン)
11…デポジション用ガス銃
12…白欠陥修正膜の遮光膜原料ガス(フェナントレンやナフタレン等)
13…白欠陥修正膜
[0001]
[Industrial application fields]
The present invention relates to a photomask or reticle defect correcting method using an electron beam.
[0002]
[Prior art]
Focused ion beam devices using a liquid metal Ga ion source have become the mainstream of mask correction devices instead of defect correction devices using lasers due to their fine processing dimensions. In the defect correction apparatus using the above ion beam, when white defects are corrected, a thin film is formed by decomposing only the portion of the source gas adsorbed on the surface that has been squeezed finely (FIB-CVD), and black defects are corrected. In some cases, high processing accuracy is realized by utilizing the sputtering effect by the focused ion beam or the effect of etching only the portion where the narrowly focused ion beam hits in the presence of the assist gas. (See Patent Document 1)
[0003]
In addition, conventionally used photomasks are made by depositing a metal film such as Cr or a halftone material such as MoSiON on a glass such as quartz glass by sputtering to form a light shielding film, and the mask pattern has a difference in light transmittance. It is converted. For this reason, when observing and correcting with a defect correcting apparatus using an ion beam which is a charged particle, there is a problem that the primary ions are bent by charge-up, and the secondary ion image and the secondary electron image become invisible. In order to prevent this, conventionally, electrons have been irradiated to neutralize charges (see, for example, Patent Document 2).
[Patent Document 1]
Japanese Unexamined Patent Publication No. 03-015068 (page 2-3)
[Patent Document 2]
JP 2000-043771 A (for example,
~
0007)
[Problems to be solved by the invention]
In a defect correction apparatus using an ion beam, it is unavoidable to inject a focused ion beam into the glass substrate with Ga ions, and there is a problem in that the transmittance of the glass-injected portion of the glass substrate is lowered. Further progress in shortening the exposure wavelength of the mask in the future, that is, shortening of the exposure wavelength from DUV light such as KrF (wavelength 248 nm) and ArF (wavelength 193 nm) to VUV light of F 2 (wavelength 157 nm) With the progress, the above-mentioned decrease in transmittance becomes a more serious problem.
Further, in the conventional ion beam defect correction apparatus, when the design rule is not strict, an image practical enough for recognizing the defect region can be obtained by optimizing the charge neutralization condition. However, in isolated patterns due to recent miniaturization of design rules and patterns introduced to correct the optical proximity effect of the exposure apparatus (OPC pattern), even if electrons are neutralized in charge, It is difficult to observe the correct shape, the charge neutralization conditions differ from pattern to pattern, and even small objects cannot be seen. As described above, the fine isolated pattern and the OPC pattern cannot correctly recognize the defect, and therefore cannot be corrected to satisfy the specifications required for the defect correction.
[0004]
Recently, as the defect size to be corrected has been reduced, an atomic force microscope (AFM) with high spatial resolution has been used instead of an optical microscope or a stylus-type film thickness meter. The processing quality of defect correction points is being evaluated. AFM enables high spatial resolution observation even for photomasks or reticles that are easy to charge up due to their structure. In secondary electron image observation of a defect correction device using an ion beam, the fineness that could not be seen due to charge-up was observed. A small isolated pattern and a fine shape of the OPC pattern can be observed.
[0005]
The increasing demand for system LSIs in recent years has promoted the frequent use of fine isolated patterns and OPC patterns, and high-precision and high-quality correction of these defects has become a defect correction device using an ion beam. Is also sought. For that purpose, accurate recognition of the defect shape and position is essential.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems and corrects a mask defect, without reducing the transmittance of the glass substrate, and with high accuracy of a fine isolated pattern or OPC pattern that is difficult to observe with a photomask defect correction apparatus. It is also intended to enable high-quality defect correction.
[0007]
[Means for Solving the Problems]
In the present invention, a photomask defect is corrected by an electron beam in order to prevent a decrease in the transmittance of the glass substrate due to the implantation of Ga ions. Even in a mask defect correction apparatus using an electron beam, an accurate shape of the defect may not be obtained due to the effect of charge-up, so that the atomic force microscope has high spatial resolution and is insulated. Utilizing the ability to perform high-resolution observations on objects. First, an area including a defect is observed with an atomic force microscope (AFM), and a pattern for defect shape and alignment is extracted from the AFM image. The extracted pattern is converted into a graphic format of a correction device using an electron beam and stored. At this time, an alignment pattern that can be observed by a correction device using an electron beam is selected. The mask that has recognized the defect by AFM is transferred to a device using an electron beam, the pattern including the defect extracted and converted from the above AFM image is read, and the alignment pattern of the extracted pattern is read in the region including the defect. Align with the corresponding pattern of the secondary electron image. Defects that have been adjusted in the same way as the adjustment of the irradiation area for pattern matching processing from the normal secondary electron image of the correction device using the electron beam, extracted by AFM, and finely adjusted by aligning the pattern for alignment The region is corrected by an electron beam while supplying an etching gas in the case of correcting black defects and supplying a light shielding film material in the case of correcting white defects.
[0008]
[Action]
The AFM is used to recognize defects with high resolution even for insulating materials, and the alignment is matched to a pattern that is not affected by charge-up. Therefore, the defect correction device using an electron beam is affected by charge-up. Even high-quality defects can be corrected with high accuracy. Also, if the electron beam irradiation amount is controlled by utilizing the height information obtained during AFM observation, the problem of end point detection can be solved without using the material contrast difference between the pattern and glass secondary electrons, and black defects can be corrected. High-quality defect correction can be performed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example in which the present invention is applied to a case where the shape of a black defect cannot be correctly recognized by charge-up will be described.
The stage is moved to the place where the defect is found by the defect inspection apparatus, and the region including the defect is observed by the atomic force microscope (AFM). A defect area 1 and a pattern 2 for alignment are extracted from the AFM image as shown in FIG. 1 as shown in FIG. The extracted pattern is converted into a graphic format unique to a photomask defect correction apparatus using an electron beam and stored. At this time, as the alignment pattern 2, a photomask defect correcting device using an electron beam is selected which is not easily affected by charge-up. The defect area 3a extracted and converted from the AFM image and the pattern 4 data for alignment are transferred to a photomask defect correcting apparatus using an electron beam.
[0010]
The mask whose defect area has been recognized by the AFM is moved to a photomask defect correction apparatus using an electron beam, and the stage is moved to a place where a defect is found by the defect inspection apparatus. A secondary electron image of a region including a defect is observed with a photomask defect correcting apparatus using an electron beam. Observation is performed while irradiating Ar + ions with a low acceleration voltage of 700 V to 1500 V in which incident electrons and secondary electrons are balanced so as not to cause charge-up or with an Ar ion gun to neutralize charges. The alignment pattern 4 extracted from the AFM image is aligned with the corresponding pattern of the secondary electron image 6 in the region including the defect as shown in FIG. 3 as shown in FIG. After the pattern alignment as shown in FIG. 5 is completed, the irradiation area is corrected in consideration of the shape of the electron beam for the pattern matching processing from the normal secondary electron image of the photomask defect correcting apparatus using the electron beam. A similar correction is performed. Instead of the defect region 5 visible in the secondary electron image, the defect region 3b obtained by performing the above-described alignment and correction on the defect region 3a extracted by AFM is supplied from the etching gas gun 9 as shown in FIG. Removal and correction are performed using an electron beam while supplying an etching gas 10 such as.
[0011]
If the end point detection using the contrast difference due to the secondary electron material is not successful, the height information of the defect area is also collected at the time of defect recognition by AFM as shown in FIG. The amount of electron beam irradiation at the time of black defect correction in the photomask defect correction apparatus is determined so that uncut material and damage to the underlying glass surface 7 are reduced.
[0012]
Next, a description will be given of an example in which the present invention is applied to a case where a black defect becomes invisible by a photomask defect correcting apparatus using an electron beam due to charge-up.
The defect area and the alignment pattern are extracted from the AFM image by the same method as when the defect shape cannot be correctly recognized by the charge-up, and the converted data is transferred to the defect correction apparatus using the electron beam. While neutralizing charges by irradiating Ar + ions with a low acceleration voltage of 700 V to 1500 V or an Ar ion gun in which incident electrons and secondary electrons are balanced so that charge-up does not occur in a defect correction apparatus using an electron beam. The secondary electron image of the region including the defect is observed, and the alignment pattern 4 extracted by the AFM is aligned with the alignment pattern 6 obtained from the secondary electron image as shown in FIG. Although no defects are visible in the secondary electron image, only an area 3b extracted by AFM and subjected to alignment and irradiation position correction is subjected to etching gas 10 such as xenon fluoride from an etching gas gun 9 as shown in FIG. Irradiate an electron beam while supplying to remove and correct black defects.
[0013]
While the above description has been given for black defects, as shown in FIG. 9, while supplying a light source film 12 for a white defect correction film such as phenanthrene or naphthalene from a deposition gas gun 11 arranged in the vicinity of the mask. When the region 3a extracted by AFM and subjected to alignment and irradiation position correction is irradiated with an electron beam, the white defect correction film 13 is deposited, and the white defect can be corrected in the same procedure as the black defect.
FIG. 10 shows a flow of defect correction according to the present invention.
When correcting the defect of the photomask by the electron beam, the white defect is corrected by forming a light shielding film by electron beam CVD using, for example, phenanthrene or naphthalene as a source gas. As for black defects, for example, an electron beam is selectively irradiated only on the defect portion while flowing xenon fluoride to remove the black defect portion of Cr or MoSi. As for glass, an electron beam is selectively irradiated only on the defective portion while flowing xenon fluoride and removed.
[0014]
【The invention's effect】
As described above, according to the present invention, a mask defect is corrected with an electron beam, so that high-quality mask correction can be performed, and an insulating material such as a mask can be used to recognize a defect that is easily charged up. Since the AFM that enables high-resolution observation is used, the exact shape and position of the defect can be grasped, and when correcting the defect using the electron beam, the alignment is processed with a pattern that is not affected by charge-up. In a defect correction apparatus using an electron beam, it is possible to perform high-precision and high-quality correction even for defects affected by charge-up due to electrons.
[Brief description of the drawings]
FIG. 1 is a diagram showing a defect region and an alignment pattern when observed with an AFM.
FIG. 2 is a diagram showing a defect area and an alignment pattern extracted by AFM converted into a graphic format for a photomask defect correction apparatus using an electron beam.
FIG. 3 is a diagram showing a defect region and an alignment pattern when observed with a photomask defect correction apparatus using an electron beam.
FIG. 4 is a diagram illustrating alignment of an alignment pattern extracted by AFM with an alignment pattern observed by a photomask defect correction apparatus using an electron beam.
FIG. 5 is a diagram showing a region actually processed by an electron beam after pattern matching.
FIG. 6 is a schematic cross-sectional view showing that a defect region recognized by an AFM that best shows the features of the present invention is combined and processed by an electron beam.
FIG. 7 is a diagram showing a region actually processed with an electron beam after pattern matching when a defect is not visible with a photomask defect correcting apparatus using an electron beam.
FIG. 8 is a schematic cross-sectional view of a region to be processed with an electron beam when a black defect is not visible with a photomask defect correcting apparatus using an electron beam.
FIG. 9 is a schematic cross-sectional view illustrating a case where a white defect is corrected using the present invention.
FIG. 10 is a flowchart showing a defect correction procedure according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Defect area | region recognized by AFM observation 2 ... Pattern 3a for the alignment recognized by AFM observation ... Defect area | region 3b converted into the figure format of the photomask defect correction apparatus using an electron beam ... Pattern superposition Irradiation area corrected defect area 4 ... pattern for alignment converted into a graphic format of a photomask defect correction apparatus using an electron beam 5 ... defect area 6 observed by a photomask defect correction apparatus using an electron beam ... Pattern 7 for alignment observed with photomask defect correction device using electron beam ... Base glass surface 8 ... Electron beam 9 ... Etching gas gun 10 ... Black defect correction etching gas (xenon fluoride)
11 ... deposition gas gun 12 ... light source gas for the light-shielding film of the white defect correction film (phenanthrene, naphthalene, etc.)
13 ... White defect correction film

Claims (4)

原子間力顕微鏡でマスクの黒欠陥領域と位置合わせのパターンを抽出し、該抽出した黒欠陥領域の形状と位置合わせのパターンを、電子ビームを用いたマスク欠陥修正装置の図形フォーマットに変換して取り込んで、前記抽出した位置合わせパターンを、前記黒欠陥を含む領域の前記電子ビームを用いたマスク欠陥修正装置による二次電子像の位置合わせパターンに合わせこみ、前記抽出した黒欠陥領域にエッチングガスを供給しながら前記電子ビームを照射して除去修正することを特徴とするマスクの欠陥修正方法。Extract the black defect area and alignment pattern of the mask with an atomic force microscope, and convert the extracted black defect area shape and alignment pattern into the figure format of the mask defect correction device using an electron beam. The extracted alignment pattern is aligned with the alignment pattern of the secondary electron image by the mask defect correcting device using the electron beam in the region including the black defect, and an etching gas is applied to the extracted black defect region. A defect correction method for a mask, wherein the defect is corrected by irradiating with the electron beam while supplying. 前記エッチングガスは、フッ素化合物であることを特徴とする請求項1記載のマスクの欠陥修正方法。2. The mask defect correcting method according to claim 1, wherein the etching gas is a fluorine compound. 原子間力顕微鏡でマスクの白欠陥領域と位置合わせのパターンを抽出し、該抽出した白欠陥領域の形状と位置合わせのパターンを、電子ビームを用いたマスク欠陥修正装置の図形フォーマットに変換して取り込んで、前記抽出した位置合わせパターンを、前記白欠陥を含む領域の前記電子ビームを用いたマスク欠陥修正装置による二次電子像の位置合わせパターンに合わせこみ、前記抽出した白欠陥領域に遮光膜原料ガスを供給しながら電子ビームを照射して遮光膜を形成し修正することを特徴とするマスクの欠陥修正方法。Extract the white defect area and alignment pattern of the mask with an atomic force microscope, and convert the extracted white defect area shape and alignment pattern into a graphic format for a mask defect correction device using an electron beam. The extracted alignment pattern is aligned with the alignment pattern of the secondary electron image by the mask defect correcting device using the electron beam in the region including the white defect, and a light shielding film is applied to the extracted white defect region. A mask defect correcting method comprising forming a light-shielding film and correcting it by irradiating an electron beam while supplying a source gas. 前記遮光膜原料ガスは、フェナントレンまたはナフタレンであることを特徴とする請求項3記載のマスク欠陥修正方法。4. The mask defect correcting method according to claim 3, wherein the light shielding film source gas is phenanthrene or naphthalene.
JP2003081988A 2003-03-25 2003-03-25 Mask defect correction method Expired - Lifetime JP4219714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081988A JP4219714B2 (en) 2003-03-25 2003-03-25 Mask defect correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081988A JP4219714B2 (en) 2003-03-25 2003-03-25 Mask defect correction method

Publications (2)

Publication Number Publication Date
JP2004287322A true JP2004287322A (en) 2004-10-14
JP4219714B2 JP4219714B2 (en) 2009-02-04

Family

ID=33295388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081988A Expired - Lifetime JP4219714B2 (en) 2003-03-25 2003-03-25 Mask defect correction method

Country Status (1)

Country Link
JP (1) JP4219714B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513615A (en) * 2008-12-23 2012-06-14 カールツァイス エスエムエス ゲーエムベーハー Method for measuring the repair shape of a defect at or near the edge of a photomask substrate
JP2013109136A (en) * 2011-11-21 2013-06-06 Shin Etsu Chem Co Ltd Light pattern irradiation method, halftone phase shift mask, and halftone phase shift mask blank
JP2016095533A (en) * 2016-01-25 2016-05-26 信越化学工業株式会社 Light pattern irradiation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513615A (en) * 2008-12-23 2012-06-14 カールツァイス エスエムエス ゲーエムベーハー Method for measuring the repair shape of a defect at or near the edge of a photomask substrate
JP2013109136A (en) * 2011-11-21 2013-06-06 Shin Etsu Chem Co Ltd Light pattern irradiation method, halftone phase shift mask, and halftone phase shift mask blank
TWI570501B (en) * 2011-11-21 2017-02-11 信越化學工業股份有限公司 Light pattern exposure method, halftone phase shift mask, and halftone phase shift mask blank
TWI614566B (en) * 2011-11-21 2018-02-11 信越化學工業股份有限公司 Light pattern exposure method
JP2016095533A (en) * 2016-01-25 2016-05-26 信越化学工業株式会社 Light pattern irradiation method

Also Published As

Publication number Publication date
JP4219714B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP5036349B2 (en) Gray-tone mask defect correcting method and gray-tone mask manufacturing method
US11953448B2 (en) Method for defect inspection
JP4472882B2 (en) Mask defect correction method
US6277526B1 (en) Method for repairing MoSi attenuated phase shift masks
EP1518150B1 (en) Method of reticle fabrication using an amorphous carbon layer
JP4219715B2 (en) Defect correction method for photomask
JP5012952B2 (en) Photomask defect correction method
JP4219714B2 (en) Mask defect correction method
JP2014216365A (en) Method for manufacturing nanoimprint lithography mask
JP2005260057A (en) Method for correcting black defect in mask for EUV lithography
JP4426730B2 (en) Mask black defect correction method
JP2017227804A (en) Method for correcting white defect in mask pattern and method for manufacturing photomask
JP2004287321A (en) Photomask defect repair method
JP2000010260A (en) Method for correcting black defect of mask correction apparatus
JP2004279461A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
JP3732118B2 (en) Opaque defect repair method for photomask for opening
JP3350095B2 (en) How to fix the mask
JP4926383B2 (en) Photomask defect correction method
JPH04368947A (en) Formation of phase shift mask
JP3908516B2 (en) Photomask defect repair device using ion beam
Stewart et al. State of the art in focused ion-beam mask repair systems
JP3465091B2 (en) Concave defect repair method
KR20000067541A (en) Method for repairing a defect of photomask
JPH06347994A (en) Halftone system phase shift mask and its correcting method and production of semiconductor device
JP2004279539A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4219714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term