[go: up one dir, main page]

JP2004284934A - Lead-free low-melting point glass - Google Patents

Lead-free low-melting point glass Download PDF

Info

Publication number
JP2004284934A
JP2004284934A JP2003103604A JP2003103604A JP2004284934A JP 2004284934 A JP2004284934 A JP 2004284934A JP 2003103604 A JP2003103604 A JP 2003103604A JP 2003103604 A JP2003103604 A JP 2003103604A JP 2004284934 A JP2004284934 A JP 2004284934A
Authority
JP
Japan
Prior art keywords
glass
low
forming
substrate
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003103604A
Other languages
Japanese (ja)
Inventor
Naoya Hayakawa
直也 早川
Yasumasa Shimooka
泰真 下岡
Yukihiro Matsuura
幸浩 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003103604A priority Critical patent/JP2004284934A/en
Publication of JP2004284934A publication Critical patent/JP2004284934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-melting point glass used for covering a glass substrate and sealing, wherein PbO is not substantially included and an elevation of the resistance of electrode wires connected to a glass substrate of a plasma display panel (PDP) is suppressed when the glass substrate is coated with the low-melting point glass. <P>SOLUTION: The lead-free low-melting point glass is for directly coating the surface of the glass substrate, coating on a conductor and a semiconductor patterns arranged on a glass substrate, forming a partition wall, and sealing, which contains a component comprising the electrode, has a thermal expansion coefficient at temperatures 30-300°C of 65-100×10<SP>-7</SP>/°C and a softening point of ≤630°C (preferably ≤550°C), and especially is used for coating-forming on a transparent electrode wire pattern arranged on a substrate for a display panel. A low-melting point glass for transparent insulating coating-forming is formed by including a transparent electrode component and/or a bus electrode component in the glass, which can suppress an elevation of the resistance of electrode wires arranged to the substrate when the glass substrate of a PDP is coated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス基板表面を直に被覆し、又はガラス基板に配した導電体、半導体パターンを被覆、封着するための低融点ガラスであって、例えば各種表示パネル用基板、特にプラズマディスプレイパネル(以下、PDPと略称する)用の表示パネルガラス基板に配した透明電極線パターンおよびバス電極線パターン上に絶縁性被覆を形成するうえで好適な無鉛低融点ガラスに関する。尚、無鉛低融点ガラスとは、実質的にPbOを含まない低融点ガラスである。
【0002】
【従来の技術】
一般的に、電子材料用基板として、透明なガラス基板、特にソーダ石灰シリカ系ガラス又はそれに類似するガラス(高歪点ガラス)、もしくはアルカリ分の少ない(又は殆ど無い)アルミノ石灰ホウ珪酸系ガラスが多用されている。その熱膨張係数は30℃〜300℃においてほぼ65〜100×10−7/℃であり、この熱膨張係数の値と大きく異なると、形成した被膜の剥離、基板の反り等の弊害が発生する。
【0003】
一方、前記ガラスからなる基板の軟化点はほぼ720〜840℃と高温であるため、焼付け温度も630℃を越えることが多く、焼付け時における基板の変形や熱収縮の問題が発生していた。
【0004】
従来、低融点ガラス、例えば基板被覆用低融点ガラスには鉛系のガラスが採用されてきた。鉛成分はガラスを低融点とするうえで重要な成分ではあるものの、人体や環境に与える弊害が大きく、近年その採用を避ける趨勢にある。
【0005】
公知技術についてみれば、特許文献1には、30℃〜300℃における熱膨張係数がほぼ65〜85×10−7/℃であるPDP用封着組成物が開示されている。
【0006】
特許文献2には、Bi、BaO、SrO、B等を含むビスマス系ガラス組成物が開示されているが、熱膨張係数が100×10−7/℃よりも高いことにおいて本発明と相違する。
【0007】
また、特許文献3には、Bi、B、BaO、SrOを含むビスマス系ガラス組成物が、開示されているが熱膨張係数が100×10−7/℃よりも高く焼成温度も500℃以下である点において本発明と相違する。
【0008】
また、本出願人は、特許文献4において、基板表面を直に被覆し、又は基板に配した導電体、半導体パターンを被覆するための透明かつ電気絶縁性を有するSiO−B−BaO−ZnO系低融点ガラスであって、30℃〜300℃における熱膨張係数が65〜95×10−7/℃、軟化点が600℃以下、常温下周波数1MHzにおける誘電率が7.5以下である低融点ガラス、特に表示パネル用基板に配した透明電極線パターン上に被膜形成するための低融点ガラスを開示しているが、Vを必須としないことで本発明と異なる。
【0009】
【特許文献1】
特開平8−26770号公報
【特許文献2】
特開平9−278483号公報
【特許文献3】
特開2000−128574号公報
【特許文献4】
特開2002−12445号公報
【0010】
【発明が解決しようとする課題】
本発明は前記の従来技術とは相違し、ガラス基板表面に直に被覆し、又はガラス基板に配した導電体、半導体パターンを被覆、封着するための低融点ガラスであって、熱膨張係数が基板のそれとほぼ整合し、軟化点が低く、被覆、封着を容易に形成することができる低融点ガラスを提供することを目的とする。
【0011】
更に、PDPパネル基板の製造において、透明電極線およびバス電極線を配したPDPパネル用ガラス基板を被覆時に、ペースト状とした低融点ガラスを塗布後焼成して被覆形成するが、その際に電極線の抵抗が上昇するという従来の問題を解決することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、基板表面を直に被覆し、又は基板に配した導電体、半導体パターン上に被覆、隔壁形成、封着するための無鉛低融点ガラスであって、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が630℃以下であることを特徴とする低融点ガラスである。
【0013】
更に、本発明は、基板表面を直に被覆し、又は基板に配した導電体、半導体パターン上に被覆、隔壁形成、封着するための上記の無鉛低融点ガラスであって、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が630℃以下であることを特徴とするSiO−B−ZnO−Bi−V系低融点ガラスである。
【0014】
更に、本発明は、PDP用の表示パネル用基板に配した透明電極線パターン上に被覆、隔壁形成、封着するための上記の無鉛低融点ガラスであって、そのガラスの成分組成が、質量百分率(%)で、SiO 0.1〜25%、B 1〜50%、ZnO 1〜45%、Bi 20〜90%、V 0.1〜40%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラスである。
【0015】
更に、本発明は、PDP用の表示パネル用基板に配した透明電極線パターン上に被覆、隔壁形成、封着するための上記の無鉛低融点ガラスであって、そのガラスの成分組成が、質量百分率(%)で、SiO 0.1〜25%、B 1〜40%、ZnO 1〜45%、Bi 20〜90%、V0.1〜5%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラスである。
【0016】
更に、本発明は、基板表面を直に被覆し、又は基板に配した導電体、半導体パターン上に被覆、隔壁形成、封着するための無鉛低融点ガラスであって、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が550℃以下であることを特徴とする低融点ガラスである。
【0017】
更に、本発明は、PDP等の表示パネル用基板に配した透明電極線パターン上に被膜、隔壁形成、封着するための30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が550℃以下である上記の無鉛低融点ガラスであって、Bi−B−ZnO、P−ZnO、V−B−ZnO系であることを特徴とする透明絶縁性被膜形成用低融点ガラスである。
【0018】
更に、本発明は、PDP等の表示パネル用基板に配した透明電極線パターン上に被膜、隔壁形成、封着するための、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が550℃以下である上記の無鉛低融点ガラスであって、そのガラスの成分組成が、質量百分率(%)で、SiO 0.1〜10%、B 5〜25%、ZnO 1〜35%、Bi 40〜90%、V 0.1〜5%、Al 0〜5%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラスである。
【0019】
更に、本発明は、PDP用の表示パネル用ガラス基板に配した透明電極線パターン上に被覆、隔壁形成、封着するための、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が630℃以下である無鉛低融点低融点ガラスであって、成分組成が、質量百分率(%)で、SiO 0〜5%、B 0〜50%、ZnO 5〜50%、P 10〜85%、CuO 0〜50%、SnO 0〜30%、TiO 0.1〜10%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%、V 0〜40%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラスである。
【0020】
更に、本発明は、PDP用の表示パネル用ガラス基板に配した透明電極線パターン上に被覆、隔壁形成、封着するための、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が630℃以下である無鉛低融点ガラスであって、成分組成が、質量百分率(%)で、SiO 0.1〜15%、B 10〜50%、ZnO 5〜50%、RO (R=Li,Na,K)0.1〜20%、Nb 0〜5%、V 0〜40%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラスである。
【0021】
更に、本発明は、PDP用の表示パネル用ガラス基板に配した透明電極線パターン上に被覆、隔壁形成、封着するための、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が630℃以下である無鉛低融点ガラスであって、そのガラスの成分組成が、質量百分率(%)で、SiO 0.1〜15%、B 10〜50%、ZnO 5〜50%、RO (R=Li,Na,K)0〜20%、Nb 0〜5%、V 0.1〜60%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラスである。
【0022】
更に、本発明は、PDP用の表示パネル用ガラス基板に配した上記の透明絶縁性被膜形成用低融点ガラスであって、ガラス中に透明電極成分酸化物、0.1〜5wt%および/またはバス電極線成分酸化物、0.1〜1.5wt%を含むことを特徴とする無鉛低融点ガラスである。
【0023】
【発明の実施の形態】
本発明の無鉛低融点ガラスを封着、被覆または隔壁形成に用いるときは、粉末化して使用される。この粉末化されたガラスは、通常、必要に応じて低膨張セラミックスフィラー、耐熱顔料等と混合され、次に有機オイルと混練してペースト化される。
【0024】
本発明におけるガラス基板としては透明なガラス基板、特にソーダ石灰シリカ系ガラス、または、それに類似するガラス(高歪点ガラス)、あるいは、アルカリ分の少ない(又は殆ど無い)アルミノ石灰ホウ珪酸系ガラスが多用されており、その熱膨張係数は30℃〜300℃において、ほぼ65〜100×10−7/℃であり、本発明の低融点ガラスも、それに近似させることにより、形成した被覆の剥離、基板の反り等の弊害を防ぐものである。
【0025】
また、前記ガラス基板の軟化点はほぼ720〜840℃であり、これに対し本発明の低融点ガラスは630℃以下と充分低くすることにより、焼付け温度も630℃以下とすることができ、焼付けに際する基板の軟化変形、熱収縮を抑制することができる。特に、本発明における軟化点550℃以下の低融点ガラスは、焼付け温度を550℃以下にまで下げることができ、前記基板の軟化変形、熱収縮を抑制する効果が大きい。
【0026】
本発明の低融点ガラスを用いることにより、上記物性を満足し得、実質的にPbOを含まないことにより、人体や環境に与える影響を皆無とすることができる。実質的にPb0を含まないとは、PbOがガラス原料中に不純物として混入する程度の量、即ち、低融点ガラス中における0.3wt%以下の範囲であれば、先述した弊害、すなわち人体、環境に対する影響、絶縁特性等に与える影響は殆どなく、実質的にPb0を含まないと称せられる。
【0027】
本発明の低融点ガラスは、基板表面に直接に被覆形成してガラス基板の光学特性を変更する等、各種機能性被覆を形成する場合にも適用できる。あるいは、ガラス基板に、低融点ガラス粉にシリカ微粉、アルミナ微粉等を適宜混入したものを膜付けすれば、日射や照明による眩光を緩和するフロスト調ガラスとすることもできる等、適用範囲は広い。
【0028】
低融点ガラスは、ガラス基板表面を直に被覆し、又はガラス基板に配した導電体、半導体パターンを被覆、封着するため使用される、ガラス基板に比べてかなり低い温度で軟化する軟化点の低いガラスである。軟化点を630℃以下、好ましくは、550℃以下に低くするためには、低融点ガラスにおける成分組成の範囲は以下の範囲とするのがよい。
【0029】
即ち、本発明に低融点ガラスにおける、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点を630℃以下とする好ましい低融点ガラスは、その成分組成が、質量百分率(%)で、SiO 0.1〜25%、B 1〜50%、ZnO 1〜45%、Bi 20〜90%、V 0.1〜40%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%であり、実質的にPbOを含まないことを特徴とする。
【0030】
更に、本発明に低融点ガラスにおける、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点を630℃以下とする好ましい低融点ガラスは、その成分組成が、質量百分率(%)で、SiO 0.1〜25%、B 1〜40%、ZnO 1〜45%、Bi 20〜90%、V 0.1〜5%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%であり、実質的にPbOを含まないことを特徴とする。
【0031】
SiOはガラスの形成成分であり、安定したガラスを形成するうえで必須とし、ガラス中0.1〜25%(質量百分率(%)、以下においても同様である)の範囲で含有させる。0.1%未満では、ガラスが不安定となり、失透を生じ易い。他方、25%を越えるとガラスの軟化点が上昇し、成形性、作業性を困難とする。
【0032】
また、PDPの製作においては、電極線パターン上に一旦絶縁性被膜を形成後、パネル周縁部の電極線取り出し部を形成すべく、該部に被覆した絶縁性被膜を酸により溶解除去する作業操作を行うが、SiOが過多であると必要以上に耐酸性が増大し、前記酸による溶解が困難になるので25%以下とするのが好ましい。なお、SiO量の1/2重量以下、かつガラス中5%以下の範囲でAlを置換導入してもよい。Alが5%を超えると失透が生じる。また、SiO量の1/2重量を超えると必要以上に耐酸性が増大し、前記酸による溶解が困難になる。
【0033】
はSiOと同様、ガラス形成成分であり、添加することによって、ガラス溶融を容易とし、ガラスの熱膨張係数の過度の上昇を抑え、かつ、焼付け時にガラスに適度の流動性を与える効果があり、ガラス中1〜50%、好ましくは1〜40%の範囲で含有させる。1%未満ではガラスが不安定となり、失透が生じ易い。他方40%、特に50%を越えるとガラスの軟化点が上昇する。
【0034】
ZnOはガラスの軟化点を下げ、溶融時に適度の流動性を与え、形成するガラスの熱膨張係数を適宜範囲に調整する成分であり、ガラス中1〜45%の範囲で含有させる。1%未満では上記作用を発揮し得ず、他方45%を超えるとガラス状態が不安定となり失透を生じ易い。
【0035】
Biはガラスの軟化点を下げ、溶融時に適度に流動性を与え、形成するガラスの熱膨張係数を適宜範囲に調整する成分であり、ガラス中20〜90%の範囲で含有させる。20%未満では上記作用を発揮し得ず、他方、90%を越えると熱膨張係数が高くなりすぎ、所望の熱膨張係数が得られない。
【0036】
はガラスの着色を抑制する成分であり、ガラス中0.1〜40%、好ましくは0.1〜5%の範囲で含有させる。0.1%未満では上記作用を発揮し得ず、他方5%、特に40%を越えるとガラスが黒色に着色する。
【0037】
更に、上記のガラス形成成分における、SiO 0.1〜10%、B 5〜25%、ZnO 1〜35%、Bi 40〜90%、V 0.1〜5%、Al 0〜5%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%の組成範囲において、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が550℃以下である極めて軟化点の低いPDP等の表示パネル用基板に配した透明電極線パターン上に被膜、隔壁形成、封着するための低融点ガラスを得ることが可能となる。
【0038】
なお、前述した様にPbOについては、ガラス原料やカレット中に不純物として混入する程度の量として、低融点ガラス中に0.3%以下の含有であれば、先述した弊害、すなわち人体、環境に対する影響、絶縁特性等に与える影響は殆どなく、実質的にPbOを有さない無鉛低融点ガラスと称せられる。
【0039】
表示パネル用基板に配した透明電極線パターンおよびバス電極線パターン上に絶縁被膜を形成するガラスの場合、上記熱膨張係数、軟化点を損なわない範囲で、透明電極線成分酸化物(例えばInおよび/またはSnO)0.1〜5%、および/またはCu、Ag、Cu−Agなどのバス電極線成分酸化物(例えばCuOおよび/またはAgO)0.1〜1.5%の範囲で含むことが好ましい。
【0040】
本発明の無鉛低融点ガラスに透明電極成分酸化物、バス電極成分酸化物を前述の範囲で加えることで、透明電極線、バス電極線を配したPDPパネル用ガラス基板に、ペースト状とした低融点ガラスを塗布後焼成し低融点ガラス層を被覆形成した後に、前記透明電極線、バス電極線の抵抗が上昇するという問題を解決することができる。透明電極成分酸化物では、0.1%未満の添加率では、抵抗の上昇の抑制が小さく、5%を超えるとガラスに失透を生じる。バス電極成分酸化物では、0.1%未満では添加した効果が発揮されない。しかしながら、1.5%を超えるとガラスが着色する不具合が発生する。
【0041】
透明電極線成分酸化物、バス電極成分酸化物を上記範囲の下限、0.1%以上で含有させることにより、ガラスと透明電極線、および/またはバス電極線の相互浸食を効果的に抑制でき、他方それら電極線成分酸化物を上記範囲の上限を越えて含有させると、ガラスの熱物性を損じたり、形成したガラスが顕著な着色を呈する等の不都合が生ずる。特にCuOの前期範囲での含有はPDPにおける青色発光を顕示するフィルター作用があり、青色発光がやや劣るPDPにおいては格好の光選択透過材料でもある。
【0042】
また、ガラス基板表面に直接膜付けするケースにおいて、先述した特性を損なわない範囲でガラスを着色したり、紫外線吸収性能、赤外線遮断性能等を付与するうえで、Fe、Cr、CoO、CeO、Sb等を添加することができるが、それら添加成分の合計は、所望の熱物性を得、着色を抑制するために、1%以下とすべきである。
【0043】
更にPDPに代表されるような、基板に配した導電体、半導体パターンを被覆するために透明、電気絶縁性の低融点ガラスを適用するケースについては、以下にPDPの前面基板を被覆する例を代表例として具体的実施例を詳述する。
【0044】
【実施例】
〔PDP用前面ガラス基板〕
前面ガラス基板は、クリアーなソーダ石灰系ガラスあるいはそれに組成、熱物性等が類似したガラスからなる。前面ガラス基板の表面(片面)にはパターニングされた透明電極線、例えば酸化インジウム−錫 (ITO)系、または酸化錫(SnO)系の電極線をスパッタリング法やCVD法により施す。
【0045】
更に、透明電極線の一部を覆って、バス電極線としてクロム−銅−クロム(Cr−Cu−Cr)[もしくは銅に代わり銀、アルミニウムが使用される]が形成される。その上層に本発明にかかる低融点ガラスよりなる透明絶縁性被覆(以下絶縁性被覆という)を施す。絶縁性被覆は、予め製造、整粒した低融点ガラス粉とペーストオイルからなる混合物をスクリーン印刷等により前面基板および透明電極線上に塗布し、630℃以下で焼付けて厚み30μm程度の厚膜を形成する。前記30μm程度の厚みはガス放電による表示性能、長期安定性を発揮させるうえで必要かつ充分な厚みとされる。
【0046】
更に、絶縁性被覆を覆って、スパッタリング法等により保護マグネシア層を被覆することによりPDP用前面ガラス基板の製作を完了するものである。
【0047】
なお、ディスプレイパネル形成後、電極線上に一旦形成された絶縁性被覆の局部、詳しくは、電極線と外部リード線を接続する電極線取り出し部を形成すべく、該部の絶縁性被覆を酸により溶解除去するケースもあり、この場合、絶縁性被覆の酸溶解性も考慮されねばならない。
【0048】
以下に、絶縁性被覆として本発明の低融点ガラスを採用した実施例を示す。
【0049】
〔低融点ガラス混合ペーストの作製〕
SiO源として微粉珪砂を、B源としてほう酸を、Al源として酸化アルミニウムを、ZnO源として亜鉛華を、BaO源として炭酸バリウムを、MgO源として炭酸マグネシウムを、CaO源として炭酸カルシウムを、SrO源として炭酸ストロンチウムを、Bi源として酸化ビスマスを、LiO源として炭酸リチウムを、NaO源として炭酸ナトリウムを、KO源として炭酸カリウムを、PbO源として鉛丹、P源としてオルトリン酸を、In源として酸化インジウムを、SnO源として酸化錫を、CuO源として酸化銅を、AgO源として硝酸銀を使用し、これらを所望の低融点ガラス組成となるべく調合したうえで、白金ルツボに投入し、電気加熱炉内で1000〜1100℃、1〜2時間で加熱溶融して表1の実施例1〜5、表2の比較例1〜5、表3の実施例6〜10、表4の比較例6〜10、表5の実施例11〜15,表6の比較例11〜16に示す組成のガラスを得た。
【0050】
ガラスの一部は型に流し込み、ブロック状にして熱物性(熱膨張係数、軟化点)測定用に供した。残余のガラスは急冷双ロール成形機にてフレーク状とし、粉砕装置で平均粒径2〜4μm、最大粒径15μm未満の粉末状に整粒した。
【0051】
次いで、αテルピネオールとブチルカルビトールアセテートからなるペーストオイルにバインダーとしてのエチルセルロースと上記ガラス粉を混合し、粘度、300±50ポイズ程度のスクリーン印刷に適するペーストを調製した。
【0052】
〔絶縁性被覆の形成〕
厚み2〜3mm、サイズ150mm□のソーダ石灰系ガラス基板に、スパッタリング法によりITOパターン膜を成膜後、焼付け後の膜厚が約30μmとなるべく勘案して目の開き、メッシュサイズ250のスクリーンを用いて前記ペーストをスクリーン印刷により塗布した。
【0053】
次いで、乾燥後、630℃以下で60分間焼付けて、絶縁性被覆を形成した。
【0054】
得られた試料について以下の試験に供した。
【0055】
〔熱膨張係数の測定〕
前記熱物性測定用ガラスブロックを所定寸法に切断、研磨して熱膨張係数測定試料を作製し、これを熱膨張計にセットして5℃/分の速度で昇温して伸び量を測定、記録し、30〜300℃の平均熱膨張係数 α×10−7/℃を算出した。基板の熱膨張係数と近似させることが重要であり、αが65〜100の範囲において好適である。
【0056】
〔軟化点の測定〕
常法により、ガラスブロックからのガラスを加熱して所定太さ、寸法のガラスビームを作製し、リトルトン粘度計にセットして昇温し、粘度係数η=107.6 に達したときの温度、すなわち軟化点を測定した。軟化点は630℃以下、好ましくは550℃以下とするものである。
【0057】
〔可視光透過率の測定〕
ITO膜、絶縁性被覆を形成したガラス基板(ガラス基板厚み3mm、可視光透過率86%)について常法に基づき、分光光度計により透過率を測定し、可視域における平均透過率を算定した。可視光透過率は70%以上が良好とされる。
【0058】
〔ITO膜の抵抗上昇率の測定〕
前記ガラス基板にITO膜、絶縁性被覆を形成後、更に前項で絶縁性被覆を除去した後の、それぞれのITO膜の電気抵抗値を4探針法にて測定した。なお、ITO膜の電気抵抗値は絶縁性被覆形成に際して該被覆とITOとの成分相互侵食により増大する。
【0059】
絶縁性被覆除去後のITO膜抵抗値/当初のITO膜抵抗値より上昇率(%)を算定した。なお、抵抗上昇率は250%以下が良好とされる。
【0060】
〔バス電極との反応〕
30×30mmサイズのガラス基板上で厚膜を焼成後、顕微鏡による外観検査でバス電極周辺に30μm以上の泡が無いものを○、有るものを×とした。
【0061】
〔結果〕
低融点ガラス組成および、各種試験結果を表に示す。
【0062】
表1における実施例1〜5に示すように、本発明の組成範囲内においては、軟化点が630℃以下であり、好適な熱膨張係数(65〜100×10−7/℃)および可視光透過率(70%以上)を有し、またITO(スズとインジウムからなる透明導電酸化被膜)と絶縁性被覆との成分相互侵食によるITOの抵抗の上昇も低く(250%以下)、バス電極との反応も抑制される等、全てにわたり優れており、透明な絶縁性被覆形成用低融点ガラス、特にPDP全面ガラス基板用の低融点ガラスとして好適である。
【0063】
【表1】

Figure 2004284934
【0064】
他方、本発明の組成範囲を外れる表2における比較例1〜5は、好ましい物性値、PDP等の基板被覆用低融点ガラスとしての好ましい特性を示さず、PDP等の基板被覆用低融点ガラスとして適用し得ない。
【0065】
【表2】
Figure 2004284934
【0066】
表3における実施例6〜10に示すように、本発明の組成範囲内においては、軟化点が550℃以下であり、好適な熱膨張係数(65〜100×10−7/℃)および可視光透過率(70%以上)を有し、またITOと絶縁性被覆との成分相互侵食によるITOの抵抗の上昇も低く(250%以下)、バス電極との反応も抑制される等、全てにわたり優れており、透明な絶縁性被覆形成用低融点ガラス、特にPDP全面ガラス基板用の低融点ガラスとして好適である。
【0067】
【表3】
Figure 2004284934
【0068】
他方、本発明の組成範囲を外れる表4における比較例6〜10は、好ましい物性値、PDP等の基板被覆用低融点ガラスとしての好ましい特性を示さず、PDP等の基板被覆用低融点ガラスとして適用し得ない。
【0069】
【表4】
Figure 2004284934
【0070】
表5における実施例11〜15に示すように、本発明の組成範囲内においては、軟化点が630℃以下であり、好適な熱膨張係数(65〜100×10−7/℃)を有し、またITOと絶縁性被覆との成分相互侵食によるITOの抵抗の上昇も低く(250%以下)、バス電極との反応も抑制される等、全てにわたり優れており、透明な絶縁性被覆形成用低融点ガラス、特にPDP全面ガラス基板用の低融点ガラスとして好適である。
【0071】
【表5】
Figure 2004284934
【0072】
他方、本発明の組成範囲を外れる表6における比較例11〜16は、好ましい物性値、PDP等の基板被覆用低融点ガラスとしての好ましい特性を示さず、PDP等の基板被覆用低融点ガラスとして適用し得ない。
【0073】
【表6】
Figure 2004284934
【0074】
【発明の効果】
本発明の無鉛低融点ガラスは、着色がなく適度な熱膨張係数、低い軟化点、優れた電極との反応抑制効果を有し、実質的にPbOを含まないことにより、人体や環境に与える影響を皆無とすることができ、このガラスを用いることは、PDP、蛍光表示管等における封着、被覆、隔壁形成等に有用である。
【0075】
また、該無鉛低融点ガラスにガラスに、透明電極成分および/またはバス電極成分を含有させることで、透明電極線およびバス電極線を配したPDPパネル用ガラス基板被覆時に、該基板に配した電極線の抵抗が上昇することを抑制した。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-melting glass for directly covering the surface of a glass substrate, or for covering and sealing a conductor and a semiconductor pattern disposed on the glass substrate, for example, various display panel substrates, particularly plasma display panels. The present invention relates to a lead-free low-melting glass suitable for forming an insulating coating on a transparent electrode line pattern and a bus electrode line pattern arranged on a display panel glass substrate for a display panel (hereinafter abbreviated as PDP). The lead-free low-melting glass is a low-melting glass containing substantially no PbO.
[0002]
[Prior art]
In general, as a substrate for an electronic material, a transparent glass substrate, in particular, a soda-lime-silica glass or a glass similar thereto (high strain point glass), or an alumino-lime borosilicate glass having a small amount of alkali (or almost no alkali) is used. It is heavily used. Its coefficient of thermal expansion is approximately 65 to 100 × 10 at 30 ° C. to 300 ° C. -7 / ° C., and if the value of this coefficient of thermal expansion is significantly different, adverse effects such as peeling of the formed film and warping of the substrate occur.
[0003]
On the other hand, since the softening point of the glass substrate is as high as about 720 to 840 ° C., the baking temperature often exceeds 630 ° C., thus causing problems such as deformation and thermal shrinkage of the substrate during baking.
[0004]
Conventionally, lead-based glass has been employed for low-melting glass, for example, low-melting glass for coating a substrate. Although the lead component is an important component for lowering the melting point of glass, it has a large adverse effect on the human body and the environment, and has recently been tending to avoid its use.
[0005]
Regarding the known technology, Patent Document 1 discloses that the thermal expansion coefficient at 30 ° C. to 300 ° C. is approximately 65 to 85 × 10 -7 / ° C is disclosed.
[0006]
Patent Document 2 discloses that Bi 2 O 3 , BaO, SrO, B 2 O 3 Bismuth-based glass compositions containing the same are disclosed, but have a coefficient of thermal expansion of 100 × 10 -7 / C is different from that of the present invention.
[0007]
Patent Document 3 discloses that Bi 2 O 3 , B 2 O 3 , BaO, SrO-containing bismuth-based glass composition is disclosed, but has a coefficient of thermal expansion of 100 × 10 -7 The present invention differs from the present invention in that the firing temperature is higher than / ° C and the firing temperature is 500 ° C or lower.
[0008]
In Patent Document 4, the present applicant discloses a transparent and electrically insulating SiO for covering a substrate surface directly or for covering a conductor and a semiconductor pattern disposed on the substrate. 2 -B 2 O 3 -BaO-ZnO-based low-melting glass having a thermal expansion coefficient of 65 to 95 × 10 at 30 ° C. to 300 ° C. -7 / ° C, low melting point glass having a softening point of 600 ° C or less and a dielectric constant of 7.5 or less at a frequency of 1 MHz at ordinary temperature, particularly low melting point glass for forming a film on a transparent electrode line pattern disposed on a display panel substrate. Is disclosed, but V 2 O 5 Differs from the present invention in that it is not essential.
[0009]
[Patent Document 1]
JP-A-8-26770
[Patent Document 2]
JP-A-9-278483
[Patent Document 3]
JP-A-2000-128574
[Patent Document 4]
JP-A-2002-12445
[0010]
[Problems to be solved by the invention]
The present invention is different from the prior art described above, is a low-melting glass for directly covering the glass substrate surface, or for covering and sealing the conductor and the semiconductor pattern disposed on the glass substrate, and having a coefficient of thermal expansion. It is an object of the present invention to provide a low-melting glass which is substantially matched with that of a substrate, has a low softening point, and can easily form coating and sealing.
[0011]
Further, in manufacturing a PDP panel substrate, when coating a glass substrate for a PDP panel on which transparent electrode lines and bus electrode lines are arranged, a paste-like low melting point glass is applied and then baked to form a coating. An object of the present invention is to solve the conventional problem that the resistance of a wire increases.
[0012]
[Means for Solving the Problems]
The present invention is a lead-free low-melting glass for directly covering the surface of a substrate, or for covering, forming a partition, and sealing a conductor or a semiconductor pattern disposed on the substrate, and having a thermal expansion at 30 ° C. to 300 ° C. Coefficient is 65-100 × 10 -7 / ° C and a softening point of 630 ° C or less.
[0013]
Further, the present invention provides the above-mentioned lead-free low-melting glass for directly coating the surface of a substrate, or for covering an electric conductor disposed on a substrate and a semiconductor pattern, forming a partition, and sealing the lead-free low melting glass. Coefficient of thermal expansion at 65 ° C. is 65 to 100 × 10 -7 / ° C and a softening point of 630 ° C or less 2 -B 2 O 3 -ZnO-Bi 2 O 3 -V 2 O 5 It is a low melting glass.
[0014]
Further, the present invention is the above-mentioned lead-free low-melting glass for coating, forming a partition, and sealing on a transparent electrode line pattern arranged on a display panel substrate for a PDP, wherein the glass has a component composition of mass In percentage (%), SiO 2 0.1-25%, B 2 O 3 1-50%, ZnO 1-45%, Bi 2 O 3 20-90%, V 2 O 5 0.1-40%, Nb 2 O 5 0-5%, R 2 O (R = Li, Na, K) 0 to 20%, RO (R = Mg, Ca, Sr, Ba) 0 to 20%, substantially free of PbO, transparent insulating film It is a low-melting glass for forming.
[0015]
Further, the present invention is the above-mentioned lead-free low-melting glass for coating, forming a partition, and sealing on a transparent electrode line pattern arranged on a display panel substrate for a PDP, wherein the glass has a component composition of mass In percentage (%), SiO 2 0.1-25%, B 2 O 3 1-40%, ZnO 1-45%, Bi 2 O 3 20-90%, V 2 O 5 0.1-5%, Nb 2 O 5 0-5%, R 2 O (R = Li, Na, K) 0 to 20%, RO (R = Mg, Ca, Sr, Ba) 0 to 20%, substantially free of PbO, transparent insulating film It is a low-melting glass for forming.
[0016]
Furthermore, the present invention is a lead-free low-melting glass for directly covering the substrate surface, or for covering the conductors disposed on the substrate, coating on the semiconductor pattern, forming partition walls, and sealing, at 30 ° C to 300 ° C. Thermal expansion coefficient is 65-100 × 10 -7 / ° C and a softening point of 550 ° C or less.
[0017]
Furthermore, the present invention has a thermal expansion coefficient of 65 to 100 × 10 at 30 ° C. to 300 ° C. for forming a film, partition walls, and sealing on a transparent electrode line pattern disposed on a display panel substrate such as a PDP. -7 The above-mentioned lead-free low-melting glass having a melting point of 550 ° C. or lower and a melting point of 550 ° C. or lower. 2 O 3 -B 2 O 3 -ZnO, P 2 O 5 -ZnO, V 2 O 5 -B 2 O 3 -A low-melting glass for forming a transparent insulating film characterized by being a ZnO-based material.
[0018]
Further, the present invention has a thermal expansion coefficient at 30 to 300 ° C. of 65 to 100 × 10 for forming a coating, a partition, and sealing on a transparent electrode line pattern disposed on a display panel substrate such as a PDP. -7 / ° C. and the softening point is 550 ° C. or less, the lead-free low-melting glass described above, wherein the component composition of the glass is SiO 2 by mass percentage (%). 2 0.1-10%, B 2 O 3 5-25%, ZnO 1-35%, Bi 2 0 3 40-90%, V 2 O 5 0.1-5%, Al 2 O 3 0-5%, Nb 2 O 5 0-5%, R 2 O (R = Li, Na, K) 0 to 20%, RO (R = Mg, Ca, Sr, Ba) 0 to 20%, substantially free of PbO, transparent insulating film It is a low-melting glass for forming.
[0019]
Further, the present invention has a thermal expansion coefficient of 65 to 100 × 10 at 30 ° C. to 300 ° C. for covering, forming a partition, and sealing on a transparent electrode line pattern disposed on a glass substrate for a display panel for a PDP. -7 / Lead-free low-melting glass having a softening point of 630 ° C. or lower, wherein the component composition is expressed by mass percentage (%) of SiO 2 0-5%, B 2 O 3 0-50%, ZnO 5-50%, P 2 O 5 10-85%, CuO 0-50%, SnO 0-30%, TiO 2 0.1-10%, Nb 2 O 5 0-5%, R 2 O (R = Li, Na, K) 0 to 20%, RO (R = Mg, Ca, Sr, Ba) 0 to 20%, V 2 O 5 The low-melting glass for forming a transparent insulating film is 0 to 40% and contains substantially no PbO.
[0020]
Further, the present invention has a thermal expansion coefficient of 65 to 100 × 10 at 30 ° C. to 300 ° C. for coating, forming a partition, and sealing on a transparent electrode line pattern disposed on a glass substrate for a display panel for a PDP. -7 / Lead-free low-melting glass having a softening point of 630 ° C or lower, wherein the composition is SiO 2 in terms of mass percentage (%) 2 0.1-15%, B 2 O 3 10-50%, ZnO 5-50%, R 2 O (R = Li, Na, K) 0.1-20%, Nb 2 O 5 0-5%, V 2 O 5 The low-melting glass for forming a transparent insulating film is 0 to 40% and contains substantially no PbO.
[0021]
Further, the present invention has a thermal expansion coefficient of 65 to 100 × 10 at 30 ° C. to 300 ° C. for coating, forming a partition, and sealing on a transparent electrode line pattern disposed on a glass substrate for a display panel for a PDP. -7 / ° C. and a softening point of 630 ° C. or lower, which is a lead-free low-melting glass whose component composition is expressed by mass percentage (%) of SiO 2 0.1-15%, B 2 O 3 10-50%, ZnO 5-50%, R 2 O (R = Li, Na, K) 0 to 20%, Nb 2 O 5 0-5%, V 2 O 5 0.1 to 60%, which is a low-melting glass for forming a transparent insulating film, which is substantially free of PbO.
[0022]
Further, the present invention relates to the low-melting-point glass for forming a transparent insulating film formed on a glass substrate for a display panel for a PDP, wherein a transparent electrode component oxide, 0.1 to 5 wt% and / or A lead-free low-melting glass characterized by containing 0.1 to 1.5 wt% of a bus electrode line component oxide.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
When the lead-free low-melting glass of the present invention is used for sealing, coating, or forming partition walls, it is used in the form of powder. The powdered glass is usually mixed with a low-expansion ceramic filler, a heat-resistant pigment or the like as required, and then kneaded with an organic oil to form a paste.
[0024]
As the glass substrate in the present invention, a transparent glass substrate, in particular, a soda-lime-silica-based glass, a glass similar thereto (high-strain-point glass), or an alumino-lime-borosilicate-based glass having little (or almost no) alkali content is used. It is widely used, and its thermal expansion coefficient is approximately 65 to 100 × 10 at 30 ° C. to 300 ° C. -7 / ° C., and the low-melting glass of the present invention can prevent adverse effects such as peeling of the formed coating and warping of the substrate by approximating it.
[0025]
The softening point of the glass substrate is approximately 720 to 840 ° C., whereas the low melting point glass of the present invention is sufficiently low at 630 ° C. or lower, so that the baking temperature can be 630 ° C. or lower. In this case, soft deformation and thermal shrinkage of the substrate can be suppressed. In particular, the low melting point glass having a softening point of 550 ° C. or less in the present invention can lower the baking temperature to 550 ° C. or less, and has a large effect of suppressing the softening deformation and heat shrinkage of the substrate.
[0026]
By using the low melting point glass of the present invention, the above physical properties can be satisfied, and by substantially not containing PbO, it is possible to eliminate the influence on the human body and the environment. The fact that Pb0 is not substantially contained means that PbO is mixed as an impurity into the glass raw material, that is, if it is in a range of 0.3 wt% or less in the low-melting glass, the above-mentioned adverse effects, that is, the human body and the environment And has almost no effect on insulation characteristics, and is said to contain substantially no Pb0.
[0027]
The low-melting-point glass of the present invention can also be applied to the case where various functional coatings are formed, such as by directly forming a coating on the substrate surface to change the optical characteristics of the glass substrate. Alternatively, if a glass substrate is coated with a low-melting glass powder mixed with silica fine powder, alumina fine powder, or the like as appropriate, a frosted glass that reduces glare caused by sunlight or illumination can be used. .
[0028]
Low melting point glass is used to coat the glass substrate surface directly, or to cover and seal conductors and semiconductor patterns arranged on the glass substrate, and has a softening point that softens at a much lower temperature than the glass substrate. Low glass. In order to lower the softening point to 630 ° C. or lower, preferably 550 ° C. or lower, the range of the component composition in the low-melting glass is preferably set to the following range.
[0029]
That is, the low-melting glass of the present invention has a coefficient of thermal expansion at 30 to 300 ° C. of 65 to 100 × 10 5. -7 / ° C. and a softening point of preferably 630 ° C. or less, the low-melting glass has a component composition of mass percentage (%) of SiO 2 2 0.1-25%, B 2 O 3 1-50%, ZnO 1-45%, Bi 2 O 3 20-90%, V 2 O 5 0.1-40%, Nb 2 O 5 0-5%, R 2 O (R = Li, Na, K) 0 to 20%, RO (R = Mg, Ca, Sr, Ba) 0 to 20%, and substantially not containing PbO.
[0030]
Furthermore, the low-melting glass of the present invention has a coefficient of thermal expansion at 30 to 300 ° C. of 65 to 100 × 10 -7 / ° C. and a softening point of preferably 630 ° C. or less, the low-melting glass has a component composition of mass percentage (%) of SiO 2 2 0.1-25%, B 2 O 3 1-40%, ZnO 1-45%, Bi 2 O 3 20-90%, V 2 O 5 0.1-5%, Nb 2 O 5 0-5%, R 2 O (R = Li, Na, K) 0 to 20%, RO (R = Mg, Ca, Sr, Ba) 0 to 20%, and substantially not containing PbO.
[0031]
SiO 2 Is a component for forming glass and is essential for forming stable glass, and is contained in the glass in the range of 0.1 to 25% (mass percentage (%), the same applies to the following description). If it is less than 0.1%, the glass becomes unstable and devitrification tends to occur. On the other hand, if it exceeds 25%, the softening point of the glass rises, making moldability and workability difficult.
[0032]
Also, in the production of PDP, after forming an insulating film once on the electrode wire pattern, an operation of dissolving and removing the insulating film coated on the portion with an acid in order to form an electrode wire take-out portion at the peripheral portion of the panel. But with SiO 2 When the content is too large, the acid resistance increases more than necessary, and it becomes difficult to dissolve with the acid. Therefore, the content is preferably 25% or less. Note that SiO 2 Al in the range of not more than 1/2 weight of the amount and not more than 5% in the glass 2 O 3 May be introduced by substitution. Al 2 O 3 Exceeds 5%, devitrification occurs. In addition, SiO 2 If the amount exceeds 1 / of the weight, the acid resistance increases more than necessary, and it becomes difficult to dissolve the acid.
[0033]
B 2 O 3 Is SiO 2 Like the glass-forming component, the addition thereof has the effect of facilitating melting of the glass, suppressing an excessive increase in the coefficient of thermal expansion of the glass, and giving the glass an appropriate fluidity at the time of baking. It is contained in the range of 1 to 50%, preferably 1 to 40%. If it is less than 1%, the glass becomes unstable and devitrification tends to occur. On the other hand, if it exceeds 40%, especially 50%, the softening point of the glass increases.
[0034]
ZnO is a component that lowers the softening point of glass, gives appropriate fluidity during melting, and adjusts the coefficient of thermal expansion of the formed glass to an appropriate range, and is contained in the glass in a range of 1 to 45%. If it is less than 1%, the above effect cannot be exerted, while if it exceeds 45%, the glass state becomes unstable and devitrification tends to occur.
[0035]
Bi 2 O 3 Is a component that lowers the softening point of glass, imparts appropriate fluidity during melting, and adjusts the coefficient of thermal expansion of the glass to be formed to an appropriate range. If it is less than 20%, the above effect cannot be exerted. On the other hand, if it exceeds 90%, the thermal expansion coefficient becomes too high, and the desired thermal expansion coefficient cannot be obtained.
[0036]
V 2 O 5 Is a component that suppresses the coloring of the glass, and is contained in the glass in an amount of 0.1 to 40%, preferably 0.1 to 5%. If it is less than 0.1%, the above effect cannot be exerted, while if it exceeds 5%, especially more than 40%, the glass is colored black.
[0037]
Further, in the above glass forming component, SiO 2 2 0.1-10%, B 2 O 3 5-25%, ZnO 1-35%, Bi 2 O 3 40-90%, V 2 O 5 0.1-5%, Al 2 O 3 0-5%, Nb 2 O 5 0-5%, R 2 In the composition range of O (R = Li, Na, K) 0 to 20% and RO (R = Mg, Ca, Sr, Ba) 0 to 20%, the coefficient of thermal expansion at 30 to 300 ° C. is 65 to 100 ×. 10 -7 / ° C, low melting point glass for forming coatings, partition walls, and sealing on transparent electrode line patterns arranged on display panel substrates such as PDPs having an extremely low softening point of 550 ° C or lower. It becomes.
[0038]
As described above, if PbO is contained in the low-melting glass in an amount of 0.3% or less as an amount that is mixed as an impurity into the glass raw material or the cullet, the above-mentioned adverse effect, that is, against the human body and environment. It has almost no influence on the insulation properties and the like, and is called a lead-free low-melting glass having substantially no PbO.
[0039]
In the case of a glass on which an insulating film is formed on the transparent electrode line pattern and the bus electrode line pattern provided on the display panel substrate, the transparent electrode line component oxide (for example, In) may be used as long as the above-mentioned coefficient of thermal expansion and softening point are not impaired. 2 O 3 And / or SnO 2 ) 0.1-5% and / or a bus electrode line component oxide such as Cu, Ag, Cu-Ag (e.g. CuO and / or Ag) 2 O) It is preferred that the content be in the range of 0.1 to 1.5%.
[0040]
By adding the transparent electrode component oxide and the bus electrode component oxide to the lead-free low-melting glass of the present invention within the above-mentioned ranges, the transparent electrode wire and the PDP panel glass substrate provided with the bus electrode wire can be formed into a paste-like glass substrate. It is possible to solve the problem that the resistance of the transparent electrode wire and the bus electrode wire increases after the melting point glass is applied and baked to form the low melting point glass layer. In the oxide of the transparent electrode component, when the addition ratio is less than 0.1%, the increase in resistance is suppressed little, and when it exceeds 5%, the glass is devitrified. In the case of a bus electrode component oxide, the effect of the addition is not exhibited at less than 0.1%. However, if it exceeds 1.5%, a problem that the glass is colored occurs.
[0041]
By including the transparent electrode wire component oxide and the bus electrode component oxide at the lower limit of the above range, 0.1% or more, mutual erosion between the glass and the transparent electrode wire and / or the bus electrode wire can be effectively suppressed. On the other hand, if these electrode wire component oxides are contained in excess of the upper limit of the above range, problems such as impairment of the thermophysical properties of the glass and remarkable coloring of the formed glass occur. In particular, the content of CuO in the above-mentioned range has a filter effect of exhibiting blue light emission in the PDP, and is also an excellent light selective transmission material in a PDP having a slightly inferior blue light emission.
[0042]
Further, in the case where a film is directly formed on the surface of a glass substrate, in order to color the glass within a range that does not impair the characteristics described above, or to impart ultraviolet absorbing performance, infrared shielding performance, etc., Fe 2 O 3 , Cr 2 O 3 , CoO, CeO 2 , Sb 2 O 3 And the like, but the total of the added components should be 1% or less in order to obtain desired thermophysical properties and suppress coloring.
[0043]
Further, as for a case where a transparent and electrically insulating low-melting glass is applied to cover a conductor and a semiconductor pattern arranged on a substrate, such as a PDP, an example of coating a front substrate of a PDP is described below. Specific examples will be described in detail as representative examples.
[0044]
【Example】
[Front glass substrate for PDP]
The front glass substrate is made of clear soda-lime glass or glass similar in composition, thermophysical properties and the like. On the surface (one side) of the front glass substrate, patterned transparent electrode lines, for example, indium tin oxide (ITO) or tin oxide (SnO) 2 ) System electrode wire is applied by a sputtering method or a CVD method.
[0045]
Further, chrome-copper-chromium (Cr-Cu-Cr) [or silver or aluminum is used instead of copper] is formed as a bus electrode line, covering a part of the transparent electrode line. A transparent insulating coating (hereinafter referred to as an insulating coating) made of the low-melting glass according to the present invention is applied to the upper layer. For the insulating coating, a mixture of a low-melting glass powder and paste oil, which have been manufactured and sized in advance, is applied on the front substrate and the transparent electrode wires by screen printing or the like, and baked at 630 ° C. or less to form a thick film having a thickness of about 30 μm. I do. The thickness of about 30 μm is necessary and sufficient for exhibiting display performance by gas discharge and long-term stability.
[0046]
Further, the production of the front glass substrate for PDP is completed by covering the insulating coating with a protective magnesia layer by a sputtering method or the like.
[0047]
After the display panel was formed, the insulating coating of the portion was formed with acid to form a local portion of the insulating coating once formed on the electrode wire, more specifically, an electrode wire extraction portion for connecting the electrode wire and the external lead wire. In some cases, dissolution and removal are performed. In this case, the acid solubility of the insulating coating must be considered.
[0048]
Examples in which the low-melting glass of the present invention is used as an insulating coating will be described below.
[0049]
(Preparation of low melting glass mixed paste)
SiO 2 Fine silica sand as a source, B 2 O 3 Boric acid as a source, Al 2 O 3 Aluminum oxide as a source, zinc white as a ZnO source, barium carbonate as a BaO source, magnesium carbonate as a MgO source, calcium carbonate as a CaO source, strontium carbonate as a SrO source, Bi 2 O 3 Bismuth oxide as a source, Li 2 Lithium carbonate as an O source, Na 2 Sodium carbonate as an O source, K 2 Potassium carbonate as an O source, leadtan as a PbO source, P 2 O 5 Orthophosphoric acid as a source, In 2 O 3 Indium oxide as a source, tin oxide as a SnO source, copper oxide as a CuO source, Ag 2 Silver nitrate was used as an O source, these were mixed to obtain a desired low melting glass composition, and then put into a platinum crucible and heated and melted at 1000 to 1100 ° C. for 1 to 2 hours in an electric heating furnace. Examples 1 to 5, Comparative Examples 1 to 5 in Table 2, Examples 6 to 10 in Table 3, Comparative Examples 6 to 10 in Table 4, Examples 11 to 15 in Table 5, and Comparative Examples 11 to 11 in Table 6. A glass having a composition shown in Fig. 16 was obtained.
[0050]
A part of the glass was poured into a mold, made into a block, and used for measuring thermophysical properties (thermal expansion coefficient, softening point). The remaining glass was flaked by a quenching twin roll forming machine, and sized by a pulverizer into a powder having an average particle size of 2 to 4 μm and a maximum particle size of less than 15 μm.
[0051]
Next, ethyl cellulose as a binder and the above glass powder were mixed with a paste oil composed of α-terpineol and butyl carbitol acetate to prepare a paste suitable for screen printing having a viscosity of about 300 ± 50 poise.
[0052]
(Formation of insulating coating)
After forming an ITO pattern film by a sputtering method on a soda-lime-based glass substrate having a thickness of 2 to 3 mm and a size of 150 mm □, open the eyes, taking into account the film thickness after baking to be about 30 μm, and use a screen with a mesh size of 250. And the paste was applied by screen printing.
[0053]
Next, after drying, baking was performed at 630 ° C. or lower for 60 minutes to form an insulating coating.
[0054]
The obtained sample was subjected to the following tests.
[0055]
(Measurement of thermal expansion coefficient)
The glass block for measuring thermophysical properties is cut to a predetermined size and polished to prepare a thermal expansion coefficient measurement sample, which is set in a thermal dilatometer, heated at a rate of 5 ° C./min, and measured for elongation. Record and average coefficient of thermal expansion at 30 to 300 ° C. α × 10 -7 / ° C was calculated. It is important to approximate the coefficient of thermal expansion of the substrate, and α is preferably in the range of 65 to 100.
[0056]
(Measurement of softening point)
The glass from the glass block is heated by a conventional method to produce a glass beam having a predetermined thickness and dimensions, set in a Littleton viscometer and heated, and a viscosity coefficient η = 10 7.6 Was reached, that is, the softening point was measured. The softening point is 630 ° C. or lower, preferably 550 ° C. or lower.
[0057]
(Measurement of visible light transmittance)
The transmittance of a glass substrate (glass substrate thickness: 3 mm, visible light transmittance: 86%) on which an ITO film and an insulating coating were formed was measured by a spectrophotometer based on a conventional method, and the average transmittance in the visible region was calculated. A visible light transmittance of 70% or more is considered good.
[0058]
[Measurement of resistance rise rate of ITO film]
After the formation of the ITO film and the insulating coating on the glass substrate and the removal of the insulating coating in the preceding section, the electrical resistance of each ITO film was measured by a four probe method. It should be noted that the electrical resistance of the ITO film increases when the insulating coating is formed due to mutual erosion between the coating and the ITO.
[0059]
The rate of increase (%) was calculated from the ITO film resistance after removing the insulating coating / the initial ITO film resistance. Note that the resistance increase rate is preferably 250% or less.
[0060]
[Reaction with bus electrode]
After baking the thick film on a glass substrate of 30 × 30 mm size, the appearance was evaluated by a microscope, and when there was no bubble of 30 μm or more around the bus electrode, it was evaluated as ○.
[0061]
〔result〕
The low melting glass composition and various test results are shown in the table.
[0062]
As shown in Examples 1 to 5 in Table 1, within the composition range of the present invention, the softening point is 630 ° C. or less, and a suitable coefficient of thermal expansion (65 to 100 × 10 -7 / ° C) and visible light transmittance (70% or more), and a low rise in resistance of ITO (250%) due to mutual corrosion of ITO (a transparent conductive oxide film composed of tin and indium) and an insulating coating. It is excellent in all aspects, such as suppressing the reaction with the bus electrode, and is suitable as a low-melting glass for forming a transparent insulating coating, particularly a low-melting glass for a PDP full-surface glass substrate.
[0063]
[Table 1]
Figure 2004284934
[0064]
On the other hand, Comparative Examples 1 to 5 in Table 2 which deviate from the composition range of the present invention do not show preferable physical properties, preferable characteristics as a low-melting glass for coating a substrate such as a PDP, etc. Not applicable.
[0065]
[Table 2]
Figure 2004284934
[0066]
As shown in Examples 6 to 10 in Table 3, within the composition range of the present invention, the softening point is 550 ° C. or less, and a suitable coefficient of thermal expansion (65 to 100 × 10 -7 / ° C) and visible light transmittance (70% or more), the resistance of ITO is low (250% or less) due to the mutual erosion of the components between ITO and the insulating coating, and the reaction with the bus electrode is suppressed. And is suitable as a low-melting glass for forming a transparent insulating coating, particularly a low-melting glass for a PDP full-surface glass substrate.
[0067]
[Table 3]
Figure 2004284934
[0068]
On the other hand, Comparative Examples 6 to 10 in Table 4, which deviate from the composition range of the present invention, do not show preferable physical properties and preferable characteristics as a low-melting glass for coating a substrate such as a PDP. Not applicable.
[0069]
[Table 4]
Figure 2004284934
[0070]
As shown in Examples 11 to 15 in Table 5, within the composition range of the present invention, the softening point is 630 ° C or less, and the preferable coefficient of thermal expansion (65 to 100 × 10 -7 / ° C), the resistance increase of ITO due to the mutual corrosion between ITO and the insulating coating is low (250% or less), and the reaction with the bus electrode is suppressed. It is suitable as a low-melting glass for forming an insulating coating, particularly as a low-melting glass for a PDP full-surface glass substrate.
[0071]
[Table 5]
Figure 2004284934
[0072]
On the other hand, Comparative Examples 11 to 16 in Table 6, which deviate from the composition range of the present invention, do not show preferable physical properties and preferable characteristics as a low-melting glass for coating a substrate such as a PDP. Not applicable.
[0073]
[Table 6]
Figure 2004284934
[0074]
【The invention's effect】
The lead-free low-melting glass of the present invention has an appropriate thermal expansion coefficient without coloring, a low softening point, an excellent effect of suppressing reaction with an electrode, and an effect on a human body and an environment by substantially not containing PbO. The use of this glass is useful for sealing, coating, partition wall formation, and the like in PDPs, fluorescent display tubes, and the like.
[0075]
In addition, by adding a transparent electrode component and / or a bus electrode component to the lead-free low-melting glass, the electrode disposed on the substrate when coating a glass substrate for a PDP panel on which a transparent electrode wire and a bus electrode wire are disposed. The resistance of the wire was suppressed from rising.

Claims (11)

基板表面を直に被覆し、又は基板に配した導電体、半導体パターン上に被覆、隔壁形成、封着するための無鉛低融点ガラスであって、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が630℃以下であることを特徴とする低融点ガラス。A lead-free low-melting glass for directly covering the substrate surface, or a conductor disposed on the substrate, covering on a semiconductor pattern, forming a partition, and sealing, and having a thermal expansion coefficient at 30 to 300 ° C. of 65 to 65 ° C. Low melting glass characterized by having a softening point of 100 × 10 −7 / ° C. or less of 630 ° C. or less. 基板表面を直に被覆し、又は基板に配した導電体、半導体パターン上に被覆、隔壁成形、封着するための請求項1に記載の無鉛低融点ガラスであって、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が630℃以下であることを特徴とするSiO−B−ZnO−Bi−V系低融点ガラス。The lead-free low-melting glass according to claim 1 for directly covering the substrate surface or covering the conductor, covering the semiconductor pattern, forming the partition wall, and sealing, at 30 ° C to 300 ° C. A SiO 2 —B 2 O 3 —ZnO—Bi 2 O 3 —V 2 O 5 low melting point glass having a thermal expansion coefficient of 65 to 100 × 10 −7 / ° C. and a softening point of 630 ° C. or less. . PDP用の表示パネル用基板に配した透明電極線パターン上に被覆、隔壁形成、封着するための請求項2に記載の無鉛低融点ガラスであって、そのガラスの成分組成が、質量百分率(%)で、SiO 0.1〜25%、B 1〜50%、ZnO 1〜45%、Bi 20〜90%、V 0.1〜40%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラス。The lead-free low-melting glass according to claim 2, which is used for coating, forming a partition, and sealing on a transparent electrode line pattern disposed on a substrate for a display panel for a PDP, wherein the glass has a component percentage of mass percentage ( in%), SiO 2 0.1~25%, B 2 O 3 1~50%, ZnO 1~45%, Bi 2 O 3 20~90%, V 2 O 5 0.1~40%, Nb 2 O 5 0~5%, R 2 O (R = Li, Na, K) 0~20%, RO (R = Mg, Ca, Sr, Ba) 0 to 20% is substantially free of PbO A low-melting glass for forming a transparent insulating film, characterized in that: PDP用の表示パネル用基板に配した透明電極線パターン上に被覆、隔壁形成、封着するための請求項2に記載の無鉛低融点ガラスであって、そのガラスの成分組成が、質量百分率(%)で、SiO 0.1〜25%、B 1〜40%、ZnO 1〜45%、Bi 20〜90%、V0.1〜5%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラス。The lead-free low-melting glass according to claim 2, which is used for coating, forming a partition, and sealing on a transparent electrode line pattern disposed on a substrate for a display panel for a PDP, wherein the glass has a component percentage of mass percentage ( in%), SiO 2 0.1~25%, B 2 O 3 1~40%, ZnO 1~45%, Bi 2 O 3 20~90%, V 2 O 5 0.1~5%, Nb 2 O 5 0~5%, R 2 O (R = Li, Na, K) 0~20%, RO (R = Mg, Ca, Sr, Ba) 0 to 20% is substantially free of PbO A low-melting glass for forming a transparent insulating film, characterized in that: 基板表面を直に被覆し、又は基板に配した導電体、半導体パターン上に被覆、隔壁形成、封着するための無鉛低融点ガラスであって、30℃〜300℃における熱膨張係数が65〜100×10−7/℃、軟化点が550℃以下であることを特徴とする低融点ガラス。A lead-free low-melting glass for directly covering the substrate surface, or a conductor disposed on the substrate, covering on a semiconductor pattern, forming a partition, and sealing, and having a thermal expansion coefficient at 30 to 300 ° C. of 65 to 65 ° C. Low melting glass characterized by having a softening point of 100 × 10 −7 / ° C. or less of 550 ° C. or less. PDP等の表示パネル用基板に配した透明電極線パターン上に被膜、隔壁形成、封着するための請求項5に記載の無鉛低融点ガラスであって、Bi−B−ZnO、P−ZnO、V−B−ZnO系であることを特徴とする透明絶縁性被膜形成用低融点ガラス。Coating on a transparent electrode line pattern arranged on the display panel substrate such as PDP, the barrier ribs formed, a lead-free low-melting-point glass according to claim 5 for sealing, Bi 2 O 3 -B 2 O 3 - ZnO, P 2 O 5 -ZnO, V 2 O 5 -B 2 O 3 transparent insulating film-forming low-melting glass, which is a -ZnO system. PDP等の表示パネル用基板に配した透明電極線パターン上に被膜、隔壁形成、封着するための請求項5または請求項6に記載の無鉛低融点ガラスであって、そのガラスの成分組成が、質量百分率(%)で、SiO 0.1〜10%、B 5〜25%、ZnO 1〜35%、Bi 40〜90%、V 0.1〜5%、Al 0〜5%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラス。The lead-free low-melting glass according to claim 5 or 6 for forming a coating, partition walls, and sealing on a transparent electrode line pattern disposed on a display panel substrate such as a PDP, wherein the glass has a component composition. , in percent by mass (%), SiO 2 0.1~10% , B 2 O 3 5~25%, ZnO 1~35%, Bi 2 O 3 40~90%, V 2 O 5 0.1~5 %, Al 2 O 3 0~5% , Nb 2 O 5 0~5%, R 2 O (R = Li, Na, K) 0~20%, RO (R = Mg, Ca, Sr, Ba) 0 A low-melting glass for forming a transparent insulating film, characterized by being substantially free of PbO. PDP用の表示パネル用ガラス基板に配した透明電極線パターン上に被覆、隔壁形成、封着するための請求項1に記載の無鉛低融点ガラスであって、成分組成が、質量百分率(%)で、SiO 0〜5%、B0〜50%、ZnO 5〜50%、P 10〜85%、CuO 0〜50%、SnO 0〜30%、TiO 0.1〜10%、Nb 0〜5%、RO(R=Li,Na,K) 0〜20%、RO(R=Mg,Ca,Sr,Ba) 0〜20%、V 0〜40%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラス。2. The lead-free low-melting glass according to claim 1, which is for coating, forming a partition, and sealing on a transparent electrode line pattern disposed on a glass substrate for a display panel for a PDP, wherein the component composition has a mass percentage (%). in, SiO 2 0~5%, B 2 O 3 0~50%, 5~50% ZnO, P 2 O 5 10~85%, 0~50% CuO, SnO 0~30%, TiO 2 0.1 ~10%, Nb 2 O 5 0~5 %, R 2 O (R = Li, Na, K) 0~20%, RO (R = Mg, Ca, Sr, Ba) 0~20%, V 2 O A low-melting glass for forming a transparent insulating film, which is 50 to 40% and does not substantially contain PbO. PDP用の表示パネル用ガラス基板に配した透明電極線パターン上に被覆、隔壁形成、封着するための請求項1に記載の無鉛低融点ガラスであって、成分組成が、質量百分率(%)で、SiO 0.1〜15%、B 10〜50%、ZnO 5〜50%、RO (R=Li,Na,K)0.1〜20%、Nb 0〜5%、V 0〜40%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラス。2. The lead-free low-melting glass according to claim 1, which is for coating, forming a partition, and sealing on a transparent electrode line pattern disposed on a glass substrate for a display panel for a PDP, wherein the component composition has a mass percentage (%). in, SiO 2 0.1~15%, B 2 O 3 10~50%, 5~50% ZnO, R 2 O (R = Li, Na, K) 0.1~20%, Nb 2 O 5 0 5%, a V 2 O 5 0 to 40%, substantially transparent insulation film-forming low-melting glass, characterized in that does not contain PbO. PDP用の表示パネル用ガラス基板に配した透明電極線パターン上に被覆、隔壁形成、封着するための請求項1に記載の無鉛低融点ガラスであって、そのガラスの成分組成が、質量百分率(%)で、SiO 0.1〜15%、B 10〜50%、ZnO 5〜50%、RO (R=Li,Na,K)0〜20%、Nb 0〜5%、V 0.1〜60%であり、実質的にPbOを含まないことを特徴とする透明絶縁性被膜形成用低融点ガラス。The lead-free low-melting glass according to claim 1, which is used for coating, forming a partition, and sealing on a transparent electrode line pattern disposed on a glass substrate for a display panel for a PDP, wherein the glass has a component percentage by mass. (%), SiO 2 0.1 to 15%, B 2 O 3 10 to 50%, ZnO 5 to 50%, R 2 O (R = Li, Na, K) 0 to 20%, Nb 2 O 5 0-5%, a V 2 O 5 0.1 to 60% substantially transparent insulating film-forming low-melting glass, characterized in that does not contain PbO. PDP用の表示パネル用ガラス基板に配した請求項1乃至請求項10のいずれか1項に記載の透明絶縁性被膜形成用低融点ガラスであって、ガラス中に透明電極成分酸化物、0.1〜5wt%および/またはバス電極線成分酸化物、0.1〜1.5wt%を含むことを特徴とする無鉛低融点ガラス。The low-melting-point glass for forming a transparent insulating film according to any one of claims 1 to 10, which is disposed on a glass substrate for a display panel for a PDP, wherein a transparent electrode component oxide is contained in the glass. A lead-free low melting point glass containing 1 to 5 wt% and / or an oxide of a bus electrode line component, 0.1 to 1.5 wt%.
JP2003103604A 2002-04-24 2003-04-08 Lead-free low-melting point glass Pending JP2004284934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103604A JP2004284934A (en) 2002-04-24 2003-04-08 Lead-free low-melting point glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002122770 2002-04-24
JP2003018830 2003-01-28
JP2003103604A JP2004284934A (en) 2002-04-24 2003-04-08 Lead-free low-melting point glass

Publications (1)

Publication Number Publication Date
JP2004284934A true JP2004284934A (en) 2004-10-14

Family

ID=33303623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103604A Pending JP2004284934A (en) 2002-04-24 2003-04-08 Lead-free low-melting point glass

Country Status (1)

Country Link
JP (1) JP2004284934A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164965A (en) * 2004-11-10 2006-06-22 Hitachi Powdered Metals Co Ltd Composition for forming electron emitting source and method of forming coating for electron emitting source
JP2006169047A (en) * 2004-12-16 2006-06-29 Central Glass Co Ltd Lead-free low melting point glass
JP2006182589A (en) * 2004-12-27 2006-07-13 Nihon Yamamura Glass Co Ltd Bismuth-based lead-free glass composition
JP2006238156A (en) * 2005-02-25 2006-09-07 Kyocera Corp Portable wireless device
JP2006282501A (en) * 2005-03-09 2006-10-19 Nippon Electric Glass Co Ltd Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL
JP2006290665A (en) * 2005-04-08 2006-10-26 Boe Technology Group Co Ltd Lead-free sealing glass powder and its producing method
WO2006132102A1 (en) * 2005-06-09 2006-12-14 Nihon Yamamura Glass Co., Ltd. Zinc phosphate based lead-free glass composition
JP2007042553A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Plasma display panel
WO2007040178A1 (en) * 2005-10-03 2007-04-12 Matsushita Electric Industrial Co., Ltd. Plasma display panel
WO2007040142A1 (en) * 2005-10-03 2007-04-12 Matsushita Electric Industrial Co., Ltd. Plasma display panel
JP2007128858A (en) * 2005-10-03 2007-05-24 Matsushita Electric Ind Co Ltd Plasma display panel
JP2007176726A (en) * 2005-12-27 2007-07-12 Nihon Yamamura Glass Co Ltd Bismuth-based lead-free glass
JP2007210870A (en) * 2005-03-09 2007-08-23 Nippon Electric Glass Co Ltd Bismuth-based glass composition and bismuth-based sealing material
JP2007234281A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Plasma display panel
JP2007265957A (en) * 2006-03-28 2007-10-11 Samsung Sdi Co Ltd Plasma display panel
WO2007132754A1 (en) * 2006-05-15 2007-11-22 Nippon Electric Glass Co., Ltd. Bismuth-based sealing material and bismuth-base paste material
WO2008120851A1 (en) * 2007-04-03 2008-10-09 Lg Electronics Inc. Dielectric composition and plasma display panel including the same
WO2009014029A1 (en) * 2007-07-20 2009-01-29 Nippon Electric Glass Co., Ltd. Sealing material, sealing tablet, and glass composition for sealing
JP2009046380A (en) * 2007-07-20 2009-03-05 Nippon Electric Glass Co Ltd Glass composition for sealing
JP2009046379A (en) * 2007-07-20 2009-03-05 Nippon Electric Glass Co Ltd Sealing material and sealing tablet
US7557506B2 (en) 2005-08-31 2009-07-07 Samsung Sdi Co., Ltd. Plasma display panel
JP2009176738A (en) * 2008-01-23 2009-08-06 Samsung Sdi Co Ltd Plasma display panel
EP1990822A4 (en) * 2006-02-28 2010-03-03 Panasonic Corp FLAT SCREEN
EP2161245A3 (en) * 2008-09-03 2010-04-21 Fujinon Corporation Bismuth borate optical glass
JP2011037682A (en) * 2009-08-14 2011-02-24 Nippon Electric Glass Co Ltd Tablet and tablet-integrated exhaust pipe
US7902757B2 (en) 2005-10-03 2011-03-08 Panasonic Corporation Plasma display panel
JP2011171312A (en) * 2004-11-10 2011-09-01 Hitachi Powdered Metals Co Ltd Electron emission source forming composition, and method of forming film for electron emission source
CN102173576A (en) * 2011-02-12 2011-09-07 西安创联宏晟电子有限公司 Lead-free electronic glass and preparation method thereof
KR101205207B1 (en) * 2009-11-02 2012-11-27 신세라믹 주식회사 Pb-free glass-frit for sealant that sealing is possible at low temperature below 420°Cand synthesize of filler that is suitable to glass-frit
CN108164150A (en) * 2016-12-07 2018-06-15 辽宁省轻工科学研究院 A kind of preparation and application of the airtight high expansion coefficient aluminium alloy sealing glass powder of high resistivity
WO2021039730A1 (en) * 2019-08-30 2021-03-04 Agc株式会社 Optical element, glass, and luminescence device
CN114040899A (en) * 2019-08-08 2022-02-11 庄信万丰先进玻璃技术有限责任公司 Enamel coating of coated glass substrates
CN115286253A (en) * 2022-08-09 2022-11-04 中建材玻璃新材料研究院集团有限公司 Preparation method of low-melting-point sealing glass powder for micro electronic mechanical system
CN117700100A (en) * 2023-12-18 2024-03-15 河北光兴半导体技术有限公司 A kind of low melting point high entropy glass and its preparation method and application

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164965A (en) * 2004-11-10 2006-06-22 Hitachi Powdered Metals Co Ltd Composition for forming electron emitting source and method of forming coating for electron emitting source
JP2011171312A (en) * 2004-11-10 2011-09-01 Hitachi Powdered Metals Co Ltd Electron emission source forming composition, and method of forming film for electron emission source
JP2006169047A (en) * 2004-12-16 2006-06-29 Central Glass Co Ltd Lead-free low melting point glass
JP2006182589A (en) * 2004-12-27 2006-07-13 Nihon Yamamura Glass Co Ltd Bismuth-based lead-free glass composition
JP2006238156A (en) * 2005-02-25 2006-09-07 Kyocera Corp Portable wireless device
JP2006282501A (en) * 2005-03-09 2006-10-19 Nippon Electric Glass Co Ltd Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL
JP2007210870A (en) * 2005-03-09 2007-08-23 Nippon Electric Glass Co Ltd Bismuth-based glass composition and bismuth-based sealing material
JP2006290665A (en) * 2005-04-08 2006-10-26 Boe Technology Group Co Ltd Lead-free sealing glass powder and its producing method
WO2006132102A1 (en) * 2005-06-09 2006-12-14 Nihon Yamamura Glass Co., Ltd. Zinc phosphate based lead-free glass composition
JP2006342018A (en) * 2005-06-09 2006-12-21 Nihon Yamamura Glass Co Ltd Zinc phosphate-based lead-free glass composition
JP2007042553A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Plasma display panel
US7557506B2 (en) 2005-08-31 2009-07-07 Samsung Sdi Co., Ltd. Plasma display panel
WO2007040142A1 (en) * 2005-10-03 2007-04-12 Matsushita Electric Industrial Co., Ltd. Plasma display panel
JP2007128858A (en) * 2005-10-03 2007-05-24 Matsushita Electric Ind Co Ltd Plasma display panel
WO2007040178A1 (en) * 2005-10-03 2007-04-12 Matsushita Electric Industrial Co., Ltd. Plasma display panel
US7931948B2 (en) 2005-10-03 2011-04-26 Panasonic Corporation Plasma display panel
US7902757B2 (en) 2005-10-03 2011-03-08 Panasonic Corporation Plasma display panel
US7736762B2 (en) 2005-10-03 2010-06-15 Panasonic Corporation Plasma display panel
KR100934080B1 (en) * 2005-10-03 2009-12-24 파나소닉 주식회사 Plasma display panel
KR100916878B1 (en) * 2005-10-03 2009-09-09 파나소닉 주식회사 Plasma display panel
JP2007176726A (en) * 2005-12-27 2007-07-12 Nihon Yamamura Glass Co Ltd Bismuth-based lead-free glass
US7990065B2 (en) 2006-02-28 2011-08-02 Panasonic Corporation Plasma display panel with improved luminance
WO2007105468A1 (en) * 2006-02-28 2007-09-20 Matsushita Electric Industrial Co., Ltd. Plasma display panel
JP2007234281A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Plasma display panel
KR100929477B1 (en) * 2006-02-28 2009-12-02 파나소닉 주식회사 Plasma display panel
EP1990822A4 (en) * 2006-02-28 2010-03-03 Panasonic Corp FLAT SCREEN
US7781968B2 (en) 2006-03-28 2010-08-24 Samsung Sdi Co., Ltd. Plasma display panel
JP2007265957A (en) * 2006-03-28 2007-10-11 Samsung Sdi Co Ltd Plasma display panel
JP2007332018A (en) * 2006-05-15 2007-12-27 Nippon Electric Glass Co Ltd Bismuth-based sealing material and bismuth-based paste material
KR101020143B1 (en) 2006-05-15 2011-03-08 니폰 덴키 가라스 가부시키가이샤 Bismuth Sealing Materials and Bismuth Paste Materials
WO2007132754A1 (en) * 2006-05-15 2007-11-22 Nippon Electric Glass Co., Ltd. Bismuth-based sealing material and bismuth-base paste material
WO2008120851A1 (en) * 2007-04-03 2008-10-09 Lg Electronics Inc. Dielectric composition and plasma display panel including the same
US8164260B2 (en) 2007-04-03 2012-04-24 Lg Electronics Inc. Dielectric composition and plasma display panel including the same
JP2009046380A (en) * 2007-07-20 2009-03-05 Nippon Electric Glass Co Ltd Glass composition for sealing
WO2009014029A1 (en) * 2007-07-20 2009-01-29 Nippon Electric Glass Co., Ltd. Sealing material, sealing tablet, and glass composition for sealing
JP2009046379A (en) * 2007-07-20 2009-03-05 Nippon Electric Glass Co Ltd Sealing material and sealing tablet
JP2009176738A (en) * 2008-01-23 2009-08-06 Samsung Sdi Co Ltd Plasma display panel
EP2161245A3 (en) * 2008-09-03 2010-04-21 Fujinon Corporation Bismuth borate optical glass
JP2011037682A (en) * 2009-08-14 2011-02-24 Nippon Electric Glass Co Ltd Tablet and tablet-integrated exhaust pipe
KR101205207B1 (en) * 2009-11-02 2012-11-27 신세라믹 주식회사 Pb-free glass-frit for sealant that sealing is possible at low temperature below 420°Cand synthesize of filler that is suitable to glass-frit
CN102173576A (en) * 2011-02-12 2011-09-07 西安创联宏晟电子有限公司 Lead-free electronic glass and preparation method thereof
CN108164150B (en) * 2016-12-07 2022-04-29 辽宁省轻工科学研究院有限公司 Preparation method and application of aluminum alloy sealing glass powder with high resistivity and high expansion coefficient
CN108164150A (en) * 2016-12-07 2018-06-15 辽宁省轻工科学研究院 A kind of preparation and application of the airtight high expansion coefficient aluminium alloy sealing glass powder of high resistivity
JP7486533B2 (en) 2019-08-08 2024-05-17 フェンジ・エイジーティ・ネザーランズ・ベスローテン・フェンノートシャップ Enamel coating on coated glass substrate
KR20220032053A (en) * 2019-08-08 2022-03-15 존슨 맛쎄이 어드밴스드 글래스 테크놀로지스 비.브이. Enamel coating on coated glass substrates
CN114040899A (en) * 2019-08-08 2022-02-11 庄信万丰先进玻璃技术有限责任公司 Enamel coating of coated glass substrates
JP2022538411A (en) * 2019-08-08 2022-09-02 フェンジ・エイジーティ・ネザーランズ・ベスローテン・フェンノートシャップ Enamel coating of coated glass substrates
CN114040899B (en) * 2019-08-08 2024-07-09 芬齐Agt荷兰有限责任公司 Enamel coating of coated glass substrates
KR102765528B1 (en) * 2019-08-08 2025-02-12 펜지 에이지티 네덜란드 비.브이. Enamel coating on coated glass substrate
US12234184B2 (en) 2019-08-08 2025-02-25 Fenzi Agt Netherlands B.V. Enamel coating of a coated glass substrate
WO2021039730A1 (en) * 2019-08-30 2021-03-04 Agc株式会社 Optical element, glass, and luminescence device
JP7537437B2 (en) 2019-08-30 2024-08-21 Agc株式会社 Optical elements, glass and light-emitting devices
CN115286253A (en) * 2022-08-09 2022-11-04 中建材玻璃新材料研究院集团有限公司 Preparation method of low-melting-point sealing glass powder for micro electronic mechanical system
CN115286253B (en) * 2022-08-09 2024-04-16 中建材玻璃新材料研究院集团有限公司 Preparation method of low-melting-point sealing glass powder for micro electronic mechanical system
CN117700100A (en) * 2023-12-18 2024-03-15 河北光兴半导体技术有限公司 A kind of low melting point high entropy glass and its preparation method and application

Similar Documents

Publication Publication Date Title
JP2004284934A (en) Lead-free low-melting point glass
KR100511617B1 (en) Lead-free low-melting glass
KR100430335B1 (en) Transparent electric insulating low-melting glass for covering a substrate, and laminate comprising the same
JP2002053342A (en) Low melting glass for electrode coating
KR20020034925A (en) Glass for covering electrodes and plasma display panel
JP2006169047A (en) Lead-free low melting point glass
JP4282885B2 (en) Low melting point glass for electrode coating and plasma display device
JP4071448B2 (en) Low melting glass
JP4151143B2 (en) Low melting point glass powder for electrode coating and plasma display device
JP2005231923A (en) Lead-free low melting glass
JP4765269B2 (en) Lead-free low melting point glass
JP4075298B2 (en) Low melting point glass for electrode coating
JP2006151763A (en) Lead-free low melting glass
WO2008007596A1 (en) Lead-free low-melting glass
JP2006111512A (en) Lead-free glass having low melting point
JP4380589B2 (en) Low melting point glass for electrode coating and plasma display device
JP3456631B2 (en) Low melting point glass for forming transparent insulating film
JP2005015280A (en) Lead-free low melting glass
JP4892860B2 (en) Lead-free low melting point glass
JP2006117440A (en) Lead-free glass having low melting point
JP2009120407A (en) Lead-free low-melting glass
JPH11343138A (en) Low-melting point glass for forming transparent insulating film
JP2005219942A (en) Lead-free low melting point glass
JP2001039734A (en) Low melting point glass for formation of transparent insulating coating film
JP2005145772A (en) Lead-free low melting glass