[go: up one dir, main page]

JP2004282914A - Driver of stepping motor - Google Patents

Driver of stepping motor Download PDF

Info

Publication number
JP2004282914A
JP2004282914A JP2003071492A JP2003071492A JP2004282914A JP 2004282914 A JP2004282914 A JP 2004282914A JP 2003071492 A JP2003071492 A JP 2003071492A JP 2003071492 A JP2003071492 A JP 2003071492A JP 2004282914 A JP2004282914 A JP 2004282914A
Authority
JP
Japan
Prior art keywords
command
current
stepping motor
coefficient
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071492A
Other languages
Japanese (ja)
Other versions
JP3942550B2 (en
Inventor
Yoshifumi Kuwano
好文 桑野
Hiroaki Taka
広昭 鷹
Akio Takemori
顕緒 竹森
Yukinari Takahashi
幸成 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Japan Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Servo Corp filed Critical Japan Servo Corp
Priority to JP2003071492A priority Critical patent/JP3942550B2/en
Publication of JP2004282914A publication Critical patent/JP2004282914A/en
Application granted granted Critical
Publication of JP3942550B2 publication Critical patent/JP3942550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Stepping Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driver of a stepping motor having an inexpensive high accuracy microdrive function of simple structure. <P>SOLUTION: The driver has a function for controlling the motor current according to a current command, and a detector for detecting the command rotor pole position. The driver is arranged to operate a positional deviation ε, i.e. the difference between a positional command θ* being given to a positional command input terminal and a rotor pole position θf detected by the position detector, to multiply the positional deviation ε by a coefficient through a coefficient unit, and to subtract the output of the coefficient unit from the positional command θ* thus producing an exciting angle command. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、角度及び速度を制御するためのステッピングモータの駆動装置に関する。
【0002】
【従来技術】
装置の高機能化に伴い、モータは低振動低騒音で広範囲に亘り回転できることが求められているが、ステッピングモータは各巻線の通電状態を外部指令パルスの印加毎に瞬時に切り替えることで歩進回転するため、電流の切り替え時に発生する振動騒音の低減及び脱調の防止が課題である。
振動騒音の低減及び脱調防止のために、パルス幅変調方式(以下PWM方式と記す)のインバータを用いて巻線通電電流を滑らかに変化させるマイクロステップ駆動が一般的である。図5は従来技術によるマイクロステップ駆動回路のブロック図である。
【0003】
マイクロステップ駆動は、モータ巻線に正弦波状の階段電流を、モータ相数に応じた位相差で通電することで実現できる。図5は2相ステッピングモータの例を示しているが、外部入力端子10に印加される位置指令θ*に対応する第1相基本電流指令発生器51の出力cosθ*及び第2相基本電流指令発生器52の出力sinθ*を発生し、前記相基本電流指令発生器51及び52の出力を乗算器63及び64の一方の入力端子に接続し、外部入力端子61及び62に印加される電流振幅指令を乗算器63及び64の他方の入力端子に接続し第1相電流指令Iα*cosθ*及び第2相電流指令Iβ*sinθ*を得る構成となっている。加算器31及び32、電流制御器41及び42、インバータ70電流検出器81及び82は、加算器31及び32に印加される第1相電流指令Iα*cosθ*及び第2相電流指令Iβ*sinθ*を電流指令とする電流制御系を構成し、所望の特性を実現している。
図5に係るマイクロステップ駆動方式は、位置指令の分解能に応じて、ステップ状の動作を微小化し、滑らかな回転に近づけることができるから、過渡的な振動を小さくするために有効な技術である。
しかし、該マイクロステップ駆動方式は、例えば静止時の停止位置誤差はモータの角度対発生トルク特性に依存するものであるから、停止位置改善効果は期待できない。また、モータの固有振動についても同様に、ステッピングモータの固有特性を示すことになる。
【0004】
マイクロステップ機能と振動低減を実現するために、例えば特開平6−225595記載のとおり、各相電流をdq回転座標系に変換し、モータ電流の制御を回転座標系で取り扱う制御装置がある。
特開平6−225595記載方式では、図6に示す構成図の如くステッピングモータが永久磁石形同期モータと同一モデルであるという前提で、ステッピングモータにエンコーダを接続し、電流制御、速度制御、位置制御の各閉ループ制御系を構成し、これらをdq回転座標系に変換し位置制御を実現する具体的手法が記載されている。また、制御構成の簡略化を目的に、dq軸成分の非干渉要素の省略と、電流指令を直接dq軸上で与えることが明記されている。
【0005】
しかし、ステッピングモータは磁極数が多く、電流基本周波数ωreが他の制御用モータに比べて高いという特徴がある。このため、ステッピングモータは同一構造とされる永久磁石形同期モータと同様の制御回路で構成した場合、電流制御器の応答性の限界から速度の上昇とともに電流制御器ゲインが低下しモータ電流の制御誤差が増大するという問題がある。また、モータは速度起電力Eemfを発生するから、モータ回転数の上昇により該Eemfが印加電圧に拮抗するか、印加電圧を超える回転数においてモータ電流を制御することができない状態が発生する。
つまり、特開平6−225595記載方式によるステッピングモータの制御方式に対し印加電圧の限られた実際の装置では、回転数の上昇につれ電流を制御することが困難になり、制御可能範囲が限定されるという問題があった。
また、特開平6−225595記載のステッピングモータ制御装置は、磁束方向成分をd軸、該d軸と直交する方向をq軸として、発生トルクを制御する目的で磁束と直交する電流、即ちq軸電流を速度偏差に応じて制御する構成になっており、位置制御を実現するために位置制御器及び速度制御器を設ける必要から、構成が複雑で高価な制御装置となっていた。
【0006】
【発明が解決しようとする課題】
以上の如く、振動を抑制することを目的として従来方式ではステッピングモータの1ステップあたりの位置変化量を細分化しているが、負荷変動に対する振動、停止精度に対する特性はステッピングモータの固有特性となっていた。また、積極的に振動特性を改善する従来方式では、構成が複雑で高価な制御装置となっていた。
本発明は、振動抑制効果を持つ、構成が簡単で安価なステッピングモータの駆動装置の実現を目的としている。また、停止(零速度)時の位置精度の改善効果を具備したステッピングモータの駆動装置の実現を目的としている。
【0007】
【問題を解決するための手段】
上記問題を解決するために本発明では、ステッピングモータに正弦波状階段電流を通電する多相ステッピングモータの駆動装置において、ロータ磁極磁極位置を検出する位置検出器を備え、位置指令入力端子に与えられる位置指令θ*と位置検出器で検出したロータ磁極磁極位置θfを用いて位置指令θ*とロータ磁極磁極位置θfの差である位置偏差εを演算し、該位置偏差εを係数器で係数倍したのち、位置指令θ*から該係数器出力を減算した値を励磁角度指令とするように構成する。
また、該係数器の係数kを振動抑制目的で0<k<1で調整し、停止精度制御の目的でk<0の範囲で係数kを変更する。
【0008】
【作用】
上記構成にすることで、本発明の課題とする低振動で高精度の駆動装置を安価に実現することができろ。以下その根拠を記述する。
モータの軸トルクが、ロータ磁極磁極位置と励磁位置の偏差即ち位置δの正弦関数であるとすると、軸トルクは数式1で表すことができる。
【数1】

Figure 2004282914
ただし、Tは軸トルク、Tmはモータ最大トルク、δは位置偏差である
また、振動抑制部20を図2のように構成したときの振動抑制部出力λは数式2となる。
【数2】
Figure 2004282914
ここで、kは係数器21の設定値、θ*は端子10に加えられる位置指令、θたfは位置検出器92の出力であるロータ磁極位置である。
振動抑制部20の出力λは電流指令の角度となるから、ロータ磁極位置θfとλの位相差が偏差δと考えることができるから、数式3が成り立つ。
【数3】
Figure 2004282914
数式3を数式1に代入して数式4を得る。
【数4】
Figure 2004282914
数式4の関係を図3に示す。図3において(a)はk=0の場合、(b)はk>0の場合(代表値としてk=0.5)、(c)はk<0の場合(代表値としてk=−0.5)を示している。また、kと最大トルク発生角度の関係を図4に示す。即ち、図4に示すとおり、係数器の設定値kの大きさを変えることで、最大トルク発生の角度を制御することができることが分かる。また、図3に示すとおり安定点における位置偏差対発生トルクの割合(軸剛性と称する)も変化させることができる。
図3における(a)のk=0という条件は通常のステッピングモータのオープン駆動に対応することは明らかであるから、kを正の値に取ることで軸剛性を小さくすることができる。この結果、振動を低減することができる。
また、kを負の値に取ることで軸剛性を大きくすることができるから、停止位置精度を向上することができる。
【0009】
【実施例】
図1は本発明の第1の実施例である。
図1において、ステッピングモータ91に対してPWMインバータ70でモータに所定の電圧を印加し、モータを回転させる。電流検出器81、82はモータ相電流iαf、iβfを検出し、該モータ相電流iαf、iβfを第1の加算器31及び第2の加算器32の一方の入力とする。一方、第1相の電流振幅指令入力端子61と第2相の電流振幅指令入力端子にそれぞれiα*及びiβ*を印加する。
加算器31、32は電流指令と帰還電流の差分である電流誤差を演算するものであり、該電流誤差を電流補償器41、42で増幅したのち、該PWMインバータ70の入力としている。
【0010】
図2は該調整部20の詳細を示す図である。
角度演算器21は比較22の出力である位置偏差εを係数倍(k倍)し、加算器23(異符号であるため減算となる)の一方の入力に接続する。加算器23の他方の入力には位置指令θ*を接続し、出力λを得ている。
【0011】
係数kを0<k<1に取ると、該調整部20の出力λは、ロータ磁極位置が指令に対して偏差を持つ場合、角度指令を直接励磁電流の角度指令に用いるよりも小さな指令変化を過渡的に与えることができるため、振動低減効果が得られる。
【0012】
係数kをk<0に取ると、該調整部20の出力λは、ロータ磁極位置が指令に対して偏差を持つ場合、角度指令を直接励磁電流の角度指令に用いるよりも大きな指令変化を過渡的に与えることができるため、モータの軸剛性を大きくできる。
【0013】
【発明の効果】
図6は本発明の第2の実施例である。
図6と図1の共通部は同一番号を付しているが、図6では、対象モータが3相ステッピングモータになり、3相−2相固定座標変換器63、及び2相−3相固定座標変換器64、電流センサ33が追加されている他は、同一の構成である。3相電流を検出する場合、対称性を利用して、2つの電流センサ検出出力で第3相電流を演算することで第3相目の電流センサを省略することも可能である。
尚、第1及び第2の実施例に示す機能は、構成部品を少なくするためにマイクロプロセッサを用いて実現することも可能である。
【0014】
【図面の簡単な説明】
【図1】本発明の第1の実施例である。
【図2】本発明の第1の実施例の部分説明図である。
【図3】本発明の原理説明のための角度対軸トルクの関係を示す説明図である。
【図4】本発明の係数器係数対最大トルク発生角度の関係を示す説明図である。
【図5】第1の従来例ブロック図である。
【図6】第2の従来例ブロック図である。
【0014】
【符号の説明】
10 位置指令入力端子
20 調整部
21 係数器
22、23 加算器
31、32 加算器
41 第1相電流制御器
42 第2相電流制御器
51 第1相基本電流指令発生器
52 第2相基本電流指令発生器
61 第1相電流振幅指令入力端子
62 第2相電流振幅指令入力端子
70 PWMインバータ
81、82 電流検出器
91 ステッピングモータ
92 位置検出器
101 加算器
102 加算器
103 加算器
104 加算器
105 加算器
110 位置制御器
120 速度制御器
130 第1の座標変換器
141 第1の電流制御器
142 第2の電流制御器
150 PWMインバータ
154 第1の電流検出器
155 第2の電流検出器
160 第2の座標変換器
170 三角関数発生器
180 ステッピングモータ
190 位置検出器
【整理番号】L2003−05[0001]
[Industrial applications]
The present invention relates to a driving device for a stepping motor for controlling an angle and a speed.
[0002]
[Prior art]
The motor is required to be able to rotate over a wide range with low vibration and low noise in accordance with the sophistication of the device.However, the stepping motor is stepped by switching the energization state of each winding instantaneously every time an external command pulse is applied. Because of the rotation, reduction of vibration noise generated at the time of switching of current and prevention of loss of synchronization are issues.
In order to reduce vibration noise and prevent loss of synchronism, a micro step drive in which a winding current is smoothly changed using a pulse width modulation (hereinafter referred to as PWM) inverter is generally used. FIG. 5 is a block diagram of a micro step driving circuit according to the prior art.
[0003]
The micro-step drive can be realized by supplying a sinusoidal step current to the motor winding with a phase difference corresponding to the number of motor phases. FIG. 5 shows an example of the two-phase stepping motor. The output cos θ * of the first-phase basic current command generator 51 and the second-phase basic current command corresponding to the position command θ * applied to the external input terminal 10 are shown. An output sin θ * of the generator 52 is generated, the outputs of the phase basic current command generators 51 and 52 are connected to one input terminal of multipliers 63 and 64, and the current amplitude applied to the external input terminals 61 and 62 The command is connected to the other input terminals of the multipliers 63 and 64 to obtain a first phase current command Iα * cos θ * and a second phase current command Iβ * sin θ *. The adders 31 and 32, the current controllers 41 and 42, and the inverter 70 current detectors 81 and 82 include a first phase current command Iα * cos θ * and a second phase current command Iβ * sin θ applied to the adders 31 and 32, respectively. A current control system using * as a current command is configured to achieve desired characteristics.
The micro-step driving method according to FIG. 5 is an effective technique for reducing transient vibrations because the step-like operation can be miniaturized according to the resolution of the position command and can be approximated to smooth rotation. .
However, in the micro-step driving method, for example, the stop position error at the time of rest depends on the motor angle versus the generated torque characteristic, so that the stop position improvement effect cannot be expected. Similarly, the natural vibration of the motor indicates the natural characteristics of the stepping motor.
[0004]
In order to realize the micro-step function and the vibration reduction, for example, as described in JP-A-6-225595, there is a control device that converts each phase current into a dq rotating coordinate system and handles motor current control in a rotating coordinate system.
In the system described in JP-A-6-225595, an encoder is connected to a stepping motor, and current control, speed control, and position control are performed on the assumption that the stepping motor is the same model as the permanent magnet synchronous motor as shown in the configuration diagram of FIG. A specific method is described in which each closed loop control system is configured, and these are converted into a dq rotation coordinate system to realize position control. Further, for the purpose of simplifying the control configuration, it is specified that the non-interference element of the dq axis component is omitted and that the current command is directly given on the dq axis.
[0005]
However, the stepping motor has a feature that the number of magnetic poles is large and the basic current frequency ωre is higher than other control motors. For this reason, when the stepping motor is configured with the same control circuit as a permanent magnet type synchronous motor having the same structure, the current controller gain decreases as the speed increases due to the limit of the responsiveness of the current controller, and the motor current is controlled. There is a problem that errors increase. Further, since the motor generates the speed electromotive force Eemf, the state where the Eemf antagonizes the applied voltage or the motor current cannot be controlled at the number of rotations exceeding the applied voltage occurs due to an increase in the motor rotation speed.
In other words, in an actual device with a limited applied voltage as compared with the control method of the stepping motor described in Japanese Patent Application Laid-Open No. 6-225595, it becomes difficult to control the current as the rotation speed increases, and the controllable range is limited. There was a problem.
Further, a stepping motor control device described in Japanese Patent Application Laid-Open No. H6-225595 discloses a current perpendicular to a magnetic flux for controlling generated torque, that is, a q-axis. The configuration is such that the current is controlled in accordance with the speed deviation, and a position controller and a speed controller need to be provided in order to realize the position control. Therefore, the configuration has been a complicated and expensive control device.
[0006]
[Problems to be solved by the invention]
As described above, the position change amount per step of the stepping motor is subdivided in the conventional method for the purpose of suppressing the vibration, but the characteristic with respect to the vibration and the stop accuracy with respect to the load change is the characteristic characteristic of the stepping motor. Was. Further, in the conventional method in which the vibration characteristics are positively improved, the configuration is complicated and the control device is expensive.
An object of the present invention is to realize a driving device for a stepping motor which has a vibration suppressing effect, has a simple configuration and is inexpensive. It is another object of the present invention to realize a stepping motor driving device having an effect of improving the positional accuracy when stopping (zero speed).
[0007]
[Means to solve the problem]
In order to solve the above problem, according to the present invention, in a driving device for a polyphase stepping motor for supplying a sinusoidal step current to the stepping motor, a position detector for detecting a rotor magnetic pole position is provided, which is provided to a position command input terminal. Using the position command θ * and the rotor magnetic pole position θf detected by the position detector, a position deviation ε, which is the difference between the position command θ * and the rotor magnetic pole position θf, is calculated, and the position deviation ε is multiplied by a coefficient unit. After that, the value obtained by subtracting the output of the coefficient unit from the position command θ * is used as the excitation angle command.
Further, the coefficient k of the coefficient unit is adjusted to be 0 <k <1 for the purpose of suppressing vibration, and the coefficient k is changed within the range of k <0 for the purpose of stop accuracy control.
[0008]
[Action]
With the above configuration, a low-vibration, high-precision driving device, which is an object of the present invention, can be realized at low cost. The grounds are described below.
Assuming that the shaft torque of the motor is a sine function of the deviation between the rotor magnetic pole position and the excitation position, that is, the position δ, the shaft torque can be expressed by Equation 1.
(Equation 1)
Figure 2004282914
Here, T is the shaft torque, Tm is the motor maximum torque, and δ is the position deviation. Further, the output λ of the vibration suppression unit when the vibration suppression unit 20 is configured as shown in FIG.
(Equation 2)
Figure 2004282914
Here, k is a set value of the coefficient unit 21, θ * is a position command applied to the terminal 10, and θ / f is a rotor magnetic pole position which is an output of the position detector 92.
Since the output λ of the vibration suppressing unit 20 is the angle of the current command, the phase difference between the rotor magnetic pole positions θf and λ can be considered as the deviation δ, and therefore, Equation 3 holds.
[Equation 3]
Figure 2004282914
Equation 3 is substituted into Equation 1 to obtain Equation 4.
(Equation 4)
Figure 2004282914
FIG. 3 shows the relationship of Expression 4. 3A shows a case where k = 0, FIG. 3B shows a case where k> 0 (k = 0.5 as a representative value), and FIG. 3C shows a case where k <0 (k = −0 as a representative value). .5). FIG. 4 shows the relationship between k and the maximum torque generation angle. That is, as shown in FIG. 4, it can be seen that the angle of the maximum torque generation can be controlled by changing the magnitude of the set value k of the coefficient unit. In addition, as shown in FIG. 3, the ratio of the position deviation at the stable point to the generated torque (referred to as shaft rigidity) can also be changed.
Since it is clear that the condition of k = 0 in FIG. 3A corresponds to the normal open drive of the stepping motor, the shaft rigidity can be reduced by setting k to a positive value. As a result, vibration can be reduced.
Further, by setting k to a negative value, the shaft rigidity can be increased, so that the stop position accuracy can be improved.
[0009]
【Example】
FIG. 1 shows a first embodiment of the present invention.
In FIG. 1, a predetermined voltage is applied to a stepping motor 91 by a PWM inverter 70 to rotate the motor. The current detectors 81 and 82 detect the motor phase currents iαf and iβf, and use the motor phase currents iαf and iβf as one input of the first adder 31 and the second adder 32. On the other hand, iα * and iβ * are applied to the first phase current amplitude command input terminal 61 and the second phase current amplitude command input terminal, respectively.
The adders 31 and 32 calculate a current error which is a difference between the current command and the feedback current. The current errors are amplified by the current compensators 41 and 42 and then input to the PWM inverter 70.
[0010]
FIG. 2 is a diagram showing details of the adjustment unit 20.
The angle calculator 21 multiplies the position deviation ε output from the comparison 22 by a factor (k times), and connects it to one input of an adder 23 (subtraction is performed because of a different sign). A position command θ * is connected to the other input of the adder 23 to obtain an output λ.
[0011]
When the coefficient k is set to 0 <k <1, the output λ of the adjusting unit 20 has a smaller command change than when the angle command is directly used as the angle command of the exciting current when the rotor magnetic pole position has a deviation from the command. Can be provided transiently, so that a vibration reduction effect can be obtained.
[0012]
When the coefficient k is set to k <0, when the rotor magnetic pole position has a deviation with respect to the command, the output λ of the adjusting unit 20 changes a command change larger than the case where the angle command is used directly as the angle command of the excitation current. Can be given to the motor, so that the shaft rigidity of the motor can be increased.
[0013]
【The invention's effect】
FIG. 6 shows a second embodiment of the present invention.
6 and FIG. 1 have the same reference numerals, but in FIG. 6, the target motor is a three-phase stepping motor, and the three-phase / two-phase fixed coordinate converter 63 and the two-phase / three-phase fixed The configuration is the same except that a coordinate converter 64 and a current sensor 33 are added. When detecting a three-phase current, it is also possible to omit the third-phase current sensor by calculating the third-phase current using two current sensor detection outputs by utilizing the symmetry.
The functions shown in the first and second embodiments can be realized by using a microprocessor to reduce the number of components.
[0014]
[Brief description of the drawings]
FIG. 1 is a first embodiment of the present invention.
FIG. 2 is a partial explanatory view of the first embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a relationship between an angle and an axial torque for explaining the principle of the present invention.
FIG. 4 is an explanatory diagram illustrating a relationship between a coefficient factor coefficient and a maximum torque generation angle according to the present invention.
FIG. 5 is a block diagram of a first conventional example.
FIG. 6 is a block diagram of a second conventional example.
[0014]
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Position command input terminal 20 Adjuster 21 Coefficient unit 22, 23 Adder 31, 32 Adder 41 First phase current controller 42 Second phase current controller 51 First phase basic current command generator 52 Second phase basic current Command generator 61 First phase current amplitude command input terminal 62 Second phase current amplitude command input terminal 70 PWM inverters 81, 82 Current detector 91 Stepping motor 92 Position detector 101 Adder 102 Adder 103 Adder 104 Adder 105 Adder 110 position controller 120 speed controller 130 first coordinate converter 141 first current controller 142 second current controller 150 PWM inverter 154 first current detector 155 second current detector 160 2 coordinate converter 170 trigonometric function generator 180 stepping motor 190 position detector [reference number] L2003-05

Claims (4)

ステッピングモータに正弦波状階段電流を通電するステッピングモータの駆動装置において、電流指令に従ってモータ電流を制御する電流制御機能と、指令ロータ磁極位置を検出する位置検出器を備え、位置指令入力端子に与えられる位置指令θ*と位置検出器で検出したロータ磁極位置θfを用いて位置指令θ*とロータ磁極位置θfの差である位置偏差εを演算し、該位置偏差εを係数器で係数倍したのち、位置指令θ*から該係数器出力を減算した値を励磁角度指令とするように構成したステッピングモータの駆動装置。A stepping motor drive device for applying a sinusoidal step current to a stepping motor includes a current control function for controlling a motor current according to a current command, and a position detector for detecting a command rotor magnetic pole position, which is provided to a position command input terminal. A position deviation ε, which is a difference between the position command θ * and the rotor magnetic pole position θf, is calculated using the position command θ * and the rotor magnetic pole position θf detected by the position detector, and the position deviation ε is multiplied by a coefficient unit. And a stepping motor driving device configured to set a value obtained by subtracting the output of the coefficient unit from the position command θ * as an excitation angle command. 該係数器の係数をkとして、kは0≦k<1の範囲で決定する1項記載のステッピングモータの駆動装置。2. The stepping motor driving device according to claim 1, wherein k is a coefficient of the coefficient unit, and k is determined in a range of 0 ≦ k <1. 該係数器の係数kはk≦0の範囲で決定する1項記載のステッピングモータの駆動装置。2. The stepping motor drive device according to claim 1, wherein the coefficient k of the coefficient unit is determined in a range of k ≦ 0. 該係数器の係数kはモータ回転時において0≦k<1とし、停止時においてk≦0の範囲で決定する1項記載のステッピングモータの駆動装置。2. The stepping motor driving device according to claim 1, wherein the coefficient k of the coefficient unit is set to 0 ≦ k <1 when the motor is rotating, and is determined within a range of k ≦ 0 when the motor is stopped.
JP2003071492A 2003-03-17 2003-03-17 Stepping motor drive device Expired - Lifetime JP3942550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071492A JP3942550B2 (en) 2003-03-17 2003-03-17 Stepping motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071492A JP3942550B2 (en) 2003-03-17 2003-03-17 Stepping motor drive device

Publications (2)

Publication Number Publication Date
JP2004282914A true JP2004282914A (en) 2004-10-07
JP3942550B2 JP3942550B2 (en) 2007-07-11

Family

ID=33287921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071492A Expired - Lifetime JP3942550B2 (en) 2003-03-17 2003-03-17 Stepping motor drive device

Country Status (1)

Country Link
JP (1) JP3942550B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338689A (en) * 2016-08-26 2017-01-18 国电南瑞科技股份有限公司 Self-check method for running state of synchronous motor excitation system
CN112994544A (en) * 2019-12-16 2021-06-18 北京大豪科技股份有限公司 Motor control method and device, storage medium and electronic equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338689A (en) * 2016-08-26 2017-01-18 国电南瑞科技股份有限公司 Self-check method for running state of synchronous motor excitation system
CN106338689B (en) * 2016-08-26 2018-11-30 国电南瑞科技股份有限公司 A kind of synchronous motor excitation system operating status self checking method
CN112994544A (en) * 2019-12-16 2021-06-18 北京大豪科技股份有限公司 Motor control method and device, storage medium and electronic equipment

Also Published As

Publication number Publication date
JP3942550B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
US9893665B2 (en) Motor controller for position sensorless drives
JP4909797B2 (en) Motor control device
JP4624619B2 (en) Method and apparatus for controlling torque in a permanent magnet brushless electronic motor
JP4989075B2 (en) Electric motor drive control device and electric motor drive system
JP4067949B2 (en) Motor control device
JP2005323490A (en) Permanent magnet synchronous motor device and controller
JP3661864B2 (en) Stepping motor drive device
US20060145652A1 (en) Motor drive controlling device and electric power-steering device
EP1320187A2 (en) Method and system for controlling a permanent magnet machine
JP2000236694A (en) Control device for permanent magnet synchronous motor
JP3526846B2 (en) Driving device for stepping motor
JP3503894B2 (en) Driving device for stepping motor
JP2009213244A (en) Stepping motor drive controller and control method
JP2004320847A (en) Method of controlling stepping motor, and stepping motor controller
CN116368716A (en) Motor control device, electromechanical unit, hybrid power system, and electric power steering system
JP2004289898A (en) Drive device for stepping motor
JP2008148437A (en) Controller for permanent magnet type synchronous motor
JP3735836B2 (en) Vector control method for permanent magnet synchronous motor
JP3942550B2 (en) Stepping motor drive device
JP3472533B2 (en) Motor control device
JP3649329B2 (en) Stepping motor drive device
JP4771035B2 (en) Control device for permanent magnet synchronous machine
JP3680618B2 (en) Control device for permanent magnet type synchronous motor
JP3797484B2 (en) Stepping motor drive device
JP5228435B2 (en) Inverter control device and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250