[go: up one dir, main page]

JP2004279903A - Electrification transporting device, developing device, process cartridge, and image forming apparatus - Google Patents

Electrification transporting device, developing device, process cartridge, and image forming apparatus Download PDF

Info

Publication number
JP2004279903A
JP2004279903A JP2003073542A JP2003073542A JP2004279903A JP 2004279903 A JP2004279903 A JP 2004279903A JP 2003073542 A JP2003073542 A JP 2003073542A JP 2003073542 A JP2003073542 A JP 2003073542A JP 2004279903 A JP2004279903 A JP 2004279903A
Authority
JP
Japan
Prior art keywords
electrode
electrostatic
fine particles
charging
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003073542A
Other languages
Japanese (ja)
Inventor
Toshio Sakai
捷夫 酒井
Masanori Horiie
正紀 堀家
Yoichiro Miyaguchi
耀一郎 宮口
Nobuaki Kondo
信昭 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003073542A priority Critical patent/JP2004279903A/en
Publication of JP2004279903A publication Critical patent/JP2004279903A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that advantages of electrostatic transportation decrease when toner is electrified by using a single-component developing device or two-component developing device to transport electrified toner by an electrostatic transporting means and a sufficient electrification quantity cannot be secured by frictional electrification of toner only for electrostatic transportation. <P>SOLUTION: The electrification transporting device is provided with: a charge injecting means 1 having charge injection electrodes 2 on which unelectrified particulates Ta are placed; and an electrostatic transportation substrate 11 being an electrostatic transporting means having a plurality of electrostatic transportation electrodes 12 which face the charge injection electrodes 2 of the charge injecting means 1 and move electrified particulates with an electrostatic force. The unelectrified particulates Ta are electrified by the charge injection electrode 2 and moved toward the electrostatic transportation substrate 11, which transport the electrified particulates Tb by the electrostatic force. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は帯電搬送装置、現像装置、プロセスカートリッジ及び画像形成装置に関する。
【0002】
【特許文献1】特開2001ー139144号公報
【特許文献2】特開2002ー341656号公報
【特許文献3】特開2002−91159号公報
【従来の技術】
複写装置、プリンタ、ファクシミリ等の画像形成装置として、電子写真プロセスを用いて、潜像担持体に潜像を形成し、この潜像に微粒子粉体である現像剤(以下「トナー」ともいう。)を付着させて現像してトナー像として可視像化し、このトナー像を転写体(記録媒体又は中間転写部材)に転写することで画像を形成するものがある。
【0003】
このような画像形成装置において、トナーを搬送するトナー搬送装置としては、回転自在なスクリューを用いたものが一般的であった。例えばパイプ内のトナーをパイプ内部に沿って設けられたスクリューを回転させることによって上記スクリューの軸線方向に搬送するものが知られている。
【0004】
しかしながら、このようなトナー搬送装置にあっては、パイプ内のスクリューを回転させるには比較的大きなモータを用い駆動するため装置面積が大型化となり、かつ回転音も大きいという問題がある。また、パイプ内壁とスクリューとの間にトナーが詰まると、摩擦熱により溶融し、トルクの増加や搬送不良を生じることがある。
【0005】
一方、その他のトナー搬送装置としては、トナーに空気流を当てたり巻き込むことによりトナーを空気流とともに搬送する装置、振動によりトナーが傾斜に沿って滑り落ちるのを助けトナーを搬送する装置、帯電したトナーを電界により搬送する装置等も知られている。
【0006】
これらのうち、トナーを空気流とともに搬送する装置にあっては、微少な粒子状物体の搬送密度は空気で薄められて疎になり低効率な搬送方法である。また、振動によって搬送を助けるトナーを搬送する装置にあっては、振動を起こさせるために比較的大きなエネルギーが必要であり、搬送方向も重力方向に限られるという不都合が生じている。
【0007】
そこで、上述した電界を用いて帯電トナーを搬送する静電搬送装置は、機械的部分の摩耗や振動を伴わないので、騒音の伴わず、長期的安定した画像形成動作を維持することが可能となり、このような搬送装置としては
【特許文献1】、
【特許文献2】などに開示されている。
【0008】
ところが、このような静電搬送装置を用いてトナーを搬送し、現像に供するためには、トナーが帯電していることが必要である。トナーを帯電させる方法としては、現在一般の一成分現像で使用されている、摩擦帯電、現像ローラとドクターブレード(または補給ローラ)間でトナーを現像ローラ表面にこすりつけて摩擦帯電させる方法を用いることができる。
【0009】
しかしながら、例えば、現像ローラ上の摩擦帯電されたトナーを静電搬送装置上にわざわざ転移させて現像部に搬送し、現像に供するよりも、そのまま、現像ローラを像担持体に潜像に接近させて現像させる方が、装置のコスト、大きさ、信頼性の面で絶対的有利であり、静電搬送装置を用いる利点が十分に生かされないという課題がある。
【0010】
そのため、従来の静電搬送を用いた現像装置としては、
【特許文献3】に開示されているように、電界を発生する静電搬送電極列を有する静電搬送基板を用いてトナーを感光体の近傍まで搬送し、この静電搬送基板上をトナーが搬送されることで基板表面との摩擦によって帯電させ、現像装置の開口部からトナーが感光体に転移して現像するようにしたものがある。
【0011】
【発明が解決しようとする課題】
しかしながら、上述した
【特許文献3】に開示されているように静電搬送基板上をトナーが電界(静電力)で搬送されるときの摩擦によって得られる帯電量では、静電搬送及び現像に供するに十分な帯電量を得られず、同文献の記載にもかかわらず、実際には、トナーを搬送できず、現像を行うことができないという課題がある。
【0012】
ところで、本出願人は
【特許文献2】でETH現像を開示している。なお、ETH(イース:Electrostatic Transport& Hopping)現象とは、粉体が移相電界のエネルギーを与えられ、そのエネルギーが機械的なエネルギーに変換されて、粉体自身が動的に変動する現象をいう。このETH現象は、静電気力による粉体の水平方向(搬送面に沿う方向の意味)の移動(搬送)と垂直方向(搬送面鉛直方向の意味)の移動(ホッピング)を含む現象であり、静電搬送基板の表面を、移相電界によって粉体が進行方向の成分を持って飛び跳ねる現象である。このETH現象を利用した現像をETH現像と称する。
【0013】
このETH現像は現像装置の小型化、トナーの飛散防止、高画質化などを図れるという極めて優れた利点を有しているが、静電搬送手段で帯電したトナーを搬送するために、前述したような一成分現像装置や二成分現像装置を用いてトナーを帯電したのでは静電搬送するメリットが低減し、他方静電搬送だけトナーを摩擦帯電するのでは十分な帯電量を確保できず、そもそもトナーの静電搬送すら行えなくなる。
【0014】
そこで、本発明者ら静電搬送装置に帯電した微粒子を供給する技術について鋭意研究した結果本発明に至ったものであり、本発明は、微粒子の帯電と静電搬送を行うことができる新規な帯電搬送装置、この帯電搬送装置を用いた現像装置、プロセスカートリッジ、画像形成装置を提供することを目的とする。
【0015】
上記の課題を解決するため、本発明に係る帯電搬送装置は、未帯電の微粒子が載せられる電荷注入電極を有する電荷注入手段と、この電荷注入手段の電荷注入電極と向かい合い、帯電した微粒子を静電力で移動させるための静電搬送電極を有する静電搬送手段とを備え、未帯電の微粒子を帯電させて静電搬送手段側に転移させる構成とした。なお、本明細書において、「微粒子」とは、「粉体」、「粒子」、「微粒子」、「粉末」、「微粉末」、「微粉体」などと称されるもののすべてを含む意味で用いる。
【0016】
ここで、静電搬送電極に静電搬送用の電圧波形を印加しない状態で、電荷注入電極に対して微粒子帯電用の電圧を、帯電された微粒子が静電搬送手段側に転移するのに要する以上の一定時間印加した後、電荷注入電極に微粒子帯電用の電圧を印加しない状態で、静電搬送電極に静電搬送用の電圧波形を一定時間加える手段を備えていることが好ましい。
【0017】
また、静電搬送電極に静電搬送用の電圧波形を印加しない状態で、電荷注入電極に対して微粒子帯電用の電圧を、該微粒子の帯電量が、該微粒子が該電荷注入電極又はその上の他の微粒子より離れることができるようになる以上の時間印加し、その後、電荷注入電極に印加する電圧を、微粒子の帯電はできないが、帯電した微粒子の静電搬送電極への移動の継続を可能とする電圧に下げた状態で、静電搬送電極に静電搬送用の電圧波形を一周期間印加する手段を備えていることが好ましい。
【0018】
あるいは、電荷注入電極が分割され、この分割電荷注入電極に対し、該分割電荷注入電極の表面には微粒子を帯電できる電界が形成されるが、静電搬送電極の表面には帯電微粒子の搬送されるのを妨げない電界が形成される電圧を印加し、かつ静電搬送電極には静電搬送用の電圧波形を印加する手段を備えていることが好ましい。
【0019】
さらに、電荷注入電極と静電搬送電極との間に、開口を有する導電性部材を設けることが好ましく、この場合、電荷注入電極と導電性部材とに対し、電荷注入電極の表面に未帯電微粒子を帯電できる電界を形成させる電圧を印加し、導電性部材と静電搬送電極とに対し、帯電微粒子の静電搬送電極への移動を継続させるが、静電搬送電極上の帯電微粒子の搬送を妨げない電界を形成させる電圧を印加する手段を備えていることが好ましい。
【0020】
また、電荷注入電極と静電搬送電極との間に、多数の開口部を有し、電荷注入電極側と静電搬送電極側にそれぞれ該開口を取り囲むリング状の共通電極を有する誘電部材を設けることが好ましく、この場合、静電搬送電極には静電搬送用の電圧波形を印加した状態で、電荷注入電極に印加する電圧と誘電部材の電荷注入電極側のリング状共通電極に対し、電荷注入電極表面に微粒子を帯電させられる電界を形成する電圧を印加し、電荷注入電極側のリング状共通電極と静電搬送側リング状共通電極に対し、帯電し静電搬送電極に向かう微粒子が該開口の縁に当たるのを妨げる向きの電界を形成するとともに、静電搬送電極側リング状共通電極と静電搬送電極との間に帯電微粒子の静電搬送電極への移動を継続させるが、静電搬送電極上の帯電微粒子の搬送を妨げない電界を形成する電圧を印加する手段を備えていることが好ましい。
【0021】
あるいは、電荷注入電極と静電搬送電極との間に、導電性の回転部材を設けることが好ましく、この場合、静電搬送電極に静電搬送用の電圧波形を印加した状態で、導電性回転部材に対し、静電搬送電極に印加した電圧との間で、帯電微粒子の静電搬送電極への移動を継続させるが、静電搬送電極上の帯電微粒子の搬送を妨げない電圧を印加するとともに、電荷注入電極に対し、導電性回転部材に印加された電圧との間で、その表面に微粒子の帯電を可能とする電界を形成できる電圧を印加する手段を有し、帯電されこの導電性部材に移動した帯電微粒子を導電性回転部材の回転に伴って静電搬送電極近傍に移動させ、非静電的な手段でこの帯電微粒子を導電性回転体の表面より引き剥がす構成とすることが好ましい。
【0022】
さらに、電荷注入電極は傾斜して保持されていて、非帯電微粒子が電荷注入電極上を重力により滑降する構成とできる。あるいは、電荷注入電極は、その表面に微細なホッパーを有する回転部材であり、非帯電微粒子がホッパーに保持されて回転部材の回転とともに静電搬送電極と向かい合う位置に搬送される構成とすることができる。また、電荷注入電極は、その表面に細い導電性短繊維が埋めこまれた回転部材であり、非帯電微粒子が前記導電性短繊維に保持されて回転部材の回転とともに静電搬送電極と向かい合う位置に搬送される構成とすることができる。
【0023】
本発明に係る帯電搬送装置は、帯電した微粒子を静電力で移動させるための静電搬送電極を有し、この静電搬送電極には半導体から形成された帯電搬送電極を含み、この帯電搬送電極に未帯電の微粒子を載せて、未帯電の微粒子を帯電させて搬送する構成としたものである。
【0024】
ここで、半導体から形成された静電搬送電極に未帯電の微粒子を載せて静電搬送電極に印加される静電搬送用の電圧が電極間に形成する電界で、帯電搬送電極のエッジに、負または正のキャリアのみを選択的に集中させて高電界を形成することで未帯電微粒子に電荷を注入して帯電させるとともにそのまま静電搬送する構成とすることが好ましい。
【0025】
本発明に係る帯電搬送装置は、帯電した微粒子を静電力で移動させるための静電搬送電極を有し、この静電搬送電極には半導体から形成され、その表面に微小な突起を有する帯電搬送電極を含み、この帯電搬送電極に未帯電の微粒子を載せて、未帯電の微粒子を帯電させて搬送する構成としたものである。
【0026】
ここで、帯電搬送電極に未帯電の微粒子を載せて静電搬送電極に印加される静電搬送用の電圧が形成する電界で、突起の先端に、負または正のキャリアのみを選択的に集中させて高電界を形成させて、この高電界で起きるコロナ放電で未帯電微粒子を帯電させるとともにそのまま静電搬送する構成とすることが好ましい。
【0027】
本発明に係る帯電搬送装置は、帯電した微粒子を静電力で移動させるための静電搬送電極を有し、この静電搬送電極には電界電子放出材を表面に有する帯電搬送電極を含み、この帯電搬送電極に未帯電の微粒子を載せて、未帯電の微粒子を帯電させて搬送する構成としたものである。
【0028】
ここで、帯電搬送電極に未帯電の微粒子を載せ、静電搬送電極に印加される静電搬送用の電圧が隣り合った静電搬送電極間に形成する電界で、帯電搬送電極の電界電子放出材より電子を放出させて、該電子、またはそれが大気中の中性分子と結合した負イオンで、未帯電微粒子を帯電させると同時にそのまま静電搬送する構成とすることが好ましい。また、電界電子放出材には、カーボンナノチューブまたはカーボンナノコイルが用いられていることが好ましい。
【0029】
これらの静電搬送電極によって帯電と搬送を行う帯電搬送装置においては、未帯電微粒子を帯電させる行程と帯電された微粒子を搬送する行程を時間的に分割し、各行程で異なる電圧を印加し、両行程を交互に行う構成とすることが好ましい。この場合、帯電搬送電極に対向する帯電補助電極を備え、この帯電補助電極と帯電搬送電極間に未帯電微粒子を帯電させる電圧を印加する構成とすることができる。この場合、静電搬送電極に含まれる帯電搬送電極とこれ以外の電極とは材質が異なることが好ましい。また、帯電補助電極は微粒子が通過できる開口を有していることが好ましい。
【0030】
さらに、上記静電搬送電極によって帯電と搬送を行う帯電搬送装置においては、未帯電微粒子を帯電させる行程で静電搬送電極を備えた部材を振動させる構成とすることが好ましい。
【0031】
本発明に係る帯電搬送装置は、帯電した微粒子を静電力で移動させるための静電搬送電極と、この静電搬送電極の少なくとも一部の静電搬送電極に対向する帯電補助電極とを有し、この帯電補助電極には電界電子放出材又はコロナ放電用の突起を備え、この帯電補助電極に対向する静電搬送電極に未帯電の微粒子を載せて、未帯電の微粒子を帯電させて搬送する構成としたものである。
【0032】
本発明に係る現像装置は、潜像担持体上に帯電トナーを付着させて潜像担持体上の潜像を現像する現像装置において、本発明に係るいずれかの帯電搬送装置を備えているものである。
【0033】
本発明に係るプロセスカートリッジは、少なくとも現像手段を含み、画像形成装置本体に着脱自在であるプロセスカートリッジにおいて、現像手段が本発明に係る現像装置である構成としたものである。
【0034】
本発明に係る画像形成装置は、帯電したトナーを付着させて潜像担持体上の潜像を現像する現像装置を備えた画像形成装置において、本発明に係る現像装置を備えたものである。
【0035】
本発明に係る画像形成装置は、カラー画像を形成する画像形成装置において、本発明に係るプロセスカートリッジを複数備えたものである。
【0036】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照して説明する。先ず、本発明に係る帯電搬送装置の基本的構成ついて図1を参照して説明する。なお、同図は同装置の概略構成説明図である。
この帯電搬送装置は、未帯電の微粒子Taが載せられる電荷注入電極2を有する電荷注入手段1と、この電荷注入手段1の電荷注入電極2と向かい合い、帯電した微粒子を静電力で移動させるための複数の静電搬送電極12を有する静電搬送手段である静電搬送基板11とを備え、電荷注入電極2によって未帯電の微粒子Taを帯電させて(帯電後の微粒子を「帯電微粒子Tb」という。)静電搬送基板11側に転移させ、静電搬送基板1によって帯電微粒子Tbを静電力で搬送する。
【0037】
そして、この帯電搬送装置は、電荷注入電極2に電荷注入用の電圧を印加する駆動回路3と、静電搬送基板11の静電搬送電極12に静電搬送用のn相(nは3以上の整数)のパルス状の駆動電圧Va(a相)、Vb(b相)、Vc(c相)を印加する駆動回路13とを備えている。
【0038】
静電搬送基板11は、ベース基板(支持基板)15上に3本の電極(静電搬送電極)12a、12b、12c(これらを「静電搬送電極12」と総称する。)を1セットとて、所定の間隔で、微粒子移動方向に沿って微粒子移動方向と略直交する方向に繰り返し形成配置し、更にその表面に無機又は有機の絶縁性材料で形成した絶縁部材からなる表面保護層16を形成し、この表面保護層16の表面を搬送面としている。なお、ここでは、表面保護層16が搬送面を形成する表面層となるが、表面保護層16上に更に粉体との適合性に優れた表面層を別途成膜することもできる。
【0039】
ここで、支持基板15としては、ガラス基板、樹脂基板或いはセラミックス基板等の絶縁性材料からなる基板、或いは、SUSなどの導電性材料からなる基板にSiO等の絶縁膜を成膜したもの、また、ポリイミドフィルムなどのフレキシブルに変形可能な材料からなる基板などを用いることができる。
【0040】
また、静電搬送電極12の電極材料としては、Al、NiーCr等の導電性材料を用いることができ、これをフォトリソ技術等を用いて所要の電極形状にパターン化して形成している。また、静電搬送電極12の微粒子進行方向における幅は移動させる粉体の平均粒径の1倍以上20倍以下とし、かつ、静電搬送電極12、12の微粒子進行方向の間隔も移動させる粉体の平均粒径の1倍以上20倍以下としている。
【0041】
表面保護層16としては、例えばSiO、TiO、TiO、SiON、BN、TiN、Taなどを用いることができる。また、無機ナイトライド化合物、例えばSiN、Bn、Wなどを用いることができる。特に、表面水酸基が増えると帯電粉体の帯電量が搬送途中で下がる傾向にあるので、表面水酸基(SiOH、シラトール基)が少ない無機ナイトライド化合物が好ましい。
【0042】
このように、非帯電微粒子(ここでは、トナー)を乗せた電荷注入電極と該電荷注入電極と向かい合う静電搬送電極間に電位差を形成して、該トナーを帯電させて該静電搬送基板に転移させるので、特別のトナーの帯電装置や、帯電したトナーを静電搬送電極に供給装置が不要になり、装置をより小型に、低コストにすることができる。
【0043】
そこで、この帯電搬送装置における微粒子の帯電及び搬送について図2以降をも参照して説明する。
本発明者らは、微粒子としての高抵抗トナーに対する電荷注入を行うために、先ず、図2に示すような電荷注入実験装置を用いて実験を行った。この実験装置は、2枚の平板アルミ電極である接地電極21とパルス電圧を印加するパルス印加電極22を、ベークライトのスペーサーで1mmの間隔で対向させ、トナーTを乗せた電極21を接地し、もう片方の電極22に図示しない電源によりパルス電圧を印加するように構成した。
【0044】
ここで、印加パルス電圧は、HP社製の8116A(商品名)PULSE/FUNCTION GENERATOR を用いて、±0.6〜2.0V、1.0〜1000msecの方形パルスを発生させ、Trek製のHigh−Voltage Power Amplifier 10/10A で1000倍に増幅して生成した。なお、出力波形は、Sony−Tektronix製のデジタルオシロスコープ 243IL(商品名)で毎回観察した。
【0045】
そして、電荷注入されて帯電し、接地電極21からパルス印加電極22に飛翔し、その表面に付着したトナーTの電荷量(q/d)分布、比電荷(q/m)と粒径分布をホソカワミクロン社製のE−spart(商品名)で測定した。
【0046】
なお、トナーは、母体樹脂と顔料だけからなり、CCAやシリカ等の外添剤を添加する前のトナー母体粉末に、疎水性シリカH−2000(ヘキスト社製商品名)を、Osterizerにより、0.3wt%〜3.0wt%添加して作製した(このトナーを以下「試作トナー」という。)。
【0047】
この測定結果として、印加パルスの高さ(パルス幅は100msecとした)に対する試作トナーの帯電量(比電荷q/m)の変化を図3に示し、印加パルスの幅(パスル高さは−2.0kVとした)に対する試作トナーの帯電量(比電荷q/m)の変化を図4に示している。
【0048】
図3に示す結果から、この高抵抗トナーである試作トナーに電荷を注入するためには、両電極21、22間の平均電界は少なくとも1.2×10V/m、好ましくは、1.6×10V/m以上必要なことが分かる。なお、−1000Vでは比電荷が少ないのみならず、飛翔したトナー自体が非常に少ないことが確認された。
【0049】
また、図4に示す結果から、電荷注入自体は1msec以下の短い時間で完了していることが分かる。これよりも印加パルスのパルス幅を短くすると、パルス印加電極22に飛翔して来るトナーの量が少なくなるが、それは電荷注入帯電がでなかったからではなく、帯電して飛翔中に電界がなくなるため飛翔を続けられなくなったからである。
【0050】
帯電して飛翔するトナーを高速度カメラで撮影しその平均着地速度を求めると約1〜2m/secであった。したがって、平均飛翔速度を1m/secとしても、両電極21、22間の1mmの間隔を横切るためには1msecの時間が必要である。実際、パルスの高さを0Vに落とさずに、電荷注入は起こらないが飛翔は続けられる電界に落として実験したところ、電荷注入に必要な最小時間は0.2〜0.3msecであることが確認された。
【0051】
このように、電荷注入可能な高抵抗トナーを電荷注入で帯電させる条件が明らかになったことから、電荷注入トナーを静電搬送する実験を図5に示すような実験装置を用いて行った。
【0052】
この実験装置においては、下側に長方形の電荷注入電極23を、上側に静電搬送電極25を有する静電搬送基板24を配置した。上述した電荷注入実験では下側の未帯電トナーを乗せた電極21を接地し、上側の電極22に負パルスを印加して、トナーに正電荷を注入したが、ここで下側の未帯電トナーを乗せた電荷注入電極23に負パルスを印加してトナーに負電荷を注入した。なお、上記試作トナーでは、正負両電荷がほぼ同様に注入できること、また、パルス電圧をトナーを載せた電極に印加しても、対向する電極に印加しても、電荷注入できることを確認している。
【0053】
また、電極23と静電搬送基板24間距離も前記の電荷注入実験時の1.0mmから0.2mmに縮めた。これは、印加パルスの高さをギャップに比例して1/5に下げるためである。
【0054】
静電搬送基板24は、絶縁性基板(ガラス)26上に、紙に垂直な方向に、幅30μmの静電搬送電極25を、電極間間隔30μmで平行に多数並べて構成されている。各電極25には駆動回路によって、図6に示すように、3本ごとに、0V、−100V、0Vの電圧が印加され、その電圧が333μsecごとに1電極づつ右にシフトされる電圧波形を印加した。以下、図6に示す電圧波形を「基準電圧波形」と称する。
【0055】
この基準駆動波形を静電搬送基板24の静電搬送電極25に印加すると、静電搬送基板24上の負帯電トナーは右に搬送される。なお、静電搬送電極列が下を向いていてもトナーが落下することなく搬送されることは別途実験で確認している。
【0056】
そこで、図5に示すように、電荷注入電極23に対して−400Vのパルス電圧波形を印加したところ、電荷注入電極23上に載せられた未帯電トナーは電圧が印加されるとほぼ同時に負電荷を注入されて帯電し、電荷注入電極23と静電搬送電極24間に形成されている電界が該負帯電トナーに作用する静電力を受けて飛翔し、静電搬送基板24上に着地した。
【0057】
ところが、静電搬送基板24の静電搬送電極12列に基準電圧波形を印加しているにもかかわらず、静電搬送基板24に着地した帯電トナーは静電搬送基板24上右に搬送されなかった。
【0058】
このように、単純に電荷注入技術と静電搬送技術を組み合わせただけでは、帯電させて静電搬送する帯電搬送装置を構成できないことが確認された。
【0059】
そこで、本発明者らは、更に鋭意実験を重ね、帯電トナーを静電搬送できない原因を究明すべく、差分法で、電荷注入電極に印加する電圧が0Vと−400Vの場合の静電搬送電極25近傍の電界をシミュレーションした。その結果を、図7及び図8に示している。
【0060】
ここで、図7は静電搬送電極近傍の電界(ベクトル)、電荷注入電極に0Vを印加した場合、図8は静電搬送電極近傍の電界(ベクトル)、電荷注入電極に−400Vを印加した場合、をそれぞれ示している。なお、各図において、左上と右上の長方形が静電搬送電極25でそれぞれ右半分15μmと左半分15μmを表し、矢印は、各格子点の電界(ベクトル)で、向きが電界の方向を、長さが電界の強さを示している。
【0061】
先ず、図7に示すように、電荷注入電極23に0Vを印加した場合には、左側の静電搬送電極25には0Vが、右側の静電搬送電極25には−100Vが印加されている。このため、右上の−100Vが印加された静電搬送電極25(の左半分)の近傍では、電界ベクトルは右斜め上を指している。トナーは負帯電しているので、これと逆方向の力を受けて左斜め下に動き、その後左水平方向の力を受けて左方向に搬送される。
【0062】
これに対して、図8に示すように、−400Vを印加した場合には、−100Vが印加された右上の静電搬送電極25近傍では電界ベクトルが右下を指しているので負帯電トナーはすべて左上に押しつけられ、そのため搬送されないことが確認された。
【0063】
そこで、本発明の第1実施形態について図9を参照して説明する。なお、同図は電荷注入電極及び静電搬送電極に印加する電圧波形の説明図である。
ここでは、図9に示すように、駆動回路3から電荷注入電極2に対して印加する電荷注入用電圧Vhと、駆動回路13から静電搬送電極12に対して印加する静電搬送用電圧Va、Vb、Vcとを時間的に分割して、それぞれ異なる時間領域である時間ta〜tbの間、時間tb〜tcの間印加するようにしている。すなわち、静電搬送電極12に対して静電搬送用電圧Va、Vb、Vcを印加する状態では、電荷注入電極2に対して電荷注入用電圧Vhを印加しない。
【0064】
このようにトナーに対する電荷注入と、静電搬送基板上のトナーの搬送を時間的に分割したところ、電荷注入も静電搬送もともに行うことができることを確認した。具体的には、まず、静電搬送電極12列に印加する電圧をすべて0V(接地)とした状態で、電荷注入電極2に−400Vを印加した。次に、電荷注入電極2に印加する電圧を0V(接地)とした後、静電搬送電極12列に、3本ごとに、0V、−100V、0Vの電圧を印加し、これを、333μsecごとに順次右に1電極づつ移動させた。
【0065】
電荷注入電極2上の未帯電トナーTaを載せる幅を10mmとして、電荷注入時間と静電搬送時間の組み合わせを色々検討した結果、電荷注入時間を10msec、静電搬送時間を100msecとし、これを交互に繰り返すことで、−6μC/gに帯電したトナーをほぼ切れ目無く右方向に移動させることができることが確認できた。
【0066】
このように、静電搬送電極に静電搬送用の電圧を印加しない状態で、電荷注入電極に微粒子帯電用の電圧を、帯電された微粒子が静電搬送電極に転移するのに要する以上の一定時間加えた後、電荷注入電極に微粒子帯電用の電圧を加えない状態で、静電搬送電極に静電搬送用の電圧波形を一定時間加えることにより、未帯電微粒子の帯電と帯電微粒子の搬送を両立させることができる。
【0067】
次に、本発明の第2実施形態について図10を参照して説明する。なお、同図は電荷注入電極及び静電搬送電極に印加する電圧波形の説明図である。
ここでは、図10に示すように、駆動回路13から静電搬送電極12に対して印加する静電搬送用電圧Va、Vb、Vcとして、すべての電圧Va、Vb、Vcが0Vになる時間(時間td)を設けた電圧波形とし、駆動回路3から電荷注入電極2に対して印加する電荷注入用電圧Vhとして、静電搬送用電圧Va、Vb、Vcのすべてが0Vになる時間に所定の電位が印加される電圧波形とした。
【0068】
すなわち、上記第1実施形態では、電荷注入電極2と静電搬送電極12に対して印加する印加電圧を異なった時間で切り替えねばならず、回路が複雑になる。そこで、静電搬送電極12列と、電荷注入電極2に印加する電圧を、例えば333μsecごとに、図10に示すタイムテーブルで切り替える。この場合、時点t1(0〜333μsec)では、一組の3本の静電搬送電極12(12a、12b、12c)に印加される電圧が0Vで、すなわち、すべての電極12が0Vで、逆に、電荷注入電極2の印加電圧は−400Vが印加されるので、静電搬送は行われずに、電荷注入と帯電トナーの静電搬送基板11への飛翔のみが行われる。
【0069】
次の時点t2、t3、t4(334μsec〜1333μsec)では、静電搬送電極12の電極12aの電圧が、0V、0V、−100V、電極12bの電圧が−100V、0V、0V、電極12の電圧が0V、−100V、0Vと変わり、一方電荷注入電極2の電圧は、飛翔継続電圧−100Vに維持されるので、帯電トナーの静電搬送基板11への飛翔が継続されると同時に、静電搬送基板11上の帯電トナーの搬送が行われる。
【0070】
このとき、電荷注入電極2に、飛翔継続用の−100Vが印加されていても、搬送が行われたのは、−100Vでは−400Vと異なり、静電搬送電極12近傍の電界がそれほど乱されなかったからである。このときのシミュレーション結果を図11に示している。前述した図7と比較すると影響が少ないことが分かる。
【0071】
なお、このような構成が可能になるのは、使用するトナーの電荷注入に要する時間が静電搬送用電圧Va、Vb、Vcについて設定したパルス幅の時間内であるためである。このパルス幅の時間内で電荷注入が完了しないときには帯電が不充分になる。上述した例では、試作トナーでは、電荷注入に要する時間が0.3msec未満で済むことから、電荷注入時間を334μsecとしても電荷注入が完了する。
【0072】
このように、静電搬送電極に静電搬送用の電圧を印加しない状態で、電荷注入電極に微粒子帯電用の電圧を、該微粒子の帯電量が、該粒子が該電荷注入電極またはその上の他の微粒子より離れることができるようになる以上の時間印加し、その後、電荷注入電極に加える電圧を、微粒子の帯電はできないが、帯電した微粒子の静電搬送電極への移動の継続を可能とする電圧に下げた状態で、静電搬送電極に静電搬送用の電圧波形を一周期間加えるので、簡単な回路で未帯電微粒子の帯電と帯電微粒子の搬送を両立させることができる。
【0073】
次に、本発明の第3実施形態について図12を参照して説明する。なお、同図は同実施形態に係る帯電搬送装置の概略構成説明図である。
ここでは、電荷注入電極2を複数に分割した分割電荷注入電極2aを電荷注入手段1に設け、分割電荷注入電極2aには駆動回路(この場合は「駆動電源」となる。)3Aから常時電荷注入用電圧Vhaを印加し、静電搬送電極12には駆動回路13から前述した基準駆動電圧Va、Vb、Vdを印加している。ここで、電荷注入用電圧Vhaは、分割電荷注入電極2aの表面には微粒子を帯電できる電界が形成されるが、静電搬送電極12の表面には、帯電微粒子が搬送されるのを妨げない電圧に設定している。
【0074】
すなわち、上記第2実施形態によって回路構成はシンプルになったが、搬送に供しない時間を静電搬送電圧に設定しなければならないため、1/4周期分は静電搬送が行われないことになり、静電搬送の速度が上がらず、特に高速プロセスには十分でない。
【0075】
そこで、静電搬送基板11と電荷注入電極2のギャップを0.2mmから1.0mmに広げた上で、電荷注入電極2を、幅L=0.1mm、間隔D=0.4mmの複数の平行電極2aに分割した。この状態で、電荷注入電極2a列に常時−750V(Vha)を印加し、静電搬送電極12列には基準電圧波形Va、Vb、Vcを印加したところ、電荷注入は損なわれずに搬送速度が改善されることが確認された。
【0076】
この実施形態が成立したのは、このように構成すると、分割された電荷注入電極2aには電気力線が集中して、その点の電界が、両電極間の平均電界、0.75×10V/mの2倍以上に高まり、均一電界、2.0×10V/mのときと同様に電荷注入させるが、一方、静電搬送基板11の近傍では、両電極間の平均電界より、静電搬送電極12同士が形成する電界の方が2倍以上大きいため、静電搬送が受ける影響が少ないためである。
【0077】
図13に、均一電界、2.0×10V/mの場合の、電荷注入電極2付近の電界を電気力線で示し、図14に第3実施形態の場合の、分割電荷注入電極2a付近の電界を電気力線で示す。両者を比較すると、電荷注入電極に入る電気力線の密度がほぼ等しいことが分かる。
【0078】
また、図15に本実施形態の場合の静電搬送電極12近傍の電界ベクトルを示す。図7と比較すると影響が小さいことが分かる。
【0079】
このように、電荷注入電極を分割し、該分割電荷注入電極に、該分割電荷注入電極の表面には微粒子を帯電できる電界が形成されるが、静電搬送電極の表面には、帯電微粒子が搬送されるのを妨げない電圧を印加し、かつ静電搬送電極には静電搬送用の電圧波形を加えるので、静電搬送の速度を落とさずに未帯電微粒子の帯電と帯電微粒子の搬送を両立させることができる。
【0080】
次に、本発明の第4実施形態について図16を参照して説明する。なお、同図は同実施形態に係る帯電搬送装置の概略構成説明図である。
ここでは、電荷注入用電極2と静電搬送電極12との間に、開口率の高い導電性部材5、例えば金属スクリーンを配置している。そして、駆動電源3B及び33によって、電荷注入電極2と導電性部材5に対し、電荷注入電極2の表面に、未帯電微粒子を帯電できる電界を形成させる電圧Vhb、Vlを印加している。この導電性部材5に印加する電圧Vlと静電搬送電極12に印加する静電搬送用電圧Va、Vb、Vcとは、導電性部材5と静電搬送電極12間に形成する電界が帯電微粒子の静電搬送電極12への移動を継続させるが、静電搬送電極12上の帯電微粒子の静電搬送は妨げない電圧にそれぞれ設定している。
【0081】
すなわち、第3実施形態のように電荷注入電極2を分割した場合、電荷注入できる面積が減るので、静電搬送基板11に供給されるトナーの量が少なくなる。そこで、静電搬送基板11と、1枚構成の電荷注入電極2間のギャップを1.0mmとし、その中間地点に、金属スクリーン(導電性部材5)を配置した。そして、静電搬送電極12列には基準電圧波形Va、Vb、Vcを印加しつつ、金属スクリーン5に−100V(=Vl)、電荷注入電極2に−1100V(=Vhb)を常時印加した。このとき、静電搬送基板11に供給されるトナーの量も多く、また静電搬送の速度も速いことが確認された。
【0082】
本実施形態では、金属スクリーン(導電性部材5)と電荷注入電極2間に電荷注入を起こさせるのに十分な、2.0×10V/mの電界が形成され、一方、金属スクリーン(導電性部材5)と静電搬送電極12の電界は、0.2×10V/m以下と大変低く、搬送電界を妨げないようになっている。
【0083】
電荷注入電極2近傍の電界(電気力線表示)を図17に、静電搬送電極12近傍の電界(ベクトル)を図18に示している。図17と図13を比較することで、電荷注入電極2近傍には電荷注入に必要な強い電界が形成されていることが分かる。なお、金属スクリーンは正方形が60μm角で、−100Vを印加している。
【0084】
また、図18と図7を比較すると、静電搬送電極12近傍では静電搬送の電界がまったく乱されていないことが分かる。
【0085】
このように、電荷注入電極と静電搬送電極との間に開口を有する導電性部材を設け、電荷注入電極と該導電性部材にそれぞれ印加する電圧で、電荷注入電極の表面に、未帯電微粒子を帯電できる電界を形成させ、導電性部材に加えた電圧と静電搬送電極に加えられた静電搬送用の電圧を、両者間に形成する電界が帯電微粒子の静電搬送電極への移動を継続させるが、静電搬送電極上の帯電微粒子の静電搬送は妨げないように設定されているので、帯電微粒子の静電搬送電極への供給量を落とさずに、かつ静電搬送の速度を落とさずに未帯電微粒子の帯電と帯電微粒子の搬送を両立させることができる。
【0086】
次に、本発明の第5実施形態について図19を参照して説明する。なお、同図は同実施形態に係る帯電搬送装置の概略構成説明図である。
ここでは、電荷注入用電極2と静電搬送電極12との間に、多数の開口部6aを有し、電荷注入電極側と静電搬送電極側にそれぞれ開口6aを取り囲むリング状の共通電極7a、7bを有する誘電部材6を設けている。
【0087】
そして、静電搬送電極12列には駆動回路13から基準電圧波形Va、Vb、Vcを印加している。また、駆動電源3Bによって電荷注入電極2に対して電圧Vhbを印加し、さらに、駆動電源33Aによって誘電部材6の電荷注入電極側のリング状共通電極7aに対して電圧Vlaを、静電搬送電極側のリング状共通電極7bに対して電圧Vlbをそれぞれ印加している。
【0088】
ここで、電荷注入電極2に印加する電圧Vhbと誘電部材6の電荷注入電極側のリング状共通電極7aに印加する電圧Vlaとは、電荷注入電極2表面の微粒子を帯電させられる電界を形成する電圧に設定している。また、電荷注入電極側のリング状共通電極7a及び静電搬送側リング状共通電極7bに印加する電圧Vla、Vlbは、帯電し静電搬送電極12に向かう微粒子が開口6aの縁に当たるのを妨げる向きの電界を形成する電圧に設定している。さらに、静電搬送電極側リング状共通電極7bに印加する電圧Vhbと静電搬送電極12に印加する基準電圧波形Va、Vb、Vcとは帯電微粒子の静電搬送電極12への移動を継続させるが、静電搬送電極12上の帯電微粒子の搬送を妨げない電界を形成する電圧に設定している。
【0089】
すなわち、前記第4実施形態によって、繰り返し電荷注入と静電搬送の実験を繰り返したところ、金属スクリーン(導電性部材)5にトナーが堆積して一部目詰まりが発生した。
【0090】
そこで、金属スクリーンに代えて、直径0.1ミリの孔6aが、千鳥状に多数空けられ、その廻りを上下二個のリング状の共通電極7a、7bで囲ったFPC(誘電部材6)を配置し、電荷注入電極側の共通電極7aに―200V(=Vla)、静電搬送電極側の共通電極7bに―100V(=Vlb)を印加したところ、トナーの堆積はほとんど起こらなくなり、その結果目詰まりが解消されることを確認できた。
【0091】
ここで、電荷注入電極2側より飛翔してきたトナーが、誘電部材6(FPC)に付着しなかったのは、孔6aの縁の周辺のみに、トナーを反発する向きに強い電界が形成されたからである。そのため、飛翔トナーは、孔6aのセンターを通って、静電搬送基板11側に通りぬけるようになる。
【0092】
このように、電荷注入電極と静電搬送電極の間に、多数の開口部を有し、電荷注入電極側と静電搬送電極側にそれぞれ該開口を取り囲むリング状の共通電極を有する誘電部材を設け、静電搬送電極には静電搬送用の電圧波形を加えた状態で、電荷注入電極に加える電圧と、該誘電部材の電荷注入電極側のリング状共通電極に加える電圧で、電荷注入電極表面に微粒子を帯電させられる電界を形成し、該電荷注入電極側のリング状共通電極と静電搬送側リング状共通電極に印加される電圧で、帯電し静電搬送電極に向かう微粒子が該開口の縁に当たるのを妨げる向きの電界を形成するとともに、該静電搬送電極側リング状共通電極に加えた電圧と静電搬送電極に加えられた静電搬送用の電圧が両者間に形成する電界が帯電微粒子の静電搬送電極への移動を継続させるが、静電搬送電極上の帯電トナーの搬送は妨げないようにするので、中間部材に対する微粒子の堆積を起こすことなく、帯電微粒子の静電搬送電極への供給量を落とさずに、かつ静電搬送の速度を落とさずに未帯電トナーの帯電と帯電トナーの搬送を両立させることができる。
【0093】
次に、本発明の第6実施形態について図20を参照して説明する。なお、同図は同実施形態に係る帯電搬送装置の概略構成説明図である。
ここでは、電荷注入電極2と静電搬送電極12との間に、導電性の回転部材である中間金属ローラ34を配置し、更に中間金属ローラ34の静電搬送電極12と対向する領域で中間金属ローラ34表面から帯電微粒子を非静電的な手段で引き剥がす手段としてのエアーを噴出するエアーノズル35を配置した。なお、中間金属ローラ34の回転方向は静電搬送電極12と対向する領域側が静電搬送方向と略同じ方向になる方向としている。また、エアーノズル35のエアー噴出方向も静電搬送方向と同じ方向としている。
【0094】
そして、静電搬送電極12列には駆動回路13から基準電圧波形Va、Vb、Vcを印加している。また、駆動電源3Cによって電荷注入電極2に対して電圧Vhcを印加し、さらに、駆動電源33によって中間金属ローラ34に対して電圧Vlを印加している。
【0095】
ここで、電圧Vl、電圧Vhcは、静電搬送電極12に基準電圧波形Va、Vb、Vcを印加した状態で、導電性回転部材(中間金属ローラ34)と静電搬送電極12で、帯電微粒子の静電搬送電極12への移動を継続させるが、静電搬送電極12上の帯電微粒子の搬送を妨げないとともに、電荷注入電極2と導電性回転部材24との間で、電荷注入電極2表面の微粒子の帯電を可能とする電界を形成できる電圧としている。
【0096】
すなわち、前述した第4、第5実施形態のように電荷注入電極と静電搬送基板間にスクリーンやFPC等を精度よく設置するのはコストが高くなる可能性があるので、より簡単にラフにできるようにすることが望まれた。
【0097】
そこで、電荷注入電極2と静電搬送基板11のギャップを12mmに広げ、その間に直径10mmの中間金属ローラ34を配置した。このとき、電荷注入電極2と該中間金属ローラ34間を1.0mm、該ローラ34と静電搬送基板11間を1.0mmにした。そして、電荷注入電極2に−2.1kV(=Vhc)、ローラ24に−100V(=Vl)を印加し、静電搬送電極12には基準電圧波形Va、Vb、Vcを印加して、該ローラ34を周速100mm/secで回転させ、ローラ34と静電搬送基板11間に向けられたノズル35から、2m/secの空気流を吹きつけた。
【0098】
この結果、電荷注入されて、ローラ35に飛翔しその回転とともに半周した帯電トナーがローラ34表面から吹き飛ばされて空中に舞った後、ローラ34と静電搬送電極12間に形成されている弱い電界で移動し、静電搬送基板11上に軟着陸するのが確認された。
【0099】
このように、電荷注入電極と静電搬送電極の中間に、導電性の回転部材を設け、静電搬送電極に静電搬送電圧波形を加えた状態で、該導電性回転部材に、静電搬送電極に加えられた電圧との間で、帯電微粒子の静電搬送電極への移動を継続させるが、静電搬送電極上の帯電トナーの搬送は妨げないこと電圧を加え、また電荷注入電極に、該導電性回転部材に加えられた電圧との間で、その表面に微粒子の帯電を可能とする電界を形成できる電圧を加え、帯電され該導電性部材に移動された微粒子を該導電性回転部材の回転に伴って静電搬送電極近傍に移動させ、そこで非静電的な手段で、該帯電微粒子を該導電性回転部材の表面より引き剥がすので、より簡単な装置で、帯電微粒子の静電搬送電極への供給量を落とさずに、かつ静電搬送の速度を落とさずに未帯電トナーの帯電と帯電トナーの搬送を両立させることができる。
【0100】
なお、ここでは、導電性の回転部材表面から帯電微粒子を非静電的な手段で引き剥がす手段としてのエアーを噴出するエアーノズルを用いたが、これに代えて、図21に示すように、ブレード36で掻き落とすこともできる。また、エアーノズルとブレードを併用することもできる。
【0101】
次に、本発明の第7実施形態について図22を参照して説明する。なお、同図は、本発明に係る帯電搬送装置を画像形成装置の現像装置に適用した実施形態の要部概略構成図である。
ここでは、未帯電微粒子であるトナーを供給するトナーホッパ41の下方に、電荷注入手段の電荷注入電極2を傾斜(例えば45°)させて配置し、この電荷注入電極2に対向する静電搬送電極12を含む静電搬送基板11を配置して、この静電搬送基板11を矢示方向に回転するOPCドラムなどの像担持体42の現像部46に対向させている。
【0102】
なお、トナーホッパ41の底部にはスリットが設けられ、図示しないシャッタによって機械的に開閉される。また、静電搬送基板11は支持部材43〜45(回転するものではない。)間に掛け回している。この静電搬送基板11はフレキシブル基板を支持基板とするものであり、全体に静電搬送電極12を形成することによって、現像に供されなかったトナーを再度循環させることができる。
【0103】
ここで、電荷注入電極2と静電搬送基板11による電荷注入(帯電)及び静電搬送の構成として、前述した第1実施形態ないし第3実施形態のいずれの構成を用いることもできる。
【0104】
このように構成したので、トナーホッパ41の底部から未帯電トナーが例えば45度に傾けられている電荷注入電極2に落下し、未帯電トナーを電荷注入電極2上を自重でカスケードさせる。このカスケード中に電荷を注入された帯電トナーは、例えば1mm離れた静電搬送基板11上に飛翔着地し、静電搬送基板11の静電搬送電極によって形成される進行波電界によって静電搬送基板11上を現像部46に向かってホッピングしながら搬送される。
【0105】
そして、現像部46に移動した帯電トナーは像担持体42の静電潜像に応じて像担持体42上に転移して潜像を現像する(ETH現像)。
【0106】
このように、本発明に係る帯電搬送装置を備えることで、簡単な構成で帯電と搬送を行って現像部に帯電トナーを供給する現像装置、及びこの現像装置を備えた画像形成装置を構成することができる。また、電荷注入電極が、斜めに保持されていて、非帯電微粒子がその上を重力により滑降するので、未帯電微粒子と電荷注入電極の接触確率が増えて帯電効率が改善され、また未帯電微粒子を静電搬送電極と対向する位置まで搬送する装置と動力が不要になる。
【0107】
次に、本発明の第8実施形態について図23を参照して説明する。なお、同図は、本発明に係る帯電搬送装置を画像形成装置の現像装置に適用した他の実施形態の概略構成説明図である。
ここでは、トナーホッパ51内に回転可能なローラ状の電荷注入電極(電荷注入電極ローラ)52を配置している。この電荷注入電極ローラ52の外周面には未帯電トナーTaを汲み上げる微細なホッパ(ポケット)52aを多数形成し、駆動電源53から電荷注入用電圧Vhを印加している。
【0108】
具体的には、トナーホッパ51中に、直径20mmの電荷注入電極ローラ52の1/3程度を埋め、外周面には深さ0.2mmの丸いポケット52aを形成した。なお、電荷注入電極ローラ52はローラ部材に限らず、筒状部材とすることもでき、要は回転可能に設けられた回転部材であれば良い。また、電荷注入電極ローラ52は全体が金属などで形成された導電性回転部材でも良いし、絶縁性ローラの表面に電荷注入電極となる導電層を形成したものでも良い。
【0109】
そして、この電荷注入電極ローラ52に対向する対向部を有する静電搬送基板11を配置し、この静電搬送基板11の一部を矢示方向に回転する像担持体42の現像部46に対向配置している。なお、像担持体42上の非画像部は負帯電とする。
【0110】
ここで、電荷注入電極2と静電搬送基板11による電荷注入(帯電)及び静電搬送の構成として、前述した第1実施形態ないし第3実施形態のいずれの構成を用いることもできる。
【0111】
このように構成したので、下に置かれたトナーホッパ51中に未帯電トナーTaを収容し、電荷注入電極ローラ52を矢示方向に回転させることにより、ポケット52a中に未帯電トナーTaがゆるくパッキングされて汲み上げられる。そして、汲み上げられた未帯電トナーTaは静電搬送基板11とのギャップが近づいた地点で電荷注入されて静電搬送基板11側へ飛翔し、着地後、静電搬送基板11の静電搬送電極によって形成される進行波電界によって静電搬送基板11上を現像部46に向かってホッピングしながら搬送される。
【0112】
そして、現像部46に移動した帯電トナーは像担持体42の静電潜像に応じて像担持体42上に転移して潜像を現像する(ETH現像)。
【0113】
このように、本発明に係る帯電搬送装置を備えることで、簡単な構成で帯電と搬送を行って現像部に帯電トナーを供給する現像装置、及びこの現像装置を備えた画像形成装置を構成することができる。また、電荷注入電極が、その表面に微細なホッパを有する回転部材であり、未帯電微粒子が微細ホッパに保持され、電荷注入電極の回転とともに静電搬送電極と向かい合う位置に搬送されるので、常に一定の量の未帯電微粒子を静電搬送電極と向かい合う位置に搬送することができる。
【0114】
次に、本発明の第9実施形態について図24を参照して説明する。なお、同図は、本発明に係る帯電搬送装置を画像形成装置の現像装置に適用した更に他の実施形態の概略構成説明図である。
ここでは、トナーホッパ51内に回転可能なローラ状の電荷注入電極(電荷注入電極ローラ)62を配置している。この電荷注入電極ローラ62の外周面には未帯電トナーTaを汲み上げる導電性短繊維62aを設け、駆動電源53から電荷注入用電圧Vhを印加している。
【0115】
具体的には、トナーホッパ51中に、直径20mmの電荷注入電極ローラ62の1/3程度を埋め、外周面には長さ2mmの導電性短繊維62aを静電植毛した。なお、電荷注入電極ローラ62はローラ部材に限らず、筒状部材とすることもでき、要は回転可能に設けられた回転部材であれば良い。また、電荷注入電極ローラ62は全体が金属などで形成された導電性回転部材でも良いし、絶縁性ローラの表面に導電層を形成して、この導電層に導電性短繊維を植毛したものなどでも良い。
【0116】
そして、この電荷注入電極ローラ62に対向する対向部を有する静電搬送基板11を配置し、この静電搬送基板11の一部を像担持体42の現像部46に対向配置している。
【0117】
ここで、電荷注入電極2と静電搬送基板11による電荷注入(帯電)及び静電搬送の構成として、前述した第1、第2実施形態のいずれの構成を用いることもできる。また、導電性短繊維62aの植え込み密度を疎にして、その先端に電界を集中させると、第3実施形態の構成を用いることができる。
【0118】
このように構成したので、下に置かれたトナーホッパ51中に未帯電トナーTaを収容し、電荷注入電極ローラ62を矢示方向に回転させることにより、導電性短繊維62aの表面又はその間に未帯電トナーTaが抱き込まれて汲み上げられる。そして、電荷注入電極ローラ62の導電性短繊維62aは静電搬送基板11に接近したときに、その間の電界によって静電搬送基板11方向に直立し、導電性短繊維62aと静電搬送基板11のギャップが最小(例えば1mm)となって、導電性短繊維62aから負電荷(電子)を注入されて負帯電したトナーが静電搬送基板11側へ飛翔し、着地後、静電搬送基板11の静電搬送電極によって形成される進行波電界によって静電搬送基板11上を現像部46に向かってホッピングしながら搬送される。
【0119】
そして、現像部46に移動した帯電トナーは像担持体42の静電潜像に応じて像担持体42上に転移して潜像を現像する(ETH現像)。
【0120】
このように、本発明に係る帯電搬送装置を備えることにより、簡単な構成で帯電と搬送を行って現像部に帯電トナーを供給する現像装置、及びこの現像装置を備えた画像形成装置を構成することができる。また、電荷注入電極が、その表面に細い導電性短繊維が埋めこまれた回転部材であり、非帯電微粒子が導電性短繊維に保持され、回転部材の回転とともに静電搬送電極と向かい合う位置に搬送されるので、より多くの未帯電微粒子を電荷注入電極の導電部材に接触させた状態で静電搬送電極と向かい合う位置に搬送することができる。
【0121】
次に、本発明の第10実施形態について図25及び図26を参照して説明する。なお、図25は同実施形態に係る帯電搬送装置の概略構成説明図、図26は帯電過程の説明に供する説明図である。
この帯電搬送装置は、静電搬送手段上で帯電と搬送を行うようにしたものであり、帯電した微粒子を静電力で移動させるための電界を発生する複数の静電搬送電極102を有する静電搬送手段である静電搬送基板101を備えている。
【0122】
そして、静電搬送基板101の複数の静電搬送電極102の少なくとも一部の電極はN型半導体で形成している。ここでは、図25に示す帯電領域に属する静電搬送電極102をN型半導体とし、静電搬送電極102Nと表記する。この例では、N型半導体で形成した静電搬送電極102N以外の静電搬送電極102はAl−Cuで形成することもできる。ただし、すべての静電搬送電極102をN型半導体で形成することもできる。また、N型半導体は、SiにP(リン)をドープすることで形成した。さらに、N型半導体に代えてP型半導体を用いることもできる(帯電させる極性による。)。
【0123】
また、この帯電搬送装置は、静電搬送基板101の静電搬送電極102に静電搬送用のn相(nは3以上の整数)のパルス状の駆動電圧Va(a相)、Vb(b相)、Vc(c相)を印加する駆動回路103とを備えている。
【0124】
すなわち、前記各実施形態においては静電搬送基板とは別に電荷注入電極を設け、電荷注入電極によって未帯電トナーに電子を注入したが、静電搬送電極列の、0Vと−100Vの印加された隣り合った電極12、12間には、2.0×10V/m以上の強い電界が形成されているので、静電搬送電極12の上に形成されている薄い絶縁性保護層13が無ければ、この間で電荷注入が可能になる。
【0125】
しかしながら、試作トナーの場合には、前述したように、正負両方とも電荷注入できるので、たまたま接触した電極より、正または負の電荷注入を受けて結局はどちらにも帯電しないことになる。
【0126】
そこで、静電搬送電極の少なくとも一部の材質をAl−CuからN型半導体に代えた。N型半導体の静電搬送電極102N列に、駆動回路103から基準電圧波形Va、Vb、Vcとして、0V、−100V、0Vに変化する電圧を印加すると、図26に示すように、0Vが印加された電極102Nと隣り合う−100Vが印加された電極102Nの左エッジには多数キャリアである電子が内部より移動して集中する。
【0127】
この結果、左エッジに強い電界が形成されて、その左エッジに接触しているトナーには負電荷が注入される。また、図示していないが、−100Vが印加された電極102Nの右エッジも0Vが印加された電極102Nに隣合うので多数キャリアである電子が内部より移動して集中し、同様に電界が形成されるので、右エッジでも負電荷の注入が起こる。
【0128】
一方、−100Vが印加された電極102Nと隣り合う0Vが印加された電極102Nでは、多数キャリアである電子が、反対側、隣の0Vが印加された電極側、または接続されている電源に移動し、その後に、正電荷が均一に残される。このため、−100Vが印加された電極側の電界が非常に強くなることはなく、このエッジに接触しているトナーに正電荷が注入されることはない。なお、図26は、、概念的説明図であって、正負電荷の数や電気力線の本数(密度)、発生終点の位置等正確に求めたものではない。
【0129】
実験によると、N型半導体の静電搬送電極102N上に未帯電トナーTaを載せて、基準電圧波形Va、Vb、Vcを印加したところ、トナーが図25矢示方向に搬送されることが確認され、このときの電荷分布を前記のE−Spartで測定したところ、すべてマイナスに帯電していた。また、このとき、静電搬送基板101に微小な振動を与えたところ、より短い時間で搬送することができることが確認された。
【0130】
このように、N型またはP型半導体で形成される静電搬送電極に未帯電微粒子を乗せ、静電搬送電極に印加される静電搬送用電圧が隣り合った静電搬送電極間に形成する電界で、そのエッジに、負または正の多数キャリアのみを選択的に集中させて、そこに形成される高電界で未帯電微粒子を帯電させると同時にそのまま静電搬送するので、未帯電粒子を帯電させるための特別の装置と回路が不要になり、構成が簡単になる。
【0131】
次に、本発明の第11実施形態について図27を参照して説明する。なお、同図は同実施形態に係る帯電搬送装置の要部概念説明図である。
ここでは、上記第10実施形態のN型静電搬送電極102Nに同じN型半導体で突起102Naを設けている。その他の構成は同実施形態と同様である。
【0132】
すなわち、N型半導体を使用すると、選択的な負電荷注入のみならず、負コロナのみを選択的に発生させることもできる。N型半導体からなる静電搬送電極102N表面に、同じN型半導体の高さ数μmの突起102Naを形成し、隣り合う電極102N、102N間に100Vの電位差を与えたところ、−100を印加した電極102Nより負コロナが発生するのが暗中で確認された。
【0133】
この場合、0Vを印加した電極102Nで正コロナが発生せず、−100Vを印加した電極102Nでのみ負コロナが発生したのは、図27に示すように、−100Vが印加された電極102Nの突起102Naには電子が集中しその回りには強い電界が形成されてそこにコロナ放電が起こるのに対し、0Vが印加された電極102Nの突起102Naでは、正電荷が動けず電荷の集中が起こらず、その結果突起102Naの先端に強い電界が形成されることがなかったからである。
【0134】
このように、N型またはP型半導体で形成され、その表面に微小な突起を有する静電搬送電極に未帯電の微粒子を乗せ、静電搬送電極に印加される静電搬送用電圧が隣り合った静電搬送電極間に形成する電界で、その突起の先端に、負または正の多数キャリアのみを選択的に集中させて、先端に高電界を形成させて、そこに起きるコロナ放電で未帯電微粒子を帯電させると同時にそのまま静電搬送するので、未帯電粒子を帯電させるための装置と回路が不要になる。
【0135】
次に、本発明の第12実施形態について図28を参照して説明する。なお、同図は同実施形態に係る帯電搬送装置の要部概念説明図である。
この帯電搬送装置は、静電搬送基板101の複数の静電搬送電極102の少なくとも一部の電極102にはカーボンナノチューブ(CNT)107を植え込んでいる。ここでは、図25に示す帯電領域に属する静電搬送電極102にカーボンナノチューブ107を植え込み、静電搬送電極102Cと表記する。なお、この実施形態では前記第10、11実施形態と異なり複数の静電搬送電極102はいずれもAl−Cuで形成している。
【0136】
CNTの製法やCNTを電極上に植える方法に関しては、多くの本、文献、論文が公開されており、例えば「日経サイエンス」2002年8月号の特集記事などに開示されている。また、カーボンナノチューブに限らず、カーボンナノコイルも使用することもできる。電界電子放出材として、カーボンナノチューブまたはカーボンナノコイルを使用することで、低電位で電子を電界放出させることができる。
【0137】
このように構成したので、静電搬送電極102に対して基準駆動電圧Va、Vc、Vbを印加すると、図28に示すように、静電搬送電極102のCNT107の先端に電界電子放出を起こさせることができる。大気中に放出された電子108は、直ちに大気中の中性分子と結合して負イオン109となる。この負イオン109は電気力線に沿って隣りの電位の高い電極102Cに移動するが、その途中に未帯電トナーTaがいると、トナーTaの表面に付着して負帯電にする(帯電トナーTbとなる。)。
【0138】
このように、表面に電界電子放出材を有する静電搬送電極に未帯電の微粒子を載せ、静電搬送電極に印加される静電搬送用電圧が隣り合った静電搬送電極間に形成する電界で、該電界電子放出材より電子を放出させて、該電子、またはそれが大気中の中性分子と結合した負イオンで、未帯電微粒子を帯電させると同時にそのまま静電搬送するので、未帯電粒子を帯電させるための装置と回路が不要になる。
【0139】
これらの第10ないし第12実施形態においては、N型半導体電極による選択的負電荷注入、N型半導体電極の突起による選択的負コロナ放電、CNTによる負電子の電界放出をすべて、静電搬送用の電圧波形(たとえば、0V、−100V、0V)で行う例で説明しているがこれに限るものではない。
【0140】
前述した電荷注入電極で電荷を注入して静電搬送電極に飛翔させる第1あるいは第2実施形態と同様に、帯電行程と搬送行程を時分割して、それぞれに最適な電圧を印加することで帯電・搬送性能をより向上させることができる。このように、未帯電微粒子を帯電させる行程(時間)と帯電された微粒子を搬送する行程(時間)を時間的に分割し、それぞれで最適な電圧を印加し、両行程を交互に行うことで、最高の帯電効率と最高の搬送効率を両立させることができる。
【0141】
次に、本発明の第13実施形態について図29を参照して説明する。なお、同図は同実施形態に係る帯電搬送装置の要部概念説明図である。
この帯電搬送装置は、多数の静電搬送電極202を有する静電搬送基板201と、静電搬送基板201の静電搬送電極202のうちの少なくとも一部の静電搬送電極202に対向する帯電補助電極204とを備えている。この帯電補助電極204に対応する静電搬送電極202を帯電可能な静電搬送電極として帯電搬送電極202Tと表記する。
【0142】
この場合、帯電領域の帯電搬送電極202Tのみ帯電可能(前記第10ないし第12実施形態のような構成)に作製して、それ以外の搬送領域の静電搬送電極202は平板金属電極に薄い絶縁保護層を重ねた構成にすると安く作製することができる。また、帯電補助電極204は、板状でなくスクリーン状に形成することで、帯電補助電極204の上方から未帯電トナーを落下させて供給できる。
【0143】
このように構成したので、帯電行程(時間)において、帯電搬送電極202Tと帯電搬送電極202T間に帯電に必要な電界を形成して、その間にある未帯電トナーを帯電させることができる。
【0144】
このように、静電搬送電極のうちの帯電搬送電極とは別に、それと対向する位置に帯電補助電極を設け、未帯電微粒子を帯電させる行程(時間)においては、該帯電補助電極と帯電搬送電極間に帯電を可能とする電圧を印加することで、最高の帯電効率と最高の搬送効率を両立させることができる。
【0145】
なお、この場合、前記第11あるいは第12実施形態のコロナ放電突起や電界電子放出用のCNTなどを帯電補助電極204側に形成して、その下の帯電搬送電極202Tを他の静電搬送電極202と同じ構成とすることもできる。このように、帯電補助電極に、コロナ放電用の突起、または電界電子放出材が設けられる構成とすることで、全領域で静電搬送電極の材質、形状を同一にすることができて装置のコストを下げることができる。
【0146】
また、前記第10実施形態と同様に、第11、12、13実施形態においても、特に帯電領域、帯電行程(時間)で静電搬送基板を微小に振動させて未帯電トナーを瞬間的に静電搬送基板表面から浮かせることは大きな効果がある。
【0147】
また、以上の各実施形態は、電荷注入されて帯電し静電搬送基板側に供給されたトナーが静電潜像の現像に使用されるとして説明したが、その代わりに、該トナーを使用して直接画像を形成する画像形成装置に適用したり、あるいは、トナーの代わりに表示用の着色微粒子を使用してデスプレイーさせることもできる。本発明に係る帯電搬送装置は、静電搬送された先のトナー等の帯電微粒子の使用方法が限定されるものではない。
【0148】
次に、本発明に係るプロセスカートリッジについて図30を参照して説明する。なお、同図はプロセスカートリッジの概略構成図である。
このプロセスカートリッジ301は、ケース302内に像担持体であるドラム状の感光体311と、帯電ローラ312と、本発明に係る帯電搬送装置321を含む本発明に係る現像装置313と、クリーニング装置314等を一体に備え、画像形成装置本体に対して着脱可能に構成している。なお、プロセスカートリッジは、本発明に係るプロセスカートリッジは、像担持体、帯電手段及びクリーニング手段と本発明に係る現像装置を一体化したものであれば良い。また、ケース302には書き込み用レーザー光を入射させるための開口303を形成している。
【0149】
現像装置313を着脱自在であるプロセスカ−トリッジ301内に具備させることにより、メンテナンス性の向上、他の装置との一体交換を容易に行うことができるようになる。
【0150】
次に、本発明に係る他の画像形成装置の実施形態について図31を参照して説明する。なお、同図は同画像形成装置の模式的説明図である。
この画像形成装置は、水平に延在する転写ベルト(像担持体)351に沿って、各色のプロセスカ−トリッジ301Y、301M、301C、301Bkを並置したタンデム方式のカラー画像形成装置である。なお、プロセスカ−トリッジ301は、イエロー、マゼンタ、シアン、ブラックの順で説明したが、この順番に特定されるものではなく、どの順番で並置してもよい。
【0151】
通常、カラーの画像形成装置は複数の画像形成部を有するため装置が大きくなってしまう。また、現像装置、クリーニングや帯電などの各ユニットが個別で故障したり、寿命による交換時期がきた場合は、装置が複雑でユニットの交換に非常に手間がかかっていた。
【0152】
そこで、少なくとも現像手段の構成要素をプロセスカ−トリッジ301として一体に結合して構成することによって、ユーザーによる交換も可能な小型で高耐久のカラー画像形成装置を提供することができる。
【0153】
ここで、各色のプロセスカ−トリッジ301Y、301M、301C、301Bkで現像された像担持体312上の現像トナーは水平に延在する転写電圧が印加された転写ベルト351に順次転写される。
【0154】
このようにイエロー、マゼンタ、シアン、ブラックと画像の形成が行なわれ、転写ベルト351上に多重に転写され、転写手段352で転写材353にまとめて転写される。そして、転写材353上の多重トナー像は図示しない定着装置によって定着される。
【0155】
上記各実施形態で説明した画像形成装置は、いずれも本発明に係る帯電搬送装置を含む現像手段(装置)を備えているので、装置の小型化、低コスト化を図れ、トナ−飛散などもなく、画像品質を向上することができる。
【0156】
なお、上記実施形態においては、微粒子としてトナーを例に説明しているが、トナー以外の微粒子を帯電搬送するための装置などにも同様に適用することができる。
【0157】
【発明の効果】
以上説明したように、本発明に係る各帯電搬送装置によれば、未帯電微粒子を帯電して、帯電した微粒子を静電搬送することができる新規な帯電搬送装置が得られる。
【0158】、
本発明に係る現像装置によれば、未帯電トナーを帯電した静電搬送する帯電搬送装置を備えているので、簡単な構成で、帯電、搬送、現像を行うことができ、小型で、安定した高品質現像を行うことできる。
【0159】
本発明に係るプロセスカートリッジによれば、本発明に係る現像装置を含む構成としたので、小型で、安定した高品質現像を行うことできるプロセスカートリッジが得られる。
【0160】
本発明に係る画像形成装置によれば、本発明に係る現像装置を備え、或いはプロセスカートリッジを複数備えているので、高品質現像を行うことができて高品質画像を形成できる。
【図面の簡単な説明】
【図1】本発明に係る帯電搬送装置の基本的構成の説明に供する概略構成図
【図2】電荷注入実験の説明に供する説明図
【図3】同実験における印加電圧と比電荷の測定結果の一例を示す説明図
【図4】同実験におけるパルス幅と比電荷の測定結果の一例を示す説明図
【図5】絶縁性トナーの電荷注入及び静電搬送の説明に供する模式的説明図
【図6】静電搬送電極に印加する基準電圧波形の説明に供する説明図
【図7】電荷注入電極に0Vを印加した場合の静電搬送電極近傍の電界(ベクトル)の一例を示す説明図
【図8】電荷注入電極に−400Vを印加した場合の静電搬送電極近傍の電界(ベクトル)の一例を示す説明図
【図9】本発明の第1実施形態の説明に供する静電搬送用電圧波形及び電荷注入用電圧波形の説明に供する説明図
【図10】本発明の第2実施形態の説明に供する静電搬送用電圧波形及び電荷注入用電圧波形の説明に供する説明図
【図11】同実施形態において電荷注入電極に−100Vを印加した場合の静電搬送電極近傍の電界(ベクトル)の一例を示す説明図
【図12】本発明の第3実施形態の説明に供する模式的構成図
【図13】電荷注入電極が分割されていない場合の電気力線の説明図
【図14】電荷注入電極が分割されている場合の電気力線の説明図
【図15】同実施形態における静電搬送電極近傍の電界(ベクトル)の説明図
【図16】本発明の第4実施形態の説明に供する模式的構成図
【図17】同実施形態の説明に供する電荷注入電極近傍の電界(電気力線)の説明図
【図18】同じく静電搬送電極近傍の電界(ベクトル)の説明図
【図19】本発明の第5実施形態の説明に供する模式的構成図
【図20】本発明の第6実施形態の説明に供する模式的構成図
【図21】同実施形態の他の例の説明に供する模式的構成図
【図22】本発明の第7実施形態に係る帯電搬送装置を備えた本発明に係る現像装置を含む本発明に係る画像形成装置の要部概略構成図
【図23】本発明の第8実施形態に係る帯電搬送装置を備えた本発明に係る現像装置を含む本発明に係る画像形成装置の要部概略構成図
【図24】本発明の第9実施形態に係る帯電搬送装置を備えた本発明に係る現像装置を含む本発明に係る画像形成装置の要部概略構成図
【図25】本発明の第10実施形態に係る帯電搬送装置の概略構成図
【図26】同実施形態の要部拡大説明図
【図27】本発明の第11実施形態に係る帯電搬送装置の要部概略構成図
【図28】本発明の第12実施形態に係る帯電搬送装置の概略構成図
【図29】本発明の第13実施形態に係る帯電搬送装置の概略構成図
【図30】本発明に係るプロセスカートリッジの一例の説明に供する模式的構成図
【図31】本発明に係る画像形成装置の一例の説明に供する模式的構成図
【符号の説明】
1…電荷注入手段、2…電荷注入電極、2a…分割電荷注入電極、3…電荷注入用駆動回路、5…導電性部材、7a、7b…リング状共通電極、11…静電搬送基板、12…静電搬送電極、13…静電搬送用駆動回路、34…回転部材、52、62…回転部材、101…静電搬送基板、102…静電搬送電極、204…補助電極、301…プロセスカートリッジ。
[0001]
[Industrial applications]
The present invention relates to a charge transport device, a developing device, a process cartridge, and an image forming device.
[0002]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-139144
[Patent Document 2] JP-A-2002-341656
[Patent Document 3] JP-A-2002-91159
[Prior art]
2. Description of the Related Art As an image forming apparatus such as a copying machine, a printer, and a facsimile, a latent image is formed on a latent image carrier using an electrophotographic process, and a developer (hereinafter, also referred to as “toner”) that is a fine particle powder is formed on the latent image. ) Is developed by developing the toner image into a visible image as a toner image, and the toner image is transferred to a transfer member (a recording medium or an intermediate transfer member) to form an image.
[0003]
In such an image forming apparatus, as a toner conveying apparatus for conveying the toner, an apparatus using a rotatable screw is generally used. For example, it is known that toner in a pipe is conveyed in the axial direction of the screw by rotating a screw provided along the inside of the pipe.
[0004]
However, in such a toner conveying device, a relatively large motor is used to rotate the screw in the pipe, so that there is a problem that the device area becomes large and the rotating noise is large. Further, when toner is clogged between the inner wall of the pipe and the screw, the toner is melted by frictional heat, which may cause an increase in torque or poor conveyance.
[0005]
On the other hand, other toner conveying devices include a device that conveys the toner together with the airflow by applying or entraining the airflow on the toner, a device that conveys the toner by helping the toner to slide down along the slope due to vibration, a device that conveys the toner, There are also known devices for transporting an image by an electric field.
[0006]
Among these, in an apparatus that transports the toner together with the air flow, the transport density of the minute particulate matter is reduced by air and becomes sparse, and this is a low-efficiency transport method. Further, in a device that transports toner that assists transportation by vibration, relatively large energy is required to cause the vibration, and there is a disadvantage that the transportation direction is limited to the direction of gravity.
[0007]
Therefore, the electrostatic transport device that transports the charged toner using the above-described electric field does not involve the wear or vibration of the mechanical part, so that it is possible to maintain a long-term stable image forming operation without noise. , Such a transport device
[Patent Document 1],
It is disclosed in Patent Document 2 and the like.
[0008]
However, in order to transport the toner using such an electrostatic transport device and to use the toner for development, the toner needs to be charged. As a method for charging the toner, use a method of frictional charging, which is currently used in general one-component development, and frictionally charges the toner between the developing roller and a doctor blade (or a replenishment roller) by rubbing the toner on the surface of the developing roller. Can be.
[0009]
However, for example, rather than transferring the frictionally charged toner on the developing roller to the electrostatic transport device and transporting the toner to the developing unit, and then performing the development, the developing roller is brought closer to the latent image on the image carrier as it is. It is absolutely advantageous to carry out the development with respect to the cost, size and reliability of the apparatus, and there is a problem that the advantage of using the electrostatic transport apparatus cannot be fully utilized.
[0010]
Therefore, as a conventional developing device using electrostatic transport,
As disclosed in Patent Document 3, toner is transported to the vicinity of a photoconductor using an electrostatic transport substrate having an electrostatic transport electrode array that generates an electric field, and the toner is transferred on the electrostatic transport substrate. There is one in which toner is charged by friction with a substrate surface by being transported, and toner is transferred to a photoreceptor from an opening of a developing device and developed.
[0011]
[Problems to be solved by the invention]
However, as mentioned above
As disclosed in Patent Document 3, the amount of charge obtained by friction when toner is transferred on an electrostatic transfer substrate by an electric field (electrostatic force) is sufficient for electrostatic transfer and development. However, there is a problem that the toner cannot be conveyed and development cannot be performed in spite of the fact that the amount cannot be obtained, and despite the description in the document.
[0012]
By the way, the applicant
Patent Document 2 discloses ETH development. The ETH (Electrostatic Transport & Hopping) phenomenon refers to a phenomenon in which powder is given the energy of a phase-shift electric field, the energy is converted into mechanical energy, and the powder itself fluctuates dynamically. . The ETH phenomenon includes a movement (conveyance) of powder in a horizontal direction (meaning a direction along a conveying surface) and a movement (hopping) in a vertical direction (meaning a vertical direction of a conveying surface) due to electrostatic force. This is a phenomenon in which the powder jumps on the surface of the electrotransport substrate with a component in the traveling direction due to the phase-shift electric field. Development utilizing this ETH phenomenon is referred to as ETH development.
[0013]
This ETH development has the remarkable advantages of downsizing the developing device, preventing toner scattering, and improving image quality. However, since the ETH development conveys the charged toner by the electrostatic conveyance means, as described above, If the toner is charged using a simple one-component developing device or a two-component developing device, the merit of electrostatic conveyance is reduced.On the other hand, if the toner is friction-charged only by the electrostatic conveyance, a sufficient charge amount cannot be secured. Even the electrostatic transfer of the toner cannot be performed.
[0014]
Thus, the present inventors have conducted intensive studies on a technique for supplying charged fine particles to an electrostatic transport device, and have arrived at the present invention. The present invention provides a novel technique capable of performing charging and electrostatic transport of fine particles. An object of the present invention is to provide a charge transport device, a developing device, a process cartridge, and an image forming apparatus using the charge transport device.
[0015]
In order to solve the above-described problems, a charge transporting device according to the present invention includes a charge injection unit having a charge injection electrode on which uncharged fine particles are placed, and a charge injection device that faces the charge injection electrode of the charge injection unit and reduces the charged fine particles. An electrostatic transfer means having an electrostatic transfer electrode for moving by electric power, wherein the uncharged fine particles are charged and transferred to the electrostatic transfer means side. In this specification, the term “fine particles” includes all of those called “powder”, “particles”, “fine particles”, “powder”, “fine powder”, “fine powder”, and the like. Used.
[0016]
Here, in a state where the voltage waveform for electrostatic transport is not applied to the electrostatic transport electrode, the voltage for fine particle charging is applied to the charge injection electrode, and the voltage required for the charged fine particles to transfer to the electrostatic transport unit side. It is preferable that a means for applying a voltage waveform for electrostatic transfer to the electrostatic transfer electrode for a certain period of time without applying a voltage for charging fine particles to the charge injection electrode after the application for a certain time period is preferable.
[0017]
Further, in a state where the voltage waveform for electrostatic transport is not applied to the electrostatic transport electrode, a voltage for charging the fine particles is applied to the charge injection electrode, the charge amount of the fine particles is changed, and The voltage applied to the charge injection electrode is applied for a time longer than it can be separated from the other fine particles.After that, the fine particles cannot be charged, but the movement of the charged fine particles to the electrostatic transport electrode is continued. It is preferable to include a means for applying a voltage waveform for electrostatic transport to the electrostatic transport electrode for one cycle in a state where the voltage is reduced to a voltage that allows the voltage.
[0018]
Alternatively, the charge injection electrode is divided, and an electric field capable of charging the fine particles is formed on the surface of the divided charge injection electrode with respect to the divided charge injection electrode. It is preferable that the electrostatic transport electrode is provided with a means for applying a voltage for forming an electric field which does not prevent the voltage from being applied and applying a voltage waveform for electrostatic transport to the electrostatic transport electrode.
[0019]
Further, it is preferable to provide a conductive member having an opening between the charge injection electrode and the electrostatic transport electrode. In this case, the uncharged fine particles are provided on the surface of the charge injection electrode with respect to the charge injection electrode and the conductive member. A voltage is applied to form an electric field capable of charging the conductive member and the electrostatic transport electrode, and the movement of the charged fine particles to the electrostatic transport electrode is continued with respect to the conductive member and the electrostatic transport electrode. It is preferable to provide a means for applying a voltage for forming an unobstructed electric field.
[0020]
In addition, a dielectric member having a large number of openings between the charge injection electrode and the electrostatic transport electrode, and having a ring-shaped common electrode surrounding the openings on the charge injection electrode side and the electrostatic transport electrode side is provided. In this case, it is preferable that the voltage applied to the charge injection electrode and the ring-shaped common electrode on the charge injection electrode side of the dielectric member be charged while the voltage waveform for electrostatic transfer is applied to the electrostatic transfer electrode. A voltage for forming an electric field capable of charging the fine particles is applied to the surface of the injection electrode, and the fine particles charged toward the electrostatic transfer electrode are applied to the ring-shaped common electrode on the charge injection electrode side and the ring-shaped common electrode on the electrostatic transfer side. In addition to forming an electric field in a direction that prevents it from hitting the edge of the opening, the movement of the charged fine particles to the electrostatic transport electrode between the electrostatic transport electrode-side ring-shaped common electrode and the electrostatic transport electrode is continued. Charging on transport electrodes It is preferably provided with means for applying a voltage for forming an electric field which does not interfere with the transport of particles.
[0021]
Alternatively, it is preferable to provide a conductive rotating member between the charge injection electrode and the electrostatic transport electrode. In this case, the conductive rotary member is applied with a voltage waveform for electrostatic transport applied to the electrostatic transport electrode. For the member, the movement of the charged fine particles to the electrostatic transfer electrode is continued between the voltage applied to the electrostatic transfer electrode and the voltage that does not hinder the transfer of the charged fine particles on the electrostatic transfer electrode. Means for applying, to the charge injection electrode, a voltage capable of forming an electric field capable of charging fine particles on the surface thereof between the voltage applied to the conductive rotating member and the charged member. It is preferable to move the charged fine particles to the vicinity of the electrostatic transfer electrode with the rotation of the conductive rotating member, and to peel off the charged fine particles from the surface of the conductive rotating body by non-electrostatic means. .
[0022]
Further, the charge injection electrode is held at an angle, and the uncharged fine particles may slide down on the charge injection electrode by gravity. Alternatively, the charge injection electrode may be a rotating member having a fine hopper on its surface, and the uncharged fine particles may be held by the hopper and transported to a position facing the electrostatic transport electrode with rotation of the rotating member. it can. Further, the charge injection electrode is a rotating member having fine conductive short fibers embedded in its surface, and a position where the non-charged fine particles are held by the conductive short fibers and face the electrostatic transport electrode with the rotation of the rotating member. Can be transported to
[0023]
The charging and transporting device according to the present invention has an electrostatic transporting electrode for moving charged fine particles by electrostatic force, and the electrostatic transporting electrode includes a charging and transporting electrode formed of a semiconductor. In this configuration, uncharged fine particles are placed on the substrate, and the uncharged fine particles are charged and transported.
[0024]
Here, an electrostatic transport voltage applied to the electrostatic transport electrode by placing uncharged fine particles on the electrostatic transport electrode formed of a semiconductor is an electric field formed between the electrodes. It is preferable that a high electric field is formed by selectively concentrating only the negative or positive carriers to inject and charge the uncharged fine particles and to carry the electrostatic charge as it is.
[0025]
The charge transport device according to the present invention has an electrostatic transport electrode for moving charged fine particles by electrostatic force, and the electrostatic transport electrode is formed of a semiconductor and has a fine projection on its surface. An electrode is provided, and uncharged fine particles are placed on the charged transport electrode, and the uncharged fine particles are charged and transported.
[0026]
Here, an uncharged fine particle is placed on the charged carrier electrode, and an electric field generated by the electrostatic carrier voltage applied to the electrostatic carrier electrode selectively concentrates only the negative or positive carrier at the tip of the protrusion. In this case, it is preferable that a high electric field is formed so that the uncharged fine particles are charged by corona discharge generated by the high electric field and electrostatically transferred as it is.
[0027]
The charge transport device according to the present invention has an electrostatic transport electrode for moving charged fine particles by electrostatic force, and the electrostatic transport electrode includes a charge transport electrode having a field electron emission material on its surface. An uncharged fine particle is placed on the charged transfer electrode, and the uncharged fine particle is charged and transferred.
[0028]
Here, uncharged fine particles are placed on the charged transport electrode, and the electrostatic transport voltage applied to the electrostatic transport electrode is generated by the electric field generated between the adjacent electrostatic transport electrodes. It is preferable that electrons be emitted from the material, and the electrons or the negative ions combined with neutral molecules in the atmosphere be used to charge the uncharged fine particles and simultaneously carry them electrostatically as they are. Preferably, a carbon nanotube or a carbon nanocoil is used as the field electron emission material.
[0029]
In a charging and transporting device that performs charging and transport by these electrostatic transport electrodes, a process of charging uncharged fine particles and a process of transporting charged fine particles are temporally divided, and different voltages are applied in each process, It is preferable that both processes be performed alternately. In this case, a configuration may be employed in which a charging auxiliary electrode is provided opposite to the charging and transporting electrode, and a voltage for charging uncharged fine particles is applied between the charging and auxiliary electrode and the charging and transporting electrode. In this case, it is preferable that the material of the charged transport electrode included in the electrostatic transport electrode is different from that of the other electrodes. Further, the charging auxiliary electrode preferably has an opening through which fine particles can pass.
[0030]
Further, it is preferable that the charging / transporting device in which charging and transporting are performed by the electrostatic transporting electrode is configured to vibrate a member including the electrostatic transporting electrode in a process of charging the uncharged fine particles.
[0031]
The charging and transporting device according to the present invention has an electrostatic transporting electrode for moving charged fine particles by electrostatic force, and a charging auxiliary electrode facing at least a part of the electrostatic transporting electrode of the electrostatic transporting electrode. The auxiliary charging electrode is provided with a field electron emission material or a projection for corona discharge. Uncharged fine particles are placed on an electrostatic transport electrode facing the auxiliary charging electrode, and the uncharged fine particles are charged and transported. It is configured.
[0032]
A developing device according to the present invention is a developing device that develops a latent image on a latent image carrier by adhering a charged toner on the latent image carrier, the device including any one of the charge transport devices according to the present invention. It is.
[0033]
The process cartridge according to the present invention is configured such that the developing unit is a developing device according to the present invention in a process cartridge that includes at least a developing unit and is detachable from an image forming apparatus main body.
[0034]
An image forming apparatus according to the present invention is an image forming apparatus including a developing device that develops a latent image on a latent image carrier by attaching a charged toner, and includes the developing device according to the present invention.
[0035]
An image forming apparatus according to the present invention includes a plurality of process cartridges according to the present invention in an image forming apparatus for forming a color image.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. First, the basic configuration of the charging and conveying device according to the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating the configuration of the apparatus.
The charge transport device includes a charge injection unit 1 having a charge injection electrode 2 on which uncharged fine particles Ta are placed, and a charge injection unit 2 facing the charge injection electrode 2 of the charge injection unit 1 for moving the charged fine particles by electrostatic force. An electrostatic transport substrate 11 which is an electrostatic transport unit having a plurality of electrostatic transport electrodes 12 is provided. The uncharged fine particles Ta are charged by the charge injection electrodes 2 (the charged fine particles are referred to as “charged fine particles Tb”). .) Transfer to the electrostatic transport substrate 11 side, and the electrostatic transport substrate 1 transports the charged fine particles Tb with electrostatic force.
[0037]
The charge transport device includes a drive circuit 3 for applying a voltage for charge injection to the charge injection electrode 2 and an n-phase (n is 3 or more) for electrostatic transfer to the electrostatic transfer electrode 12 of the electrostatic transfer substrate 11. And a drive circuit 13 for applying pulse-like drive voltages Va (a phase), Vb (b phase), and Vc (c phase).
[0038]
The electrostatic transfer substrate 11 includes a set of three electrodes (electrostatic transfer electrodes) 12 a, 12 b, and 12 c (collectively referred to as “electrostatic transfer electrodes 12”) on a base substrate (supporting substrate) 15. At predetermined intervals, repeatedly formed and arranged along the particle moving direction in a direction substantially orthogonal to the particle moving direction, and further provided on the surface thereof a surface protective layer 16 made of an insulating member formed of an inorganic or organic insulating material. The surface of the surface protective layer 16 is formed as a transport surface. In this case, the surface protective layer 16 is a surface layer that forms the transport surface. However, a surface layer having more excellent compatibility with powder can be separately formed on the surface protective layer 16.
[0039]
Here, as the supporting substrate 15, a substrate made of an insulating material such as a glass substrate, a resin substrate or a ceramics substrate, or a substrate made of a conductive material such as SUS is used. 2 And a substrate made of a flexible and deformable material such as a polyimide film.
[0040]
In addition, as an electrode material of the electrostatic transport electrode 12, a conductive material such as Al, Ni—Cr or the like can be used, and the conductive material is patterned into a required electrode shape using a photolithography technique or the like. In addition, the width of the electrostatic transport electrode 12 in the direction in which the fine particles travel is from 1 to 20 times the average particle size of the powder to be moved, and the distance between the electrostatic transport electrodes 12 and 12 in the direction of the fine particles also moves. The average particle size of the body is 1 to 20 times.
[0041]
As the surface protection layer 16, for example, SiO 2 2 , TiO 2 , TiO 4 , SiON, BN, TiN, Ta 2 O 5 Etc. can be used. Further, an inorganic nitride compound, for example, SiN, Bn, W, or the like can be used. In particular, when the number of surface hydroxyl groups increases, the charge amount of the charged powder tends to decrease during transportation. Therefore, an inorganic nitride compound having a small number of surface hydroxyl groups (SiOH, silatol groups) is preferable.
[0042]
In this way, a potential difference is formed between the charge injection electrode carrying the uncharged fine particles (here, toner) and the electrostatic transport electrode facing the charge injection electrode, and the toner is charged to the electrostatic transport substrate. Since the transfer is performed, a special toner charging device and a device for supplying the charged toner to the electrostatic transport electrode are not required, and the device can be reduced in size and cost.
[0043]
Therefore, the charging and transport of the fine particles in the charging and transporting apparatus will be described with reference to FIGS.
The present inventors first conducted an experiment using a charge injection experiment apparatus as shown in FIG. 2 in order to inject electric charge into a high-resistance toner as fine particles. In this experimental apparatus, a ground electrode 21 which is two flat aluminum electrodes and a pulse applying electrode 22 for applying a pulse voltage are opposed to each other with a space of 1 mm by a bakelite spacer, and the electrode 21 carrying the toner T is grounded. A pulse voltage was applied to the other electrode 22 from a power supply (not shown).
[0044]
Here, the applied pulse voltage is generated by using HP 8116A (trade name) PULSE / FUNCTION GENEATOR to generate a square pulse of ± 0.6 to 2.0 V, 1.0 to 1000 msec, and Trek High -Amplified 1000 times with a Voltage Power Amplifier 10 / 10A and generated. The output waveform was observed each time using a digital oscilloscope 243IL (trade name) manufactured by Sony-Tektronix.
[0045]
Then, the charge is injected and charged, and the charge amount (q / d) distribution, specific charge (q / m) and particle size distribution of the toner T flying from the ground electrode 21 to the pulse applying electrode 22 and adhering to the surface thereof are measured. It was measured with E-spart (trade name) manufactured by Hosokawa Micron Corporation.
[0046]
The toner is composed of only a base resin and a pigment. Hydrophobic silica H-2000 (trade name, manufactured by Hoechst) is added to the toner base powder before addition of an external additive such as CCA or silica by Osterizer. It was prepared by adding 0.3 wt% to 3.0 wt% (this toner is hereinafter referred to as “prototype toner”).
[0047]
As a result of this measurement, FIG. 3 shows a change in the charge amount (specific charge q / m) of the prototype toner with respect to the height of the applied pulse (pulse width was set to 100 msec), and the width of the applied pulse (pulse height was -2). FIG. 4 shows a change in the charge amount (specific charge q / m) of the prototype toner with respect to 0.0 kV).
[0048]
From the results shown in FIG. 3, the average electric field between the two electrodes 21 and 22 is at least 1.2 × 10 6 V / m, preferably 1.6 × 10 6 It is understood that V / m or more is required. At -1000 V, it was confirmed that not only the specific charge was small, but also the amount of the flying toner itself was very small.
[0049]
Also, the results shown in FIG. 4 indicate that the charge injection itself is completed in a short time of 1 msec or less. If the pulse width of the applied pulse is shorter than this, the amount of the toner flying to the pulse applying electrode 22 is reduced, but not because the charge injection charging was not performed, but because the electric field disappears during the flight due to the charging. This is because he could not continue flying.
[0050]
The average landing speed of the charged and flying toner photographed by a high-speed camera was found to be about 1-2 m / sec. Therefore, even if the average flying speed is 1 m / sec, it takes 1 msec to cross the 1 mm interval between the electrodes 21 and 22. In fact, when the experiment was performed by lowering the pulse height to 0 V without dropping the charge into an electric field in which charge injection did not occur but flight continued, the minimum time required for charge injection was found to be 0.2 to 0.3 msec. confirmed.
[0051]
Thus, the conditions for charging the charge-injectable high-resistance toner by charge injection have been clarified, and an experiment for electrostatically transporting the charge-injected toner was performed using an experimental apparatus as shown in FIG.
[0052]
In this experimental apparatus, a rectangular charge injection electrode 23 was provided on the lower side, and an electrostatic carrier substrate 24 having an electrostatic carrier electrode 25 on the upper side was arranged. In the above-described charge injection experiment, the electrode 21 on which the lower uncharged toner was placed was grounded, and a negative pulse was applied to the upper electrode 22 to inject a positive charge into the toner. , A negative pulse was applied to the charge injection electrode 23 to inject a negative charge into the toner. It has been confirmed that, in the above-mentioned prototype toner, both positive and negative charges can be injected almost in the same manner, and that the charge can be injected even if a pulse voltage is applied to the electrode on which the toner is placed or to the opposite electrode. .
[0053]
Further, the distance between the electrode 23 and the electrostatic transfer substrate 24 was reduced from 1.0 mm in the above-described charge injection experiment to 0.2 mm. This is to reduce the height of the applied pulse to 1/5 in proportion to the gap.
[0054]
The electrostatic transport substrate 24 is configured by arranging a large number of electrostatic transport electrodes 25 each having a width of 30 μm in parallel with an interelectrode interval of 30 μm in a direction perpendicular to the paper on an insulating substrate (glass) 26. As shown in FIG. 6, a voltage waveform of 0 V, -100 V, and 0 V is applied to each electrode 25 by a drive circuit for every three electrodes, and the voltage is shifted right by one electrode every 333 μsec. Applied. Hereinafter, the voltage waveform shown in FIG. 6 is referred to as a “reference voltage waveform”.
[0055]
When this reference drive waveform is applied to the electrostatic transport electrode 25 of the electrostatic transport substrate 24, the negatively charged toner on the electrostatic transport substrate 24 is transported to the right. It has been separately confirmed by an experiment that the toner is conveyed without falling even if the electrostatic transfer electrode row faces downward.
[0056]
Therefore, as shown in FIG. 5, when a pulse voltage waveform of -400 V is applied to the charge injection electrode 23, the uncharged toner placed on the charge injection electrode 23 has a negative charge almost simultaneously with the application of the voltage. Is injected and charged, and the electric field formed between the charge injection electrode 23 and the electrostatic transport electrode 24 flies by receiving an electrostatic force acting on the negatively charged toner, and lands on the electrostatic transport substrate 24.
[0057]
However, even though the reference voltage waveform is applied to the 12 rows of the electrostatic transfer electrodes on the electrostatic transfer board 24, the charged toner that has landed on the electrostatic transfer board 24 is not transferred to the right on the electrostatic transfer board 24. Was.
[0058]
As described above, it was confirmed that a simple combination of the charge injection technique and the electrostatic transport technique could not constitute a charge transport apparatus for charging and electrostatic transport.
[0059]
Therefore, the present inventors conducted further intensive experiments, and in order to investigate the cause of the inability to electrostatically transport the charged toner, the electrostatic transport electrode when the voltage applied to the charge injection electrode was 0 V and -400 V by the differential method. The electric field near 25 was simulated. The results are shown in FIGS. 7 and 8.
[0060]
Here, FIG. 7 shows an electric field (vector) near the electrostatic transport electrode and 0 V applied to the charge injection electrode, and FIG. 8 shows an electric field (vector) near the electrostatic transport electrode and −400 V applied to the charge injection electrode. , Respectively. In each of the figures, the upper left and upper right rectangles represent the right half 15 μm and the left half 15 μm, respectively, of the electrostatic transport electrode 25, and the arrows indicate the electric field (vector) at each lattice point, and the direction indicates the direction of the electric field. Indicates the strength of the electric field.
[0061]
First, as shown in FIG. 7, when 0 V is applied to the charge injection electrode 23, 0 V is applied to the left electrostatic transport electrode 25 and -100 V is applied to the right electrostatic transport electrode 25. . Therefore, in the vicinity of (the left half of) the electrostatic transport electrode 25 to which -100 V is applied at the upper right, the electric field vector points obliquely to the upper right. Since the toner is negatively charged, it moves diagonally to the left under the force in the opposite direction, and is then conveyed leftward by the force in the left horizontal direction.
[0062]
On the other hand, as shown in FIG. 8, when −400 V is applied, the electric field vector points to the lower right in the vicinity of the upper right electrostatic transport electrode 25 to which −100 V is applied. All were pressed to the upper left, and it was confirmed that they would not be transported.
[0063]
Thus, a first embodiment of the present invention will be described with reference to FIG. FIG. 3 is an explanatory diagram of voltage waveforms applied to the charge injection electrode and the electrostatic transport electrode.
Here, as shown in FIG. 9, a charge injection voltage Vh applied from the drive circuit 3 to the charge injection electrode 2 and an electrostatic transfer voltage Va applied from the drive circuit 13 to the electrostatic transfer electrode 12. , Vb, and Vc are temporally divided and applied during time ta to tb and time tb to tc, which are different time regions. That is, in a state in which the electrostatic transfer voltages Va, Vb, and Vc are applied to the electrostatic transfer electrode 12, the charge injection voltage Vh is not applied to the charge injection electrode 2.
[0064]
As described above, when the charge injection into the toner and the transfer of the toner on the electrostatic transfer substrate were time-divided, it was confirmed that both the charge injection and the electrostatic transfer can be performed. Specifically, first, -400 V was applied to the charge injection electrode 2 with all the voltages applied to the 12 rows of the electrostatic transport electrodes 12 being 0 V (ground). Next, after the voltage applied to the charge injection electrode 2 is set to 0 V (ground), voltages of 0 V, -100 V, and 0 V are applied to the 12 rows of the electrostatic transport electrodes every three lines, and this is applied every 333 μsec. Were sequentially moved to the right one electrode at a time.
[0065]
Assuming that the width on which the uncharged toner Ta on the charge injection electrode 2 is placed is 10 mm and various combinations of the charge injection time and the electrostatic transfer time are examined, the charge injection time is set to 10 msec, the electrostatic transfer time is set to 100 msec, and this is alternated. It was confirmed that the toner charged to −6 μC / g can be moved to the right almost without break by repeating the above.
[0066]
As described above, in a state where the voltage for electrostatic transport is not applied to the electrostatic transport electrode, the voltage for charging the fine particles is applied to the charge injection electrode, and the voltage is higher than that required for the charged fine particles to transfer to the electrostatic transport electrode. After applying the time, a voltage waveform for electrostatic transport is applied to the electrostatic transport electrode for a certain period of time without applying a voltage for charging the particulates to the charge injection electrode, thereby charging the uncharged fine particles and transporting the charged fine particles. Can be compatible.
[0067]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is an explanatory diagram of voltage waveforms applied to the charge injection electrode and the electrostatic transport electrode.
Here, as shown in FIG. 10, as the electrostatic transfer voltages Va, Vb, and Vc applied from the drive circuit 13 to the electrostatic transfer electrode 12, the time when all the voltages Va, Vb, and Vc become 0 V ( A time td) is provided as a voltage waveform, and the charge injection voltage Vh applied from the drive circuit 3 to the charge injection electrode 2 is a predetermined voltage at a time when all of the electrostatic transport voltages Va, Vb, and Vc become 0 V. A voltage waveform to which a potential was applied was used.
[0068]
That is, in the first embodiment, the applied voltage applied to the charge injection electrode 2 and the electrostatic transport electrode 12 must be switched at different times, and the circuit becomes complicated. Therefore, the voltage applied to the 12 rows of the electrostatic transport electrodes and the voltage applied to the charge injection electrodes 2 is switched at, for example, every 333 μsec in the time table shown in FIG. In this case, at time t1 (0 to 333 μsec), the voltage applied to the set of three electrostatic transfer electrodes 12 (12a, 12b, 12c) is 0V, that is, all the electrodes 12 are 0V, In addition, since the applied voltage of -400 V is applied to the charge injection electrode 2, only the charge injection and the flying of the charged toner to the electrostatic transfer substrate 11 are performed without performing the electrostatic transfer.
[0069]
At the next time points t2, t3, and t4 (334 μsec to 1333 μsec), the voltage of the electrode 12a of the electrostatic transport electrode 12 is 0V, 0V, -100V, the voltage of the electrode 12b is -100V, 0V, 0V, and the voltage of the electrode 12 Is changed to 0V, -100V, and 0V, while the voltage of the charge injection electrode 2 is maintained at the flying continuation voltage of -100V. The charged toner on the transfer board 11 is transferred.
[0070]
At this time, even if −100 V for flight continuation is applied to the charge injection electrode 2, the transport was performed at −100 V, unlike −400 V, and the electric field near the electrostatic transport electrode 12 was so disturbed. Because there was no. The simulation result at this time is shown in FIG. It can be seen that the influence is small as compared with FIG.
[0071]
Such a configuration is possible because the time required for injecting the electric charge of the used toner is within the time of the pulse width set for the electrostatic transport voltages Va, Vb, and Vc. If the charge injection is not completed within the time of this pulse width, the charging becomes insufficient. In the above-described example, in the prototype toner, the time required for charge injection is less than 0.3 msec, so that charge injection is completed even if the charge injection time is set to 334 μsec.
[0072]
As described above, in a state where the voltage for electrostatic transport is not applied to the electrostatic transport electrode, the voltage for charging the fine particles is applied to the charge injection electrode, the charge amount of the fine particles, The voltage applied to the charge injection electrode is applied for a time longer than it can be separated from the other fine particles, and then the voltage applied to the charge injection electrode can be used to continue the movement of the charged fine particles to the electrostatic transport electrode although the fine particles cannot be charged. In this state, a voltage waveform for electrostatic transport is applied to the electrostatic transport electrode for one cycle in a state where the voltage is lowered, so that the charging of the uncharged fine particles and the transport of the charged fine particles can be made compatible with a simple circuit.
[0073]
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is an explanatory diagram of a schematic configuration of the charging and conveying device according to the embodiment.
Here, a divided charge injection electrode 2a obtained by dividing the charge injection electrode 2 into a plurality is provided in the charge injection means 1, and the divided charge injection electrode 2a is constantly charged by a drive circuit (in this case, a "drive power supply") 3A. The injection voltage Vha is applied, and the above-described reference drive voltages Va, Vb, and Vd are applied to the electrostatic transport electrode 12 from the drive circuit 13. Here, the electric charge injection voltage Vha forms an electric field capable of charging the fine particles on the surface of the divided charge injection electrode 2a, but does not prevent the charged fine particles from being transferred to the surface of the electrostatic transport electrode 12. Voltage is set.
[0074]
That is, although the circuit configuration is simplified by the second embodiment, the time during which no transfer is performed must be set to the electrostatic transfer voltage, so that the electrostatic transfer is not performed for 1/4 cycle. In other words, the speed of electrostatic transfer does not increase, and is not sufficient especially for high-speed processes.
[0075]
Therefore, after increasing the gap between the electrostatic transport substrate 11 and the charge injection electrode 2 from 0.2 mm to 1.0 mm, a plurality of charge injection electrodes 2 having a width L = 0.1 mm and an interval D = 0.4 mm are formed. It was divided into parallel electrodes 2a. In this state, -750 V (Vha) was constantly applied to the row of the charge injection electrodes 2a, and the reference voltage waveforms Va, Vb, and Vc were applied to the 12 rows of the electrostatic transfer electrodes. The transfer speed was maintained without impairing the charge injection. It was confirmed that it was improved.
[0076]
This embodiment has been established because, with this configuration, the lines of electric force are concentrated on the divided charge injection electrodes 2a, and the electric field at that point is an average electric field between the two electrodes, 0.75 × 10 6 V / m more than twice, uniform electric field, 2.0 × 10 6 In the same manner as in the case of V / m, the electric charge is injected. However, in the vicinity of the electrostatic transfer substrate 11, the electric field formed by the electrostatic transfer electrodes 12 is more than twice as large as the average electric field between the two electrodes. This is because the influence on the electrostatic conveyance is small.
[0077]
FIG. 13 shows a uniform electric field, 2.0 × 10 6 The electric field near the charge injection electrode 2 in the case of V / m is shown by electric lines of force, and FIG. 14 shows the electric field near the divided charge injection electrode 2a in the third embodiment by lines of electric force. A comparison between the two shows that the densities of the lines of electric force entering the charge injection electrode are substantially equal.
[0078]
FIG. 15 shows an electric field vector near the electrostatic transfer electrode 12 in the case of the present embodiment. It can be seen that the effect is small as compared with FIG.
[0079]
In this manner, the charge injection electrode is divided, and an electric field capable of charging the fine particles is formed on the surface of the divided charge injection electrode in the divided charge injection electrode, but the charged fine particles are formed on the surface of the electrostatic transport electrode. Since a voltage that does not prevent transport is applied and a voltage waveform for electrostatic transport is applied to the electrostatic transport electrode, charging of uncharged fine particles and transport of charged fine particles can be performed without reducing the speed of electrostatic transport. Can be compatible.
[0080]
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 3 is an explanatory diagram of a schematic configuration of the charging and conveying device according to the embodiment.
Here, a conductive member 5 having a high aperture ratio, for example, a metal screen is disposed between the charge injection electrode 2 and the electrostatic transport electrode 12. The driving power sources 3B and 33 apply voltages Vhb and Vl to the charge injection electrode 2 and the conductive member 5 to form electric fields on the surface of the charge injection electrode 2 that can charge uncharged fine particles. The voltage Vl applied to the conductive member 5 and the voltages Va, Vb, and Vc for electrostatic transfer applied to the electrostatic transfer electrode 12 are such that an electric field formed between the conductive member 5 and the electrostatic transfer electrode 12 is a charged fine particle. , The voltage is set to a voltage which does not hinder the electrostatic transfer of the charged fine particles on the electrostatic transfer electrode 12.
[0081]
That is, when the charge injection electrode 2 is divided as in the third embodiment, the area in which the charge can be injected is reduced, so that the amount of toner supplied to the electrostatic transfer substrate 11 is reduced. Therefore, the gap between the electrostatic transport substrate 11 and the single-piece charge injection electrode 2 was set to 1.0 mm, and a metal screen (conductive member 5) was disposed at an intermediate point between them. Then, while applying the reference voltage waveforms Va, Vb, and Vc to the 12 rows of the electrostatic transport electrodes, -100 V (= Vl) was always applied to the metal screen 5 and -1100 V (= Vhb) was applied to the charge injection electrodes 2. At this time, it was confirmed that the amount of toner supplied to the electrostatic transfer substrate 11 was large and the speed of electrostatic transfer was high.
[0082]
In the present embodiment, 2.0 × 10 2, which is sufficient to cause charge injection between the metal screen (conductive member 5) and the charge injection electrode 2, is performed. 6 An electric field of V / m is formed, while the electric field of the metal screen (conductive member 5) and the electrostatic transport electrode 12 is 0.2 × 10 6 V / m or less, which is very low and does not hinder the transport electric field.
[0083]
FIG. 17 shows an electric field (indicated by lines of electric force) near the charge injection electrode 2, and FIG. 18 shows an electric field (vector) near the electrostatic transfer electrode 12. By comparing FIG. 17 with FIG. 13, it can be seen that a strong electric field required for charge injection is formed near the charge injection electrode 2. The metal screen has a square shape of 60 μm square, and -100 V is applied.
[0084]
Also, comparing FIG. 18 with FIG. 7, it can be seen that the electrostatic transport electric field is not disturbed at all near the electrostatic transport electrode 12.
[0085]
Thus, the conductive member having an opening is provided between the charge injection electrode and the electrostatic transport electrode, and the uncharged fine particles are applied to the surface of the charge injection electrode by applying the voltage to each of the charge injection electrode and the conductive member. To form an electric field capable of charging the conductive member and the voltage for electrostatic transfer applied to the electrostatic transfer electrode. Although it is set so as not to hinder the electrostatic transfer of the charged fine particles on the electrostatic transfer electrode, the supply speed of the electrostatic transfer without decreasing the supply amount of the charged fine particles to the electrostatic transfer electrode is set. The charging of the uncharged fine particles and the conveyance of the charged fine particles can both be achieved without dropping.
[0086]
Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 3 is an explanatory diagram of a schematic configuration of the charging and conveying device according to the embodiment.
Here, a large number of openings 6a are provided between the charge injection electrode 2 and the electrostatic transport electrode 12, and a ring-shaped common electrode 7a surrounding the openings 6a on the charge injection electrode side and the electrostatic transport electrode side, respectively. , 7b.
[0087]
Then, reference voltage waveforms Va, Vb, and Vc are applied from the drive circuit 13 to the 12 rows of the electrostatic transport electrodes. A voltage Vhb is applied to the charge injection electrode 2 by the drive power supply 3B, and a voltage Vla is applied to the ring-shaped common electrode 7a on the charge injection electrode side of the dielectric member 6 by the drive power supply 33A. The voltage Vlb is applied to the ring-shaped common electrode 7b on the side.
[0088]
Here, the voltage Vhb applied to the charge injection electrode 2 and the voltage Vla applied to the ring-shaped common electrode 7a on the charge injection electrode side of the dielectric member 6 form an electric field capable of charging fine particles on the surface of the charge injection electrode 2. Voltage is set. Also, the voltages Vla and Vlb applied to the ring-shaped common electrode 7a on the charge injection electrode side and the ring-shaped common electrode 7b on the electrostatic transport side prevent the fine particles traveling toward the electrostatic transport electrode 12 from hitting the edge of the opening 6a. It is set to a voltage that forms an electric field in the direction. Further, the voltage Vhb applied to the electrostatic transport electrode-side ring-shaped common electrode 7b and the reference voltage waveforms Va, Vb, Vc applied to the electrostatic transport electrode 12 keep the charged fine particles moving to the electrostatic transport electrode 12. Are set to voltages that form an electric field that does not hinder the transfer of the charged fine particles on the electrostatic transfer electrode 12.
[0089]
That is, according to the fourth embodiment, when the experiment of the repeated charge injection and the electrostatic transport was repeated, the toner was deposited on the metal screen (conductive member) 5 and a partial clogging occurred.
[0090]
Therefore, instead of a metal screen, a large number of holes 6a having a diameter of 0.1 mm are formed in a zigzag pattern, and an FPC (dielectric member 6) surrounded by upper and lower two ring-shaped common electrodes 7a and 7b is formed. When −200 V (= Vla) is applied to the common electrode 7 a on the charge injection electrode side and −100 V (= Vlb) is applied to the common electrode 7 b on the electrostatic transport electrode side, toner deposition hardly occurs, and as a result, It was confirmed that clogging was resolved.
[0091]
Here, the toner flying from the charge injection electrode 2 side did not adhere to the dielectric member 6 (FPC) because a strong electric field was formed only around the edge of the hole 6a in a direction to repel the toner. It is. Therefore, the flying toner passes through the center of the hole 6a and passes through the electrostatic transport substrate 11 side.
[0092]
As described above, a dielectric member having a large number of openings between the charge injection electrode and the electrostatic transport electrode, and having a ring-shaped common electrode surrounding the openings on the charge injection electrode side and the electrostatic transport electrode side, respectively. The voltage applied to the charge injection electrode and the voltage applied to the ring-shaped common electrode of the dielectric member on the side of the charge injection electrode are applied to the charge injection electrode in a state where a voltage waveform for electrostatic transfer is applied to the electrostatic transfer electrode. An electric field capable of charging the fine particles is formed on the surface, and the fine particles charged and directed toward the electrostatic transport electrode are opened by the voltage applied to the ring-shaped common electrode on the charge injection electrode side and the ring-shaped common electrode on the electrostatic transport side. And an electric field formed between the electrostatic transport electrode-side ring-shaped common electrode and the electrostatic transport voltage applied to the electrostatic transport electrode. Is an electrostatic transport electrode for charged particles The transfer of the charged toner on the electrostatic transport electrode is not hindered, so that the accumulation of the fine particles on the intermediate member does not occur, and the supply amount of the charged fine particles to the electrostatic transport electrode is not reduced. In addition, the charging of the uncharged toner and the transfer of the charged toner can be achieved at the same time without lowering the speed of the electrostatic transfer.
[0093]
Next, a sixth embodiment of the present invention will be described with reference to FIG. FIG. 2 is a schematic diagram illustrating the configuration of the charging and conveying device according to the embodiment.
Here, an intermediate metal roller 34 which is a conductive rotating member is disposed between the charge injection electrode 2 and the electrostatic transport electrode 12, and furthermore, an intermediate metal roller 34 is provided in a region facing the electrostatic transport electrode 12 of the intermediate metal roller 34. An air nozzle 35 for jetting air as a means for peeling off the charged fine particles from the surface of the metal roller 34 by a non-static means is arranged. Note that the rotation direction of the intermediate metal roller 34 is set to a direction in which the region facing the electrostatic transfer electrode 12 is substantially the same as the electrostatic transfer direction. In addition, the direction of air ejection from the air nozzle 35 is also the same as the direction of electrostatic transport.
[0094]
Then, reference voltage waveforms Va, Vb, and Vc are applied from the drive circuit 13 to the 12 rows of the electrostatic transport electrodes. Further, a voltage Vhc is applied to the charge injection electrode 2 by the driving power supply 3C, and a voltage Vl is applied to the intermediate metal roller 34 by the driving power supply 33.
[0095]
Here, the voltage Vl and the voltage Vhc are obtained by applying the reference voltage waveforms Va, Vb, and Vc to the electrostatic transport electrode 12 and using the conductive rotating member (the intermediate metal roller 34) and the electrostatic transport electrode 12 to charge the charged fine particles. Is continued to the electrostatic transport electrode 12, but the transport of the charged fine particles on the electrostatic transport electrode 12 is not prevented, and the surface of the charge injection electrode 2 is moved between the charge injection electrode 2 and the conductive rotating member 24. The voltage is such that an electric field capable of charging the fine particles can be formed.
[0096]
That is, as in the fourth and fifth embodiments described above, accurately installing a screen, an FPC, or the like between the charge injection electrode and the electrostatic transfer substrate may increase the cost. It was hoped that it would be possible.
[0097]
Therefore, the gap between the charge injection electrode 2 and the electrostatic transport substrate 11 was widened to 12 mm, and an intermediate metal roller 34 having a diameter of 10 mm was arranged between them. At this time, the distance between the charge injection electrode 2 and the intermediate metal roller 34 was 1.0 mm, and the distance between the roller 34 and the electrostatic transfer substrate 11 was 1.0 mm. Then, −2.1 kV (= Vhc) is applied to the charge injection electrode 2, −100 V (= Vl) is applied to the roller 24, and reference voltage waveforms Va, Vb, and Vc are applied to the electrostatic transport electrode 12. The roller 34 was rotated at a peripheral speed of 100 mm / sec, and a 2 m / sec airflow was blown from a nozzle 35 directed between the roller 34 and the electrostatic transfer substrate 11.
[0098]
As a result, the charged toner that has been injected, flies to the roller 35, and rotates half way with the rotation thereof is blown off the surface of the roller 34 and travels in the air, and then a weak electric field formed between the roller 34 and the electrostatic transport electrode 12. And soft landing on the electrostatic transfer board 11 was confirmed.
[0099]
As described above, the conductive rotating member is provided between the charge injection electrode and the electrostatic transport electrode, and the electrostatic transport voltage is applied to the electrostatic transport electrode. With the voltage applied to the electrode, the movement of the charged fine particles to the electrostatic transport electrode is continued, but a voltage that does not hinder the transport of the charged toner on the electrostatic transport electrode is applied. A voltage capable of forming an electric field capable of charging the fine particles is applied to the surface of the conductive rotating member between the voltage applied to the conductive rotating member and the charged fine particles transferred to the conductive member. The charged fine particles are separated from the surface of the conductive rotating member by a non-electrostatic means by moving the charged fine particles from the surface of the conductive rotating member with the rotation of the charged fine particles. Without reducing the supply amount to the transfer electrode and the speed of electrostatic transfer It is possible to achieve both the transport of charged toner and the charging of uncharged toner without compromising.
[0100]
Note that, here, an air nozzle that ejects air as a means for peeling off the charged fine particles from the surface of the conductive rotating member by non-electrostatic means was used, but instead of this, as shown in FIG. It can also be scraped off with a blade 36. Further, an air nozzle and a blade can be used in combination.
[0101]
Next, a seventh embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a main part of an embodiment in which the charge transport device according to the present invention is applied to a developing device of an image forming apparatus.
Here, the charge injection electrode 2 of the charge injection means is disposed at an inclination (for example, 45 °) below the toner hopper 41 for supplying the toner as the uncharged fine particles, and the electrostatic transport electrode facing the charge injection electrode 2 is disposed. The electrostatic transfer substrate 11 including the image transfer member 12 is arranged, and the electrostatic transfer substrate 11 is opposed to the developing unit 46 of the image carrier 42 such as an OPC drum rotating in the direction indicated by an arrow.
[0102]
A slit is provided at the bottom of the toner hopper 41, and is mechanically opened and closed by a shutter (not shown). Further, the electrostatic transfer board 11 is wound around the supporting members 43 to 45 (not rotating). The electrostatic transport substrate 11 uses a flexible substrate as a support substrate. By forming the electrostatic transport electrodes 12 on the whole, the toner not subjected to the development can be circulated again.
[0103]
Here, as the configuration of the charge injection (charging) and the electrostatic transport by the charge injection electrode 2 and the electrostatic transport substrate 11, any of the configurations of the above-described first to third embodiments can be used.
[0104]
With such a configuration, the uncharged toner falls from the bottom of the toner hopper 41 to the charge injection electrode 2 inclined at, for example, 45 degrees, and the uncharged toner cascades on the charge injection electrode 2 by its own weight. The charged toner injected with the electric charge during this cascade flies and lands on the electrostatic transport substrate 11, for example, at a distance of 1 mm, and is moved by the traveling wave electric field formed by the electrostatic transport electrode of the electrostatic transport substrate 11. 11 is conveyed while hopping toward the developing unit 46.
[0105]
Then, the charged toner moved to the developing unit 46 is transferred onto the image carrier 42 according to the electrostatic latent image on the image carrier 42 to develop the latent image (ETH development).
[0106]
As described above, by providing the charging and transporting device according to the present invention, a developing device that performs charging and transporting with a simple configuration to supply charged toner to the developing unit, and an image forming apparatus including the developing device are configured. be able to. In addition, the charge injection electrode is held obliquely, and the uncharged fine particles slide down due to gravity, so that the probability of contact between the uncharged fine particles and the charge injection electrode increases, and the charging efficiency is improved. And a power source for transporting the toner to a position facing the electrostatic transport electrode are not required.
[0107]
Next, an eighth embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic structural explanatory view of another embodiment in which the charging and conveying device according to the present invention is applied to a developing device of an image forming apparatus.
Here, a rotatable roller-shaped charge injection electrode (charge injection electrode roller) 52 is disposed in the toner hopper 51. A large number of fine hoppers (pockets) 52 a for pumping the uncharged toner Ta are formed on the outer peripheral surface of the charge injection electrode roller 52, and a charge injection voltage Vh is applied from a driving power supply 53.
[0108]
Specifically, in the toner hopper 51, about 1/3 of the charge injection electrode roller 52 having a diameter of 20 mm was buried, and a round pocket 52a having a depth of 0.2 mm was formed on the outer peripheral surface. Note that the charge injection electrode roller 52 is not limited to a roller member, but may be a cylindrical member. In other words, the charge injection electrode roller 52 may be a rotatable rotatable member. The charge injection electrode roller 52 may be a conductive rotating member entirely made of metal or the like, or may be a roller in which a conductive layer serving as a charge injection electrode is formed on the surface of an insulating roller.
[0109]
An electrostatic carrier substrate 11 having an opposing portion facing the charge injection electrode roller 52 is disposed, and a part of the electrostatic carrier substrate 11 is opposed to the developing portion 46 of the image carrier 42 rotating in the direction indicated by the arrow. Are placed. The non-image portion on the image carrier 42 is negatively charged.
[0110]
Here, as the configuration of the charge injection (charging) and the electrostatic transport by the charge injection electrode 2 and the electrostatic transport substrate 11, any of the configurations of the above-described first to third embodiments can be used.
[0111]
With this configuration, the uncharged toner Ta is stored in the toner hopper 51 placed below, and the uncharged toner Ta is loosely packed in the pocket 52a by rotating the charge injection electrode roller 52 in the direction of the arrow. It is pumped. Then, the pumped-up uncharged toner Ta is injected with electric charge at a point where the gap with the electrostatic transport substrate 11 approaches, flies to the electrostatic transport substrate 11 side, and after landing, the electrostatic transport electrode of the electrostatic transport substrate 11 Is transported while hopping toward the developing section 46 on the electrostatic transport substrate 11 by the traveling wave electric field formed by the above.
[0112]
Then, the charged toner moved to the developing unit 46 is transferred onto the image carrier 42 according to the electrostatic latent image on the image carrier 42 to develop the latent image (ETH development).
[0113]
As described above, by providing the charging and transporting device according to the present invention, a developing device that performs charging and transporting with a simple configuration to supply charged toner to the developing unit, and an image forming apparatus including the developing device are configured. be able to. In addition, the charge injection electrode is a rotating member having a fine hopper on its surface, and the uncharged fine particles are held by the fine hopper, and are transported to a position facing the electrostatic transport electrode with the rotation of the charge injection electrode. A fixed amount of uncharged fine particles can be transported to a position facing the electrostatic transport electrode.
[0114]
Next, a ninth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a schematic structural explanatory view of still another embodiment in which the charging and conveying device according to the present invention is applied to a developing device of an image forming apparatus.
Here, a rotatable roller-shaped charge injection electrode (charge injection electrode roller) 62 is disposed in the toner hopper 51. Conductive short fibers 62 a for pumping up the uncharged toner Ta are provided on the outer peripheral surface of the charge injection electrode roller 62, and a charge injection voltage Vh is applied from a driving power supply 53.
[0115]
Specifically, about 1/3 of the charge injection electrode roller 62 having a diameter of 20 mm was buried in the toner hopper 51, and conductive short fibers 62a having a length of 2 mm were electrostatically implanted on the outer peripheral surface. The charge injection electrode roller 62 is not limited to a roller member, but may be a cylindrical member. In short, the charge injection electrode roller 62 may be a rotatable rotating member. Further, the charge injection electrode roller 62 may be a conductive rotating member entirely formed of metal or the like, or a conductive roller formed by forming a conductive layer on the surface of an insulating roller and implanting conductive short fibers in the conductive layer. But it's fine.
[0116]
Then, an electrostatic transport substrate 11 having an opposing portion facing the charge injection electrode roller 62 is disposed, and a part of the electrostatic transport substrate 11 is disposed opposing the developing portion 46 of the image carrier 42.
[0117]
Here, as the configuration of charge injection (charging) and electrostatic transport by the charge injection electrode 2 and the electrostatic transport substrate 11, any of the configurations of the first and second embodiments described above can be used. Further, if the implantation density of the conductive short fibers 62a is reduced and the electric field is concentrated at the tip, the configuration of the third embodiment can be used.
[0118]
With such a configuration, the uncharged toner Ta is stored in the toner hopper 51 placed below, and the charge injection electrode roller 62 is rotated in the direction indicated by the arrow, so that the surface of the conductive short fiber 62a or between the surfaces thereof is not charged. The charged toner Ta is held and pumped up. When the conductive short fiber 62a of the charge injection electrode roller 62 approaches the electrostatic transport substrate 11, the electric field between the conductive short fibers 62a stands upright in the direction of the electrostatic transport substrate 11, and the conductive short fiber 62a and the electrostatic transport substrate 11 Is minimized (for example, 1 mm), negative charges (electrons) are injected from the conductive short fibers 62a, and the negatively charged toner flies to the electrostatic transfer substrate 11 side. Is transported on the electrostatic transport substrate 11 while hopping toward the developing unit 46 by the traveling wave electric field formed by the electrostatic transport electrode.
[0119]
Then, the charged toner moved to the developing unit 46 is transferred onto the image carrier 42 according to the electrostatic latent image on the image carrier 42 to develop the latent image (ETH development).
[0120]
As described above, by providing the charging and transporting device according to the present invention, a developing device that performs charging and transporting with a simple configuration to supply charged toner to the developing unit, and an image forming apparatus including the developing device are configured. be able to. In addition, the charge injection electrode is a rotating member having fine conductive short fibers embedded in the surface thereof, and the non-charged fine particles are held by the conductive short fibers, and at a position facing the electrostatic transport electrode with the rotation of the rotating member. Since it is conveyed, more uncharged fine particles can be conveyed to a position facing the electrostatic conveyance electrode in a state where the fine particles are in contact with the conductive member of the charge injection electrode.
[0121]
Next, a tenth embodiment of the present invention will be described with reference to FIGS. FIG. 25 is an explanatory diagram of a schematic configuration of the charging and conveying device according to the embodiment, and FIG. 26 is an explanatory diagram for explaining a charging process.
This charging and transporting device performs charging and transporting on electrostatic transporting means, and has a plurality of electrostatic transporting electrodes 102 for generating an electric field for moving charged fine particles by electrostatic force. An electrostatic transfer substrate 101 serving as a transfer unit is provided.
[0122]
At least some of the plurality of electrostatic transfer electrodes 102 of the electrostatic transfer substrate 101 are formed of an N-type semiconductor. Here, the electrostatic transport electrode 102 belonging to the charging region shown in FIG. 25 is an N-type semiconductor and is described as an electrostatic transport electrode 102N. In this example, the electrostatic transfer electrodes 102 other than the electrostatic transfer electrode 102N formed of an N-type semiconductor can also be formed of Al-Cu. However, all the electrostatic transport electrodes 102 can be formed of an N-type semiconductor. The N-type semiconductor was formed by doping Si with P (phosphorus). Further, a P-type semiconductor can be used instead of an N-type semiconductor (depending on the polarity to be charged).
[0123]
In addition, this charging / transporting device applies n-phase (n is an integer of 3 or more) pulse-like drive voltages Va (a-phase) and Vb (b) to the electrostatic transport electrodes 102 of the electrostatic transport substrate 101. And a drive circuit 103 for applying Vc (c phase).
[0124]
That is, in each of the embodiments, the charge injection electrode is provided separately from the electrostatic transfer substrate, and electrons are injected into the uncharged toner by the charge injection electrode. 2.0 × 10 between adjacent electrodes 12 6 Since a strong electric field of V / m or more is formed, if there is no thin insulating protective layer 13 formed on the electrostatic transport electrode 12, charge injection can be performed during this period.
[0125]
However, in the case of the prototype toner, as described above, since both positive and negative charges can be injected, the positive and negative charges are injected from the electrodes that happen to come into contact, and eventually neither of them is charged.
[0126]
Therefore, at least a part of the material of the electrostatic transport electrode was changed from Al-Cu to an N-type semiconductor. When voltages that change to 0V, -100V, and 0V as reference voltage waveforms Va, Vb, and Vc are applied from the drive circuit 103 to the N-type semiconductor electrostatic transfer electrodes 102N, 0V is applied as shown in FIG. Electrons, which are majority carriers, move from inside and concentrate on the left edge of the electrode 102N to which -100V is applied, which is adjacent to the applied electrode 102N.
[0127]
As a result, a strong electric field is formed at the left edge, and negative charges are injected into the toner in contact with the left edge. Although not shown, the right edge of the electrode 102N to which -100 V is applied is also adjacent to the electrode 102N to which 0 V is applied, so that electrons, which are majority carriers, move from inside and concentrate, and similarly an electric field is formed. , Negative charge injection also occurs at the right edge.
[0128]
On the other hand, in the electrode 102N to which 0V is applied, which is adjacent to the electrode 102N to which -100V is applied, electrons which are majority carriers move to the opposite side, the electrode side to which 0V is applied, or the connected power supply. Thereafter, the positive charge is left uniformly. Therefore, the electric field on the electrode side to which -100 V is applied does not become very strong, and a positive charge is not injected into the toner in contact with this edge. FIG. 26 is a conceptual explanatory diagram, and does not accurately calculate the number of positive and negative charges, the number of lines of electric force (density), the position of the generation end point, and the like.
[0129]
According to an experiment, when the uncharged toner Ta was placed on the N-type semiconductor electrostatic transfer electrode 102N and the reference voltage waveforms Va, Vb, and Vc were applied, it was confirmed that the toner was transferred in the direction indicated by the arrow in FIG. When the charge distribution at this time was measured by the above-mentioned E-Spart, all were negatively charged. Also, at this time, it was confirmed that when a minute vibration was applied to the electrostatic transfer substrate 101, the transfer could be performed in a shorter time.
[0130]
As described above, the uncharged fine particles are placed on the electrostatic transport electrode formed of the N-type or P-type semiconductor, and the voltage for electrostatic transport applied to the electrostatic transport electrode is formed between the adjacent electrostatic transport electrodes. An electric field selectively concentrates only negative or positive majority carriers on the edge of the electric field, and charges the uncharged fine particles with the high electric field formed there, and simultaneously electrostatically transports the uncharged particles. A special device and circuit for performing the operation are not required, and the configuration is simplified.
[0131]
Next, an eleventh embodiment of the present invention will be described with reference to FIG. FIG. 3 is a conceptual explanatory view of a main part of the charging and conveying device according to the embodiment.
Here, the protrusion 102Na of the same N-type semiconductor is provided on the N-type electrostatic transfer electrode 102N of the tenth embodiment. Other configurations are the same as those of the embodiment.
[0132]
That is, when an N-type semiconductor is used, not only negative negative charge injection but also only negative corona can be selectively generated. A projection 102Na of the same N-type semiconductor having a height of several μm was formed on the surface of the electrostatic transport electrode 102N made of an N-type semiconductor, and a potential difference of 100 V was applied between the adjacent electrodes 102N, 102N, and -100 was applied. Generation of negative corona from the electrode 102N was confirmed in the dark.
[0133]
In this case, the positive corona was not generated at the electrode 102N to which 0V was applied, and the negative corona was generated only at the electrode 102N to which -100V was applied, as shown in FIG. Electrons are concentrated on the projection 102Na, and a strong electric field is formed around the projection 102Na. Corona discharge occurs there. On the projection 102Na of the electrode 102N to which 0 V is applied, positive charges cannot move and concentration of charges occurs. That is, as a result, no strong electric field was formed at the tip of the projection 102Na.
[0134]
As described above, the uncharged fine particles are placed on the electrostatic transport electrode formed of the N-type or P-type semiconductor and having minute projections on the surface, and the electrostatic transport voltages applied to the electrostatic transport electrode are adjacent to each other. In the electric field formed between the electrostatic transport electrodes, only the negative or positive majority carriers are selectively concentrated at the tip of the protrusion, and a high electric field is formed at the tip, and the tip is uncharged by corona discharge generated there Since the fine particles are electrostatically transferred as they are charged, a device and a circuit for charging the uncharged particles are not required.
[0135]
Next, a twelfth embodiment of the present invention will be described with reference to FIG. FIG. 3 is a conceptual explanatory view of a main part of the charging and conveying device according to the embodiment.
In this charging and transporting apparatus, carbon nanotubes (CNT) 107 are implanted in at least some of the plurality of electrostatic transporting electrodes 102 of the electrostatic transporting substrate 101. Here, carbon nanotubes 107 are implanted in the electrostatic transport electrodes 102 belonging to the charged area shown in FIG. 25 and are described as electrostatic transport electrodes 102C. In this embodiment, unlike the tenth and eleventh embodiments, each of the plurality of electrostatic transfer electrodes 102 is formed of Al-Cu.
[0136]
Many books, documents, and papers have been published on the method of producing CNTs and the method of implanting CNTs on electrodes, and are disclosed in, for example, a special article of “Nikkei Science” August 2002 issue. Further, not only carbon nanotubes but also carbon nanocoils can be used. By using a carbon nanotube or a carbon nanocoil as a field electron emission material, electrons can be field-emitted at a low potential.
[0137]
With such a configuration, when the reference drive voltages Va, Vc, and Vb are applied to the electrostatic transport electrode 102, electric field electrons are emitted at the tip of the CNT 107 of the electrostatic transport electrode 102 as shown in FIG. be able to. The electrons 108 released into the atmosphere are immediately combined with neutral molecules in the atmosphere to become negative ions 109. The negative ions 109 move to the adjacent high-potential electrode 102C along the line of electric force. If there is uncharged toner Ta in the middle, the negative ions 109 adhere to the surface of the toner Ta and become negatively charged (charged toner Tb). It becomes.).
[0138]
As described above, the uncharged fine particles are placed on the electrostatic transport electrode having the field electron emission material on the surface, and the electrostatic transport voltage applied to the electrostatic transport electrode forms an electric field formed between the adjacent electrostatic transport electrodes. Then, electrons are emitted from the field electron emission material, and the electrons, or negative ions that are combined with neutral molecules in the atmosphere, charge the uncharged fine particles and simultaneously carry them electrostatically as they are. Devices and circuits for charging the particles are not required.
[0139]
In the tenth to twelfth embodiments, the selective negative charge injection by the N-type semiconductor electrode, the selective negative corona discharge by the protrusion of the N-type semiconductor electrode, and the field emission of the negative electron by the CNT are all used for electrostatic transport. (For example, 0V, -100V, 0V), but the present invention is not limited to this.
[0140]
As in the first or second embodiment in which the charge is injected by the charge injection electrode and flies to the electrostatic transport electrode, the charging process and the transport process are time-divided, and an optimal voltage is applied to each. The charging / transporting performance can be further improved. In this way, the process (time) of charging the uncharged fine particles and the process (time) of transporting the charged fine particles are temporally divided, and an optimum voltage is applied to each of the processes, and both processes are alternately performed. , It is possible to achieve both the highest charging efficiency and the highest transport efficiency.
[0141]
Next, a thirteenth embodiment of the present invention will be described with reference to FIG. FIG. 3 is a conceptual explanatory view of a main part of the charging and conveying device according to the embodiment.
This charging / transporting device includes an electrostatic transport substrate 201 having a large number of electrostatic transport electrodes 202 and a charge assisting device facing at least a part of the electrostatic transport electrodes 202 of the electrostatic transport electrodes 202 of the electrostatic transport substrate 201. And an electrode 204. The electrostatic transfer electrode 202 corresponding to the auxiliary charging electrode 204 is referred to as a charge transfer electrode 202T as a chargeable electrostatic transfer electrode.
[0142]
In this case, only the charge transfer electrode 202T in the charging area is made chargeable (the configuration as in the tenth to twelfth embodiments), and the electrostatic transfer electrode 202 in the other transfer area is thinly insulated from the flat metal electrode. If the structure is such that a protective layer is overlaid, it can be manufactured cheaply. Further, by forming the auxiliary charging electrode 204 into a screen shape instead of a plate shape, uncharged toner can be supplied by being dropped from above the auxiliary charging electrode 204.
[0143]
With such a configuration, an electric field necessary for charging is formed between the charge transfer electrode 202T and the charge transfer electrode 202T during the charging process (time), so that the uncharged toner located therebetween can be charged.
[0144]
In this way, in the process (time) of charging the uncharged fine particles, the charging auxiliary electrode is provided at a position facing the charging and transporting electrode separately from the charged and transporting electrode, and the charging auxiliary electrode and the charging and transporting electrode are charged. By applying a voltage that allows charging during this time, it is possible to achieve both the highest charging efficiency and the highest transport efficiency.
[0145]
In this case, the corona discharge projections or the CNTs for emitting field electrons of the eleventh or twelfth embodiment are formed on the auxiliary charging electrode 204 side, and the underlying charging and transporting electrode 202T is replaced with another electrostatic transporting electrode. The configuration may be the same as 202. In this manner, by providing a projection for corona discharge or a field electron emission material on the charging auxiliary electrode, the material and shape of the electrostatic transport electrode can be made the same in all regions, and the device Costs can be reduced.
[0146]
Further, similarly to the tenth embodiment, in the eleventh, twelfth, and thirteenth embodiments, the electrostatic transfer substrate is minutely vibrated particularly in the charging area and the charging process (time) to instantaneously quiet the uncharged toner. Floating from the surface of the electrotransport substrate has a great effect.
[0147]
Further, in each of the above-described embodiments, the description has been made assuming that the toner injected with the electric charge and supplied to the electrostatic transport substrate side is used for developing the electrostatic latent image, but the toner is used instead. Or an image forming apparatus for directly forming an image, or a display using colored fine particles for display instead of toner. The charging and conveying device according to the present invention is not limited to the method of using the charged fine particles such as the toner that has been electrostatically conveyed.
[0148]
Next, a process cartridge according to the present invention will be described with reference to FIG. FIG. 3 is a schematic configuration diagram of the process cartridge.
The process cartridge 301 includes a drum-shaped photosensitive member 311 serving as an image carrier in a case 302, a charging roller 312, a developing device 313 including a charge transport device 321 according to the present invention, and a cleaning device 314. And the like are integrally provided, and are configured to be detachable from the image forming apparatus main body. The process cartridge according to the present invention may be any one as long as the image carrier, the charging unit and the cleaning unit are integrated with the developing device according to the present invention. The case 302 has an opening 303 through which a writing laser beam is incident.
[0149]
By providing the developing device 313 in the detachable process cartridge 301, it is possible to improve maintenance and easily perform integral replacement with another device.
[0150]
Next, another embodiment of the image forming apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a schematic explanatory view of the image forming apparatus.
This image forming apparatus is a tandem type color image forming apparatus in which process cartridges 301Y, 301M, 301C and 301Bk of respective colors are juxtaposed along a transfer belt (image carrier) 351 extending horizontally. Although the process cartridges 301 have been described in the order of yellow, magenta, cyan, and black, they are not specified in this order and may be arranged in any order.
[0151]
Normally, a color image forming apparatus has a plurality of image forming units, so that the apparatus becomes large. Further, when each unit such as a developing device, cleaning, charging, etc. breaks down individually or when the replacement time comes due to the end of its life, the device is complicated and it takes a lot of trouble to replace the unit.
[0152]
Therefore, by forming at least the components of the developing means integrally as a process cartridge 301, a small and highly durable color image forming apparatus which can be replaced by a user can be provided.
[0153]
Here, the developing toner on the image carrier 312 developed by the process cartridges 301Y, 301M, 301C, and 301Bk of each color is sequentially transferred to the transfer belt 351 to which a horizontally extending transfer voltage is applied.
[0154]
In this way, the images of yellow, magenta, cyan, and black are formed, transferred in multiple on the transfer belt 351, and transferred collectively to the transfer material 353 by the transfer unit 352. Then, the multiple toner image on the transfer material 353 is fixed by a fixing device (not shown).
[0155]
Each of the image forming apparatuses described in the above embodiments includes the developing unit (device) including the charging / conveying device according to the present invention, so that the size and cost of the device can be reduced, and toner scattering can be prevented. And the image quality can be improved.
[0156]
In the above embodiment, the toner is described as an example of the fine particles, but the present invention can be similarly applied to an apparatus for charging and conveying fine particles other than the toner.
[0157]
【The invention's effect】
As described above, according to each of the charged transport devices according to the present invention, a novel charged transport device capable of charging uncharged fine particles and electrostatically transporting the charged fine particles is obtained.
[0158]
According to the developing device of the present invention, since the charging device is provided with the charging and conveying device for electrostatically conveying the uncharged toner, it can be charged, conveyed, and developed with a simple configuration, and is small and stable. High quality development can be performed.
[0159]
According to the process cartridge according to the present invention, since the configuration including the developing device according to the present invention is provided, a small process cartridge capable of performing stable high-quality development can be obtained.
[0160]
According to the image forming apparatus of the present invention, since the image forming apparatus includes the developing device according to the present invention or includes a plurality of process cartridges, high-quality development can be performed and a high-quality image can be formed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram for explaining a basic configuration of a charging and conveying device according to the present invention.
FIG. 2 is an explanatory diagram for explaining a charge injection experiment.
FIG. 3 is an explanatory diagram showing an example of a measurement result of an applied voltage and a specific charge in the same experiment.
FIG. 4 is an explanatory diagram showing an example of a measurement result of a pulse width and a specific charge in the same experiment.
FIG. 5 is a schematic explanatory view for explaining charge injection and electrostatic transport of an insulating toner.
FIG. 6 is an explanatory diagram for describing a reference voltage waveform applied to an electrostatic transport electrode.
FIG. 7 is an explanatory diagram showing an example of an electric field (vector) near the electrostatic transport electrode when 0 V is applied to the charge injection electrode.
FIG. 8 is an explanatory diagram showing an example of an electric field (vector) in the vicinity of the electrostatic transport electrode when -400 V is applied to the charge injection electrode.
FIG. 9 is an explanatory diagram for explaining a voltage waveform for electrostatic transport and a voltage waveform for charge injection for explaining the first embodiment of the present invention;
FIG. 10 is an explanatory diagram for explaining a voltage waveform for electrostatic transport and a voltage waveform for charge injection for explaining a second embodiment of the present invention;
FIG. 11 is an explanatory diagram showing an example of an electric field (vector) near the electrostatic transport electrode when -100 V is applied to the charge injection electrode in the embodiment.
FIG. 12 is a schematic configuration diagram for explaining a third embodiment of the present invention;
FIG. 13 is an explanatory diagram of electric lines of force when a charge injection electrode is not divided.
FIG. 14 is an explanatory diagram of lines of electric force when a charge injection electrode is divided.
FIG. 15 is an explanatory diagram of an electric field (vector) in the vicinity of the electrostatic transfer electrode in the same embodiment.
FIG. 16 is a schematic configuration diagram for explaining a fourth embodiment of the present invention;
FIG. 17 is an explanatory diagram of an electric field (lines of electric force) near the charge injection electrode used for describing the embodiment;
FIG. 18 is an explanatory view of an electric field (vector) near the electrostatic transfer electrode.
FIG. 19 is a schematic configuration diagram for explaining a fifth embodiment of the present invention;
FIG. 20 is a schematic configuration diagram for explaining a sixth embodiment of the present invention;
FIG. 21 is a schematic configuration diagram for explaining another example of the embodiment.
FIG. 22 is a schematic configuration diagram of a main part of an image forming apparatus according to the present invention including a developing device according to the present invention including a charging and conveying device according to a seventh embodiment of the present invention;
FIG. 23 is a schematic diagram illustrating a main part of an image forming apparatus according to the present invention including a developing device according to the present invention including a charging and conveying device according to an eighth embodiment of the present invention;
FIG. 24 is a schematic configuration diagram of a main part of an image forming apparatus according to the present invention including a developing device according to the present invention including a charging and conveying device according to a ninth embodiment of the present invention;
FIG. 25 is a schematic configuration diagram of a charging and conveying device according to a tenth embodiment of the present invention.
FIG. 26 is an enlarged explanatory view of a main part of the embodiment.
FIG. 27 is a schematic configuration diagram of main parts of a charging and conveying device according to an eleventh embodiment of the present invention.
FIG. 28 is a schematic configuration diagram of a charging and conveying device according to a twelfth embodiment of the present invention.
FIG. 29 is a schematic configuration diagram of a charge transport device according to a thirteenth embodiment of the present invention.
FIG. 30 is a schematic configuration diagram for explaining an example of a process cartridge according to the present invention.
FIG. 31 is a schematic configuration diagram for explaining an example of an image forming apparatus according to the invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Charge injection means, 2 ... Charge injection electrode, 2a ... Divided charge injection electrode, 3 ... Drive circuit for charge injection, 5 ... Conductive member, 7a, 7b ... Ring common electrode, 11 ... Electrostatic carrier substrate, 12 ... Electrostatic transport electrode, 13 ... Electrostatic transport drive circuit, 34 ... Rotating member, 52, 62 ... Rotating member, 101 ... Electrostatic transport substrate, 102 ... Electrostatic transport electrode, 204 ... Auxiliary electrode, 301 ... Process cartridge .

Claims (30)

未帯電の微粒子が載せられる電荷注入電極を有する電荷注入手段と、この電荷注入手段の前記電荷注入電極と向かい合い、帯電した微粒子を静電力で移動させるための静電搬送電極を有する静電搬送手段とを備え、前記未帯電の微粒子を帯電させて前記静電搬送手段側に転移させることを特徴とする帯電搬送装置。Charge injection means having a charge injection electrode on which uncharged fine particles are placed, and electrostatic transfer means having an electrostatic transfer electrode for moving the charged fine particles by electrostatic force, facing the charge injection electrode of the charge injection means. Wherein the uncharged fine particles are charged and transferred to the electrostatic transfer means side. 請求項1に記載の帯電搬送装置おいて、前記静電搬送電極に静電搬送用の電圧波形を印加しない状態で、前記電荷注入電極に対して微粒子帯電用の電圧を、帯電された微粒子が前記静電搬送手段側に転移するのに要する以上の一定時間印加した後、前記電荷注入電極に微粒子帯電用の電圧を印加しない状態で、前記静電搬送電極に静電搬送用の電圧波形を一定時間加える手段を備えていることを特徴とする帯電搬送装置。The charging / transporting device according to claim 1, wherein a voltage for charging fine particles is applied to the charge injection electrode in a state where a voltage waveform for electrostatic transfer is not applied to the electrostatic transfer electrode. After applying for a certain period of time longer than it takes to transfer to the electrostatic transport unit, a voltage waveform for electrostatic transport is applied to the electrostatic transport electrode in a state where a voltage for charging fine particles is not applied to the charge injection electrode. A charging and conveying device comprising a means for applying for a certain period of time. 請求項1の帯電搬送装置において、前記静電搬送電極に静電搬送用の電圧波形を印加しない状態で、前記電荷注入電極に対して微粒子帯電用の電圧を、該微粒子の帯電量が、該微粒子が該電荷注入電極又はその上の他の微粒子より離れることができるようになる以上の時間印加し、その後、前記電荷注入電極に印加する電圧を、前記微粒子の帯電はできないが、帯電した微粒子の前記静電搬送電極への移動の継続を可能とする電圧に下げた状態で、前記静電搬送電極に静電搬送用の電圧波形を一周期間印加する手段を備えていることを特徴とする帯電搬送装置。2. The charging / transporting device according to claim 1, wherein the voltage for charging the fine particles with respect to the charge injection electrode and the charge amount of the fine particles are set such that a voltage waveform for electrostatic transfer is not applied to the electrostatic transfer electrode. The voltage is applied for a time longer than the fine particles can be separated from the charge injection electrode or other fine particles thereon, and then the voltage applied to the charge injection electrode is set to a value that does not allow the fine particles to be charged, but is charged. Means for applying a voltage waveform for electrostatic transport to the electrostatic transport electrode for one cycle in a state where the voltage is reduced to a voltage that enables the movement to the electrostatic transport electrode to be continued. Charge transfer device. 請求項1に記載の帯電搬送装置において、前記電荷注入電極が分割され、この分割電荷注入電極に対し、該分割電荷注入電極の表面には微粒子を帯電できる電界が形成されるが、前記静電搬送電極の表面には帯電微粒子の搬送されるのを妨げない電界が形成される電圧を印加し、かつ前記静電搬送電極には静電搬送用の電圧波形を印加する手段を備えていることを特徴とする帯電搬送装置。2. The charge transport device according to claim 1, wherein the charge injection electrode is divided, and an electric field capable of charging fine particles is formed on the surface of the divided charge injection electrode. Means for applying a voltage that forms an electric field that does not prevent the charged fine particles from being transported to the surface of the transport electrode, and that the electrostatic transport electrode includes a means for applying a voltage waveform for electrostatic transport. A charge transport device characterized by the above-mentioned. 請求項1に記載の帯電搬送装置において、前記電荷注入電極と静電搬送電極との間に、開口を有する導電性部材を設けたことを特徴とする帯電搬送装置。2. The charge transfer device according to claim 1, wherein a conductive member having an opening is provided between the charge injection electrode and the electrostatic transfer electrode. 請求項5に記載の帯電搬送装置において、前記電荷注入電極と前記導電性部材とに対し、前記電荷注入電極の表面に未帯電微粒子を帯電できる電界を形成させる電圧を印加し、前記導電性部材と前記静電搬送電極とに対し、帯電微粒子の静電搬送電極への移動を継続させるが、静電搬送電極上の帯電微粒子の搬送を妨げない電界を形成させる電圧を印加する手段を備えていることを特徴とする帯電搬送装置。6. The charge transport device according to claim 5, wherein a voltage is applied to the charge injection electrode and the conductive member to form an electric field capable of charging uncharged fine particles on the surface of the charge injection electrode, And the electrostatic transport electrode, comprising means for applying a voltage for forming an electric field that continues to move the charged fine particles to the electrostatic transport electrode but does not hinder the transport of the charged fine particles on the electrostatic transport electrode. A charge transport device. 請求項1に記載の帯電搬送装置おいて、前記電荷注入電極と静電搬送電極との間に、多数の開口部を有し、電荷注入電極側と静電搬送電極側にそれぞれ該開口を取り囲むリング状の共通電極を有する誘電部材を設けたことを特徴とする帯電搬送装置。The charge transport device according to claim 1, wherein the charge transport electrode has a plurality of openings between the charge injection electrode and the electrostatic transport electrode, and surrounds the openings on the charge injection electrode side and the electrostatic transport electrode side, respectively. A charging and conveying device comprising a dielectric member having a ring-shaped common electrode. 請求項7に記載の帯電搬送装置おいて、前記静電搬送電極には静電搬送用の電圧波形を印加した状態で、前記電荷注入電極に印加する電圧と前記誘電部材の電荷注入電極側のリング状共通電極に対し、前記電荷注入電極表面に微粒子を帯電させられる電界を形成する電圧を印加し、前記電荷注入電極側のリング状共通電極と静電搬送側リング状共通電極に対し、帯電し静電搬送電極に向かう微粒子が該開口の縁に当たるのを妨げる向きの電界を形成するとともに、静電搬送電極側リング状共通電極と静電搬送電極との間に帯電微粒子の静電搬送電極への移動を継続させるが、静電搬送電極上の帯電微粒子の搬送を妨げない電界を形成する電圧を印加する手段を備えていることを特徴とする帯電搬送装置。8. The charge transport device according to claim 7, wherein a voltage applied to the charge injection electrode and a voltage applied to the charge injection electrode side of the dielectric member in a state where a voltage waveform for electrostatic transport is applied to the electrostatic transport electrode. A voltage is applied to the ring-shaped common electrode to form an electric field capable of charging the fine particles on the surface of the charge injection electrode, and the ring-shaped common electrode on the charge injection electrode side and the ring-shaped common electrode on the electrostatic transfer side are charged. In addition, an electric field is formed in such a direction as to prevent fine particles heading toward the electrostatic transfer electrode from hitting the edge of the opening, and an electrostatic transfer electrode of the charged fine particles is formed between the electrostatic transfer electrode side ring-shaped common electrode and the electrostatic transfer electrode. And a means for applying a voltage for forming an electric field that does not hinder the transfer of the charged fine particles on the electrostatic transfer electrode. 請求項1に記載の帯電搬送装置おいて、前記電荷注入電極と静電搬送電極との間に、導電性の回転部材を設けたことを特徴とする帯電搬送装置。2. The charge transfer device according to claim 1, wherein a conductive rotating member is provided between the charge injection electrode and the electrostatic transfer electrode. 請求項9に記載の帯電搬送装置おいて、前記静電搬送電極に静電搬送用の電圧波形を印加した状態で、前記導電性回転部材に対し、前記静電搬送電極に印加した電圧との間で、帯電微粒子の静電搬送電極への移動を継続させるが、静電搬送電極上の帯電微粒子の搬送を妨げない電圧を印加するとともに、前記電荷注入電極に対し、前記導電性回転部材に印加された電圧との間で、その表面に微粒子の帯電を可能とする電界を形成できる電圧を印加する手段を有し、帯電されこの導電性部材に移動した帯電微粒子を導電性回転部材の回転に伴って前記静電搬送電極近傍に移動させ、非静電的な手段でこの帯電微粒子を前記導電性回転体の表面より引き剥がすことを特徴とする帯電搬送装置。10. The charging and transporting device according to claim 9, wherein a voltage waveform applied to the electrostatic transporting electrode is applied to the conductive rotating member while a voltage waveform for electrostatic transporting is applied to the electrostatic transporting electrode. In the meantime, the movement of the charged fine particles to the electrostatic transport electrode is continued, but a voltage that does not hinder the transport of the charged fine particles on the electrostatic transport electrode is applied, and the conductive rotating member is applied to the charge injection electrode. Means for applying a voltage capable of forming an electric field capable of charging the fine particles on the surface thereof between the applied voltage and the charged fine particles which have been charged and moved to the conductive member; The charged fine particles are peeled off from the surface of the conductive rotator by a non-electrostatic means. 請求項1ないし10のいずれかに記載の帯電搬送装置において、前記電荷注入電極は傾斜して保持されていて、非帯電微粒子が電荷注入電極上を重力により滑降することを特徴とする帯電搬送装置。11. The charge transport device according to claim 1, wherein the charge injection electrode is held at an angle, and non-charged fine particles slide down on the charge injection electrode by gravity. . 請求項1ないし10のいずれかに記載の帯電搬送装置において、前記電荷注入電極は、その表面に微細なホッパを有する回転部材であり、前記非帯電微粒子が前記ホッパに保持されて回転部材の回転とともに前記静電搬送電極と向かい合う位置に搬送されることを特徴とする帯電搬送装置。11. The charge transport device according to claim 1, wherein the charge injection electrode is a rotating member having a fine hopper on a surface thereof, and the uncharged fine particles are held by the hopper to rotate the rotating member. And a carrier that is transported to a position facing the electrostatic transport electrode. 請求項1ないし10のいずれかに記載の帯電搬送装置において、前記電荷注入電極は、その表面に細い導電性短繊維が埋めこまれた回転部材であり、前記非帯電微粒子が前記導電性短繊維に保持されて回転部材の回転とともに前記静電搬送電極と向かい合う位置に搬送されることを特徴とする帯電搬送装置。The charge transport device according to any one of claims 1 to 10, wherein the charge injection electrode is a rotating member having fine conductive short fibers embedded in a surface thereof, and the non-charged fine particles are formed of the conductive short fibers. A charging and conveying device which is conveyed to a position facing the electrostatic conveying electrode with the rotation of the rotating member. 帯電した微粒子を静電力で移動させるための静電搬送電極を有し、この静電搬送電極には半導体から形成された帯電搬送電極を含み、この帯電搬送電極に未帯電の微粒子を載せて、未帯電の微粒子を帯電させて搬送することを特徴とする帯電搬送装置。It has an electrostatic transport electrode for moving the charged fine particles by electrostatic force, the electrostatic transport electrode includes a charged transport electrode formed of a semiconductor, and the uncharged fine particles are placed on the charged transport electrode, A charging and conveying device for charging and conveying uncharged fine particles. 請求項14に記載の帯電搬送装置において、半導体から形成された静電搬送電極に未帯電の微粒子を載せて前記静電搬送電極に印加される静電搬送用の電圧が電極間に形成する電界で、前記帯電搬送電極のエッジに、負または正のキャリアのみを選択的に集中させて高電界を形成することで前記未帯電微粒子に電荷を注入して帯電させるとともにそのまま静電搬送することを特徴とする帯電搬送装置。15. The electric charge transfer device according to claim 14, wherein an uncharged fine particle is placed on an electrostatic transfer electrode formed of a semiconductor, and an electrostatic transfer voltage applied to the electrostatic transfer electrode is formed between the electrodes. In the edge of the charged carrier electrode, by selectively concentrating only negative or positive carriers to form a high electric field, charge is injected into the uncharged fine particles and charged and electrostatically transferred as it is. Characteristic charge transfer device. 帯電した微粒子を静電力で移動させるための静電搬送電極を有し、この静電搬送電極には半導体から形成され、その表面に微小な突起を有する帯電搬送電極を含み、この帯電搬送電極に未帯電の微粒子を載せて、未帯電の微粒子を帯電させて搬送することを特徴とする帯電搬送装置。It has an electrostatic transport electrode for moving the charged fine particles by electrostatic force, and the electrostatic transport electrode includes a charged transport electrode formed of a semiconductor and having fine projections on its surface. A charging and transporting device, wherein uncharged fine particles are placed, and the uncharged fine particles are charged and transported. 請求項16に記載の帯電搬送装置において、前記帯電搬送電極に未帯電の微粒子を載せて前記静電搬送電極に印加される静電搬送用の電圧が形成する電界で、前記突起の先端に、負または正のキャリアのみを選択的に集中させて高電界を形成させて、この高電界で起きるコロナ放電で未帯電微粒子を帯電させるとともにそのまま静電搬送することを特徴とする帯電搬送装置。In the charging and transporting device according to claim 16, an electric field that forms a voltage for electrostatic transport applied to the electrostatic transport electrode by placing uncharged fine particles on the charged transport electrode, at the tip of the protrusion, A charging / transporting apparatus characterized in that a high electric field is formed by selectively concentrating only negative or positive carriers, and uncharged fine particles are charged by corona discharge generated by the high electric field and electrostatically transferred as it is. 帯電した微粒子を静電力で移動させるための静電搬送電極を有し、この静電搬送電極には電界電子放出材を表面に有する帯電搬送電極を含み、この帯電搬送電極に未帯電の微粒子を載せて、未帯電の微粒子を帯電させて搬送することを特徴とする帯電搬送装置。It has an electrostatic carrier electrode for moving charged fine particles by electrostatic force, and the electrostatic carrier electrode includes a charged carrier electrode having a field electron emission material on its surface. A charging and transporting device that charges and transports uncharged fine particles while being placed thereon. 請求項18に記載の帯電搬送装置において、前記帯電搬送電極に未帯電の微粒子を載せ、前記静電搬送電極に印加される静電搬送用の電圧が隣り合った静電搬送電極間に形成する電界で、前記帯電搬送電極の電界電子放出材より電子を放出させて、該電子、またはそれが大気中の中性分子と結合した負イオンで、未帯電微粒子を帯電させると同時にそのまま静電搬送することを特徴とする帯電搬送装置。19. The charging and transporting device according to claim 18, wherein uncharged fine particles are placed on the charging and transporting electrode, and a voltage for electrostatic transporting applied to the electrostatic transporting electrode is formed between adjacent electrostatic transporting electrodes. In the electric field, electrons are emitted from the field electron emission material of the charged carrier electrode, and the uncharged fine particles are charged with the electrons or negative ions combined with neutral molecules in the atmosphere at the same time as the electrostatic carrier. And a charging / transporting device. 請求項18又は19に記載の帯電搬送装置において、前記電界電子放出材には、カーボンナノチューブまたはカーボンナノコイルが用いられていることを特徴とする帯電搬送装置。20. The charge transfer device according to claim 18, wherein a carbon nanotube or a carbon nanocoil is used as the field electron emission material. 請求項14ないし20のいずれかに記載の帯電搬送装置において、未帯電微粒子を帯電させる行程と帯電された微粒子を搬送する行程を時間的に分割し、各行程で異なる電圧を印加し、両行程を交互に行うことを特徴とする帯電搬送装置。21. The charging and conveying device according to claim 14, wherein a process of charging the uncharged fine particles and a process of conveying the charged fine particles are temporally divided, and different voltages are applied in each of the processes. The charging and transporting device alternately performs the charging. 請求項21に記載の帯電搬送装置において、前記帯電搬送電極に対向する帯電補助電極を備え、この帯電補助電極と前記帯電搬送電極間に未帯電微粒子を帯電させる電圧を印加することを特徴とする帯電搬送装置。22. The charging and transporting device according to claim 21, further comprising a charging auxiliary electrode facing the charging and transporting electrode, wherein a voltage for charging uncharged fine particles is applied between the charging and auxiliary electrode and the charging and transporting electrode. Charge transfer device. 請求項22に記載の帯電搬送装置において、前記静電搬送電極に含まれる帯電搬送電極とこれ以外の電極とは材質が異なることを特徴とする帯電搬送装置。23. The charge transfer device according to claim 22, wherein the charge transfer electrode included in the electrostatic transfer electrode and the other electrode are made of different materials. 請求項22又は23に記載の帯電搬送装置において、前記帯電補助電極は前記微粒子が通過できる開口を有していることを特徴とする帯電搬送装置。24. The charge transport device according to claim 22, wherein the auxiliary charging electrode has an opening through which the fine particles can pass. 請求項14ないし24のいずれかに記載の帯電搬送装置において、未帯電微粒子を帯電させる行程で前記静電搬送電極を備えた部材を振動させることを特徴とする帯電搬送装置。25. The charging and transporting device according to claim 14, wherein a member provided with the electrostatic transporting electrode is vibrated in a step of charging the uncharged fine particles. 帯電した微粒子を静電力で移動させるための静電搬送電極と、この静電搬送電極の少なくとも一部の静電搬送電極に対向する帯電補助電極とを有し、この帯電補助電極には電界電子放出材又はコロナ放電用の突起を備え、この帯電補助電極に対向する静電搬送電極に未帯電の微粒子を載せて、未帯電の微粒子を帯電させて搬送することを特徴とする帯電搬送装置。An electrostatic transport electrode for moving the charged fine particles by electrostatic force; and a charging auxiliary electrode facing at least a part of the electrostatic transport electrode of the electrostatic transport electrode. A charging / transporting device comprising a discharge material or a projection for corona discharge, wherein uncharged fine particles are placed on an electrostatic transfer electrode facing the charging auxiliary electrode, and the uncharged fine particles are charged and transferred. 潜像担持体上に帯電トナーを付着させて潜像担持体上の潜像を現像する現像装置において、前記請求項1ないし26のいずれかに記載の帯電搬送装置を備えていることを特徴とする現像装置。27. A developing device for developing a latent image on a latent image carrier by adhering a charged toner on the latent image carrier, comprising a charging and conveying device according to any one of claims 1 to 26. Developing device. 少なくとも現像手段を含み、画像形成装置本体に着脱自在であるプロセスカートリッジにおいて、前記現像手段が請求項27に記載の現像装置であることを特徴とするプロセスカートリッジ。28. A process cartridge including at least a developing unit and detachably attached to a main body of the image forming apparatus, wherein the developing unit is the developing device according to claim 27. 帯電したトナーを付着させて潜像担持体上の潜像を現像する現像装置を備えた画像形成装置において、前記現像装置が請求項27に記載の現像装置であることを特徴とする画像形成装置。28. An image forming apparatus including a developing device for developing a latent image on a latent image carrier by attaching charged toner, wherein the developing device is the developing device according to claim 27. . カラー画像を形成する画像形成装置において、請求項28に記載のプロセスカートリッジを複数備えていることを特徴とする画像形成装置。An image forming apparatus for forming a color image, comprising a plurality of the process cartridges according to claim 28.
JP2003073542A 2003-03-18 2003-03-18 Electrification transporting device, developing device, process cartridge, and image forming apparatus Pending JP2004279903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073542A JP2004279903A (en) 2003-03-18 2003-03-18 Electrification transporting device, developing device, process cartridge, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073542A JP2004279903A (en) 2003-03-18 2003-03-18 Electrification transporting device, developing device, process cartridge, and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2004279903A true JP2004279903A (en) 2004-10-07

Family

ID=33289419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073542A Pending JP2004279903A (en) 2003-03-18 2003-03-18 Electrification transporting device, developing device, process cartridge, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2004279903A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033682A (en) * 2005-07-25 2007-02-08 Ricoh Co Ltd Development device and image forming apparatus
JP2008076430A (en) * 2006-09-19 2008-04-03 Ricoh Co Ltd Toner hopper, developing device, process unit and image forming apparatus
JP2010061122A (en) * 2008-09-02 2010-03-18 Xerox Corp Method of imparting electrostatic charge to particle
JP5018791B2 (en) * 2007-02-16 2012-09-05 株式会社村田製作所 Gas transfer device and cooling device mounting structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033682A (en) * 2005-07-25 2007-02-08 Ricoh Co Ltd Development device and image forming apparatus
JP2008076430A (en) * 2006-09-19 2008-04-03 Ricoh Co Ltd Toner hopper, developing device, process unit and image forming apparatus
JP5018791B2 (en) * 2007-02-16 2012-09-05 株式会社村田製作所 Gas transfer device and cooling device mounting structure
JP2010061122A (en) * 2008-09-02 2010-03-18 Xerox Corp Method of imparting electrostatic charge to particle
KR101519394B1 (en) 2008-09-02 2015-05-12 제록스 코포레이션 How to charge electrophotographic toners using carbon nanotubes or other nanostructures

Similar Documents

Publication Publication Date Title
JP4810447B2 (en) Image forming apparatus
JP4800229B2 (en) Developing device, process cartridge, and image forming apparatus
EP1775642B1 (en) Development apparatus having donor member with alternated electrodes of opposite polarisation.
JP5081424B2 (en) Developing device and image forming apparatus
JP2004198675A (en) Developing apparatus and developing method, image forming apparatus and image forming method, and process cartridge
US4515106A (en) Developing apparatus
JP2010026333A (en) Developing device, image forming apparatus, and process cartridge
JP5114717B2 (en) Image forming apparatus
JP5008941B2 (en) Developing device and image forming apparatus
JP2004279903A (en) Electrification transporting device, developing device, process cartridge, and image forming apparatus
JP5146209B2 (en) Image forming apparatus
JP2006251104A (en) Developing device, process cartridge and image forming apparatus
JP2009042500A (en) Image forming apparatus
JP2004045943A (en) Developing apparatus and image forming apparatus
JP4307753B2 (en) Electrostatic transfer device, developing device, and image forming apparatus
JP2010020185A (en) Developer carrier, developing device, and image forming device
JP4456893B2 (en) Toner conveying device, developing device, process unit, and image forming apparatus
JP4156359B2 (en) Development device
JP4563845B2 (en) Image forming apparatus and image forming method
JP5376301B2 (en) Image forming apparatus
JP2000122429A (en) Image forming device and image forming method
JP2006259411A (en) Image forming apparatus and process cartridge
JP5333904B2 (en) Image forming apparatus
JP2006259020A (en) Developing device, process cartridge and image forming apparatus
JP4646298B2 (en) Developing device, developing method, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630