[go: up one dir, main page]

JP2004278986A - Stacked heat exchanger - Google Patents

Stacked heat exchanger Download PDF

Info

Publication number
JP2004278986A
JP2004278986A JP2003073832A JP2003073832A JP2004278986A JP 2004278986 A JP2004278986 A JP 2004278986A JP 2003073832 A JP2003073832 A JP 2003073832A JP 2003073832 A JP2003073832 A JP 2003073832A JP 2004278986 A JP2004278986 A JP 2004278986A
Authority
JP
Japan
Prior art keywords
frame plate
side frame
heat exchanger
laminated
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003073832A
Other languages
Japanese (ja)
Inventor
Takashi Sawada
敬 澤田
Eiji Tanaka
栄二 田中
Katsuzo Konakawa
勝蔵 粉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003073832A priority Critical patent/JP2004278986A/en
Publication of JP2004278986A publication Critical patent/JP2004278986A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】本発明は、積層体を1次側枠板と伝熱体と2次側枠板に分離して構成して、構造体としての強度を確保して熱交換性能とシール性を向上する。
【解決手段】本発明の積層熱交換器は、両面に凸状外周シール材10を有する1次側枠板6と、両面に平板状外周シール材12を有する2次側枠板11と、1次側枠板6と2次側枠板11とで挟みこんだ伝熱体15と、1次側枠板6と2次側枠板11と伝熱体15とを1次側枠板が両端にくるように順に積層した積層ブロック14を締結材18で締結して加圧保持する前端板16と後端板17とを設けたものである。
【選択図】 図1
An object of the present invention is to separate a laminated body into a primary side frame plate, a heat transfer body, and a secondary side frame plate to secure strength as a structural body and improve heat exchange performance and sealing performance. I do.
A laminated heat exchanger according to the present invention includes a primary side frame plate (6) having a convex outer peripheral sealing material (10) on both sides, a secondary side frame plate (11) having a flat outer peripheral sealing material (12) on both sides, The heat transfer body 15 sandwiched between the secondary side frame plate 6 and the secondary side frame plate 11, the primary side frame plate 6, the secondary side frame plate 11, and the heat transfer body 15 are both ends of the primary side frame plate. A front end plate 16 and a rear end plate 17 which fasten and hold the laminated blocks 14 which are sequentially laminated so as to come into contact with a fastening material 18 are provided.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、住宅の換気空調用として用いられる全熱交換器および燃料電池などの加湿装置に用いられる積層熱交換器に関するものである。
【0002】
【従来の技術】
従来、この種の積層熱交換器としては、例えば、図13に示すものがある。図13は、従来の積層熱交換器の構成図であり、1はステンレス等の金属性の積層板で、積層板2を重ねて1次側流体流路3を構成し、積層板2の上に積層板4を重ねて2次側流体流路5を構成し、順次積層板を重ねて1次側流体流路と2次側流体流路を交互に形成し、積層板外周をロー付けしてシールして積層熱交換器を構成している(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−356490号公報
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、ステンレス等の金属板をプレス加工して伝熱体を作成し、伝熱体そのものを積層板として積層してロー付けして流体流路を形成して用いていたため、伝熱体を構造体として用いることにより、伝熱体の厚みが厚くなり、熱抵抗が大きくなって熱交換性能が低くなり、積層枚数も多くなって装置が大きくなるという課題を有していた。さらに積層板の接合のためには真空炉などの高価なロー付け設備が必要であり製品コストも過大になる等の課題を有していた。
【0005】
本発明は、前記従来の課題を解決するもので、構造体として強度を有する枠板と厚みが薄く熱抵抗の小さい伝熱板に分離して構成することにより小型高性能でシール性に優れた安価な積層熱交換器を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の積層熱交換器は、1次側流体の流路を形成し両面に凸状外周シール材を有する1次側枠板と伝熱体と2次側流体の流路を形成し両面に平板状外周シール材を有する2次側枠板とを順に積層したものである。
【0007】
これによって、枠板で構造強度を保証することができ、一方で伝熱体を薄くすることにより熱抵抗を小さくすることができる。また、薄い伝熱体を凸状外周シール材と平板状外周シール材ではさむことにより信頼性の高いシールが実現できる。
【0008】
【発明の実施の形態】
請求項1に記載した発明は、枠板開口部と枠板開口部に連通する分流路を有し1次側流体が通る2個の流路穴と枠板開口部と独立して2次側流体が通る2個の流路穴とを有し両面に凸状外周シール材を有する1次側枠板と、枠板開口部と枠板開口部に連通する分流路を有し2次側流体が通る2個の流路穴と枠板開口部と独立して1次側流体が通る2個の流路穴とを有し両面に平板状外周シール材を有する2次側枠板と、1次側枠板と2次側枠板で挟みこんだ伝熱体と、1次側枠板と2次側枠板と伝熱体とを1次側枠板が両端にくるように順に積層した積層ブロックを締結材で締結して加圧保持する前端板と後端板とを設けた積層熱交換器の構成とすることにより、枠板で強固な構造を実現するとともに伝熱板を薄くして熱抵抗を小さくすることにより熱交換性能を著しく向上することができる。
【0009】
請求項2に記載の発明は、特に、請求項1に記載の積層熱交換器を枠板に設けた流路穴に嵌め込んで枠板を挟み込んで流路穴の周囲をシールするリング状シール材を1次側枠板の2個の2次側流路穴と2次側枠板の2個の2次側流路穴に設けた構成とすることにより、1次側流体および2次側流体の通るマニホールドを形成することができ、さらに、ロー付けなどの高価な製法を用いることなくまた成分の溶出が懸念される接着剤を用いることなしに簡単な構成で安価に信頼性の高いシールを実現することができる。
【0010】
請求項3に記載の発明は、特に、請求項1又は2に記載の積層熱交換器をフィルム状薄膜を伝熱体として設けた構成とすることにより、熱抵抗が小さくなり性能を向上することができ、小型化することができる。さらに、透湿性のフィルムを用いることにより全熱交換器として機能することができ、また伝熱体の加工も容易になり組立性も向上することができる。
【0011】
請求項4に記載の発明は、特に、請求項1〜3に記載の積層熱交換器をフィルム状の伝熱体に密着して低圧側に保持板を設けた構成とすることにより、1次側流体と2次側流体の圧力が異なる場合でも伝熱体の形状を保持することができるので流路の断面形状を一定に保つことができ、安定した高性能運転を実現することができる。
【0012】
請求項5に記載の発明は、特に、請求項1〜4に記載の積層熱交換器をフィルム状の薄膜の両面に開口部を有する熱伝導性保持板を密着して伝熱体を構成とすることにより、熱抵抗の少ない伝熱体が実現できるとともに、1次側流体と2次側流体の圧力が運転途中で入れ替わる場合でも、伝熱体の形状を保持することができるので流路の断面形状を一定に保つことができ、複雑な運転を行う装置に対しても柔軟な対応ができる。
【0013】
請求項6に記載の発明は、特に、請求項1〜5に記載の積層熱交換器を保持板と保持板との間に変形防止スペーサを設けた構成としてもので、1次側および2次側流体流路の任意の位置に変形防止スペーサを設けることより、流路内の圧力が急激に変動した場合でも伝熱体が変形して破損することを防止することができる。
【0014】
請求項7に記載の発明は、特に、請求項4に記載の積層熱交換器を凸状突起を有する保持板を設けた構成としたもので、保持板を成形加工することにより部品を増やすことなく伝熱体の変形を防止することができる。
【0015】
請求項8に記載の発明は、特に、請求項1〜3に記載の積層熱交換器を1次側枠板と2次側枠板の少なくとも一方に一体に成形した伝熱体保持部と変形防止部を設けたもので、伝熱体保持部と変形防止部を枠板の一部として枠板と同時に成形することにより部品点数を大幅に減らして、組立性と信頼性を著しく向上することができる。
【0016】
請求項9に記載の発明は、特に、請求項1〜8に記載の積層熱交換器を1次側枠板の1次側流路穴と2次側枠板の2次側流路穴とに流路穴から分流路を形成する円盤状の上蓋を設けた構成としたもので、成形が困難な分流路を別部品の円盤状の上蓋で形成することにより、安価に確実に形成することができる。
【0017】
請求項10に記載の発明は、特に、請求項1〜9に記載の積層熱交換器を外周シール材の外側に伝熱体を接着する接着剤を保持する段落とし部を設けた1次側枠板と2次側枠板を有する構成とすることにより、接着剤を流体に接触させることなく枠板と伝熱体を接着させることになり、接着剤の成分が流体に溶出するの防止することができる。さらにフィルム状の伝熱体を容易に枠板に固定することができる。
【0018】
請求項11に記載の発明は、特に、請求項1〜10に記載の積層熱交換器を枠板を貫通して両面にシール面を形成するゴムおよびエラストマのシール材を設けた1次側枠板および2次側枠板を有する構成とすることにより、枠板にシール材を装着するための作業を省略することとなり、装着時の不具合によるシール漏れを防止することができるとともに組立性を大幅に向上することができる。
【0019】
請求項12に記載の発明は、特に、請求項1〜10に記載の積層熱交換器を
樹脂製枠板の成形加工時に伝熱体を枠板に密着接合した1次側枠板および2次側枠板を有する構成とすることにより、シールを確実に実現するとともにシール材を省略することとなり、シールの信頼性と組立性を著しく向上することができる。
【0020】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0021】
(実施例1)
図1(a)は、本実施例の第1の実施例における積層熱交換器の構成図、図1(b)は、その分解図を示すものである。
【0022】
図1において、6は1次側枠板で、1次側流体流路3を形成する枠板開口部7と、1次側流体が通り分流路8aを有する2個の流路穴9aと、2次側流体が通る2個の流路穴9bと、両面に凸状外周シール材10とを有する。11は2次側枠板で、2次側流路5を形成する枠板開口部と、2次側流体が通り分流路8bを有する2個の流路穴9aと、1次側流体が通る2個の流路穴9bと、両面に平板状外周シール材12を有する。13は、分流路8のない流路穴9bの周囲に設けたOリングである。14は、1次側枠板6と伝熱体15と2次側枠板11とを1次側枠板6が両端にくるように順に複数枚積層した積層ブロックで、両端に前端板16と後端板17とを設けて締結材18で締結して加圧保持している。
【0023】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0024】
まず、1次側流体は、1次側枠板6の流路穴9aから分流路8aを通って1次側流路3を流れる。一方、隣接する2次側枠板11の2次側流体は流路穴9bから分流路8bを通って2次側流路5を流れる。1次側流体と2次側流体とは伝熱体15を介して接しているので、両流体間で熱を移動することができる。また1次側流路3と2次側流路5の高さは、1次側枠板6と2次側枠板11の厚みを設定することにより伝熱板15の厚みに関係なく任意に設定することができる。
【0025】
以上のように、本実施例においては伝熱板15を1次側枠板6と2次側枠板11と分離した構成とすることにより、1次側枠板6と2次側枠板11で強固な構成をつくり伝熱板15の厚みを薄くすることによって、高圧の流体を大量に流すことができ大量の熱を移動することができる。さらに伝熱板15は外周においては1次側枠板6の凸状外周シール材10と2次側枠板11の平板状外周シール材12によって挟まれた構成となっているため伝熱板15が多少変形しても確実にシールすることができる。
【0026】
(実施例2)
図2(a)は、本発明の第2の実施例の積層熱交換器の1次側枠板の構成図、図2(b)は、2次側枠板の構成図である。
【0027】
図2において、19はリング状シール材で、実施例1の構成と異なるところは、リング状シール材19を流路穴9bの周囲に設けた段差20に嵌め込んで1次側枠板6および2次側枠板11を挟み込んで設けた点である。
【0028】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0029】
まず、ゴムなどの弾性体で作られたリング状シール材19は1次側枠板6と2次側枠板11の段差20に嵌め込んで流路穴9bに設ける。
【0030】
以上のように、本実施例においては1個の部品で流路穴9bの両面を確実にシールすることができるので、作業性に優れ信頼性の高いシールを実現することができる。
【0031】
(実施例3)
図3は、本発明の第3の実施例の積層熱交換器の構成図である。
【0032】
図3において、20はフィルム状薄膜で、実施例1の構成と異なるところは伝熱板15としてフィルム状薄膜20を設けた点である。
【0033】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0034】
まず、1次側枠板6の1次側流体流路3を流れる1次側流体と2次側枠板11の2次側流体流路5を流れる2次側流体とはフィルム状薄膜20によって分離されている。
【0035】
以上のように、本実施例においては1次側流体と2次側流体とをフィルム状薄膜20によって分離することにより、1次側流体から2次側流体に熱を伝える時に伝熱体の厚さを極めて薄くする事ができるので熱抵抗が小さくなり大量の熱を移動する事ができる。
【0036】
また、本実施例では、フィルム状薄膜20の両側を凸状外周シール材10と平板状外周シール材12によって挟む構成としたことにより、しわ等が生じ易いフィルム状薄膜20を伝熱体として用いても確実にシールすることができる。
【0037】
また、本実施例のフィルム状薄膜20に多孔質または電解質などの透湿性の膜を用いることにより、小型高性能で流体漏れの少ない組み立て性に優れた安価な全熱交換器または加湿器を実現することができる。
【0038】
(実施例4)
図4(a)は、本発明の第4の実施例の積層熱交換器の構成図、図4(b)は、その構成部品であるフィルム状薄膜、図4(c)は、保持板の構成図である。
【0039】
図4において、21は中央部に複数の開口部22と流体が通過する4個の流路穴9を有する保持板で、実施例3の構成と異なるところは、フィルム状薄膜20に密着して保持板21を設けた点である。
【0040】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0041】
まず、1次側流路3を流れる1次側流体が2次側流路5流れる2次側流体より圧力が高い場合、フィルム状薄膜20は1次側枠板6内の1次側流体に押されて2次側流体が流れる2次側枠板11の2次側流路5を閉塞する方向に変形するが、この時、保持板21がフィルム状薄膜20に密着して設けられているため変形を防止することができる。一方、保持板21には、複数の開口部22が設けられているのでフィルム状薄膜20を通して1次側流体から2次側流体に熱を移動する事ができる。
【0042】
以上のように、本実施例においてはフィルム状薄膜20に密着して保持板21を設けることにより、1次側流体と2次側流体の圧力が異なる場合においても流体の流路を閉塞することなく安定した運転を維持することができる。
【0043】
(実施例5)
図5(a)は、本発明の第5の実施例の積層熱交換器の構成図、図5(b)は、その構成部品であるフィルム状薄膜、図5(c)は、熱伝導性保持板の構成図である。
【0044】
図5において、15は伝熱体で、実施例4の構成と異なるところは、開口部22を有する銅またはアルミ、ステンレス等の金属製薄板からなる2枚の熱伝導性保持板b21の間に熱伝導性保持板b21の100分の1以下の厚みのフィルム状の薄膜20をロールプレスなどで密着接合して設けた点である。
【0045】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0046】
まず、1次側流路3を流れる1次側流体が2次側流路5を流れる2次側流体より著しく圧力が高い場合、伝熱体15は1次側流体に押されて2次側流体が流れる2次側流路5を閉塞する方向に変形するが、この時、伝熱体15はフィルム状薄膜20の両面に熱伝導性保持板b21を設けた構成としたため、伝熱体15の変形を微少に留める事ができる。一方、運転状態が変化して1次側流体と2次側流体の圧力が逆転して2次側流体の圧力が高くなった場合、伝熱体15は2次側流体に押されて1次側流体が流れる1次側流路3を閉塞する方向に変形するが、この時も、フィルム状薄膜20の両面に熱伝導性保持板b21を設けているため、伝熱体15の変形を微少に留める事ができる。
【0047】
以上のように、本実施例においてはフィルム状薄膜20の両面に熱伝導性保持板b21を設けることにより、1次側流体と2次側流体の圧力差が著しくことなる場合また運転途中で圧力差が逆転する場合でも流路を閉塞することなく安定して運転することができる。
【0048】
また、保持板として開口部22を有する熱伝導性保持板b21を用いているため、開口部22のフィルム状薄膜20だけでなく熱伝導性保持板b21を介しても熱を移動することができるので、1次流体から2次流体へ大量の熱を移動することができる。
【0049】
(実施例6)
図6(a)は、本発明の第6の実施例の積層熱交換器の構成図、図6(b)は、その構成部品であるフィルム状薄膜、図6(c)は、保持板の構成図である。
【0050】
図6において、23は2次側流路5内に設けた複数の変形防止スペーサで、実施例4の構成と異なるところは、2次側流路5の両側に設けた保持板21に開口部22を避けて密着して変形防止スペーサ23を設けた点である。
【0051】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0052】
まず、1次側流路3を流れる1次側流体が2次側流路5を流れる2次側流体より著しく圧力が高い場合、保持板21は1次側流体に押されて2次側流体が流れる2次側流路5を閉塞する方向に変形するが、この時、保持板21の間に変形防止スペーサ23を設けているため保持板21が変形して2次側流路5を閉塞することを防止する事ができる。
【0053】
以上のように、本実施例においては2次側流路5内に変形防止スペーサ23を設けることにより、1次側流体と2次側流体の圧力差が著しくことなる場合でも流路を閉塞することなく安定して運転することができる。
【0054】
(実施例7)
図7(a)は、本発明の第7の実施例の積層熱交換器の構成図、図7(b)は、その構成部品である保持板の構成図である。
【0055】
図7において、24は凸状突起で、実施例1から5の構成と異なるところは保持板21に複数の凸状突起24を設けた点である。
【0056】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0057】
まず、1次側流路3を流れる1次側流体が2次側流路5を流れる2次側流体より著しく圧力が高い場合、保持板21は1次側流体に押されて2次側流体が流れる2次側流路5を閉塞する方向に変形するが、この時、保持板21の凸状突起24が対向する保持板21に接することにより、フィルム状薄膜20と保持板21が著しく変形するのを防止することができる。
【0058】
以上のように、本実施例においては保持板21に複数の凸状突起24を設けることにより、保持板21の変形を防止することとなり、1次側流体と2次側流体の圧力差が著しく大きい場合でも、部品を追加することなく2次側流路5の閉塞を防止して安定した運転を維持することができる。
【0059】
(実施例8)
図8(a)は、本発明の第8の実施例の積層熱交換器の構成図、図8(b)は、その構成部品である2次側枠板の構成図である。
【0060】
図8において、25は伝熱体保持部、26は変形防止部で、実施例1から7の構成と異なるところは1次側枠板6と2次側枠板11の少なくとも1方の片面または両面に伝熱体保持部25と変形防止部26を一体に設けた点である。
【0061】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0062】
まず、2次側枠板11の両面に格子状の開口部22を有する伝熱体保持部25を設け、伝熱体保持部25間に変形防止部26が一体に成形されて2次側流路5を構成する。
【0063】
以上のように、本実施例においては伝熱体保持部25と変形防止部26とを2次側枠板11の一部として成型加工時に同時に成形することにより部品点数を大幅に削減することができる。
【0064】
(実施例9)
図9は、本発明の第9の実施例の積層熱交換器の構成部品である1次側枠板の構成図である。
【0065】
図9において、27は円盤状の上蓋で、実施例1から8の構成と異なるところは1次側枠板6および2次側枠板11の流路穴9aの周囲に円形状段押し部28を設けて、円形状段落とし部28に円盤状の上蓋27を設けた点である。
【0066】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0067】
まず、下部は1次側枠板6および2次側枠板11の一部として成形加工して、上部は流路穴9aの周囲に設けた円形状段押し部28にはめ込んだ円盤状の上蓋27で分流路8を構成する。
【0068】
以上のように、本実施例においては分流路8の上部を円盤状の上蓋27で構成することにより、樹脂成形時に成形困難な横穴構造を、簡易な部品の組み合わせで実現することができる。
【0069】
分流路8の上下両面を上蓋27で構成しても同様の効果を得ることができる。
【0070】
(実施例10)
図10は、本発明の第10の実施例の積層熱交換器の構成部品である2次側枠板の構成図である。
【0071】
図10において、29は接着用段落とし部で、実施例1から9の構成と異なるところは2次側枠板11の平板状外周シール材12の外側の一部に段落とし部29を設けた点である。
【0072】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0073】
まず、2次側枠板11の端部の両面に設けた接着用段落とし部29に両面接着テープなどの接着材30を固定し伝熱体15を接着固定して、1次側枠板6と2次側枠板11を順に積層して熱交換器を構成する。
【0074】
以上のように、本実施例においては2次側枠板11の端部の両面に設けた接着用段落とし部29に接着材30を設けて2次側枠板11に伝熱体15を強固に固定することにより、1次側枠板6と2次側枠板11を積層する時に伝熱体15が所定の位置からずれて生じるシール不良を防止することができる。さらに、接着用段落とし部29を設けたことにより接着部の厚みを2次側枠板11の厚み以下に設定することができるので、凸状外周シール材10と平板状外周シール材12の圧縮率を低下させることなく枠板を積層する事ができるので、確実で信頼性の高いシールを実現することができる。さらに接着材30は平板状外周シール材12の外側に設けられているため2次側流体と接触することが無く接着材30の成分が流体に溶出して燃料電池等の他の構成機器に悪影響をおよぼすことを防止することができる。
【0075】
(実施例11)
図11は、本発明の第11の実施例の積層熱交換器の構成部品である1次側枠板の構成図である。
【0076】
図11において、31は貫通型凸状外周シール材で、実施例1から10の構成と異なるところは1次側枠板6に貫通穴32をあけて1次側枠板6の一部を貫通して成形して設けた点である。
【0077】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0078】
まず、1次側枠板6に貫通穴32をあけてゴムまたはエラストマーの貫通型凸状外周シール材31を成形することにより、貫通型凸状外周シール材31は1次側枠板6に強固に固定される。
【0079】
以上のように、本実施例においては貫通型凸状外周シール材31を1次側枠板6を貫通して強固に固定することにより積層組み立てする時にシール材が所定の位置からずれて生じるシール不良を防止することができるとともに組立性を著しく向上することができる。
【0080】
(実施例12)
図12は、本発明の第12の実施例の積層熱交換器の構成図である。
【0081】
図12において、33は密着性伝熱体で、実施例1から11の構成と異なるところは樹脂性の1次側枠板6および2次側枠板11に樹脂成形時に直接密着して設けた点である。
【0082】
以上のように構成された積層熱交換器について、以下その動作、作用を説明する。
【0083】
まず、1次側枠板6および2次側枠板11を樹脂成形する時に伝熱体33を金型内に装着して成形することにより1次側枠板6および2次側枠板11の表面に伝熱体33が強固に密着した状態が得られる。
【0084】
以上のように、本実施例においては枠板の樹脂成形時に伝熱体33を1次側枠板6および2次側枠板11に強固に密着固定することにより、シール性を大幅に向上することができる。
【0085】
また、凸状外周シール材10を省略することができるので、組み立て性を著しく改善することができる。
【0086】
【発明の効果】
以上のように、本発明によれば、小型高性能で作動流体の漏れが無く信頼性の高い小型高性能な積層熱交換器を実現することができる。
【図面の簡単な説明】
【図1】(a)本発明の実施例1における積層熱交換器の構成図
(b)本発明の実施例1における積層熱交換器の分解図
【図2】(a)本発明の実施例2における積層熱交換器の1次側枠板の構成図
(b)本発明の実施例2における積層熱交換器の2次側枠板の構成図
【図3】本発明の実施例3における積層熱交換器の構成図
【図4】(a)本発明の実施例4における積層熱交換器の構成図
(b)本発明の実施例4における積層熱交換器のフィルム状薄膜の構成図
(c)本発明の実施例4における積層熱交換器の保持板の構成図
【図5】(a)本発明の実施例5における積層熱交換器の構成図
(b)本発明の実施例5における積層熱交換器のフィルム状薄膜の構成図
(c)本発明の実施例5における積層熱交換器の熱伝導性保持板の構成図
【図6】(a)本発明の実施例6における積層熱交換器の構成図
(b)本発明の実施例6における積層熱交換器のフィルム状薄膜の構成図
(c)本発明の実施例6における積層熱交換器の保持板の構成図
【図7】(a)本発明の実施例7における積層熱交換器の構成図
(b)本発明の実施例7における積層熱交換器の保持板の構成図
【図8】(a)本発明の実施例8における積層熱交換器の構成図
(b)本発明の実施例8における積層熱交換器の2次側枠板の構成図
【図9】本発明の実施例9における積層熱交換器の1次側枠板の構成図
【図10】本発明の実施例10における積層熱交換器の1次側枠板の構成図
【図11】本発明の実施例11における積層熱交換器の1次側枠板の構成図
【図12】本発明の実施例12における積層熱交換器の構成図
【図13】従来の積層熱交換器の構成図
【符号の説明】
6 1次側枠板
7 枠板開口部
8a 分流路(1次側枠板)
8b 分流路(2次側枠板)
9a 流路穴(1次側枠板)
9b 流路穴(2次側枠板)
10 凸状外周シール材
11 2次側枠板
12 平板状外周シール材
14 積層ブロック
15 伝熱体
16 前端板
17 後端板
18 締結材
19 リング状シール材
20 フィルム状薄膜
21 保持板
21b 熱伝導性保持板
23 変形防止スペーサ
24 凸状突起
25 伝熱体保持部
26 変形防止部
27 上蓋(円盤状板材)
28 段押し部(段押し加工部)
29 接着用段落とし部(段落とし部)
30 接着材
31 貫通型凸状外周シール材(シール材)
33 密着性伝熱体(伝熱体)
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a total heat exchanger used for ventilation and air conditioning of a house and a stacked heat exchanger used for a humidifier such as a fuel cell.
[0002]
[Prior art]
Conventionally, as this type of laminated heat exchanger, for example, there is one shown in FIG. FIG. 13 is a configuration diagram of a conventional laminated heat exchanger. Reference numeral 1 denotes a metallic laminated plate made of stainless steel or the like. A secondary fluid flow path 5 is formed by laminating the laminated plate 4 on the base plate, a primary fluid flow path and a secondary fluid flow path are alternately formed by sequentially laminating the laminated plates, and the outer periphery of the laminated plate is brazed. To form a laminated heat exchanger (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-356490 A
[Problems to be solved by the invention]
However, in the above-described conventional configuration, a heat transfer body is prepared by pressing a metal plate such as stainless steel, and the heat transfer body itself is laminated and brazed as a laminated plate to form a fluid flow path. However, the use of the heat transfer body as a structural body has a problem that the thickness of the heat transfer body is increased, the heat resistance is increased, the heat exchange performance is reduced, and the number of stacked layers is increased, thereby increasing the size of the apparatus. Was. Furthermore, expensive joining equipment such as a vacuum furnace is required for joining the laminates, and the product cost becomes excessive.
[0005]
The present invention solves the above-mentioned conventional problems, and has a small size, high performance, and excellent sealing performance by being divided into a frame plate having strength as a structure and a heat transfer plate having a small thickness and a small thermal resistance. An object is to provide an inexpensive laminated heat exchanger.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, a laminated heat exchanger of the present invention has a primary-side frame plate, a heat transfer body, A secondary side frame plate which forms a side fluid flow path and has a flat outer peripheral sealing material on both surfaces is sequentially laminated.
[0007]
This makes it possible to guarantee the structural strength of the frame plate, while reducing the thermal resistance by reducing the thickness of the heat transfer body. Further, a highly reliable seal can be realized by sandwiching a thin heat transfer member between the convex outer peripheral seal material and the flat outer peripheral seal material.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 has a frame plate opening and a branch channel communicating with the frame plate opening, and has two passage holes through which the primary fluid flows and the secondary side independent of the frame plate opening. A primary side frame plate having two flow passage holes through which a fluid passes and having a convex outer peripheral sealing material on both surfaces; a secondary side fluid having a frame plate opening and a branch channel communicating with the frame plate opening; A secondary frame plate having two flat passage seals on both surfaces, having two flow passage holes through which the fluid flows, and two flow passage holes through which the primary fluid passes independently of the frame plate opening; The heat transfer body sandwiched between the secondary side frame plate and the secondary side frame plate, and the primary side frame plate, the secondary side frame plate, and the heat transfer body are laminated in order such that the primary side frame plate comes to both ends. By using a laminated heat exchanger with a front end plate and a rear end plate that hold the laminated blocks with fastening materials and hold them under pressure, a strong structure is realized with the frame plate and the heat transfer plate is thinned. To reduce the thermal resistance It is possible to significantly improve the heat exchange performance by.
[0009]
According to a second aspect of the present invention, there is provided a ring-shaped seal in which the laminated heat exchanger according to the first aspect is fitted into a flow path hole provided in a frame plate, sandwiches the frame plate, and seals around the flow path hole. The material is provided in the two secondary passage holes of the primary frame plate and the two secondary passage holes of the secondary frame plate, so that the primary fluid and the secondary fluid are provided. It can form a manifold through which fluid can flow, and can be used with a simple structure and a reliable seal at a low cost without using an expensive manufacturing method such as brazing or using an adhesive that may dissolve components. Can be realized.
[0010]
According to the third aspect of the present invention, the laminated heat exchanger according to the first or second aspect has a structure in which a film-like thin film is provided as a heat transfer body, whereby heat resistance is reduced and performance is improved. And can be miniaturized. Further, by using a moisture-permeable film, the film can function as a total heat exchanger, and the processing of the heat transfer body is facilitated, so that the assemblability can be improved.
[0011]
The invention according to claim 4 has a structure in which the laminated heat exchanger according to claims 1 to 3 is provided in close contact with a film-shaped heat transfer body and a holding plate is provided on a low pressure side. Even when the pressures of the side fluid and the secondary fluid are different, the shape of the heat transfer body can be maintained, so that the cross-sectional shape of the flow path can be kept constant, and stable high-performance operation can be realized.
[0012]
The invention as set forth in claim 5 provides a heat transfer body in which the laminated heat exchanger according to claims 1 to 4 is in close contact with a heat conductive holding plate having openings on both surfaces of a film-like thin film. By doing so, it is possible to realize a heat transfer body having a small thermal resistance and to maintain the shape of the heat transfer body even when the pressures of the primary fluid and the secondary fluid are switched during the operation, so that the flow path The cross-sectional shape can be kept constant, and it is possible to flexibly cope with a device that performs a complicated operation.
[0013]
According to a sixth aspect of the present invention, in particular, the laminated heat exchanger according to the first to fifth aspects has a structure in which a deformation preventing spacer is provided between the holding plates. By providing the deformation preventing spacer at an arbitrary position in the side fluid flow path, it is possible to prevent the heat transfer body from being deformed and damaged even when the pressure in the flow path fluctuates rapidly.
[0014]
According to a seventh aspect of the present invention, in particular, the laminated heat exchanger according to the fourth aspect has a configuration in which a holding plate having a convex projection is provided, and the number of components is increased by forming the holding plate. Therefore, deformation of the heat transfer body can be prevented.
[0015]
The invention according to claim 8 is particularly characterized in that the laminated heat exchanger according to claims 1 to 3 is formed integrally with at least one of the primary side frame plate and the secondary side frame plate with a heat transfer body holding portion. With the prevention part provided, the heat transfer element holding part and the deformation prevention part are formed at the same time as the frame plate as a part of the frame plate, so that the number of parts is greatly reduced, and the assemblability and reliability are significantly improved. Can be.
[0016]
The invention according to claim 9 provides the laminated heat exchanger according to any one of claims 1 to 8 with a primary side passage hole of a primary side frame plate and a secondary side passage hole of a secondary side frame plate. In this configuration, a disc-shaped upper lid that forms a diversion channel from the flow channel hole is provided. Can be.
[0017]
The invention according to claim 10 is, in particular, a primary side in which the laminated heat exchanger according to claims 1 to 9 is provided with a paragraph-shaped portion for holding an adhesive for bonding a heat transfer body to the outside of an outer peripheral sealing material. By having a configuration having the frame plate and the secondary side frame plate, the frame plate and the heat transfer body are bonded without bringing the adhesive into contact with the fluid, thereby preventing the components of the adhesive from being eluted into the fluid. be able to. Further, the film-shaped heat conductor can be easily fixed to the frame plate.
[0018]
The invention according to claim 11 is, in particular, a primary side frame provided with a rubber and elastomer sealing material which penetrates the frame heat exchanger according to claims 1 to 10 to form sealing surfaces on both surfaces by passing through the frame plate. By having a structure having a plate and a secondary side frame plate, an operation for mounting the seal material on the frame plate is omitted, and it is possible to prevent a seal leak due to a trouble at the time of mounting and greatly improve the assemblability. Can be improved.
[0019]
A twelfth aspect of the present invention provides, in particular, a primary side frame plate in which a heat transfer body is tightly joined to a frame plate when the laminated heat exchanger according to any one of the first to tenth aspects is formed by molding a resin frame plate. By adopting the configuration having the side frame plate, the seal can be reliably realized and the seal material is omitted, so that the reliability and the assemblability of the seal can be remarkably improved.
[0020]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
(Example 1)
FIG. 1A is a configuration diagram of a laminated heat exchanger according to a first embodiment of the present embodiment, and FIG. 1B is an exploded view thereof.
[0022]
In FIG. 1, reference numeral 6 denotes a primary side frame plate, a frame plate opening 7 that forms the primary side fluid flow path 3, two flow path holes 9a having a primary side fluid passing through and a branch flow path 8a, It has two flow passage holes 9b through which the secondary fluid passes, and a convex outer peripheral sealing material 10 on both surfaces. Numeral 11 denotes a secondary frame plate, a frame plate opening for forming the secondary channel 5, two channel holes 9a having a secondary channel 8b and a branch channel 8b, and a primary fluid passing therethrough. It has two flow passage holes 9b and a flat outer peripheral sealing material 12 on both surfaces. Reference numeral 13 denotes an O-ring provided around the channel hole 9b without the branch channel 8. Reference numeral 14 denotes a laminated block in which a plurality of primary side frame plates 6, a heat transfer body 15, and a secondary side frame plate 11 are laminated in order so that the primary side frame plate 6 is located at both ends. A rear end plate 17 is provided, fastened with a fastening member 18 and held under pressure.
[0023]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0024]
First, the primary fluid flows through the primary channel 3 from the channel hole 9a of the primary frame plate 6 through the branch channel 8a. On the other hand, the secondary fluid of the adjacent secondary frame plate 11 flows through the secondary channel 5 from the channel hole 9b through the branch channel 8b. Since the primary fluid and the secondary fluid are in contact with each other via the heat transfer body 15, heat can be transferred between the two fluids. The height of the primary side flow path 3 and the secondary side flow path 5 can be set arbitrarily regardless of the thickness of the heat transfer plate 15 by setting the thickness of the primary side frame plate 6 and the secondary side frame plate 11. Can be set.
[0025]
As described above, in the present embodiment, the heat transfer plate 15 is configured to be separated from the primary side frame plate 6 and the secondary side frame plate 11 so that the primary side frame plate 6 and the secondary side frame plate 11 are separated. By making a strong structure and reducing the thickness of the heat transfer plate 15, a large amount of high-pressure fluid can flow and a large amount of heat can be transferred. Further, since the heat transfer plate 15 is sandwiched between the outer peripheral sealing material 10 of the primary frame plate 6 and the outer peripheral sealing material 12 of the secondary frame plate 11 on the outer periphery, the heat transfer plate 15 Can be reliably sealed even if it is slightly deformed.
[0026]
(Example 2)
FIG. 2A is a configuration diagram of a primary side frame plate of a laminated heat exchanger according to a second embodiment of the present invention, and FIG. 2B is a configuration diagram of a secondary side frame plate.
[0027]
In FIG. 2, reference numeral 19 denotes a ring-shaped sealing material, which is different from the structure of the first embodiment in that the ring-shaped sealing material 19 is fitted into a step 20 provided around the flow passage hole 9b, and the primary side frame plate 6 and This is the point that the secondary side frame plate 11 is interposed therebetween.
[0028]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0029]
First, a ring-shaped sealing material 19 made of an elastic material such as rubber is fitted in a step 20 between the primary side frame plate 6 and the secondary side frame plate 11 and provided in the flow passage hole 9b.
[0030]
As described above, in the present embodiment, since both surfaces of the flow path hole 9b can be reliably sealed with one component, a highly reliable seal with excellent workability can be realized.
[0031]
(Example 3)
FIG. 3 is a configuration diagram of the laminated heat exchanger according to the third embodiment of the present invention.
[0032]
In FIG. 3, reference numeral 20 denotes a film-like thin film, which is different from the configuration of the first embodiment in that a film-like thin film 20 is provided as the heat transfer plate 15.
[0033]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0034]
First, the primary fluid flowing through the primary fluid channel 3 of the primary frame plate 6 and the secondary fluid flowing through the secondary fluid channel 5 of the secondary frame plate 11 are separated by the film-like thin film 20. Are separated.
[0035]
As described above, in the present embodiment, the primary fluid and the secondary fluid are separated by the film-like thin film 20, so that when the heat is transferred from the primary fluid to the secondary fluid, the thickness of the heat transfer body is increased. Since the thickness can be made extremely thin, the thermal resistance becomes small and a large amount of heat can be transferred.
[0036]
Further, in the present embodiment, the film-like thin film 20 is configured such that both sides of the film-like thin film 20 are sandwiched between the convex outer peripheral sealing material 10 and the flat outer peripheral sealing material 12, so that the film-like thin film 20 in which wrinkles and the like easily occur is used as a heat transfer body. Even if it does, it can be sealed securely.
[0037]
Also, by using a moisture-permeable membrane such as a porous or electrolyte material for the film-like thin film 20 of the present embodiment, a small-sized, high-performance, inexpensive total heat exchanger or humidifier excellent in assemblability with little fluid leakage is realized. can do.
[0038]
(Example 4)
FIG. 4A is a configuration diagram of a laminated heat exchanger according to a fourth embodiment of the present invention, FIG. 4B is a film-like thin film as a component thereof, and FIG. It is a block diagram.
[0039]
In FIG. 4, reference numeral 21 denotes a holding plate having a plurality of openings 22 and four flow passage holes 9 through which a fluid passes in a central portion. The point is that the holding plate 21 is provided.
[0040]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0041]
First, when the pressure of the primary fluid flowing through the primary flow path 3 is higher than the pressure of the secondary fluid flowing through the secondary flow path 5, the film-like thin film 20 becomes a primary fluid in the primary frame plate 6. It is deformed in a direction to close the secondary flow path 5 of the secondary frame plate 11 in which the secondary fluid flows by being pushed. At this time, the holding plate 21 is provided in close contact with the film thin film 20. Therefore, deformation can be prevented. On the other hand, since the holding plate 21 is provided with the plurality of openings 22, heat can be transferred from the primary fluid to the secondary fluid through the thin film film 20.
[0042]
As described above, in the present embodiment, by providing the holding plate 21 in close contact with the film-like thin film 20, it is possible to close the fluid flow path even when the pressures of the primary fluid and the secondary fluid are different. And stable operation can be maintained.
[0043]
(Example 5)
FIG. 5A is a configuration diagram of a laminated heat exchanger according to a fifth embodiment of the present invention, FIG. 5B is a film-like thin film as a component thereof, and FIG. It is a block diagram of a holding plate.
[0044]
In FIG. 5, reference numeral 15 denotes a heat transfer member, which is different from the structure of the fourth embodiment between two heat conductive holding plates b21 made of a thin metal plate such as copper or aluminum or stainless steel having an opening 22. The point is that a film-like thin film 20 having a thickness of 1/100 or less of the heat conductive holding plate b21 is provided in close contact with a roll press or the like.
[0045]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0046]
First, when the pressure of the primary fluid flowing through the primary flow path 3 is significantly higher than the pressure of the secondary fluid flowing through the secondary flow path 5, the heat transfer body 15 is pushed by the primary fluid, and It deforms in a direction to close the secondary flow path 5 through which the fluid flows. At this time, the heat transfer body 15 has a configuration in which the heat conductive holding plates b21 are provided on both surfaces of the film-like thin film 20. Deformation can be kept very small. On the other hand, when the operating state changes and the pressures of the primary fluid and the secondary fluid are reversed and the pressure of the secondary fluid increases, the heat transfer body 15 is pushed by the secondary fluid and Deforms in the direction of closing the primary flow path 3 through which the side fluid flows, but also at this time, since the heat conductive holding plates b21 are provided on both surfaces of the film-like thin film 20, the deformation of the heat transfer body 15 is very small. Can be fixed to.
[0047]
As described above, in this embodiment, by providing the heat conductive holding plates b21 on both surfaces of the film-like thin film 20, when the pressure difference between the primary fluid and the secondary fluid becomes remarkable, Even when the difference is reversed, stable operation can be performed without blocking the flow path.
[0048]
Further, since the heat conductive holding plate b21 having the opening 22 is used as the holding plate, heat can be transferred not only through the film-like thin film 20 of the opening 22 but also through the heat conductive holding plate b21. Therefore, a large amount of heat can be transferred from the primary fluid to the secondary fluid.
[0049]
(Example 6)
FIG. 6A is a configuration diagram of a laminated heat exchanger according to a sixth embodiment of the present invention, FIG. 6B is a film-like thin film as a component thereof, and FIG. It is a block diagram.
[0050]
In FIG. 6, reference numeral 23 denotes a plurality of deformation preventing spacers provided in the secondary flow path 5, which is different from the structure of the fourth embodiment in that openings are formed in the holding plates 21 provided on both sides of the secondary flow path 5. This is the point that the deformation preventing spacer 23 is provided in close contact with avoiding the area 22.
[0051]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0052]
First, when the pressure of the primary fluid flowing through the primary flow path 3 is significantly higher than the pressure of the secondary fluid flowing through the secondary flow path 5, the holding plate 21 is pushed by the primary fluid and the secondary fluid is pressed. However, at this time, the holding plate 21 is deformed because the deformation preventing spacers 23 are provided between the holding plates 21, and the secondary passage 5 is closed. Can be prevented.
[0053]
As described above, in the present embodiment, by providing the deformation preventing spacer 23 in the secondary flow path 5, the flow path is closed even when the pressure difference between the primary fluid and the secondary fluid becomes remarkable. It can be operated stably without any trouble.
[0054]
(Example 7)
FIG. 7A is a configuration diagram of a laminated heat exchanger according to a seventh embodiment of the present invention, and FIG. 7B is a configuration diagram of a holding plate as a component thereof.
[0055]
In FIG. 7, reference numeral 24 denotes a projection, which is different from the configurations of the first to fifth embodiments in that a plurality of projections 24 are provided on the holding plate 21.
[0056]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0057]
First, when the pressure of the primary fluid flowing through the primary flow path 3 is significantly higher than the pressure of the secondary fluid flowing through the secondary flow path 5, the holding plate 21 is pushed by the primary fluid and the secondary fluid is pressed. Is deformed in the direction in which the secondary flow path 5 through which the fluid flows is closed. At this time, the film-like thin film 20 and the holding plate 21 are significantly deformed because the convex protrusion 24 of the holding plate 21 contacts the opposite holding plate 21. Can be prevented.
[0058]
As described above, in the present embodiment, by providing the plurality of convex protrusions 24 on the holding plate 21, the deformation of the holding plate 21 is prevented, and the pressure difference between the primary fluid and the secondary fluid is significantly reduced. Even in the case of a large size, it is possible to prevent the secondary side flow path 5 from being clogged without adding components, and to maintain a stable operation.
[0059]
(Example 8)
FIG. 8A is a configuration diagram of a laminated heat exchanger according to an eighth embodiment of the present invention, and FIG. 8B is a configuration diagram of a secondary side frame plate which is a component thereof.
[0060]
In FIG. 8, reference numeral 25 denotes a heat transfer member holding unit, and reference numeral 26 denotes a deformation prevention unit, which is different from the configurations of the first to seventh embodiments in that at least one side of the primary side frame plate 6 and the secondary side frame plate 11 or The point is that the heat transfer member holding portion 25 and the deformation preventing portion 26 are integrally provided on both surfaces.
[0061]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0062]
First, a heat transfer member holding portion 25 having a grid-like opening 22 is provided on both surfaces of the secondary side frame plate 11, and a deformation preventing portion 26 is integrally formed between the heat transfer member holding portions 25 to form a secondary side flow passage. The road 5 is constructed.
[0063]
As described above, in the present embodiment, the number of components can be significantly reduced by simultaneously forming the heat transfer member holding portion 25 and the deformation preventing portion 26 as a part of the secondary side frame plate 11 at the time of forming. it can.
[0064]
(Example 9)
FIG. 9 is a configuration diagram of a primary side frame plate which is a component of the laminated heat exchanger according to the ninth embodiment of the present invention.
[0065]
In FIG. 9, reference numeral 27 denotes a disc-shaped upper lid, which differs from the configurations of the first to eighth embodiments in that a circular stepped portion 28 is formed around the flow passage holes 9a of the primary frame plate 6 and the secondary frame plate 11. Is provided, and a disc-shaped upper lid 27 is provided in the section 28 as a circular paragraph.
[0066]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0067]
First, the lower part is formed as a part of the primary side frame plate 6 and the secondary side frame plate 11, and the upper part is a disk-shaped upper lid fitted into a circular stepped portion 28 provided around the flow passage hole 9a. 27 constitutes the branch channel 8.
[0068]
As described above, in the present embodiment, by forming the upper portion of the branch channel 8 with the disc-shaped upper lid 27, a horizontal hole structure that is difficult to mold during resin molding can be realized by a combination of simple components.
[0069]
The same effect can be obtained even if the upper and lower surfaces of the upper and lower surfaces of the branch channel 8 are constituted by the upper lid 27.
[0070]
(Example 10)
FIG. 10 is a configuration diagram of a secondary side frame plate which is a component of the laminated heat exchanger according to the tenth embodiment of the present invention.
[0071]
In FIG. 10, reference numeral 29 denotes an adhesive paragraph portion, which is different from the configurations of Examples 1 to 9 in that the secondary side frame plate 11 is provided with a paragraph portion 29 outside a part of the flat outer peripheral sealing material 12. Is a point.
[0072]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0073]
First, an adhesive material 30 such as a double-sided adhesive tape is fixed to a bonding portion 29 provided on both sides of the end of the secondary side frame plate 11 and the heat transfer body 15 is bonded and fixed to the primary side frame plate 6. And the secondary side frame plate 11 are sequentially laminated to form a heat exchanger.
[0074]
As described above, in the present embodiment, the adhesives 30 are provided in the bonding sections 29 provided on both sides of the end of the secondary side frame plate 11, and the heat transfer body 15 is firmly attached to the secondary side frame plate 11. When the primary side frame plate 6 and the secondary side frame plate 11 are stacked, it is possible to prevent the heat transfer member 15 from being shifted from a predetermined position, thereby preventing a defective seal. Furthermore, since the thickness of the bonding portion can be set to be equal to or less than the thickness of the secondary side frame plate 11 by providing the bonding paragraph section 29, the compression of the convex outer peripheral sealing material 10 and the flat outer peripheral sealing material 12 can be performed. Since the frame plates can be stacked without lowering the efficiency, a reliable and highly reliable seal can be realized. Further, since the adhesive 30 is provided outside the flat outer peripheral sealing material 12, the adhesive 30 does not come into contact with the secondary fluid, and the components of the adhesive 30 elute into the fluid and adversely affect other components such as a fuel cell. Can be prevented.
[0075]
(Example 11)
FIG. 11 is a configuration diagram of a primary side frame plate which is a component of the laminated heat exchanger according to the eleventh embodiment of the present invention.
[0076]
In FIG. 11, reference numeral 31 denotes a penetrating convex outer peripheral sealing material, which is different from the configurations of the first to tenth embodiments in that a through hole 32 is formed in the primary frame plate 6 and a part of the primary frame plate 6 is penetrated. It is the point that it was provided by molding.
[0077]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0078]
First, a through-hole 32 is formed in the primary side frame plate 6 to form a through-type convex outer peripheral seal material 31 of rubber or elastomer, so that the through-type convex outer peripheral seal material 31 is firmly attached to the primary side frame plate 6. Fixed to.
[0079]
As described above, in the present embodiment, the through-type convex outer peripheral sealing material 31 is penetrated through the primary side frame plate 6 and firmly fixed, so that the sealing material is displaced from a predetermined position at the time of laminating and assembling. Failure can be prevented, and assemblability can be significantly improved.
[0080]
(Example 12)
FIG. 12 is a configuration diagram of a laminated heat exchanger according to a twelfth embodiment of the present invention.
[0081]
In FIG. 12, reference numeral 33 denotes an adhesive heat transfer body, which is different from the structures of Examples 1 to 11 in that it is directly adhered to the resin primary frame plate 6 and the secondary frame plate 11 during resin molding. Is a point.
[0082]
The operation and action of the laminated heat exchanger configured as described above will be described below.
[0083]
First, when the primary side frame plate 6 and the secondary side frame plate 11 are resin-molded, the heat transfer body 33 is mounted in a mold and molded to form the primary side frame plate 6 and the secondary side frame plate 11. A state in which the heat transfer body 33 is firmly adhered to the surface is obtained.
[0084]
As described above, in the present embodiment, the sealing performance is greatly improved by firmly fixing the heat transfer body 33 to the primary side frame plate 6 and the secondary side frame plate 11 during resin molding of the frame plate. be able to.
[0085]
In addition, since the convex outer peripheral sealing material 10 can be omitted, the assemblability can be significantly improved.
[0086]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a small-sized, high-performance stacked heat exchanger that is small, high-performance, has no leakage of working fluid, and is highly reliable.
[Brief description of the drawings]
FIG. 1 (a) is a configuration diagram of a laminated heat exchanger according to a first embodiment of the present invention; FIG. 2 (b) is an exploded view of the laminated heat exchanger according to a first embodiment of the present invention; FIG. FIG. 3B is a configuration diagram of a primary side frame plate of the laminated heat exchanger in Embodiment 2 (b). FIG. 3 is a configuration diagram of a secondary side frame plate of the laminated heat exchanger in Embodiment 2 of the present invention. FIG. 4A is a configuration diagram of a laminated heat exchanger according to a fourth embodiment of the present invention. FIG. 4B is a configuration diagram of a film-like thin film of the laminated heat exchanger according to a fourth embodiment of the present invention. 5) Configuration diagram of a holding plate of a laminated heat exchanger according to a fourth embodiment of the present invention. [FIG. 5] (a) Configuration diagram of a laminated heat exchanger according to a fifth embodiment of the present invention (b) Lamination according to the fifth embodiment of the present invention Configuration diagram of the film-like thin film of the heat exchanger (c) Configuration diagram of the heat conductive holding plate of the laminated heat exchanger in the fifth embodiment of the present invention [ (A) Configuration diagram of laminated heat exchanger in embodiment 6 of the present invention (b) Configuration diagram of film-like thin film of laminated heat exchanger in embodiment 6 of the present invention (c) Embodiment 6 of the present invention FIG. 7A is a configuration diagram of a laminated heat exchanger according to a seventh embodiment of the present invention. FIG. 7B is a configuration diagram of a laminated heat exchanger according to a seventh embodiment of the present invention. FIG. 8A is a configuration diagram of a laminated heat exchanger according to an eighth embodiment of the present invention. FIG. 8B is a configuration diagram of a secondary side frame plate of the laminated heat exchanger according to the eighth embodiment of the present invention. FIG. 10 is a configuration diagram of a primary side frame plate of the laminated heat exchanger in Embodiment 9 of the present invention. FIG. 10 is a configuration diagram of a primary side frame plate of the laminated heat exchanger in Embodiment 10 of the present invention. FIG. 12 is a configuration diagram of a primary side frame plate of the laminated heat exchanger according to the eleventh embodiment. Adult view 13 is a configuration diagram of a conventional laminated heat exchanger EXPLANATION OF REFERENCE NUMERALS
6 Primary frame plate 7 Frame plate opening 8a Distribution channel (primary frame plate)
8b Distribution channel (secondary frame plate)
9a Channel hole (primary frame plate)
9b Channel hole (secondary frame plate)
REFERENCE SIGNS LIST 10 convex outer peripheral sealing material 11 secondary side frame plate 12 flat outer peripheral sealing material 14 laminated block 15 heat transfer body 16 front end plate 17 rear end plate 18 fastening material 19 ring-shaped sealing material 20 film-shaped thin film 21 holding plate 21 b heat conduction Holding plate 23 Deformation prevention spacer 24 Convex projection 25 Heat transfer member holding portion 26 Deformation prevention portion 27 Top cover (disk-shaped plate material)
28 Step pressing part (Step pressing part)
29 Adhesive paragraph section (paragraph section)
30 Adhesive material 31 Penetration-type convex outer peripheral seal material (seal material)
33 Adhesive heat transfer material (heat transfer material)

Claims (12)

枠板開口部と前記枠板開口部に連通する分流路を有し1次側流体が通る2個の流路穴と前記枠板開口部と独立して2次側流体が通る2個の流路穴とを有し両面に凸状外周シール材を有する1次側枠板と、枠板開口部と前記枠板開口部に連通する分流路を有し2次側流体が通る2個の流路穴と前記枠板開口部と独立して1次側流体が通る2個の流路穴とを有し両面に平板状外周シール材を有する2次側枠板と、前記1次側枠板と前記2次側枠板で挟みこんだ4個の流路穴を有する伝熱体と、前記1次側枠板と前記2次側枠板と前記伝熱体とを前記1次側枠板が両端にくるように順に積層した積層ブロックを締結材で締結して加圧保持する前端板と後端板とを設けた積層熱交換器。Two flow passage holes, each having a frame plate opening and a branch channel communicating with the frame plate opening, through which a primary fluid passes, and two flows through which a secondary fluid passes independently of the frame plate opening. A primary side frame plate having a passage hole and a convex outer peripheral sealing material on both surfaces, and two flows through which a secondary side fluid passes with a frame plate opening and a branch channel communicating with the frame plate opening A secondary frame plate having a passage hole and two flow passage holes through which the primary fluid passes independently of the frame plate opening, and a flat outer peripheral sealing material on both surfaces; and the primary frame plate. And a heat transfer body having four flow path holes sandwiched by the secondary side frame plate, and the primary side frame plate, the secondary side frame plate, and the heat transfer body. A stacked heat exchanger provided with a front end plate and a rear end plate that fasten and hold a laminated block, which is laminated in order so that it comes to both ends, with a fastening material. 流路穴に嵌め込んで1次側枠板および2次側枠板を挟み込んで前記流路穴の周囲をシールするリング状シール材を1次側枠板の2次側流体が通る2個の流路穴と、2次側枠板の1次側流体が通る2個の流路穴に設けた請求項1に記載の積層熱交換器。Two ring-shaped sealing materials, which are fitted into the flow passage holes and sandwich the primary side frame plate and the secondary side frame plate to seal around the flow passage holes, through which the secondary fluid of the primary side frame plate passes. The laminated heat exchanger according to claim 1, wherein the stacked heat exchanger is provided in a flow passage hole and two flow passage holes through which the primary fluid of the secondary frame plate passes. フィルム状薄膜を伝熱体として設けた請求項1又は2に記載の積層熱交換器。The laminated heat exchanger according to claim 1, wherein a film-like thin film is provided as a heat transfer body. 伝熱体に密着して保持板を設けた請求項1〜3のいずれか1項に記載の積層熱交換器。The laminated heat exchanger according to any one of claims 1 to 3, wherein the holding plate is provided in close contact with the heat transfer body. フィルム状薄膜の両面に開口部を有する熱伝導性保持板を密着して構成する伝熱体を有する請求項1〜4のいずれか1項に記載の積層熱交換器。The laminated heat exchanger according to any one of claims 1 to 4, further comprising a heat conductor configured to closely adhere a heat conductive holding plate having openings on both surfaces of the film-like thin film. 保持板と保持板との間に変形防止スペーサを設けた請求項1〜5のいずれか1項に記載の積層熱交換器。The laminated heat exchanger according to any one of claims 1 to 5, wherein a deformation preventing spacer is provided between the holding plates. 凸状突起を有する保持板を設けた請求項4に記載の積層熱交換器。The laminated heat exchanger according to claim 4, further comprising a holding plate having a convex protrusion. 1次側枠板と2次側枠板の少なくとも一方に一体に成形した伝熱体保持部と変形防止部を設けた請求項1〜3のいずれか1項に記載の積層熱交換器。The laminated heat exchanger according to any one of claims 1 to 3, wherein at least one of the primary side frame plate and the secondary side frame plate is provided with a heat transfer body holding portion and a deformation preventing portion integrally formed. 1次側枠板と2次側枠板の流路穴の周囲に設けた段押し加工部に流路穴から分流路を形成する円盤状板材を設けた請求項1〜8のいずれか1項に記載の積層熱交換器。9. A disk-shaped plate member for forming a diversion channel from a flow path hole is provided in a stepped portion provided around a flow path hole of a primary side frame plate and a secondary side frame plate. 3. The laminated heat exchanger according to item 1. 外周シール材の外側に設けた段落とし部と、前記段落とし部に伝熱体を接着保持する接着剤を設けた1次側枠板または2次側枠板を有する請求項1〜9のいずれか1項に記載の積層熱交換器。10. The apparatus according to claim 1, further comprising a paragraph-shaped portion provided outside the outer peripheral sealing material, and a primary side frame plate or a secondary side frame plate provided with an adhesive for bonding and holding the heat transfer body to the paragraph-shaped portion. The stacked heat exchanger according to claim 1. 枠板を貫通して両面にシール面を形成するゴムおよびエラストマのシール材を設けた1次側枠板および2次側枠板を有する請求項1〜10のいずれか1項に記載の積層熱交換器。The laminated heat according to any one of claims 1 to 10, further comprising a primary side frame plate and a secondary side frame plate provided with a rubber and elastomer sealing material penetrating the frame plate and forming sealing surfaces on both surfaces. Exchanger. 樹脂製枠板の成形加工時に伝熱体を枠板に密着接合した1次側枠板および2次側枠板を有する請求項1〜10のいずれか1項に記載の積層熱交換器。The laminated heat exchanger according to any one of claims 1 to 10, further comprising a primary side frame plate and a secondary side frame plate in which a heat transfer body is tightly joined to the frame plate at the time of forming the resin frame plate.
JP2003073832A 2003-03-18 2003-03-18 Stacked heat exchanger Withdrawn JP2004278986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073832A JP2004278986A (en) 2003-03-18 2003-03-18 Stacked heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073832A JP2004278986A (en) 2003-03-18 2003-03-18 Stacked heat exchanger

Publications (1)

Publication Number Publication Date
JP2004278986A true JP2004278986A (en) 2004-10-07

Family

ID=33289632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073832A Withdrawn JP2004278986A (en) 2003-03-18 2003-03-18 Stacked heat exchanger

Country Status (1)

Country Link
JP (1) JP2004278986A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156099A (en) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp Humidifier and its manufacturing method
KR100594185B1 (en) 2004-12-02 2006-06-28 주식회사 이노윌 Plate with three-dimensional microchannel and heat exchanger using the same
JP2006210149A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Fuel cell system
JP2008059770A (en) * 2006-08-29 2008-03-13 Kyocera Corp Heat exchanger for exhaust heat recovery and fuel cell system
JP2008261546A (en) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd Humidifier and humidifier manufacturing method
WO2013168772A1 (en) * 2012-05-11 2013-11-14 三菱電機株式会社 Stacked total heat exchange element and heat exchange ventilation device
JP2015520484A (en) * 2012-05-10 2015-07-16 イマジー パワー システムズ,インコーポレーテッド Vanadium flow battery
KR101571350B1 (en) * 2013-12-24 2015-11-24 곽현철 Plate heat exchanger
WO2023188885A1 (en) * 2022-03-30 2023-10-05 株式会社豊田自動織機 Heat exchanger and heat pump device for mobile body
WO2023188886A1 (en) * 2022-03-30 2023-10-05 株式会社豊田自動織機 Plate-type heat exchanger and mobile heat pump device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156099A (en) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp Humidifier and its manufacturing method
KR100594185B1 (en) 2004-12-02 2006-06-28 주식회사 이노윌 Plate with three-dimensional microchannel and heat exchanger using the same
JP2006210149A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Fuel cell system
JP2008059770A (en) * 2006-08-29 2008-03-13 Kyocera Corp Heat exchanger for exhaust heat recovery and fuel cell system
JP2008261546A (en) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd Humidifier and humidifier manufacturing method
JP2015520484A (en) * 2012-05-10 2015-07-16 イマジー パワー システムズ,インコーポレーテッド Vanadium flow battery
CN104321611A (en) * 2012-05-11 2015-01-28 三菱电机株式会社 Stacked total heat exchange element and heat exchange ventilation device
WO2013168772A1 (en) * 2012-05-11 2013-11-14 三菱電機株式会社 Stacked total heat exchange element and heat exchange ventilation device
JPWO2013168772A1 (en) * 2012-05-11 2016-01-07 三菱電機株式会社 Laminated total heat exchange element and heat exchange ventilator
CN104321611B (en) * 2012-05-11 2016-08-31 三菱电机株式会社 Cascade type full heat exchanging element and heat exchange ventilating device
US9863710B2 (en) 2012-05-11 2018-01-09 Mitsubishi Electric Corporation Laminated total heat exchange element
KR101571350B1 (en) * 2013-12-24 2015-11-24 곽현철 Plate heat exchanger
WO2023188885A1 (en) * 2022-03-30 2023-10-05 株式会社豊田自動織機 Heat exchanger and heat pump device for mobile body
WO2023188886A1 (en) * 2022-03-30 2023-10-05 株式会社豊田自動織機 Plate-type heat exchanger and mobile heat pump device

Similar Documents

Publication Publication Date Title
JP3609016B2 (en) Fuel cell seal mounting method and fuel cell
EP2946431B1 (en) Fuel cell assembly, fuel cell stack and preparation methods therefor
CN107658479B (en) Fuel cell and method for manufacturing same
WO2014174959A1 (en) Cell structure for fuel cell stack
JP6375523B2 (en) Fuel cell module and fuel cell stack
JP2000182639A (en) Seal member and fuel cell using the same
JP2004278986A (en) Stacked heat exchanger
CN110416589B (en) Fuel cell stack, dummy cell for fuel cell stack, and method for manufacturing dummy cell
JP5839307B2 (en) Fuel cell stack
US9985301B2 (en) Fuel cell assembly
JP2006156099A (en) Humidifier and its manufacturing method
WO2014068854A1 (en) Cell module and fuel cell stack
KR101262449B1 (en) Gas diffusion unit for a fuel cell
JP6229874B2 (en) Membrane electrode assembly with frame, single fuel cell and fuel cell stack
JP4337394B2 (en) Fuel cell
JP2020095929A (en) Elastic cell frame for fuel cell, manufacturing method thereof, and unit cell using the same
KR20200072198A (en) Elastomer cell frame for fuel cell and manufacturing method thereof and unit cell comprising thereof
JP2009170273A (en) Fuel cell
CN101573819A (en) Heat insulation cell for fuel cell and method of producing the same
JP6150060B2 (en) Membrane electrode assembly with frame, single cell for fuel cell and fuel cell stack
JP6241594B2 (en) Membrane electrode assembly with frame, single fuel cell and fuel cell stack
JP2017152281A (en) Manufacturing method of fuel cell
JP2005134066A (en) Laminated heat exchanger
US7393606B2 (en) Seal structure for fuel cell separator
JP2018045882A (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060112

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070613