[go: up one dir, main page]

JP2004276219A - Electrolytic machining liquid, electrolytic machining device, and wiring machining method - Google Patents

Electrolytic machining liquid, electrolytic machining device, and wiring machining method Download PDF

Info

Publication number
JP2004276219A
JP2004276219A JP2003074518A JP2003074518A JP2004276219A JP 2004276219 A JP2004276219 A JP 2004276219A JP 2003074518 A JP2003074518 A JP 2003074518A JP 2003074518 A JP2003074518 A JP 2003074518A JP 2004276219 A JP2004276219 A JP 2004276219A
Authority
JP
Japan
Prior art keywords
electrolytic
substrate
polishing
copper
electrolytic processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003074518A
Other languages
Japanese (ja)
Inventor
Akira Kodera
章 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003074518A priority Critical patent/JP2004276219A/en
Publication of JP2004276219A publication Critical patent/JP2004276219A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic machining liquid reducing a polishing speed of copper, which is a wiring layer, up to at least a speed equivalent to that of a barrier layer and capable of planarizing the surface of a copper film flush with the surface of an insulating layer at electrolytic polishing time of a surface of a substrate. <P>SOLUTION: An electrolytic machining liquid of the present invention functions to planarize the surface of a substrate through subjecting at least either of a barrier layer formed on the substrate or a wiring layer mainly composed of copper to electrolytic polishing, and such an electrolytic machining liquid comprises either of alkaline solution or fluorine series solution and inhibitor. The inhibitor is absorbed by the surface of the copper, thereby suppressing the copper from dissolving as ions. Dissolution of copper is selectively accelerated in a part from which the inhibitor absorbed by the surface is removed by polishing, thereby preferentially removing wiring layers from a projection part, and accelerating the planarization in a process of electrolytic polishing. In addition, the electrolytic polishing is further preferably conducted if an oxidizing agent and abrasive grains are included. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電解研磨に用いる電解加工液、電解加工装置及び前記電解加工液を用いた配線加工方法に関する。詳しくは半導体集積回路等の配線層及びバリア層の不要部分を除去し、表面を平坦化するための電解研磨に用いる電解加工液、電解加工装置及び及び前記電解加工液を用いた配線加工方法に関する。
【0002】
【従来の技術】
半導体集積回路装置の内部配線の金属材料として、従来アルミニウムやアルミニウム合金が使われてきたが、より電気抵抗が低くエレクロトマイグレーション耐性のある銅が、今日用いられている。
【0003】
銅配線を形成するために、配線材料としての銅や銅拡散防止用のバリア層を基板上に形成した絶縁層内に設けたコンタクトホールや配線溝に埋め込み、銅やバリア層の絶縁層上に堆積された不要部分をCMP(Chemical and Mechanical Polishing:化学機械研磨)により除去、平坦化するダマシン法(非特許文献1参照)が用いられている。
【0004】
図5(a)〜(d)に銅配線のダマシン法による加工工程の例を示す。図5(a)は導電層1aを形成した半導体基板1上にSiO膜やlow−k材等からなる絶縁層2を堆積し、この絶縁層内部に、例えばリソグラフィーエッチング技術によるコンタクトホール3と配線層用溝4を形成して、その上にTaN等からなるバリア層5、更にその上には電解めっきの給電層としてシード層6を形成した状態を示す。絶縁層2への銅拡散防止のためのバリア層5としてはTa/TaN混合膜、TiN,WN,SiTiN,CoWP,CoWB等の膜が使用される。図5では、導電層1aが半導体基板1内に形成した不純物拡散領域の場合を示すが、半導体基板1の上部に形成した配線層でも良い。後者の場合、導電層1aは絶縁領域に挟まれ、表面が絶縁領域とほぼ同じ高さになり、かつ表面がほぼ平坦になるように平坦化処理がされている。ここで、半導体基板等1の上に絶縁層2、コンタクトホール3、配線溝4、バリア層6が形成され、場合により配線層7が形成された、デバイスの製造工程途上のものを含めて基板Wと称することとし、デバイスや配線等を搭載する母材としての半導体基板等を原基板1(又は半導体基板1等)と称して区別することとする。
【0005】
次に、図5(b)に示すように、例えば基板Wの表面に銅膜からなる配線層7を堆積する。半導体基板1のコンタクトホール3及び配線溝4内に銅を充填するとともに、絶縁層2上に銅膜7を堆積する。その後、図5(c)に示すように、研磨剤スラリーを用いたCMPにより配線層7およびシード層6を除去して、バリア層5を表層一面に露出させる。続いて図5(d)に示すように、コンタクトホール3及び配線溝4に充填させた銅膜7の表面と絶縁層2の表面とをほぼ同一平面になるように、バリア層5及び配線溝4上の銅膜7を研磨して研磨工程を終了する。これにより、半導体基板1上に銅からなる配線層7が形成される。
【0006】
ところで、タンタルTaは弗化水素酸以外の酸に不溶であり、溶解液として弗化水素酸単独や硝酸を混合したものがある。酸化タンタルは弗化水素酸およびアルカリ溶液に溶解するため、タンタルを酸化してからアルカリ溶液に溶解する方法が考えられる。アルカリと酸化剤を組合わせた例として、50%水酸化カリウムと塩化銅を用いる方法(例えば特許文献1参照)やタンタルを陽極酸化した後にアルカリ水溶液で酸化被膜を溶解する方法(例えば特許文献2参照)等がある。
また、半導体製造プロセスにおける研磨において、電界研磨と機械研磨を複合させ、金属膜を加工する方法があり、銅膜に関しては、CMPによる金属膜の平坦化に比して、金属膜の凸部を選択的に除去しながら効率的に平坦化することが可能である(例えば特許文献3参照)。
【0007】
【特許文献1】特公昭49−1138号公報(第69頁右欄)
【特許文献2】特開昭49−125239号公報(第2頁)
【特許文献3】特開2001−77117号公報(段落、0056〜0060、0073、図17〜図18等)
【非特許文献1】P.C.Andricacos, C, Uzoh, J. O. Dukovic, J. Horkaus & H. Deligianni: “Damascene copper electroplating for chip inter−connection”, IBM J. Res. Developm., 42, 567 (1998)
【0008】
【発明が解決しようとする課題】
ところで、このダマシン法には、次のような問題がある。配線溝4等の内部に銅を確実に埋め込むためには、絶縁層2の表面上に過剰な銅膜7を堆積させる必要があり、この時必然的に銅膜7の表面に凹凸が形成される。そして、この過剰な銅膜7を平坦化しつつ研磨する時には、研磨速度を上げるため、従来のCMPでは加工圧力を上げざるを得ず、配線の断面が皿状に窪んでしまうディッシングや、銅と共に絶縁膜も余分に研磨されるエロージョン等を生じ、平坦性の低下をもたらすという問題があった。
【0009】
また、近年層間絶縁材として従来のCVD−SiO膜よりも、誘電率の更に低いlow−k材と呼ばれる有機・無機材料が提案されている。これらは誘電率を低くするため、多孔質に形成され、柔らかく、機械的強度がSiO膜に比べて低い。このため、CMPプロセスでは、low−k材と基板とが剥離し易く、同プロセスを適用するのは困難であった。
また、CMP工程において、スラリーは高価で消費量も多く、また廃液処理費用もかかるので、スラリー使用の低減が望まれていた。
【0010】
ところで、過剰の銅膜7を除去しバリア層が露出するまでは、専ら銅の加工を促進するために、電解加工液を用いる電解研磨方法が考えられた。電解研磨方法では、CMPに比べ、低荷重で金属膜を効率的に除去することができる。
【0011】
しかしバリア膜7が露出した段階において、研磨中に表層一面に露出するバリア層5は、その硬さや化学的安定性から研磨速度が銅に比べ遅いので、配線溝4上等、銅が表面に露出した部分では、銅が優先的に除去されディッシングを起こし易い。よってバリア層の露出後の加工法においては、銅膜とバリア層を少なくとも同等な速度で均一に加工できるような電解加工液と電解加工装置の実現が望まれていた。また、半導体集積回路等の配線形成プロセスにおいて、平坦性に優れた配線構造を得られる配線加工方法が望まれていた。
【0012】
本発明は上記問題を解決するために、基板表面の電解研磨時に、配線層である銅の加工速度を少なくともバリア層と同等な速度まで遅くし、銅膜の表面と絶縁層の表面とをほぼ同一平面になるように平坦化できる電解加工液を提供すること、およびかかる電解加工液を用いた電解研磨が可能な電解加工装置を提供すること、さらに半導体集積回路等の配線形成プロセスにおいて、この電解加工液を用いて平坦性に優れた配線構造を得られる配線加工方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記問題を解決するために、請求項1に記載の電解加工液は、基板Wに形成されたバリア層5又は銅を主成分とする配線層7の少なくとも1層を電解研磨して基板W表面を平坦化するための電解加工液9であって、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む。ここで「銅を主成分とする」とは、純粋な銅に限らず、不純物や添加物や多少の混合物を含むものでも良く、また、銅を主成分とする化合物であっても良いという意味である。また、配線層7はシード層6を含むものとする。これにより、基板W表面の電解研磨時に、配線層7の加工速度を抑制でき、平坦性に優れた基板W表面を得ることができる。
ここに、基板Wに形成されたバリア層5又は銅を主成分とする配線層7の少なくとも1層を電解研磨して基板W表面を平坦化するための電解加工液9とは、典型的には、基板に形成された銅を主成分とする配線層、又は基板に形成されたバリア層及び銅を主成分とする配線層を電解研磨して基板表面を平坦化するための電解加工液をいう。また、アルカリ溶液又は弗素系溶液のいずれか1つを含むとは、アルカリ溶液及び弗素系溶液のうちいずれか一方のみを含み、他方を含まないことをいう。また、インヒビタは典型的には、前記配線層に吸着して、銅の溶解を抑制するインヒビタをいう。
【0014】
請求項2に記載の電解加工液は、請求項1に記載の電解加工液において、前記インヒビタはベンゾトリアゾール又はその誘導体(5−メチルベンゾトリアゾール、カルボキシルベンゾトリアゾール等)、ベンゾイミダゾール又はその誘導体、フェナセチン、キナルジン酸、ポリビニルアルコール、ポリビニルピロリドン、アセトニトリル、アクリロニトリル、フェニルアセトニトリル、又はアミン系(メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、エチレンジアミン四酢酸等)のうちの1種類以上を含む。ここでベンゾトリアゾール等を1種類と数えるものとする。これらインヒビタは銅表面に吸着して、銅がイオンとして溶解することを抑制する。そして、表面に吸着したインヒビタが研磨により除去された部分で選択的に銅の溶解が促進される。その結果、配線層7は凸部から優先的に除去されることになり、電解研磨の過程で平坦化が促進されることになる。
【0015】
請求項3に記載の電解加工液は、請求項1又は2に記載の電解加工液において、前記アルカリ溶液は、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、アンモニア水等の無機アルカリ、又は水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラ(n−プロピル)アンモニウム、水酸化テトラ(i−プロピル)アンモニウム、水酸化テトラ(n−ブチル)アンモニウム、水酸化2−ヒドロキシエチルトリメチルアンモニウム等の有機アルカリのうちの1種類以上を含む。ここで水酸化カリウム等を1種類と数えるものとする。アルカリ溶液はバリア層5及び配線層7の両者の加工に好適である。
【0016】
また、前記弗素系溶液は、弗化水素酸、弗化アンモニウム、フルオロ珪酸、フルオロ硼酸、弗化ナトリウム、弗化カリウム、2弗化水素カリウム、弗化銀、弗化スズ、ヘキサフルオロ珪酸、ヘキサフルオロ珪酸カリウム、ヘキサフルオロ珪酸アンモニウム、又はテトラフルオロ硼酸のうちの1種類以上を含む。ここで弗化水素酸等を1種類と数えるものとする。非酸化性の酸である弗化水素酸に対して銅は侵食されないが、タンタルは容易に溶解する。従って、弗素系溶液はバリア層5の加工に好適である。
【0017】
請求項4に記載の電解加工液は、請求項1乃至3のいずれか1項に記載の電解加工液において、さらに酸化剤を含む。酸化剤はバリア層5を構成するタンタルの表面に酸化皮膜を形成してアルカリ溶液に溶解させる。また、銅を主成分とする配線層7を酸化して、溶解を促進させる。
【0018】
請求項5に記載の電解加工液は、請求項4に記載の電解加工液において、前記酸化剤は、オゾン水、過酸化水素、過酢酸、過安息香酸、tert−ブチルハイドロパーオキサイド等の有機過酸化物、過マンガン酸カリウム等の過マンガン酸化合物、重クロム酸カリウム等の重クロム酸化合物、ヨウ素酸カリウム等のハロゲン酸化合物、硝酸、硝酸鉄等の硝酸化合物、過塩素酸等の過ハロゲン酸化合物、フェリシアン化カリウム等の遷移金属塩、過硫酸アンモニウム等の過硫酸塩、又はヘテロポリ酸塩のうちの1種類以上を含む。ここでオゾン水を1種類と数えるものとする。
【0019】
請求項6に記載の電解加工液は、請求項1乃至5のいずれか1項に記載の電解加工液において、さらに研磨砥粒を含む。研磨砥粒による機械研磨が加わり、電解複合研磨を行なえるので、配線層7の表面に吸着したインヒビタを効率的に除去し、その結果、配線層7を構成する銅の溶解を促進させる。
【0020】
請求項7に記載の電解加工液は、請求項6に記載の電解加工液において、前記研磨砥粒は酸化珪素、酸化アルミニウム、酸化セリウム、二酸化マンガン、酸化セリウム、酸化ジルコニア、ダイヤモンド、炭化珪素、又は窒化珪素のうちの1種類以上を含む。ここで酸化珪素等を1種類と数えるものとする。
【0021】
請求項8に記載の電解加工装置は、基板Wに形成されたバリア層5又は銅を主成分とする配線層7の少なくとも1層の電解研磨を行う電解加工装置8aであって、前記基板Wを保持する基板保持手段11と、前記基板Wの被加工面に電解研磨を行うための研磨面を有する研磨具14と、前記電解研磨の陰極として作用する加工電極13と、前記加工電極13と前記基板Wとの間に直流電界又はパルス電界を印加する電源18と、前記加工電極13と前記被加工面との間に、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む電解加工液9を保持するように収容する電解加工槽10を備える。ここで、電解加工液9は酸化剤や研磨砥粒のいずれか又は両方を含むものであっても良い。これにより、配線層7の加工速度を抑制でき、平坦性に優れた基板W表面を得ることができる電解加工装置を提供できる。
ここに、基板Wに形成されたバリア層5又は銅を主成分とする配線層7の少なくとも1層の電解研磨を行う電解加工装置8aとは、典型的には、基板に形成された銅を主成分とする配線層、又は基板に形成されたバリア層及び銅を主成分とする配線層の電解研磨を行う電解加工装置をいう。また、アルカリ溶液又は弗素系溶液のいずれか1つを含むとは、アルカリ溶液及び弗素系溶液のうちいずれか一方のみを含み、他方を含まないことをいう。また、インヒビタは典型的には、前記配線層に吸着して、銅の溶解を抑制するインヒビタをいう。
【0022】
請求項9に記載の電解加工装置は、基板Wに形成されたバリア層5又は銅を主成分とする配線層7の少なくとも1層の電解研磨を行う電解加工装置8bであって、前記基板Wを保持する基板保持手段11と、前記基板Wの被加工面に電解研磨を行うための研磨面を有する研磨具14と、前記電解研磨の際に前記被加工面に電界が印可されるように陰極21及び陽極22を配置した電極部23と、前記陰極21と前記陽極22との間に直流電界又はパルス電界を印加する電源18と、前記電極部23と前記被加工面との間に、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む電解加工液9を保持するように収容する電解加工槽10を備える。ここで、電解加工液9は酸化剤や研磨砥粒のいずれか又は両方を含むものであっても良い。これにより、配線層の除去が進んで、島状になった時でも効果的な加工ができる。
ここに、基板Wに形成されたバリア層5又は銅を主成分とする配線層7の少なくとも1層の電解研磨を行う電解加工装置8bとは、典型的には、基板に形成された銅を主成分とする配線層、又は基板に形成されたバリア層及び銅を主成分とする配線層の電解研磨を行う電解加工装置をいう。また、アルカリ溶液又は弗素系溶液のいずれか1つを含むとは、アルカリ溶液及び弗素系溶液のうちいずれか一方のみを含み、他方を含まないことをいう。また、インヒビタは典型的には、前記配線層に吸着して、銅の溶解を抑制するインヒビタをいう。
【0023】
請求項10に記載の配線加工方法は、表面に導電層1aを有する基板W上に絶縁層2を形成する工程と、前記絶縁層2に、前記導電層1aに達するコンタクトホール3及び配線溝4を形成する工程と、前記コンタクトホール3及び前記配線溝4が形成された絶縁層2上にバリア層5を堆積する工程と、前記バリア層5上に銅を主成分とする金属からなる配線層7を前記コンタクトホール3及び前記配線溝4が充填されるように堆積する工程と、前記配線層7のうち前記絶縁膜2上に堆積された部分を、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む電解加工液9を用いて電解研磨により除去する工程と、前記バリア層5のうち前記絶縁膜2上に堆積された部分を、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む電解加工液9を用いて電解研磨により除去する工程とを備える。ここで、デバイスや配線等を搭載する母材としての半導体基板等を原基板1と称し、製造工程途上のものを含めて基板Wと称することとする。導電層1aは原基板1に形成された不純物拡散層の場合もあるが、多層配線構造等で基板W表面に配線層が形成される場合もあるので、表面に導電層1aを有する基板はWとした。また、電解加工液9は酸化剤や研磨砥粒のいずれか又は両方を含むものであっても良い。本発明により、配線層7の加工速度を抑制でき、平坦性に優れた基板W表面を得ることができる配線加工方法を提供できる。
ここに、アルカリ溶液又は弗素系溶液のいずれか1つを含むとは、アルカリ溶液及び弗素系溶液のうちいずれか一方のみを含み、他方を含まないことをいう。また、インヒビタは典型的には、前記配線層に吸着して、銅の溶解を抑制するインヒビタをいう。
【0024】
【発明の実施の形態】
以下に図面に基づき本発明の実施の形態について説明する。
〔配線加工方法の実施の形態〕
本発明による配線の加工方法を説明するために、図1に半導体集積回路における銅を主体とする配線の形成及び加工工程の例を示す。従来例の配線加工方法の説明に使用した図5はそのまま使用できるので参照しながら説明する。
【0025】
半導体集積回路の半導体基板1(原基板)に導電層1aが形成される(ステップS01)。図5では、導電層1aは基板内に形成した不純物拡散層の場合を示すが、多層配線構造にする場合等、基板W表面に形成された配線層でも良い。次に、導電層1aを有する半導体基板1上にSiO膜やlow−k材等からなる絶縁層2を例えば減圧CVD(Chemical Vapor Deposition)法により堆積する(ステップS02)。次に、絶縁層2に、例えば公知のリソグラフィーエッチング技術によりコンタクトホール3及び配線溝4を形成し(ステップS03)、この上に、絶縁層2内への銅拡散防止のためのバリア層5(ステップS04)、さらにその上に電解メッキの給電層としてのシード層6を形成する(ステップS05)。バリア層5は例えば、スパッタ法により堆積したTa/TaN混合膜、TiN、WN、SiTiN、CoWP、CoWB等の膜からなり、シード層6は例えばスパッタ法により堆積したCu膜からなる。この状態が図5(a)に示される。
【0026】
図5(b)は配線層7としての銅膜を堆積した状態を示す。銅膜7は電解メッキ法により形成する(ステップS06)。これにより、コンタクトホール3及び配線溝4内に銅を充填すると共に、絶縁層2上を銅膜7で覆う。この状態では銅膜7の表面に凹凸が存在する。なお、銅膜7を銅を主体とした膜としても良い。また、シード層6は配線層7と同じ銅が用いられるので、配線層7と一体となって、デバイス完成後は配線として機能する。また電解や研磨による除去も、配線層7と一体的に行なわれる。このため、請求項における配線層はシード層を含むものとする。
【0027】
以上のプロセスは従来と同様のプロセスで行われるが、絶縁層2上にある不要な配線層としての銅膜7及びバリア層5の除去は本発明による。電解加工液として、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む液を用いる。
【0028】
通常の電解研磨法では、配線層7を形成した基板Wを陽極側に接続し、研磨工具を陰極側に接続し、その間に電解加工液を充填すると、電解加工液の電解作用によって配線層7を構成する銅等がイオン化し、電解加工液中に溶解する。電解加工の効率は、電解加工液による他、パルス電圧やパルスの周期、陽極となる配線層7と陰極となる陰極板間の距離、基板W表面に露出した配線層の比率等による。電解加工の際には配線層7が陽極として作用するので、銅膜7が基板W表面を覆う状態では、電解により流れる電流は多く、電解加工が促進されるが、銅膜7の溶解が進んで、表面に露出した銅膜が少なくなると、電解により流れる電流は少なくなり、除去が抑制される。しかし、残存する銅膜に電界が集中して溶出が起こるために、不要な銅膜の残存が生じにくいという効果がある。他方、必要な銅膜が表面に露出した場合には過剰に除去され易いという欠点もある。
【0029】
図5(c)は電解研磨により余分な銅を除去し、表面を平坦化した状態を示す。銅の除去は電解研磨法により行う(ステップS07)。本発明では、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む電解加工液を用いる。インヒビタは酸素、窒素、硫黄原子を含み、これらの元素の非共有電子対を吸着点に銅表面に吸着し、これにより、銅がイオンとして溶解することを防ぎ、また遅らせることができる。
【0030】
本実施の形態では、電解加工液としてアルカリ溶液とインヒビタ(腐食抑制剤)を含む液を用いるものとする。アルカリは銅Cuに対しても、バリア層である例えばタンタルTaに対しても溶解性を有するため、両金属を溶解することができる。絶縁層2上に堆積された除去すべき配線層7の下層のバリア層5も除去すべき層なので、配線層7の加工時に下層のバリア層5まで加工が進んでも問題ない。
【0031】
インヒビタは銅表面に吸着し(ステップS08)、これにより、銅がイオンとして溶解することを抑制する。
ところで、本実施の形態では、研磨具を用いた軽度の研磨を併用しており、基板W表面に研磨具を軽く押圧し、基板Wに対して回転等することにより、基板W表面の研磨も行なわれる。この研磨により配線層7の最も高い凸部から優先的に表面に吸着したインヒビタが除去される(ステップS09)。除去されて銅が露出した部分では選択的に銅の溶解が進む(ステップS10)。時間の経過と共にインヒビタが露出した銅表面に再度吸着し、銅の溶解が抑制される(再度ステップS08に戻る)。続いて行われる表面研磨により、次に高い凸部で表面に吸着したインヒビタが除去され、新たに銅が露出した部分では選択的に銅の溶解が進むこととなる。このように、基板W表面の高い所から順次、金属膜7の溶出が進むので、結果的に平坦化が促進される。また、低い所に位置する銅表面のインヒビタは除去されないので、ディッシングやエロージョンを防止できる。以上の電解研磨により銅膜7及びシード層6が除去され、これにより、表面一面にバリア層5が露出する(ステップS11)。
【0032】
図5(d)は電解研磨により表面に露出したバリア層5を除去し、表面を平坦化した状態を示す。バリア層5の除去は電解研磨法により行う(ステップS12)。本実施の形態では電解加工液として弗素系溶液とインヒビタ(腐食抑制剤)を含む液を用いるものとする。弗化水素酸に対して銅Cuは侵食されないが、タンタルTaは容易に溶解する。従って、絶縁層2上にある不要なバリア層5の除去時に、コンタクトホール3及び配線溝4上に露出した配線層7は加工されないので、ディッシングや、エロージョンの発生を防止でき、好適である。
【0033】
またコンタクトホール3及び配線溝4上に露出した配線層7にはインヒビタが吸着する(ステップS13)ので、これによっても配線層の除去が抑制される。バリア層5が溶解して除去され(ステップS14)、これにより、表面一面に絶縁層2が露出する(ステップS15)。コンタクトホール3及び配線溝4上の銅膜7の表面と絶縁層2の表面とがほぼ同一平面になるように研磨されて、配線加工が完了する(ステップS16)。また、バリア層5は薄く、表面の凹凸は僅かなので、バリア層5の表面にインヒビタを吸着させて、平坦化を促進させるまでもない。
【0034】
なお、ステップS02に戻り、配線の形成と加工の工程を繰り返すことにより、多層配線が可能になる。この場合、導電層1aは基板W表面に形成された配線層となる。この多層配線の工程でも本発明による配線加工方法を使用できる。
【0035】
また、本発明による電解加工液は酸化剤を含んでも良い。バリア層5に使用されるタンタルTaは弗化水素酸以外の酸に不溶で、安定な金属であるが、その酸化被膜はアルカリ溶液に溶解されるので、これら酸化剤を含めることにより、電解研磨によるバリア層5の除去(加工速度)を早められる。また、酸化剤は銅の溶解を促進するので、電解研磨による配線層7の除去も促進できる。
【0036】
また、本発明による電解加工液は研磨砥粒を含んでも良い。研磨砥粒による機械研磨が加わり、電界複合研磨を行なえるので、研磨とその結果としての銅の溶解を促進できる。したがって、適切な量の研磨砥粒を含ませることによって、電解加工の効率化を図ることができる。また、研磨は凸部から優先的に行なわれるにで、インヒビタとの協働作用によって、平坦化が促進される。
【0037】
〔電解加工液の実施に形態〕
本発明による電解加工液は、基板Wに形成されたバリア層5又は銅を主成分とする配線層7の少なくとも1層を電解研磨して基板W表面を平坦化するための電解加工液で、アルカリ溶液又は弗素系溶液のいずれか1つ、および銅の溶解を抑制するインヒビタを含む。また、酸化剤、研磨砥粒の一方又は双方を含んでも良い。ここでは、この電解加工液の組成及び濃度、インヒビタの効果について説明する。
ここに、基板Wに形成されたバリア層5又は銅を主成分とする配線層7の少なくとも1層を電解研磨して基板W表面を平坦化するための電解加工液9とは、典型的には、基板に形成された銅を主成分とする配線層、又は基板に形成されたバリア層及び銅を主成分とする配線層を電解研磨して基板表面を平坦化するための電解加工液をいう。また、アルカリ溶液又は弗素系溶液のいずれか1つを含むとは、アルカリ溶液及び弗素系溶液のうちいずれか一方のみを含み、他方を含まないことをいう。また、インヒビタは典型的には、前記配線層に吸着して、銅の溶解を抑制するインヒビタをいう。
【0038】
本発明の電解加工液に用いるインヒビタは、例えばベンゾトリアゾール又はその誘導体(5−メチルベンゾトリアゾール、カルボキシルベンゾトリアゾール等)、ベンズイミダゾール又はその誘導体、フェナセチン、キナルジン酸、ポリビニルピロリドン、アセトニトリル、アクリロニトリル、フェニルアセトニトリル、アミン系(メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、エチレンジアミン四酢酸)等である。2種類以上のインヒビタを含んでも良い。インヒビタの濃度は0.001〜1質量%、好ましくは0.05〜0.2質量%である。これらインヒビタは酸素、窒素、硫黄原子を含み、これら元素の非共有電子対を吸着点に銅表面に吸着し、銅がイオンとして溶解することを防ぎ、また遅らせることができる。したがって銅表面に吸着したインヒビタが研磨により除去された部分で選択的に銅の溶解が促進されるので、配線層7は凸部から優先的に除去されることになり、電解研磨の過程で平坦化が促進されることになる。
【0039】
アルカリ溶液は、例えば水酸化カリウム、水酸化ナトリウム、水酸化リチウム、アンモニア水等の無機アルカリ、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラ(n−プロピル)アンモニウム、水酸化テトラ(i−プロピル)アンモニウム、水酸化テトラ(n−ブチル)アンモニウム、水酸化2−ヒドロキシエチルトリメチルアンモニウム等の有機アルカリである。2種類以上のアルカリを含んでも良い。アルカリの濃度は0.1〜55質量%、好ましくは10〜55質量%である。アルカリ溶液は銅Cuに対しても、バリア層5である例えばタンタルTaに対しても溶解性を有する。従って、アルカリ溶液はバリア層5及び配線層7の両者の加工に使用できる。なお、絶縁層2上に堆積された除去すべき配線層の下層のバリア層も除去すべき層なので、配線層7の加工時に下層のバリア層5まで加工が進行しても問題ない。
【0040】
弗素系溶液は、例えば弗化水素酸、弗化アンモニウム、フルオロ珪酸、フルオロ硼酸、弗化ナトリウム、弗化カリウム、2弗化水素カリウム、弗化銀、弗化スズ、ヘキサフルオロ珪酸、ヘキサフルオロ珪酸カリウム、ヘキサフルオロ珪酸アンモニウム、又はテトラフルオロ硼酸等である。これらを2種以上含んでも良い。弗素系溶液の濃度は0.01〜40質量%、好ましくは、0.1〜10質量%である。非酸化性の酸である弗化水素酸に対して銅Cuは侵食されないが、タンタルTaは容易に溶解する。従って、弗素系溶液はバリア層5の加工に使用できる。絶縁層2上にある不要なバリア層の加工時に、コンタクトホール3及び配線溝4上に露出した配線層7は加工されないので、ディッシングや、エロージョンの発生を防止でき、好適である。
【0041】
酸化剤は、例えばオゾン水、過酸化水素、過酢酸、過安息香酸、tert−ブチルハイドロパーオキサイド等の有機過酸化物、過マンガン酸カリウム等の過マンガン酸化合物、重クロム酸カリウム等の重クロム酸化合物、ヨウ素酸カリウム等のハロゲン酸化合物、硝酸、硝酸鉄等の硝酸化合物、過塩素酸等の過ハロゲン酸化合物、フェリシアン化カリウム等の遷移金属塩、過硫酸アンモニウム等の過硫酸塩等である。これらの2種類以上を含んでも良い。酸化剤の濃度は0.01〜30質量%、好ましくは0.1〜10質量%である。タンタルは弗化水素酸以外の酸に不溶であるが、酸化タンタルは弗化水素酸およびアルカリに溶解するため、タンタルの表面に酸化皮膜を形成してからアルカリ溶液に溶解する。したがって、電解加工液にこれら酸化剤を含むことにより、バリア層5の除去を促進できる。また、酸化剤は銅の溶解を促進するので、配線層7の除去も促進できる。
【0042】
研磨砥粒は、例えば酸化珪素(シリカ)、酸化アルミニウム、酸化セリウム、二酸化マンガン、酸化セリウム、酸化ジルコニア、ダイヤモンド、炭化珪素、窒化珪素等である。これらの2種類以上を含んでも良い。バリア層を研磨する場合にはコロイダルシリカを使用することが好ましい。これら研磨砥粒の濃度は0.1〜30質量%、好ましくは1〜10質量%である。研磨砥粒による機械研磨が加わり、電解複合研磨を行なえるので、銅表面に吸着したインヒビタを効果的に除去し、その結果、銅の溶解を促進できる。したがって、適切な量の研磨砥粒を含めることによって、電解加工の効率化を図ることができる。また、研磨は凸部から優先的に行なわれるにで、インヒビタとの協働作用によって、平坦化が促進される。
【0043】
[電解加工液の実施例]
電解加工液として純水に硝酸1質量%、弗化水素酸1質量%、インヒビタとして5−メチルベンゾトリアゾ−ル、カルボキシルベンゾトリアゾ−ル、フェナセチン、キナルジン酸又はポリビニルアルコールをそれぞれ0.1質量%を溶解した4種類の液を用いて、銅からなる配線層7およびTa/TaN混合膜からなるバリア層5が形成された基板Wを電解加工した。硝酸と弗化水素酸の混合液の電解作用によりタンタルは溶解され、銅の加工速度はこれらインヒビタの効果によりタンタルの加工速度とほぼ同じとなり、平坦性のある基板Wが得られた。
【0044】
〔電解加工装置の第1の実施の形態〕
前述の電解加工液を用いた電解研磨に使用される電解加工装置について説明する。図2に本発明の第1の実施の形態の電解加工装置8aを示す。この電解加工装置8aは、上方に開口して内部に電解加工液9を収容する有底円筒状の電解加工槽10と、電解加工槽10の上方に配置され、基板Wを着脱自在に下向きに保持する基板保持部11(基板保持手段に該当する)とを有している。
【0045】
電解加工槽10は、モータ等の駆動に伴って回転する主軸12に直結され、底部には、電解加工液9中に浸漬されて陰極となる円形平板状の陰極板13(加工電極に該当する)が水平に配置されている。陰極板13は弗化水素酸、アルカリ、酸化剤に耐性のある電極材料として、例えば金、白金、ルテニウム、ロジウム、オスミウム等で形成される。この陰極板13の上面には、縦及び横方向に面内の全長に亘って直線状に延びる格子状の長溝13aが設けられている。この長溝13aを通って電解加工液9が流れ、また電解研磨によって生成される生成物や、気泡が排出される。陰極板13のうち長溝13aに囲まれた領域が基板Wに近く、電極として作用する。更に、陰極板13の上面には研磨パッド14(研磨具に該当する)が配置されている。研磨パッド14としては、例えば、発泡ポリウレタン等で、電極に対応する部分に多数の小孔を設け、通液性を持たせたものが用いられる。小孔に電解加工液9が満たされることにより、電極と基板Wとの間で通電が行なわれる。または、小孔を設ける代わりに、研磨パッド14自体が通液性を有する部材を用いても良い。
【0046】
主軸12の回転に伴って電解加工槽10が研磨パッド14と一体に回転する。なお、この例では、電解加工槽10が回転する例を示しているが、スクロール運動(並進回転運動)や往復運動をするようにしても良い。また、長溝13aの形状は、陰極板13の中央部と外周部とで電流密度に差が生じるのを防止するとともに、電解加工液9や水素ガス等が長溝13aに沿ってスムーズに流れるようにするため、電解加工槽10がスクロール運動を行う場合には、格子状であることが好ましく、また、電解加工槽10が往復運動を行う場合には、この移動方向に沿って平行に配置することが好ましい。
【0047】
基板保持部11は、回転速度が制御可能な回転機構と研磨圧力が調整可能な上下動機構を備えた支持ロッド15の下側に連結され、その下面に、例えば真空吸着により基板Wを吸着保持するようになっている。基板W表面を研磨パッド14に押圧した状態で研磨することも可能である。基板保持部11の下面外周部には、基板保持部11に基板Wを吸着保持した時、基板Wの周縁部、ベベル部近傍のデバイス領域外となる部分で銅膜7と接触して、基板Wの表面に堆積した銅膜7を陽極にする電気接点16が設けられている。この電気接点16は、支持ロッド15に内蔵されたロール摺動コネクタ及び配線17aにより、外部に配置した直流電源又はパルス電源としての整流器18(電源に該当する)の陽極端子へ結線され、陰極板13は、配線17bを介して整流器18の陰極端子に結線される。
【0048】
更に、電解加工槽10の上方に位置して、この内部に電解加工液9を供給する電解加工液供給ユニット19が配置され、更に各機器及び運転全般を調節し管理する制御ユニット20および安全装置(図示せず)等が備えられている。電解加工槽10、電解加工液供給ユニット19、その間の配管及び廃液管は電解加工液9に対して反応しないよう耐酸性、耐アルカリ性で化学的に安定なテフロン(デュポン社の登録商標)等で作製されている。なお、電解加工液9は酸化剤、研磨砥粒の一方又は双方を含んでも良い。また、制御ユニット20は、電解研磨中のパルス印加条件、基板Wと研磨具14の回転と押圧、電解加工槽10への電解加工液9の供給等を適宜調整、制御する。
【0049】
この電解加工装置8aは、図5(b)に示すように、表面にバリア層5及び配線層7が堆積されている基板Wのバリア層5及び配線層7を電解研磨し、基板W表面を平坦化するのに適するもので、その研磨動作について説明する。
【0050】
電解加工槽10内に電解加工液9を供給し、例えば90rpm程度の回転速度で電解加工液9と研磨パッド14を一体に回転させる。一方、基板Wを基板保持部11で下向きに吸着保持しておく。この状態で、基板Wを電解加工槽10とは反対方向に、例えば90rpm程度の回転速度で回転させながら下降させ、この基板Wの表面(下面)を、例えば300g/cm程度の一定の圧力で研磨パッド14の表面に接触させ、同時に、整流器18により陰極板13と電気接点16との間に、電解条件として電流密度0.5〜5A/dm、好ましくは1〜3A/dmの直流を、又は電流密度0.5〜5A/dm、好ましくは1〜3A/dmで、DUTY比10〜99%、好ましくは30〜90%のパルス電流を流す。
【0051】
この時、陰極板13の表面に設けた長溝13aから基板Wと研磨パッド14との間に電解加工液9が供給され、加工後の電解加工液9はその中に浮遊する粒子や、反応によって生成される気泡等と共に長溝13aの中を通過して廃液管にスムーズに流出する。
【0052】
この条件で、銅膜7は速い速度で、しかも効果的に平坦化されながら研磨される。すなわち、電解加工液9として、銅の溶解を抑制するインヒビタとアルカリ溶液を含むものを使用し、銅を陽極として電解研磨すると、露出した銅膜7の表面にインヒビタが吸着され、銅の電解溶出を抑制する。この吸着したインヒビタは、回転する低い圧力の研磨パッド14で容易に除去できる。電解加工液9に研磨砥粒を含まない場合でも容易に除去できる。このため、研磨パッド14で研磨すると、銅膜7の表面に吸着したインヒビタが除去され、この除去された部分で銅膜7が露出し、電解作用により溶解される。銅膜7に凹凸がある場合、凸部から優先的に研磨されるので、電解研磨の過程で平坦化が促進される。また、インヒビタで覆われた部分への通電は抑制され、金属面が露出している部分(すなわち胴膜7の凸部)へ電流が集中する性質があるので、胴膜7の凹部の表面は、インヒビタで覆われたままの状態で、溶解が抑制され、これによっても、凸部のみが選択的に研削除去され、平坦化が促進される。
【0053】
そして、電解研磨終了後、基板保持部11で保持した基板Wを上昇させ、この基板Wの回転を停止して、電解研磨終了後の基板Wを電解加工装置8a外に搬出する。
【0054】
なお、陰極板の電極の形状(平面図)の例を図3(a)〜(c)に示す(いずれも一部分のみ示したものであり、電極は全面に一様に配置される)。図2の陰極板13の場合、図3(a)に示すように、長溝13aに囲まれた領域の方が基板Wに近い位置になり、陰極として作用する。変形例を図3(b)、(c)に示す。図3(b)では形成された長溝に電極(陰極)を埋め込んでいる。この場合、陰極板上面と溝に埋め込まれた電極の上面との間に段差を形成し、電解加工液の流路を確保するようにした方がよい。図3(c)では溝に埋め込む電極を棒状ではなく、モザイクのように細分し、複数の電極を点在させている。図3(b)、(c)では各電極を整流器18の陰極端子に接続できれば、陰極板13の一部を絶縁体で形成しても良い。
【0055】
〔電解加工装置の第2の実施の形態〕
図4に本発明による電解加工装置の第2の実施の形態を示す。図4において、図2と同じ部分には同一符号を付して、説明を省略する。この電解加工装置8bの電解加工装置8aと異なる点は、電解加工槽10の底部に、内部に多数の陰極ロッド21と陽極ロッド22とを交互に配置した絶縁材からなる電極板23(電極部に該当する)を水平に配置した点である。この電極板23の上面には、縦及び横方向に面内の全長に亘って直線状に延びる格子状の長溝23aが形成されている。この長溝23aによって電解加工液9や気泡が排出される。陰極ロッド21の上方には、電解加工液9や気泡が流れるように有孔性の充填材24がある。充填材24は、多孔質材料で、電解加工液9を含浸させるためのものであり、耐薬液性のものが好ましい。
【0056】
電解条件として、電流密度0.5−5A/dm好ましくは1−3A/dmの直流を、又は電流密度0.5−5A/dm、好ましくは1−3A/dmで、DUTY比10−99%、好ましくは30−90%のパルス電流を流す。
【0057】
そして全ての陰極ロッド21は、配線17aを介して外部に配置された直流電源またはパルス電源としての整流器18(電源に該当する)の陰極端子へ結線されており、また全ての陽極ロッド22は、配線17bを介して整流器18の陽極端子に結線されている。なお、本装置8bには電解加工装置8aにあるような電気接点16は設けられていない。
【0058】
この電解加工装置8bは、特に、基板Wの表面に堆積した余剰な銅膜7の溶解が進み、バリア層5が表面に露出して銅膜7が島状になった状態での基板Wの表面のバリア層5及び銅膜7を電解研磨するのに適したものである。すなわち、銅膜7が島状になると、電気接点等の外部端子から銅膜7への一様な通電ができなくなる。このような場合でも、この電解加工装置8bによれば、バイポーラ現象を利用し、銅の表面を局部的に正の極性とすることで、銅膜7の電解研磨を進めることができる。
【0059】
以上、本発明の実施の形態について説明したが、本発明の趣旨を逸脱しない範囲で実施の態様を種々変更できることは明白である。例えば、実施の形態では、配線が銅の場合について説明したが、本発明の電解加工液を用いれば、銅を主成分とする金属でも、インヒビタが金属表面に吸着して電解を抑制し、また表面の軽い研磨によりインヒビタを除去できるので、銅と同様の効果を得られる。また、実施の形態では、バリア層がTaを含む膜の場合を説明したが、TiN等他の金属を含む膜にも、本発明の電解加工液を適用できる。
また、本発明の電解加工液は、配線層のみ、バリア層のみの電解研磨にも使用できる。また、ダマシン法以外の配線層と絶縁層を有する基板表面の平坦化技術にも使用できる。また、インヒビタが銅の溶解を停止するのではなく、遅らせる場合等では、研磨を伴わない電解加工のみに使用しても良い。
【0060】
また、実施の形態では、基板を上側、陰極板を下側に配置する電解加工装置の例を説明したが、基板を下側、陰極板を上側に配置するよう構成しても良い。また、陰極板の形状は円形でなく、正方形でも良い。また、陰極板の長溝も格子状でなく、例えば同心円と放射線を組み合わせた形状にできる。また、直流電界とパルス電界を畳重しても良く、パルスの電圧や周期も変更可能である。また実施の形態では、電解加工液が研磨砥粒を含む場合には、電解加工液供給ユニットから研磨砥粒を含む電解加工液を供給する例を説明したが、研磨砥粒を含まない電解加工液と研磨液(研磨剤スラリー等)とを別の供給ユニットから供給しても良い。
【0061】
また、実施の形態では、半導体基板(原基板)内に導電層がある場合についての配線加工方法を説明したが、導電層が基板W表面に形成された配線層であっても良い。また、原基板は半導体基板に限定されず、サファイア等の絶縁体でも良い。この場合、最初の導電層はエピタキシャル層内などに形成される。
【0062】
【発明の効果】
以上説明したように、本発明の電解加工液によれば、インヒビタが銅の溶解を抑制するので、バリア層と銅配線層を同等の加工速度で除去できる。また、表面に吸着したインヒビタが研磨により除去された部分で選択的に銅の溶解が促進されるので、配線層は凸部から優先的に除去され、ディッシングやエロージョンを起こすことなく、平坦性に優れた基板表面を得ることができる。
【0063】
また、本発明の電解加工装置によれば、前記電解加工液を用いた電解研磨を可能にできる。また、本発明の配線加工方法によれば、半導体集積回路等の配線形成プロセスにおいて、この電解加工液を用いて平坦性に優れた配線構造を得られる。
【0064】
また、本発明の電解加工液では、電解研磨を用いるので、低荷重で研磨することができ、銅などの柔らかい金属や、層間絶縁材としてlow−k材などを用いた配線構造にも適する。またスラリーの消費量も少なくできる。
【0065】
また、電解加工液に酸化剤を含ませた場合は、バリア層や配線層の溶解を促進し、電解加工の効率を高める。さらに、電解加工液に研磨砥粒を含ませた場合は、さらに研磨砥粒による機械的研磨も加えて、電解複合研磨を行なえるので、より効率的な平坦化加工が実現できる。
【図面の簡単な説明】
【図1】本発明における銅配線の形成及び加工工程の例を示す図である。
【図2】本発明の第1の実施の形態における電解加工装置の構成を示す図である。
【図3】本発明の第1の実施の形態における陰極板の電極形状の例を示す図である。
【図4】本発明の第2の実施の形態における電解加工装置の構成を示す図である。
【図5】従来の銅配線の形成及び加工工程の例を示す図である。
【符号の説明】
1 半導体基板
1a 導電層
2 絶縁層
3 コンタクトホール
4 配線溝
5 バリア層
6 シード層
7 配線層
8a、8b 電解加工装置
9 電解加工液
10 電解加工槽
11 基板保持部
12 主軸
13 陰極板
13a 長溝
14 研磨パッド
15 支持ロッド
16 電気接点
17a、17b 配線
18 整流器
19 電解加工液供給ユニット
20 制御ユニット
21 陰極ロッド
22 陽極ロッド
23 電極板
23a 長溝
24 充填材
W 基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolytic processing liquid used for electrolytic polishing, an electrolytic processing apparatus, and a wiring processing method using the electrolytic processing liquid. More specifically, the present invention relates to an electrolytic processing solution, an electrolytic processing apparatus, and a wiring processing method using the electrolytic processing solution used for electrolytic polishing for removing unnecessary portions of a wiring layer and a barrier layer of a semiconductor integrated circuit or the like and planarizing the surface. .
[0002]
[Prior art]
Aluminum and aluminum alloys have conventionally been used as metal materials for internal wiring of semiconductor integrated circuit devices, but copper having lower electric resistance and electromigration resistance has been used today.
[0003]
In order to form copper wiring, copper as a wiring material or a barrier layer for preventing copper diffusion is buried in the contact holes and wiring grooves provided in the insulating layer formed on the substrate. A damascene method (see Non-Patent Document 1) for removing and flattening the deposited unnecessary portion by CMP (Chemical and Mechanical Polishing) is used.
[0004]
FIGS. 5A to 5D show an example of a process for processing a copper wiring by a damascene method. FIG. 5 (a) shows an example in which a SiO 2 2 An insulating layer 2 made of a film, a low-k material or the like is deposited, and a contact hole 3 and a wiring layer groove 4 are formed in the insulating layer by, for example, lithography etching, and a barrier layer made of TaN or the like is formed thereon. 5 shows a state in which a seed layer 6 is formed thereon as a power supply layer for electrolytic plating. As the barrier layer 5 for preventing copper diffusion into the insulating layer 2, a film of a Ta / TaN mixed film, TiN, WN, SiTiN, CoWP, CoWB or the like is used. FIG. 5 shows a case where the conductive layer 1a is an impurity diffusion region formed in the semiconductor substrate 1, but may be a wiring layer formed on the semiconductor substrate 1. In the latter case, the conductive layer 1a is sandwiched between insulating regions, and a planarization process is performed so that the surface is substantially the same height as the insulating region and the surface is substantially flat. Here, an insulating layer 2, a contact hole 3, a wiring groove 4, and a barrier layer 6 are formed on a semiconductor substrate 1 or the like, and a wiring layer 7 is formed in some cases. It is referred to as W, and a semiconductor substrate or the like as a base material on which devices, wirings, and the like are mounted is referred to as an original substrate 1 (or a semiconductor substrate 1 or the like) to be distinguished.
[0005]
Next, as shown in FIG. 5B, for example, a wiring layer 7 made of a copper film is deposited on the surface of the substrate W. Copper is filled in the contact hole 3 and the wiring groove 4 of the semiconductor substrate 1 and a copper film 7 is deposited on the insulating layer 2. Thereafter, as shown in FIG. 5C, the wiring layer 7 and the seed layer 6 are removed by CMP using an abrasive slurry to expose the barrier layer 5 over the entire surface. Subsequently, as shown in FIG. 5D, the barrier layer 5 and the wiring groove are formed so that the surface of the copper film 7 filled in the contact hole 3 and the wiring groove 4 and the surface of the insulating layer 2 are substantially flush with each other. The polishing process is completed by polishing the copper film 7 on 4. Thus, a wiring layer 7 made of copper is formed on the semiconductor substrate 1.
[0006]
By the way, tantalum Ta is insoluble in acids other than hydrofluoric acid, and there is a solution in which hydrofluoric acid alone or nitric acid is mixed. Since tantalum oxide is dissolved in hydrofluoric acid and an alkaline solution, a method of oxidizing tantalum and then dissolving it in an alkaline solution is considered. Examples of the combination of an alkali and an oxidizing agent include a method using 50% potassium hydroxide and copper chloride (see, for example, Patent Document 1) and a method of anodizing tantalum and then dissolving an oxide film with an aqueous alkali solution (for example, Patent Document 2). Reference).
Further, in polishing in a semiconductor manufacturing process, there is a method of processing a metal film by combining electric field polishing and mechanical polishing. For a copper film, a convex portion of the metal film is formed more in comparison with planarization of the metal film by CMP. It is possible to efficiently planarize while selectively removing (for example, see Patent Document 3).
[0007]
[Patent Document 1] Japanese Patent Publication No. 49-1138 (page 69, right column)
[Patent Document 2] JP-A-49-125239 (page 2)
[Patent Document 3] Japanese Patent Application Laid-Open No. 2001-77117 (paragraphs, 0056-0060, 0073, FIGS. 17-18, etc.)
[Non-Patent Document 1] C. Andricacos, C, Uzoh, J. et al. O. Dukovic, J .; Horkaus & H. Deligianni: "Damascene copper electroplating for chip inter-connection", IBM J.C. Res. Developerm. , 42, 567 (1998).
[0008]
[Problems to be solved by the invention]
By the way, this damascene method has the following problems. To ensure that copper is buried in the wiring groove 4 and the like, it is necessary to deposit an excessive copper film 7 on the surface of the insulating layer 2, and at this time, irregularities are necessarily formed on the surface of the copper film 7. You. When the excess copper film 7 is polished while being planarized, the polishing pressure is increased, so that the processing pressure has to be increased by the conventional CMP, and the cross section of the wiring is dish-shaped. There is also a problem that an erosion or the like is excessively polished also in the insulating film, resulting in a decrease in flatness.
[0009]
In recent years, conventional CVD-SiO has been used as an interlayer insulating material. 2 An organic / inorganic material called a low-k material having a lower dielectric constant than a film has been proposed. These are porous, soft, and have a mechanical strength of SiO 2 to lower the dielectric constant. 2 Lower than membrane. Therefore, in the CMP process, the low-k material and the substrate are easily separated, and it has been difficult to apply the process.
Further, in the CMP process, the slurry is expensive and consumes a large amount, and the waste liquid is expensive. Therefore, it has been desired to reduce the use of the slurry.
[0010]
By the way, until the excess copper film 7 is removed and the barrier layer is exposed, an electrolytic polishing method using an electrolytic processing solution has been considered in order to exclusively promote the processing of copper. In the electropolishing method, the metal film can be efficiently removed with a lower load as compared with the CMP.
[0011]
However, at the stage where the barrier film 7 is exposed, the polishing rate of the barrier layer 5 exposed on the entire surface layer during polishing is lower than that of copper due to its hardness and chemical stability. In the exposed portion, copper is preferentially removed and dishing is likely to occur. Therefore, in the processing method after the exposure of the barrier layer, realization of an electrolytic processing liquid and an electrolytic processing apparatus that can uniformly process the copper film and the barrier layer at least at the same speed has been desired. Further, in a wiring forming process of a semiconductor integrated circuit or the like, a wiring processing method capable of obtaining a wiring structure having excellent flatness has been desired.
[0012]
In order to solve the above problem, the present invention slows down the processing speed of copper as a wiring layer to at least a speed equivalent to that of a barrier layer during electrolytic polishing of a substrate surface, so that the surface of the copper film and the surface of the insulating layer are substantially separated. To provide an electrolytic processing liquid that can be planarized so as to be on the same plane, and to provide an electrolytic processing apparatus capable of performing electrolytic polishing using such an electrolytic processing liquid, and further, in a wiring forming process of a semiconductor integrated circuit or the like, An object of the present invention is to provide a wiring processing method capable of obtaining a wiring structure having excellent flatness using an electrolytic processing liquid.
[0013]
[Means for Solving the Problems]
In order to solve the above problem, the electrolytic processing liquid according to claim 1 is configured to electrolytically polish at least one of the barrier layer 5 formed on the substrate W or the wiring layer 7 containing copper as a main component, and the surface of the substrate W is electropolished. Is an electrolytic processing liquid 9 for flattening, which contains one of an alkaline solution or a fluorine-based solution and an inhibitor. Here, the phrase “having copper as a main component” means that it is not limited to pure copper, and may contain impurities, additives, and some mixtures, or a compound containing copper as a main component. It is. The wiring layer 7 includes the seed layer 6. This makes it possible to suppress the processing speed of the wiring layer 7 during electrolytic polishing of the surface of the substrate W, and to obtain a surface of the substrate W having excellent flatness.
Here, the electrolytic processing liquid 9 for flattening the surface of the substrate W by electrolytically polishing at least one layer of the barrier layer 5 or the wiring layer 7 containing copper as a main component formed on the substrate W is typically Is an electrolytic processing liquid for flattening the substrate surface by electrolytically polishing a wiring layer mainly composed of copper formed on the substrate, or a barrier layer formed on the substrate and a wiring layer mainly composed of copper. Say. In addition, the phrase “containing either one of the alkaline solution and the fluorine-based solution” means that only one of the alkali solution and the fluorine-based solution is contained and the other is not contained. In addition, an inhibitor typically refers to an inhibitor that adsorbs to the wiring layer and suppresses the dissolution of copper.
[0014]
The electrolytic processing liquid according to claim 2 is the electrolytic processing liquid according to claim 1, wherein the inhibitor is benzotriazole or a derivative thereof (eg, 5-methylbenzotriazole, carboxylbenzotriazole), benzimidazole or a derivative thereof, and phenacetin. Quinaldic acid, polyvinyl alcohol, polyvinylpyrrolidone, acetonitrile, acrylonitrile, phenylacetonitrile, or amines (eg, methylamine, ethylamine, dimethylamine, diethylamine, ethylenediaminetetraacetic acid). Here, benzotriazole and the like are counted as one type. These inhibitors are adsorbed on the copper surface to suppress the dissolution of copper as ions. Then, the dissolution of copper is selectively promoted in the portion where the inhibitor adsorbed on the surface is removed by polishing. As a result, the wiring layer 7 is preferentially removed from the protrusions, and flattening is promoted in the course of electrolytic polishing.
[0015]
The electrolytic processing liquid according to claim 3 is the electrolytic processing liquid according to claim 1 or 2, wherein the alkaline solution is an inorganic alkali such as potassium hydroxide, sodium hydroxide, lithium hydroxide, or aqueous ammonia, or water. Such as tetramethylammonium oxide, tetraethylammonium hydroxide, tetra (n-propyl) ammonium hydroxide, tetra (i-propyl) ammonium hydroxide, tetra (n-butyl) ammonium hydroxide and 2-hydroxyethyltrimethylammonium hydroxide Contains one or more of organic alkalis. Here, potassium hydroxide and the like are counted as one type. The alkali solution is suitable for processing both the barrier layer 5 and the wiring layer 7.
[0016]
Further, the fluorine-based solution includes hydrofluoric acid, ammonium fluoride, fluorosilicic acid, fluoroboric acid, sodium fluoride, potassium fluoride, potassium hydrogen fluoride, silver fluoride, tin fluoride, hexafluorosilicic acid, and hexafluorosilicic acid. Contains one or more of potassium fluorosilicate, ammonium hexafluorosilicate, or tetrafluoroborate. Here, hydrofluoric acid and the like are counted as one type. Copper is not attacked by hydrofluoric acid, a non-oxidizing acid, but tantalum is easily dissolved. Therefore, the fluorine-based solution is suitable for processing the barrier layer 5.
[0017]
The electrolytic processing liquid according to a fourth aspect is the electrolytic processing liquid according to any one of the first to third aspects, further including an oxidizing agent. The oxidizing agent forms an oxide film on the surface of tantalum constituting the barrier layer 5 and dissolves it in an alkaline solution. Further, the wiring layer 7 mainly composed of copper is oxidized to promote dissolution.
[0018]
The electrolytic working fluid according to claim 5 is the electrolytic working fluid according to claim 4, wherein the oxidizing agent is an organic material such as ozone water, hydrogen peroxide, peracetic acid, perbenzoic acid, and tert-butyl hydroperoxide. Permanganate compounds such as peroxides and potassium permanganate; dichromate compounds such as potassium dichromate; halogen acid compounds such as potassium iodate; nitric acid compounds such as nitric acid and iron nitrate; It contains one or more of a halogen acid compound, a transition metal salt such as potassium ferricyanide, a persulfate such as ammonium persulfate, or a heteropolyacid salt. Here, ozone water is counted as one type.
[0019]
The electrolytic processing liquid according to claim 6 is the electrolytic processing liquid according to any one of claims 1 to 5, and further includes abrasive grains. Since mechanical polishing with abrasive grains is added, and electrolytic composite polishing can be performed, the inhibitor adsorbed on the surface of the wiring layer 7 is efficiently removed, and as a result, dissolution of copper constituting the wiring layer 7 is promoted.
[0020]
The electrolytic machining liquid according to claim 7, wherein in the electrolytic machining liquid according to claim 6, the abrasive grains are silicon oxide, aluminum oxide, cerium oxide, manganese dioxide, cerium oxide, zirconia, diamond, silicon carbide, Alternatively, one or more of silicon nitride is included. Here, silicon oxide and the like are counted as one type.
[0021]
The electrolytic processing apparatus according to claim 8, wherein the electrolytic processing apparatus 8a performs electrolytic polishing of at least one layer of the barrier layer 5 formed on the substrate W or the wiring layer 7 containing copper as a main component. , A polishing tool 14 having a polishing surface for performing electropolishing on a surface to be processed of the substrate W, a processing electrode 13 acting as a cathode of the electropolishing, and the processing electrode 13. A power source 18 for applying a DC electric field or a pulse electric field between the substrate W and an electrolytic processing liquid containing one of an alkali solution or a fluorine-based solution and an inhibitor between the processing electrode 13 and the surface to be processed; 9 is provided with an electrolytic processing tank 10 that accommodates the tank 9. Here, the electrolytic processing liquid 9 may contain one or both of an oxidizing agent and abrasive grains. This can provide an electrolytic processing apparatus capable of suppressing the processing speed of the wiring layer 7 and obtaining a surface of the substrate W having excellent flatness.
Here, the electrolytic processing apparatus 8a for performing electrolytic polishing of at least one layer of the barrier layer 5 formed on the substrate W or the wiring layer 7 containing copper as a main component is typically formed by removing copper formed on the substrate. It refers to an electrolytic processing apparatus that performs electrolytic polishing of a wiring layer mainly containing, or a barrier layer formed on a substrate and a wiring layer mainly containing copper. In addition, the phrase “containing either one of the alkaline solution and the fluorine-based solution” means that only one of the alkali solution and the fluorine-based solution is contained and the other is not contained. In addition, an inhibitor typically refers to an inhibitor that adsorbs to the wiring layer and suppresses the dissolution of copper.
[0022]
The electrolytic processing apparatus according to claim 9, which is an electrolytic processing apparatus 8b that performs electrolytic polishing of at least one layer of the barrier layer 5 formed on the substrate W or the wiring layer 7 containing copper as a main component. And a polishing tool 14 having a polishing surface for performing electrolytic polishing on the surface to be processed of the substrate W, so that an electric field is applied to the surface to be processed during the electrolytic polishing. An electrode portion 23 on which a cathode 21 and an anode 22 are arranged; a power supply 18 for applying a DC electric field or a pulsed electric field between the cathode 21 and the anode 22; and a portion between the electrode portion 23 and the surface to be processed. An electrolytic processing tank 10 is provided for holding an electrolytic processing liquid 9 containing either an alkaline solution or a fluorine-based solution and an inhibitor. Here, the electrolytic processing liquid 9 may contain one or both of an oxidizing agent and abrasive grains. As a result, effective processing can be performed even when the wiring layer is removed and becomes an island shape.
Here, the electrolytic processing apparatus 8b that performs electrolytic polishing of at least one layer of the barrier layer 5 formed on the substrate W or the wiring layer 7 containing copper as a main component is typically formed by removing copper formed on the substrate. It refers to an electrolytic processing apparatus that performs electrolytic polishing of a wiring layer mainly containing, or a barrier layer formed on a substrate and a wiring layer mainly containing copper. In addition, the phrase “containing either one of the alkaline solution and the fluorine-based solution” means that only one of the alkali solution and the fluorine-based solution is contained and the other is not contained. In addition, an inhibitor typically refers to an inhibitor that adsorbs to the wiring layer and suppresses the dissolution of copper.
[0023]
11. The wiring processing method according to claim 10, wherein an insulating layer 2 is formed on a substrate W having a conductive layer 1a on the surface, and a contact hole 3 and a wiring groove 4 reaching the conductive layer 1a are formed in the insulating layer 2. Forming, forming a barrier layer 5 on the insulating layer 2 in which the contact holes 3 and the wiring grooves 4 are formed, and forming a wiring layer made of a metal containing copper as a main component on the barrier layer 5. Depositing the contact hole 3 and the wiring groove 4 so as to fill the contact hole 3 and the wiring groove 4, and removing the portion of the wiring layer 7 deposited on the insulating film 2 by using one of an alkaline solution or a fluorine-based solution. Removing the portion of the barrier layer 5 deposited on the insulating film 2 with one of an alkaline solution or a fluorine-based solution by using an electrolytic processing solution 9 containing an inhibitor. And a step of removing the electrolytic polishing using an electroless working solution 9. Here, a semiconductor substrate or the like as a base material on which devices, wirings, and the like are mounted is referred to as an original substrate 1, and a substrate W in the course of a manufacturing process is referred to as a substrate W. The conductive layer 1a may be an impurity diffusion layer formed on the original substrate 1, but a wiring layer may be formed on the surface of the substrate W in a multilayer wiring structure or the like. And Further, the electrolytic processing liquid 9 may contain one or both of an oxidizing agent and abrasive grains. According to the present invention, it is possible to provide a wiring processing method capable of suppressing the processing speed of the wiring layer 7 and obtaining a surface of the substrate W having excellent flatness.
Here, including either one of the alkaline solution and the fluorine-based solution means that only one of the alkali solution and the fluorine-based solution is included and the other is not included. In addition, an inhibitor typically refers to an inhibitor that adsorbs to the wiring layer and suppresses the dissolution of copper.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
[Embodiment of wiring processing method]
FIG. 1 shows an example of forming and processing steps of a wiring mainly composed of copper in a semiconductor integrated circuit in order to explain a wiring processing method according to the present invention. FIG. 5 used for describing the wiring processing method of the conventional example can be used as it is and will be described with reference to FIG.
[0025]
A conductive layer 1a is formed on a semiconductor substrate 1 (original substrate) of a semiconductor integrated circuit (step S01). FIG. 5 shows the case where the conductive layer 1a is an impurity diffusion layer formed in the substrate, but may be a wiring layer formed on the surface of the substrate W, for example, in the case of a multilayer wiring structure. Next, on the semiconductor substrate 1 having the conductive layer 1a, 2 An insulating layer 2 made of a film, a low-k material, or the like is deposited by, for example, a low-pressure CVD (Chemical Vapor Deposition) method (Step S02). Next, a contact hole 3 and a wiring groove 4 are formed in the insulating layer 2 by, for example, a known lithography etching technique (Step S03), and a barrier layer 5 (for preventing copper diffusion into the insulating layer 2) is formed thereon. In step S04, a seed layer 6 is formed thereon as a power supply layer for electrolytic plating (step S05). The barrier layer 5 is made of, for example, a Ta / TaN mixed film deposited by a sputtering method, a film of TiN, WN, SiTiN, CoWP, CoWB or the like, and the seed layer 6 is made of, for example, a Cu film deposited by a sputtering method. This state is shown in FIG.
[0026]
FIG. 5B shows a state where a copper film as the wiring layer 7 is deposited. The copper film 7 is formed by an electrolytic plating method (Step S06). As a result, copper is filled in the contact hole 3 and the wiring groove 4 and the insulating layer 2 is covered with the copper film 7. In this state, the surface of the copper film 7 has irregularities. Note that the copper film 7 may be a film mainly composed of copper. Also, since the same copper as the wiring layer 7 is used for the seed layer 6, it is integrated with the wiring layer 7 and functions as a wiring after the device is completed. Removal by electrolysis or polishing is also performed integrally with the wiring layer 7. Therefore, the wiring layer in the claims includes a seed layer.
[0027]
The above process is performed in the same manner as the conventional process, but the removal of the copper film 7 and the barrier layer 5 as unnecessary wiring layers on the insulating layer 2 is according to the present invention. As the electrolytic processing liquid, a liquid containing one of an alkaline solution or a fluorine-based solution and an inhibitor is used.
[0028]
In the ordinary electrolytic polishing method, when the substrate W on which the wiring layer 7 is formed is connected to the anode side, the polishing tool is connected to the cathode side, and the electrolytic processing liquid is filled during the connection, the wiring layer 7 is formed by the electrolytic action of the electrolytic processing liquid. Is ionized and dissolved in the electrolytic processing solution. The efficiency of the electrolytic processing depends not only on the electrolytic processing liquid but also on the pulse voltage and the pulse period, the distance between the wiring layer 7 serving as the anode and the cathode plate serving as the cathode, the ratio of the wiring layer exposed on the surface of the substrate W, and the like. Since the wiring layer 7 acts as an anode during electrolytic processing, when the copper film 7 covers the surface of the substrate W, a large amount of current flows due to electrolysis and the electrolytic processing is promoted, but the dissolution of the copper film 7 proceeds. Then, when the copper film exposed on the surface decreases, the current flowing by electrolysis decreases, and the removal is suppressed. However, since the electric field concentrates on the remaining copper film and elution occurs, there is an effect that unnecessary copper film hardly remains. On the other hand, when the required copper film is exposed on the surface, there is a disadvantage that it is easily removed excessively.
[0029]
FIG. 5C shows a state in which excess copper is removed by electrolytic polishing and the surface is flattened. Copper is removed by an electrolytic polishing method (Step S07). In the present invention, an electrolytic processing solution containing either an alkaline solution or a fluorine-based solution and an inhibitor is used. Inhibitors contain oxygen, nitrogen, and sulfur atoms and adsorb lone pairs of these elements to the copper surface at the point of adsorption, thereby preventing and delaying the dissolution of copper as ions.
[0030]
In the present embodiment, a liquid containing an alkaline solution and an inhibitor (corrosion inhibitor) is used as the electrolytic processing liquid. The alkali has solubility in both copper Cu and the barrier layer, for example, tantalum Ta, and can dissolve both metals. Since the barrier layer 5 below the wiring layer 7 to be removed deposited on the insulating layer 2 is also a layer to be removed, there is no problem even if the processing proceeds to the lower barrier layer 5 when the wiring layer 7 is processed.
[0031]
The inhibitor is adsorbed on the copper surface (step S08), thereby suppressing the dissolution of copper as ions.
By the way, in the present embodiment, the polishing of the surface of the substrate W is also performed by lightly pressing the polishing tool on the surface of the substrate W and rotating the substrate W with respect to the substrate W, etc. Done. By this polishing, the inhibitor adsorbed preferentially on the surface is removed from the highest convex portion of the wiring layer 7 (step S09). Dissolution of copper proceeds selectively in the portion where copper is exposed after being removed (step S10). As the time elapses, the inhibitor again adsorbs to the exposed copper surface, and the dissolution of copper is suppressed (return to step S08 again). In the subsequent surface polishing, the inhibitor adsorbed on the surface at the next higher convex portion is removed, and the dissolution of copper proceeds selectively in the portion where copper is newly exposed. As described above, since the elution of the metal film 7 proceeds sequentially from a higher position on the surface of the substrate W, flattening is promoted as a result. Further, since the inhibitor on the copper surface located at a low place is not removed, dishing and erosion can be prevented. The copper film 7 and the seed layer 6 are removed by the electrolytic polishing described above, whereby the barrier layer 5 is exposed over the entire surface (step S11).
[0032]
FIG. 5D shows a state where the barrier layer 5 exposed on the surface is removed by electrolytic polishing and the surface is flattened. The removal of the barrier layer 5 is performed by an electrolytic polishing method (Step S12). In this embodiment, a liquid containing a fluorine-based solution and an inhibitor (corrosion inhibitor) is used as the electrolytic processing liquid. Copper Cu is not attacked by hydrofluoric acid, but tantalum Ta is easily dissolved. Therefore, when the unnecessary barrier layer 5 on the insulating layer 2 is removed, the wiring layer 7 exposed on the contact hole 3 and the wiring groove 4 is not processed, so that dishing and erosion can be prevented, which is preferable.
[0033]
Further, the inhibitor is adsorbed to the wiring layer 7 exposed on the contact hole 3 and the wiring groove 4 (step S13), so that the removal of the wiring layer is also suppressed. The barrier layer 5 is dissolved and removed (step S14), thereby exposing the insulating layer 2 over the entire surface (step S15). Polishing is performed so that the surface of the copper film 7 on the contact hole 3 and the wiring groove 4 and the surface of the insulating layer 2 are substantially flush with each other, and the wiring processing is completed (Step S16). In addition, since the barrier layer 5 is thin and has only a small surface irregularity, it is not necessary to adsorb the inhibitor on the surface of the barrier layer 5 to promote flattening.
[0034]
Returning to step S02, by repeating the steps of forming and processing the wiring, multilayer wiring becomes possible. In this case, the conductive layer 1a becomes a wiring layer formed on the surface of the substrate W. The wiring processing method according to the present invention can also be used in this multilayer wiring process.
[0035]
Further, the electrolytic processing liquid according to the present invention may contain an oxidizing agent. Although tantalum Ta used for the barrier layer 5 is insoluble in acids other than hydrofluoric acid and is a stable metal, its oxide film is dissolved in an alkaline solution. (Processing speed) of the barrier layer 5 can be accelerated. Further, since the oxidizing agent promotes the dissolution of copper, the removal of the wiring layer 7 by electrolytic polishing can also be promoted.
[0036]
Further, the electrolytic processing solution according to the present invention may contain abrasive grains. Since mechanical polishing with abrasive grains is added and electric field composite polishing can be performed, polishing and the resulting dissolution of copper can be promoted. Therefore, by including an appropriate amount of abrasive grains, the efficiency of electrolytic processing can be improved. Further, since polishing is performed preferentially from the convex portion, flattening is promoted by the cooperative action with the inhibitor.
[0037]
[Embodiment of electrolytic machining liquid]
The electrolytic processing liquid according to the present invention is an electrolytic processing liquid for flattening the surface of the substrate W by electrolytic polishing of at least one layer of the barrier layer 5 or the wiring layer 7 mainly composed of copper formed on the substrate W, It contains either an alkaline solution or a fluorine-based solution, and an inhibitor that suppresses the dissolution of copper. Further, one or both of an oxidizing agent and abrasive grains may be included. Here, the composition and concentration of the electrolytic processing solution and the effect of the inhibitor will be described.
Here, the electrolytic processing liquid 9 for flattening the surface of the substrate W by electrolytically polishing at least one layer of the barrier layer 5 or the wiring layer 7 containing copper as a main component formed on the substrate W is typically Is an electrolytic processing liquid for flattening the substrate surface by electrolytically polishing a wiring layer mainly composed of copper formed on the substrate, or a barrier layer formed on the substrate and a wiring layer mainly composed of copper. Say. In addition, the phrase “containing either one of the alkaline solution and the fluorine-based solution” means that only one of the alkali solution and the fluorine-based solution is contained and the other is not contained. In addition, an inhibitor typically refers to an inhibitor that adsorbs to the wiring layer and suppresses the dissolution of copper.
[0038]
Inhibitors used in the electrolytic processing solution of the present invention include, for example, benzotriazole or derivatives thereof (5-methylbenzotriazole, carboxylbenzotriazole, etc.), benzimidazole or derivatives thereof, phenacetin, quinaldic acid, polyvinylpyrrolidone, acetonitrile, acrylonitrile, phenylacetonitrile And amines (methylamine, ethylamine, dimethylamine, diethylamine, ethylenediaminetetraacetic acid) and the like. Two or more types of inhibitors may be included. The concentration of the inhibitor is 0.001 to 1% by mass, preferably 0.05 to 0.2% by mass. These inhibitors contain oxygen, nitrogen, and sulfur atoms and can adsorb lone pairs of these elements to the copper surface at the point of adsorption to prevent or delay copper from dissolving as ions. Therefore, the dissolution of copper is selectively promoted in the portion where the inhibitor adsorbed on the copper surface has been removed by polishing, so that the wiring layer 7 is preferentially removed from the protruding portion and becomes flat during the electrolytic polishing process. Will be promoted.
[0039]
The alkaline solution includes, for example, inorganic alkalis such as potassium hydroxide, sodium hydroxide, lithium hydroxide, and ammonia water, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra (n-propyl) ammonium hydroxide, and tetra (i) hydroxide. -Propyl) ammonium, tetra (n-butyl) ammonium hydroxide, and 2-hydroxyethyltrimethylammonium hydroxide. It may contain two or more kinds of alkalis. The concentration of the alkali is 0.1 to 55% by mass, preferably 10 to 55% by mass. The alkali solution has solubility in copper Cu and also in the barrier layer 5 such as tantalum Ta. Therefore, the alkaline solution can be used for processing both the barrier layer 5 and the wiring layer 7. Since the barrier layer below the wiring layer to be removed deposited on the insulating layer 2 is also a layer to be removed, there is no problem if the processing proceeds to the lower barrier layer 5 when the wiring layer 7 is processed.
[0040]
Examples of the fluorine-based solution include hydrofluoric acid, ammonium fluoride, fluorosilicic acid, fluoroboric acid, sodium fluoride, potassium fluoride, potassium hydrogen fluoride, silver fluoride, tin fluoride, hexafluorosilicic acid, and hexafluorosilicic acid. Potassium, ammonium hexafluorosilicate, tetrafluoroboric acid, or the like. Two or more of these may be included. The concentration of the fluorine-based solution is 0.01 to 40% by mass, preferably 0.1 to 10% by mass. Copper Cu is not attacked by hydrofluoric acid which is a non-oxidizing acid, but tantalum Ta is easily dissolved. Therefore, the fluorine-based solution can be used for processing the barrier layer 5. When the unnecessary barrier layer on the insulating layer 2 is processed, the wiring layer 7 exposed on the contact hole 3 and the wiring groove 4 is not processed, so that dishing and erosion can be prevented, which is preferable.
[0041]
Examples of the oxidizing agent include organic peroxides such as ozone water, hydrogen peroxide, peracetic acid, perbenzoic acid, and tert-butyl hydroperoxide; permanganate compounds such as potassium permanganate; Chromic acid compounds, halogen acid compounds such as potassium iodate, nitric acid compounds such as nitric acid and iron nitrate, perhalic acid compounds such as perchloric acid, transition metal salts such as potassium ferricyanide, and persulfates such as ammonium persulfate. . Two or more of these may be included. The concentration of the oxidizing agent is 0.01 to 30% by mass, preferably 0.1 to 10% by mass. Tantalum is insoluble in acids other than hydrofluoric acid, but tantalum oxide dissolves in hydrofluoric acid and alkali, so it forms an oxide film on the surface of tantalum and then dissolves in an alkaline solution. Therefore, the removal of the barrier layer 5 can be promoted by including these oxidizing agents in the electrolytic processing solution. Further, since the oxidizing agent promotes the dissolution of copper, the removal of the wiring layer 7 can be promoted.
[0042]
The abrasive grains are, for example, silicon oxide (silica), aluminum oxide, cerium oxide, manganese dioxide, cerium oxide, zirconia, diamond, silicon carbide, silicon nitride, and the like. Two or more of these may be included. When polishing the barrier layer, it is preferable to use colloidal silica. The concentration of these abrasive grains is 0.1 to 30% by mass, preferably 1 to 10% by mass. Since mechanical polishing with abrasive grains is added and electrolytic composite polishing can be performed, inhibitors adsorbed on the copper surface can be effectively removed, and as a result, dissolution of copper can be promoted. Therefore, the efficiency of electrolytic processing can be improved by including an appropriate amount of abrasive grains. Further, since polishing is performed preferentially from the convex portion, flattening is promoted by the cooperative action with the inhibitor.
[0043]
[Example of electrolytic processing liquid]
0.1% by weight of nitric acid and 1% by weight of hydrofluoric acid in pure water as an electrolytic processing solution, and 0.1% each of 5-methylbenzotriazole, carboxylbenzotriazole, phenacetin, quinaldic acid or polyvinyl alcohol as an inhibitor. The substrate W on which the wiring layer 7 made of copper and the barrier layer 5 made of a Ta / TaN mixed film were formed was electrolytically processed using the four kinds of liquids in which the mass% was dissolved. Tantalum was dissolved by the electrolytic action of the mixed solution of nitric acid and hydrofluoric acid, and the processing speed of copper became almost the same as the processing speed of tantalum due to the effect of these inhibitors, and a flat substrate W was obtained.
[0044]
[First Embodiment of Electrolytic Processing Apparatus]
An electrolytic processing apparatus used for electrolytic polishing using the aforementioned electrolytic processing liquid will be described. FIG. 2 shows an electrolytic processing apparatus 8a according to the first embodiment of the present invention. The electrolytic processing apparatus 8a is open at the top and has a bottomed cylindrical electrolytic processing tank 10 containing an electrolytic processing liquid 9 therein, and is disposed above the electrolytic processing tank 10 so that the substrate W can be detachably attached downward. And a substrate holding unit 11 (corresponding to a substrate holding unit) for holding.
[0045]
The electrolytic processing tank 10 is directly connected to a main shaft 12 that rotates with the driving of a motor or the like, and has a circular flat plate-shaped cathode plate 13 (corresponding to a processing electrode) immersed in the electrolytic processing liquid 9 and serving as a cathode at the bottom. ) Are arranged horizontally. The cathode plate 13 is formed of, for example, gold, platinum, ruthenium, rhodium, osmium, or the like as an electrode material having resistance to hydrofluoric acid, alkali, and oxidizing agent. The upper surface of the cathode plate 13 is provided with a lattice-shaped long groove 13a extending linearly over the entire length in the vertical and horizontal directions. The electrolytic machining liquid 9 flows through the long groove 13a, and products and bubbles generated by electrolytic polishing are discharged. A region of the cathode plate 13 surrounded by the long groove 13a is close to the substrate W and functions as an electrode. Further, a polishing pad 14 (corresponding to a polishing tool) is disposed on the upper surface of the cathode plate 13. As the polishing pad 14, for example, a foamed polyurethane or the like, which is provided with a number of small holes in portions corresponding to the electrodes and has liquid permeability, is used. When the small holes are filled with the electrolytic processing liquid 9, current is applied between the electrodes and the substrate W. Alternatively, instead of providing the small holes, a member in which the polishing pad 14 itself has liquid permeability may be used.
[0046]
As the main shaft 12 rotates, the electrolytic processing bath 10 rotates integrally with the polishing pad 14. In this example, an example is shown in which the electrolytic processing tank 10 rotates, but a scroll movement (translational rotation movement) or a reciprocating movement may be performed. Further, the shape of the long groove 13a prevents a difference in current density between the central part and the outer peripheral part of the cathode plate 13 and also allows the electrolytic processing liquid 9 and hydrogen gas to flow smoothly along the long groove 13a. Therefore, when the electrolytic processing tank 10 performs a scroll movement, it is preferable that the electrolytic processing tank 10 has a lattice shape, and when the electrolytic processing tank 10 performs a reciprocating movement, the electrolytic processing tank 10 is arranged in parallel along the moving direction. Is preferred.
[0047]
The substrate holding unit 11 is connected to a lower side of a support rod 15 having a rotation mechanism capable of controlling a rotation speed and a vertical movement mechanism capable of adjusting a polishing pressure, and holds the substrate W on its lower surface by, for example, vacuum suction. It is supposed to. It is also possible to perform polishing while the surface of the substrate W is pressed against the polishing pad 14. When the substrate W is sucked and held on the substrate holding portion 11, the outer peripheral portion of the lower surface of the substrate holding portion 11 comes into contact with the copper film 7 at a peripheral portion of the substrate W, a portion outside the device region near the bevel portion, and An electrical contact 16 having the copper film 7 deposited on the surface of W as an anode is provided. The electrical contact 16 is connected to an anode terminal of a rectifier 18 (corresponding to a power supply) as a DC power supply or a pulse power supply arranged outside by a roll sliding connector and a wiring 17a built in the support rod 15, and is connected to a cathode plate. 13 is connected to the cathode terminal of the rectifier 18 via the wiring 17b.
[0048]
Further, an electrolytic machining liquid supply unit 19 for supplying the electrolytic machining liquid 9 is disposed above the electrolytic machining tank 10, and furthermore, a control unit 20 for adjusting and managing each device and overall operation and a safety device. (Not shown) and the like. The electrolytic processing tank 10, the electrolytic processing liquid supply unit 19, and the piping and waste liquid pipe between them are made of Teflon (registered trademark of DuPont) or the like which is acid-resistant, alkali-resistant and chemically stable so as not to react with the electrolytic processing liquid 9. Have been made. The electrolytic processing liquid 9 may include one or both of an oxidizing agent and abrasive grains. In addition, the control unit 20 appropriately adjusts and controls pulse application conditions during electrolytic polishing, rotation and pressing of the substrate W and the polishing tool 14, supply of the electrolytic processing liquid 9 to the electrolytic processing tank 10, and the like.
[0049]
As shown in FIG. 5B, the electrolytic processing apparatus 8a electrolytically polishes the barrier layer 5 and the wiring layer 7 of the substrate W on which the barrier layer 5 and the wiring layer 7 are deposited, and cleans the surface of the substrate W. It is suitable for flattening, and its polishing operation will be described.
[0050]
The electrolytic processing liquid 9 is supplied into the electrolytic processing tank 10, and the electrolytic processing liquid 9 and the polishing pad 14 are integrally rotated at a rotation speed of, for example, about 90 rpm. On the other hand, the substrate W is suction-held by the substrate holding unit 11 downward. In this state, the substrate W is lowered while rotating at a rotation speed of, for example, about 90 rpm in a direction opposite to the electrolytic processing bath 10, and the surface (lower surface) of the substrate W is, for example, 300 g / cm. 2 The surface of the polishing pad 14 is brought into contact with the surface of the polishing pad 14 at a constant pressure, and at the same time, a current density of 0.5 to 5 A / dm is applied between the cathode plate 13 and the electrical contact 16 by the rectifier 18. 2 , Preferably 1-3 A / dm 2 Or a current density of 0.5 to 5 A / dm 2 , Preferably 1-3 A / dm 2 Then, a pulse current having a DUTY ratio of 10 to 99%, preferably 30 to 90% is passed.
[0051]
At this time, the electrolytic processing liquid 9 is supplied between the substrate W and the polishing pad 14 from the long groove 13a provided on the surface of the cathode plate 13, and the electrolytic processing liquid 9 after processing is caused by particles floating in the electrolytic processing liquid 9 and reaction. It passes through the long groove 13a together with the generated bubbles and the like and smoothly flows out to the waste liquid pipe.
[0052]
Under this condition, the copper film 7 is polished at a high speed while being effectively planarized. That is, when an electrolytic processing solution 9 containing an inhibitor and an alkali solution that suppress the dissolution of copper is used, and electrolytic polishing is performed using copper as an anode, the inhibitor is adsorbed on the exposed surface of the copper film 7 and the electrolytic elution of copper is performed. Suppress. The adsorbed inhibitor can be easily removed by the rotating low pressure polishing pad 14. Even when the electrolytic processing liquid 9 does not contain abrasive grains, it can be easily removed. Therefore, when the polishing is performed with the polishing pad 14, the inhibitor adsorbed on the surface of the copper film 7 is removed, and the copper film 7 is exposed at the removed portion and is dissolved by the electrolytic action. If the copper film 7 has irregularities, the convexities are polished preferentially, so that the flattening is promoted in the process of electrolytic polishing. In addition, the conduction to the portion covered with the inhibitor is suppressed, and the current tends to concentrate on the portion where the metal surface is exposed (that is, the convex portion of the trunk membrane 7). In addition, the dissolution is suppressed while being covered with the inhibitor, so that only the protrusions are selectively removed by grinding, and the flattening is promoted.
[0053]
After the completion of the electropolishing, the substrate W held by the substrate holding unit 11 is lifted, the rotation of the substrate W is stopped, and the substrate W after the completion of the electropolishing is carried out of the electrolytic processing apparatus 8a.
[0054]
3A to 3C show examples of the shape (plan view) of the electrodes of the cathode plate (all of them are only partially shown, and the electrodes are uniformly arranged on the entire surface). In the case of the cathode plate 13 of FIG. 2, as shown in FIG. 3A, the region surrounded by the long groove 13a is closer to the substrate W and functions as a cathode. Modifications are shown in FIGS. 3B and 3C. In FIG. 3B, an electrode (cathode) is buried in the formed long groove. In this case, it is better to form a step between the upper surface of the cathode plate and the upper surface of the electrode embedded in the groove to secure the flow path of the electrolytic processing liquid. In FIG. 3C, the electrodes to be embedded in the grooves are not bar-shaped, but are subdivided like a mosaic, and a plurality of electrodes are scattered. 3B and 3C, if each electrode can be connected to the cathode terminal of the rectifier 18, a part of the cathode plate 13 may be formed of an insulator.
[0055]
[Second embodiment of electrolytic processing apparatus]
FIG. 4 shows a second embodiment of the electrolytic processing apparatus according to the present invention. 4, the same parts as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted. The difference between the electrolytic processing apparatus 8b and the electrolytic processing apparatus 8a is that an electrode plate 23 (electrode section) made of an insulating material in which a large number of cathode rods 21 and anode rods 22 are alternately arranged inside a bottom of the electrolytic processing tank 10 is provided. ) Are arranged horizontally. On the upper surface of the electrode plate 23, there is formed a lattice-shaped long groove 23a extending linearly over the entire length in the vertical and horizontal directions. The electrolytic processing liquid 9 and bubbles are discharged by the long grooves 23a. Above the cathode rod 21, there is a porous filler 24 so that the electrolytic processing liquid 9 and bubbles flow. The filler 24 is a porous material for impregnating the electrolytic processing liquid 9 and is preferably a chemical-resistant material.
[0056]
As the electrolysis conditions, the current density was 0.5-5 A / dm. 2 Preferably 1-3 A / dm 2 Or a current density of 0.5-5 A / dm 2 , Preferably 1-3 A / dm 2 Then, a pulse current with a DUTY ratio of 10-99%, preferably 30-90% is passed.
[0057]
All the cathode rods 21 are connected to cathode terminals of a rectifier 18 (corresponding to a power supply) as a DC power supply or a pulsed power supply arranged outside via a wiring 17a. It is connected to the anode terminal of the rectifier 18 via the wiring 17b. In addition, the electric contact 16 as in the electrolytic processing apparatus 8a is not provided in the present apparatus 8b.
[0058]
In particular, the electrolytic processing apparatus 8b performs the dissolution of the excess copper film 7 deposited on the surface of the substrate W, and the substrate W in a state where the barrier layer 5 is exposed on the surface and the copper film 7 has an island shape. This is suitable for electrolytic polishing of the barrier layer 5 and the copper film 7 on the surface. That is, when the copper film 7 has an island shape, it is not possible to uniformly supply current to the copper film 7 from an external terminal such as an electric contact. Even in such a case, according to the electrolytic processing apparatus 8b, the electrolytic polishing of the copper film 7 can be advanced by making the copper surface locally positive by utilizing the bipolar phenomenon.
[0059]
Although the embodiments of the present invention have been described above, it is apparent that the embodiments can be variously modified without departing from the spirit of the present invention. For example, in the embodiment, the case where the wiring is made of copper has been described.However, if the electrolytic processing solution of the present invention is used, even with a metal mainly containing copper, the inhibitor is adsorbed on the metal surface to suppress electrolysis, and Since the inhibitor can be removed by lightly polishing the surface, the same effect as that of copper can be obtained. Further, in the embodiment, the case where the barrier layer is a film containing Ta has been described, but the electrolytic processing solution of the present invention can be applied to a film containing another metal such as TiN.
Further, the electrolytic processing solution of the present invention can be used for electrolytic polishing of only the wiring layer and only the barrier layer. Further, it can be used for a technique other than the damascene method for flattening a substrate surface having a wiring layer and an insulating layer. Further, when the inhibitor does not stop dissolution of copper but delays the dissolution, it may be used only for electrolytic processing without polishing.
[0060]
Further, in the embodiment, the example of the electrolytic processing apparatus in which the substrate is disposed on the upper side and the cathode plate is disposed on the lower side has been described. However, the configuration may be such that the substrate is disposed on the lower side and the cathode plate is disposed on the upper side. Further, the shape of the cathode plate is not limited to a circle but may be a square. Also, the long grooves of the cathode plate are not lattice-shaped, but can be formed, for example, in a shape combining concentric circles and radiation. Further, the DC electric field and the pulse electric field may be superposed, and the voltage and period of the pulse can be changed. Further, in the embodiment, when the electrolytic processing liquid contains the polishing abrasive grains, the example in which the electrolytic processing liquid including the polishing abrasive grains is supplied from the electrolytic processing liquid supply unit has been described. The liquid and the polishing liquid (abrasive slurry or the like) may be supplied from separate supply units.
[0061]
Further, in the embodiment, the wiring processing method in the case where the semiconductor substrate (original substrate) has a conductive layer is described. However, the conductive layer may be a wiring layer formed on the surface of the substrate W. The original substrate is not limited to a semiconductor substrate, but may be an insulator such as sapphire. In this case, the first conductive layer is formed in the epitaxial layer or the like.
[0062]
【The invention's effect】
As described above, according to the electrolytic processing solution of the present invention, the inhibitor suppresses the dissolution of copper, so that the barrier layer and the copper wiring layer can be removed at the same processing speed. In addition, since the dissolution of copper is selectively promoted in the portion where the inhibitor adsorbed on the surface has been removed by polishing, the wiring layer is preferentially removed from the convex portion, and the flatness is improved without causing dishing or erosion. An excellent substrate surface can be obtained.
[0063]
Further, according to the electrolytic processing apparatus of the present invention, electrolytic polishing using the electrolytic processing liquid can be performed. Further, according to the wiring processing method of the present invention, in a wiring forming process of a semiconductor integrated circuit or the like, a wiring structure having excellent flatness can be obtained by using this electrolytic processing solution.
[0064]
In addition, since the electrolytic processing solution of the present invention employs electrolytic polishing, it can be polished with a low load, and is suitable for a wiring structure using a soft metal such as copper or a low-k material as an interlayer insulating material. Also, the consumption of the slurry can be reduced.
[0065]
When an oxidizing agent is contained in the electrolytic processing solution, the dissolution of the barrier layer and the wiring layer is promoted, and the efficiency of the electrolytic processing is increased. Further, when the polishing fluid is contained in the electrolytic processing liquid, the electrolytic compound polishing can be performed in addition to the mechanical polishing by the polishing polishing particles, so that more efficient flattening can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a process of forming and processing a copper wiring according to the present invention.
FIG. 2 is a diagram illustrating a configuration of an electrolytic processing apparatus according to the first embodiment of the present invention.
FIG. 3 is a diagram illustrating an example of an electrode shape of a cathode plate according to the first embodiment of the present invention.
FIG. 4 is a diagram illustrating a configuration of an electrolytic processing apparatus according to a second embodiment of the present invention.
FIG. 5 is a diagram showing an example of a conventional copper wiring formation and processing process.
[Explanation of symbols]
1 semiconductor substrate
1a conductive layer
2 Insulating layer
3 Contact holes
4 Wiring groove
5 Barrier layer
6 Seed layer
7 Wiring layer
8a, 8b electrolytic processing equipment
9 Electrolytic machining fluid
10 Electrolytic processing tank
11 Substrate holder
12 spindle
13 Cathode plate
13a long groove
14 Polishing pad
15 Support rod
16 electrical contacts
17a, 17b wiring
18 Rectifier
19 Electrolytic machining fluid supply unit
20 control unit
21 Cathode rod
22 Anode rod
23 Electrode plate
23a long groove
24 filler
W substrate

Claims (10)

基板に形成されたバリア層又は銅を主成分とする配線層の少なくとも1層を電解研磨して基板表面を平坦化するための電解加工液であって;
アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む;
電解加工液。
An electrolytic processing liquid for electrolytically polishing at least one of a barrier layer or a wiring layer containing copper as a main component formed on the substrate to planarize the substrate surface;
Containing either an alkaline solution or a fluorine-based solution and an inhibitor;
Electrolytic machining fluid.
前記インヒビタは、ベンゾトリアゾール又はその誘導体(5−メチルベンゾトリアゾール、カルボキシルベンゾトリアゾール等)、ベンゾイミダゾール又はその誘導体、フェナセチン、キナルジン酸、ポリビニルアルコール、ポリビニルピロリドン、アセトニトリル、アクリロニトリル、フェニルアセトニトリル、又はアミン系(メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、エチレンジアミン四酢酸等)のうちの1種類以上を含む請求項1に記載の電解加工液。The inhibitor may be benzotriazole or a derivative thereof (e.g., 5-methylbenzotriazole, carboxylbenzotriazole), benzimidazole or a derivative thereof, phenacetin, quinaldic acid, polyvinyl alcohol, polyvinylpyrrolidone, acetonitrile, acrylonitrile, phenylacetonitrile, or an amine ( The electrolytic processing solution according to claim 1, which comprises at least one of methylamine, ethylamine, dimethylamine, diethylamine, and ethylenediaminetetraacetic acid. 前記アルカリ溶液は、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、アンモニア水等の無機アルカリ、又は水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラ(n−プロピル)アンモニウム、水酸化テトラ(i−プロピル)アンモニウム、水酸化テトラ(n−ブチル)アンモニウム、水酸化2−ヒドロキシエチルトリメチルアンモニウム等の有機アルカリのうちの1種類以上を含み、前記弗素系溶液は、弗化水素酸、弗化アンモニウム、フルオロ珪酸、フルオロ硼酸、弗化ナトリウム、弗化カリウム、2弗化水素カリウム、弗化銀、弗化スズ、ヘキサフルオロ珪酸、ヘキサフルオロ珪酸カリウム、ヘキサフルオロ珪酸アンモニウム、又はテトラフルオロ硼酸のうちの1種類以上を含む請求項1又は2に記載の電解加工液。The alkali solution may be an inorganic alkali such as potassium hydroxide, sodium hydroxide, lithium hydroxide, or aqueous ammonia, or tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra (n-propyl) ammonium hydroxide, tetrahydroxide ( at least one of organic alkalis such as i-propyl) ammonium, tetra (n-butyl) ammonium hydroxide and 2-hydroxyethyltrimethylammonium hydroxide, wherein the fluorine-based solution is hydrofluoric acid, fluorinated Of ammonium, fluorosilicic acid, fluoroboric acid, sodium fluoride, potassium fluoride, potassium hydrogen difluoride, silver fluoride, tin fluoride, hexafluorosilicic acid, potassium hexafluorosilicate, ammonium hexafluorosilicate, or tetrafluoroboric acid 3. The method according to claim 1, further comprising at least one of the following. Electrolytic processing solution according. さらに酸化剤を含む請求項1乃至3のいずれか1項に記載の電解加工液。The electrolytic processing liquid according to any one of claims 1 to 3, further comprising an oxidizing agent. 前記酸化剤は、オゾン水、過酸化水素、過酢酸、過安息香酸、tert−ブチルハイドロパーオキサイド等の有機過酸化物、過マンガン酸カリウム等の過マンガン酸化合物、重クロム酸カリウム等の重クロム酸化合物、ヨウ素酸カリウム等のハロゲン酸化合物、硝酸、硝酸鉄等の硝酸化合物、過塩素酸等の過ハロゲン酸化合物、フェリシアン化カリウム等の遷移金属塩、過硫酸アンモニウム等の過硫酸塩、又はヘテロポリ酸塩のうちの1種類以上を含む請求項4に記載の電解加工液。The oxidizing agent includes organic peroxides such as ozone water, hydrogen peroxide, peracetic acid, perbenzoic acid, and tert-butyl hydroperoxide; permanganate compounds such as potassium permanganate; and dehydration compounds such as potassium dichromate. Chromic acid compounds, halogen acid compounds such as potassium iodate, nitric acid compounds such as nitric acid and iron nitrate, perhalic acid compounds such as perchloric acid, transition metal salts such as potassium ferricyanide, persulfates such as ammonium persulfate, or heteropoly compounds The electrolytic machining liquid according to claim 4, comprising one or more of acid salts. さらに研磨砥粒を含む請求項1乃至5のいずれか1項に記載の電解加工液。The electrolytic processing liquid according to claim 1, further comprising abrasive grains. 前記研磨砥粒は、酸化珪素、酸化アルミニウム、酸化セリウム、二酸化マンガン、酸化セリウム、酸化ジルコニア、ダイヤモンド、炭化珪素、又は窒化珪素のうちの1種類以上を含む請求項6に記載の電解加工液。The electrolytic processing liquid according to claim 6, wherein the abrasive grains include at least one of silicon oxide, aluminum oxide, cerium oxide, manganese dioxide, cerium oxide, zirconia, diamond, silicon carbide, and silicon nitride. 基板に形成されたバリア層又は銅を主成分とする配線層の少なくとも1層の電解研磨を行う電解加工装置であって;
前記基板を保持する基板保持手段と;
前記基板の被加工面に電解研磨を行うための研磨面を有する研磨具と;
前記電解研磨の陰極として作用する加工電極と;
前記加工電極と前記基板との間に直流電界又はパルス電界を印加する電源と;前記加工電極と前記被加工面との間に、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む電解加工液を保持するように収容する電解加工槽を備える;
電解加工装置。
An electrolytic processing apparatus for performing electrolytic polishing of at least one of a barrier layer formed on a substrate and a wiring layer containing copper as a main component;
Substrate holding means for holding the substrate;
A polishing tool having a polishing surface for performing electrolytic polishing on a surface to be processed of the substrate;
A working electrode that acts as a cathode for the electropolishing;
A power source for applying a DC electric field or a pulse electric field between the processing electrode and the substrate; and electrolytic processing including one of an alkali solution or a fluorine-based solution and an inhibitor between the processing electrode and the surface to be processed. Equipped with an electrolytic processing tank for holding the liquid;
Electrochemical processing equipment.
基板に形成されたバリア層又は銅を主成分とする配線層の少なくとも1層の電解研磨を行う電解加工装置であって;
前記基板を保持する基板保持手段と;
前記基板の被加工面に電解研磨を行うための研磨面を有する研磨具と;
電解研磨の際に前記被加工面に電界が印可されるように陰極及び陽極を配置した電極部と;
前記陰極と前記陽極との間に直流電界又はパルス電界を印加する電源と;
前記電極部と前記被加工面との間に、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む電解加工液を保持するように収容する電解加工槽を備える;
電解加工装置。
An electrolytic processing apparatus for performing electrolytic polishing of at least one of a barrier layer formed on a substrate and a wiring layer containing copper as a main component;
Substrate holding means for holding the substrate;
A polishing tool having a polishing surface for performing electrolytic polishing on a surface to be processed of the substrate;
An electrode section in which a cathode and an anode are arranged so that an electric field is applied to the surface to be processed during electrolytic polishing;
A power supply for applying a DC electric field or a pulse electric field between the cathode and the anode;
An electrolytic processing tank is provided between the electrode part and the surface to be processed, so as to hold an electrolytic processing solution containing one of an alkaline solution or a fluorine-based solution and an inhibitor;
Electrochemical processing equipment.
表面に導電層を有する基板上に絶縁層を形成する工程と;前記絶縁層に、前記導電層に達するコンタクトホール及び配線溝を形成する工程と;
前記コンタクトホール及び前記配線溝が形成された絶縁層上にバリア層を堆積する工程と;
前記バリア層上に銅を主成分とする金属からなる配線層を前記コンタクトホール及び前記配線溝が充填されるように堆積する工程と;
前記配線層のうち前記絶縁膜上に堆積された部分を、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む電解加工液を用いて電解研磨により除去する工程と;
前記バリア層のうち前記絶縁膜上に堆積された部分を、アルカリ溶液又は弗素系溶液のいずれか1つとインヒビタを含む電解加工液を用いて電解研磨により除去する工程とを備える;
配線加工方法。
Forming an insulating layer on a substrate having a conductive layer on the surface; forming a contact hole and a wiring groove reaching the conductive layer in the insulating layer;
Depositing a barrier layer on the insulating layer in which the contact hole and the wiring groove are formed;
Depositing a wiring layer made of a metal containing copper as a main component on the barrier layer so as to fill the contact hole and the wiring groove;
Removing a portion of the wiring layer deposited on the insulating film by electrolytic polishing using an electrolytic processing solution containing one of an alkali solution or a fluorine-based solution and an inhibitor;
Removing a portion of the barrier layer deposited on the insulating film by electrolytic polishing using an electrolytic processing solution containing one of an alkali solution or a fluorine-based solution and an inhibitor;
Wiring processing method.
JP2003074518A 2003-03-18 2003-03-18 Electrolytic machining liquid, electrolytic machining device, and wiring machining method Pending JP2004276219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074518A JP2004276219A (en) 2003-03-18 2003-03-18 Electrolytic machining liquid, electrolytic machining device, and wiring machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074518A JP2004276219A (en) 2003-03-18 2003-03-18 Electrolytic machining liquid, electrolytic machining device, and wiring machining method

Publications (1)

Publication Number Publication Date
JP2004276219A true JP2004276219A (en) 2004-10-07

Family

ID=33290125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074518A Pending JP2004276219A (en) 2003-03-18 2003-03-18 Electrolytic machining liquid, electrolytic machining device, and wiring machining method

Country Status (1)

Country Link
JP (1) JP2004276219A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143278A1 (en) * 2007-05-22 2008-11-27 Roki Techno Co., Ltd. Device wafer polishing pad, polishing body, polishing tool constituting body, and polishing method
JP2009505423A (en) * 2005-08-17 2009-02-05 キャボット マイクロエレクトロニクス コーポレイション Polishing system without abrasives
JP2009108405A (en) * 2007-10-10 2009-05-21 Ebara Corp Electrolytic polishing method and apparatus of substrate
WO2011081503A3 (en) * 2009-12-31 2011-11-10 Cheil Industries Inc. Chemical mechanical polishing slurry compositions and polishing method using the same
JP2012500480A (en) * 2008-08-20 2012-01-05 エーシーエム リサーチ (シャンハイ) インコーポレーテッド Barrier layer removal method and apparatus
WO2012046183A1 (en) * 2010-10-05 2012-04-12 Basf Se Chemical mechanical polishing (cmp) composition
AT509168B1 (en) * 2009-11-26 2012-05-15 Karl Dipl Ing Dr Gruber METHOD FOR THE ELECTROCHEMICAL PROCESSING OF ELECTRICALLY CONDUCTIVE WORKPIECES BY MEANS OF AC ELECTRICITY
CN102666771A (en) * 2009-12-31 2012-09-12 第一毛织株式会社 Cmp slurry compositions and polishing method using the same
CN105316711A (en) * 2014-07-31 2016-02-10 Apct株式会社 Tin-based electroplating solution for solder bumps including perfluoroalkyl surfactant
CN112404621A (en) * 2020-11-06 2021-02-26 扬州大学 Electrolytic grinding processing method for honeycomb part filler
JP2023106083A (en) * 2022-01-20 2023-08-01 株式会社デンソー Surface processing equipment
WO2023238608A1 (en) * 2022-06-08 2023-12-14 株式会社デンソー Surface treatment method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505423A (en) * 2005-08-17 2009-02-05 キャボット マイクロエレクトロニクス コーポレイション Polishing system without abrasives
WO2008143278A1 (en) * 2007-05-22 2008-11-27 Roki Techno Co., Ltd. Device wafer polishing pad, polishing body, polishing tool constituting body, and polishing method
JP4500885B2 (en) * 2007-05-22 2010-07-14 株式会社ロキテクノ Device wafer polishing pad, polishing body, polishing tool structure and polishing method
JPWO2008143278A1 (en) * 2007-05-22 2010-08-12 株式会社ロキテクノ Device wafer polishing pad, polishing body, polishing tool structure and polishing method
JP2009108405A (en) * 2007-10-10 2009-05-21 Ebara Corp Electrolytic polishing method and apparatus of substrate
KR101492467B1 (en) * 2008-08-20 2015-02-11 에이씨엠 리서치 (상하이) 인코포레이티드 Barrier layer removal method and apparatus
JP2012500480A (en) * 2008-08-20 2012-01-05 エーシーエム リサーチ (シャンハイ) インコーポレーテッド Barrier layer removal method and apparatus
US8598039B2 (en) 2008-08-20 2013-12-03 Acm Research (Shanghai) Inc. Barrier layer removal method and apparatus
AT509168B1 (en) * 2009-11-26 2012-05-15 Karl Dipl Ing Dr Gruber METHOD FOR THE ELECTROCHEMICAL PROCESSING OF ELECTRICALLY CONDUCTIVE WORKPIECES BY MEANS OF AC ELECTRICITY
CN102666771A (en) * 2009-12-31 2012-09-12 第一毛织株式会社 Cmp slurry compositions and polishing method using the same
WO2011081503A3 (en) * 2009-12-31 2011-11-10 Cheil Industries Inc. Chemical mechanical polishing slurry compositions and polishing method using the same
US9123660B2 (en) 2009-12-31 2015-09-01 Cheil Industries Inc. Chemical mechanical polishing slurry compositions and polishing method using the same
WO2012046183A1 (en) * 2010-10-05 2012-04-12 Basf Se Chemical mechanical polishing (cmp) composition
CN105316711A (en) * 2014-07-31 2016-02-10 Apct株式会社 Tin-based electroplating solution for solder bumps including perfluoroalkyl surfactant
CN105316711B (en) * 2014-07-31 2018-01-05 Apct株式会社 Solder bump comprising perfluoralkyl surfactant tin alloy electric plating liquid
CN112404621A (en) * 2020-11-06 2021-02-26 扬州大学 Electrolytic grinding processing method for honeycomb part filler
CN112404621B (en) * 2020-11-06 2022-06-24 扬州大学 A kind of honeycomb parts filler electrolytic grinding processing method
JP2023106083A (en) * 2022-01-20 2023-08-01 株式会社デンソー Surface processing equipment
WO2023238608A1 (en) * 2022-06-08 2023-12-14 株式会社デンソー Surface treatment method

Similar Documents

Publication Publication Date Title
US7998335B2 (en) Controlled electrochemical polishing method
CN1318529C (en) Novel slurry for chemical mechanical polishing of metals
US7384534B2 (en) Electrolyte with good planarization capability, high removal rate and smooth surface finish for electrochemically controlled copper CMP
JP4805826B2 (en) Chemical mechanical polishing composition and method of use thereof
US6951599B2 (en) Electropolishing of metallic interconnects
US7560016B1 (en) Selectively accelerated plating of metal features
US20020104764A1 (en) Electropolishing and chemical mechanical planarization
US8795482B1 (en) Selective electrochemical accelerator removal
JP2005518670A (en) Method and composition for polishing a substrate
JP2005508074A (en) Substrate planarization using electrolytic chemical mechanical polishing
US20090255806A1 (en) Methods and systems for removing materials from microfeature workpieces with organic and/or non-aqueous electrolytic media
JP2004276219A (en) Electrolytic machining liquid, electrolytic machining device, and wiring machining method
WO2006112202A1 (en) Semiconductor device and process for producing the same
KR20040103756A (en) Electrolytic polishing liquid, electrolytic polishing method and method for fabricating semiconductor device
WO2007026931A1 (en) Electrochemical machining method and electrochemical machining apparatus
US20070123033A1 (en) Method of Forming A Damascene Structure with Integrated Planar Dielectric Layers
US7223685B2 (en) Damascene fabrication with electrochemical layer removal
JP3907432B2 (en) Electrolytic solution for electropolishing and electropolishing method
JP2004141990A (en) Electrolytic polishing composition
US7422700B1 (en) Compositions and methods of electrochemical removal of material from a barrier layer of a wafer
JP2003326418A (en) Polishing method and polishing device, and method for manufacturing semiconductor
JP2004156065A (en) Electropolishing device and method for recycling electropolishing liquid
JP2002222776A (en) Wiring forming method and apparatus thereof
KR20200080122A (en) Fabricating method of Semiconductor device
JP2010121168A (en) Plating apparatus, plating method, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714