[go: up one dir, main page]

JP2004275966A - Coating film forming method - Google Patents

Coating film forming method Download PDF

Info

Publication number
JP2004275966A
JP2004275966A JP2003074007A JP2003074007A JP2004275966A JP 2004275966 A JP2004275966 A JP 2004275966A JP 2003074007 A JP2003074007 A JP 2003074007A JP 2003074007 A JP2003074007 A JP 2003074007A JP 2004275966 A JP2004275966 A JP 2004275966A
Authority
JP
Japan
Prior art keywords
coating film
coating
temperature
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003074007A
Other languages
Japanese (ja)
Other versions
JP4170805B2 (en
Inventor
Takayuki Fujita
孝行 藤田
Takuhiro Kakii
拓広 垣井
Shoichi Watanabe
正一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2003074007A priority Critical patent/JP4170805B2/en
Priority to GBGB0405880.6A priority patent/GB0405880D0/en
Priority to TW093107130A priority patent/TW200427797A/en
Priority to GB0406010A priority patent/GB2399520B/en
Priority to CNB2004100326017A priority patent/CN100339163C/en
Priority to KR1020040018311A priority patent/KR20040082338A/en
Publication of JP2004275966A publication Critical patent/JP2004275966A/en
Application granted granted Critical
Publication of JP4170805B2 publication Critical patent/JP4170805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/57Three layers or more the last layer being a clear coat
    • B05D7/572Three layers or more the last layer being a clear coat all layers being cured or baked together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/423Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0209Multistage baking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating film forming method by three coat one bake process capable of forming laminated coating films which excel in finish appearance, especially in feeling of luster and chipping resistance. <P>SOLUTION: This coating film forming method includes a process of coating the surface of a base material formed with an electrodeposition coating film successively wet on wet with an intermediate coating material, a base coating material, and a clear coating material, and a process of baking and hardening the three coated layers at a time, in which the baking and hardening process includes a low-temperature heating stage of heating the coating films for a time of 5 to 30% of the hardening time at a temperature of 25 to 80% of the hardening temperature and a high-temperature heating stage of heating the coating films for a time of 30 to 130% of the hardening time at a temperature of over 80% of the hardening temperature and 120% or less of the temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は積層塗膜を形成する方法に関し、特に3コート1ベーク法によって積層塗膜を形成する方法に関する。
【0002】
【従来の技術】
積層塗膜を形成する方法には、複数の塗料で塗装する毎に焼付け硬化させる方法と、各塗料を塗り重ねた後同時に硬化させる方法とがある。例えば、2コート1ベーク法はメタリック塗膜を形成するために一般的に行われており、更に、特開平11−114489号公報(特許文献1)に示されるように、上塗り塗膜の意匠性を高めるために、カラーベース塗膜、メタリックベース塗膜及びクリヤー塗膜を順次形成し、3層を同時に焼付け硬化させる塗膜形成方法も既に提案されている。
【0003】
3コート1ベーク法によって中塗り塗膜、ベース塗膜、及びクリヤー塗膜を形成する場合、中塗り用の焼付け乾燥炉を省略することができる。そのため、消費エネルギーおよび塗装工程時間を低減させることができ、経済性及び環境面において大きな利点がある。
【0004】
しかし、3コート1ベーク法においては、3層の塗膜がウエットもしくは生乾きのまま塗り重ねられる。そのため、従来の逐次焼き付け法や2コート1ベーク法と比較して溶剤の逃げ道が限定され、塗着不揮発分が上昇する。そうなると、特に加熱時に一つの塗膜に含まれる溶剤が隣接した塗膜に容易に移動する。そのため、焼き付け硬化時に、隣接する塗膜が相溶してそれぞれに含まれる成分が混合する、いわゆる混相と呼ばれる現象が生じ易い。混相が生じると塗膜の仕上がり外観が著しく悪化する。特に、混相は積層塗膜のつや感に著しく影響を与えてしまう。
【0005】
他方、特開2000−84463号公報(特許文献2)には、溶液型熱硬化性塗料を用いて平滑性に優れた塗膜を形成するための方法として、2段階の加熱条件で焼き付け硬化工程を行う方法が記載されている。この方法では、塗料の層に含まれる溶剤を穏やかに蒸発させることにより塗膜表面の荒れが防止されている。
【0006】
上記3コート1ベーク法には、更に、例えば以下のような問題もある。
【0007】
車両が走行した場合等に小石を跳ね上げこれが塗膜に衝突する、いわゆるチッピングにより、塗膜剥離が発生する場合がある。各塗料を塗装する毎に焼付けたり、2コート1ベーク法といった従来の積層塗膜形成方法では、下塗り塗膜や中塗り塗膜はそれぞれ焼き付け硬化されていた。従って、中塗り塗膜の上にあるいはその下層に耐チッピング塗膜を設けたり、上塗り塗膜との明度を合わせ、チッピングが目立たない中塗り塗膜を設ける等のチッピングに対する対策を講じることができた。
【0008】
例えば、特開2002−249699号公報(特許文献3)および特開平9−208882号公報(特許文献4)には、チッピングプライマー塗料組成物や、積層塗膜の間に耐チッピング塗膜を形成することが記載されている。
【0009】
また、特開平6−256714号公報(特許文献5)あるいは特開平6−254482号公報(特許文献6)では、中塗り塗料の組成面から耐チッピング性の向上を検討しているが、3コート1ベーク法に使用するためには向上のレベルが不十分である。
【0010】
【特許文献1】
特開平11−114489号公報
【特許文献2】
特開2000−84463号公報
【特許文献3】
特開2002−249699号公報
【特許文献4】
特開平9−208882号公報
【特許文献5】
特開平6−256714号公報
【特許文献6】
特開平6−254482号公報
【0011】
【発明が解決しようとする課題】
本発明は上記従来の問題を解決するものであり、その目的とするところは、仕上がり外観、特につや感に優れ、耐チッピング性に優れた積層塗膜を形成することができる、3コート1ベーク法による塗膜形成方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、電着塗膜が形成された基材の上に、中塗り塗料、ベース塗料及びクリヤー塗料を、順次ウェット・オン・ウェットで塗装する工程、塗装された3層を一度に焼付け硬化させる工程を包含する塗膜形成方法であって、
該焼付け硬化させる工程が、硬化温度の25〜80%の温度で硬化時間の5〜30%の時間加熱する低温加熱段階、及び硬化温度の80%を超え、120%以下の温度で硬化時間の30〜130%の時間加熱する高温加熱段階、を包含することを特徴とする塗膜形成方法を提供するものであり、そのことにより上記目的が達成される。
【0013】
【発明の実施の形態】
塗膜形成方法
本発明の塗膜形成方法では、基材上に、中塗り塗料により中塗り塗膜、ベース塗料によりベース塗膜及びクリヤー塗料によりクリヤー塗膜を、順次ウエットオンウエットで形成する。
【0014】
基材として自動車車体を用いる場合は、防食塗膜(一般に「下塗り塗膜」と呼ばれる。)として、車体鋼板の上に予め電着塗膜が形成されている。中塗り塗料の塗装方法は、エアー静電スプレー塗装による多ステージ塗装、好ましくは2ステージで塗装するか、或いは、エアー静電スプレー塗装及び/又は、通称「μμ(マイクロマイクロ)ベル」、「μ(マイクロ)ベル」あるいは「メタベル」等と言われる回転霧化式の静電塗装機で塗装することができる。
【0015】
中塗り塗料による乾燥塗膜の膜厚は所望の用途により変化するが、多くの場合10〜60μmが有用である。上限を超えると、鮮映性が低下したり、塗装時にムラあるいは流れ等の不具合が起こることがあり、下限を下回ると、下地が隠蔽できず膜切れが発生する。
【0016】
本発明の塗膜形成方法では更に、未硬化の中塗り塗膜の上に、ベース塗料、およびクリヤー塗料をウエットオンウエットで塗布し、ベース塗膜、およびクリヤー塗膜を形成する。
【0017】
ベース塗膜を形成する為に用いるベース塗料は、上記中塗り塗料と同様に、エアー静電スプレー塗装あるいはメタベル、μμベル、μベル等の回転霧化式の静電塗装機により塗装することができ、その塗膜の乾燥膜厚は5〜35μmに設定することができ、好ましくは7〜25μmである。ベース塗膜の膜厚が35μmを超えると、鮮映性が低下したり、塗膜にムラまたは流れが生じることがあり、5μm未満であると、下地隠蔽性が不充分となり、膜切れ(塗膜が不連続な状態)が生じることがあるため、いずれも好ましくない。
【0018】
クリヤー塗膜は、上記ベース塗膜に起因する凹凸、光輝性顔料が含まれる場合に、これに起因して生じる微細な突起等を隠蔽し、保護するために形成される。塗装方法として具体的には、先に述べたμμベル、μベル等の回転霧化式の静電塗装機により塗膜形成することが好ましい。
【0019】
クリヤー塗膜の乾燥膜厚は、一般に10〜80μm程度が好ましく、より好ましくは20〜60μm程度である。上限を超えると、塗装時にワキあるいはタレ等の不具合が起こることもあり、下限を下回ると、下地の凹凸が隠蔽できない。
【0020】
上述のようにして積層された塗膜は、同時に加熱して硬化させる。かかる方法は一般に3コート1ベーク法と呼ばれる。積層塗膜の膜厚は、多くの場合30〜300μmであり、好ましくは50〜250μmである。上限を超えると、冷熱サイクル等の膜物性が低下し、下限を下回ると膜自体の強度が低下する。
【0021】
基材の表面上に塗布された塗料の層を十分に硬化させるため、一般に、熱硬化型塗料には硬化条件が設定されている。硬化条件を満足しない条件で熱硬化性塗料の硬化を行うと塗膜の架橋が不十分となり、塗膜性能が低下する。一般には、熱硬化性塗料の硬化条件として硬化温度(℃)と硬化時間とが設定される。
【0022】
硬化温度とは、従来の1段階加熱法によって塗膜を焼き付け硬化させるときに塗膜が設置される環境の温度をいう。一般には塗膜が挿入される乾燥炉の設定温度である。硬化温度は、塗膜の架橋系の硬化温度と適用される実用塗装ラインの設備により決定される。
【0023】
硬化時間とは、硬化温度により塗膜を硬化させるために必要な時間をいう。硬化時間は塗料の種類や塗膜の厚さ等に応じて経験的に最適値が定められる。硬化時間は、適用される実用塗装ラインの設備仕様と硬化温度を考慮し、実用上必要な塗膜性能が得られる時間として定められる。
【0024】
本発明の方法では、塗装された3層を焼付け硬化させる工程を低温加熱段階と高温加熱段階とに分けてそれぞれ所定の時間行う。尚、低温加熱段階を短時間で行えば加熱時間全体がさほど長時間とならないため、作業効率は低下しない。低温加熱段階を行うことにより塗着揮発分を上昇させることができるため混相の発生が防止されると考えられる。
【0025】
本発明の低温加熱段階では、基材の表面上に形成した熱硬化性塗料の層を硬化温度の25〜80%、好ましくは35〜60%の温度で硬化時間の5〜30%、好ましくは10〜20%の時間加熱する。硬化温度及び硬化時間が範囲を外れると効果が不十分になる。例えば、硬化温度が140℃の場合は、低温加熱温度は35〜112℃、好ましくは49〜84℃である。硬化温度が100℃の場合は、低温加熱温度は25〜80℃、好ましくは35〜60℃である。また、硬化時間が30分の場合は、低温加熱時間は2〜9分、好ましくは3〜6分である。硬化時間が60分の場合は、低温加熱時間は3〜18分、好ましくは6〜12分である。
【0026】
高温加熱段階では、熱硬化性塗料の層を硬化温度の80%を超え、120%以下の温度、好ましくは90〜110%の温度で硬化時間の30〜130%、好ましくは50〜100%の時間更に加熱する。硬化温度及び硬化時間の上限を超えると、応力ひずみが溜まり塗膜にクラックが発生する場合がある。例えば、硬化温度が140℃の場合は、高温加熱温度は112℃を超え168℃以下、好ましくは126〜154℃である。硬化温度が100℃の場合は、高温加熱温度は80℃を超え120℃以下、好ましくは90〜110℃である。また、硬化時間が30分の場合は、高温加熱時間は10〜40分、好ましくは15〜30分である。硬化時間が60分の場合は、高温加熱時間は18〜78分、好ましくは30〜60分である。
【0027】
加熱は、当業者に知られた方法を用いて行うことができる。一般には、上記加熱温度に設定した乾燥炉に熱硬化性塗料を塗布した被塗材料を保持すればよい。
【0028】
具体例的には、低温加熱温度に調節した乾燥炉に熱硬化性塗料を塗布した被塗材料を入れて低温加熱時間保持し、その後、乾燥炉の温度を高温加熱温度に調節して高温加熱時間保持する操作;
両端に出入り口が開口し、その中をベルトコンベアにより移動させて乾燥を行うンネル型乾燥機を準備し、トンネルの内部を低温領域と高温領域とに分けて低温領域は低温加熱温度に、高温領域は高温加熱温度に温度設定をしておき、まず、低温領域を低温加熱時間をかけて通過させ、その後、高温領域を高温加熱時間をかけて通過させる操作;及び
低温加熱温度に温度を調節した第1の乾燥炉と、高温加熱温度に温度を調節した第2の乾燥炉とを準備し、熱硬化性塗料を塗布した被塗材料をまず第1の乾燥炉中に低温加熱時間保持し、次いで第2の乾燥炉中に高温加熱時間保持する操作;等が挙げられる。
【0029】
中塗り塗膜
本発明の塗膜形成方法において、中塗り塗膜の形成には中塗り塗料が用いられ、この中塗り塗料は、ウレタン変性ポリエステル樹脂(a)、メラミン樹脂(b)、ブロックイソシアネート化合物(c)、コアシェル構造を有する非水デイスパージョン樹脂(d)、及び扁平顔料(e)を含有する。この中塗り塗料は、更に、有機系や無機系の各種着色顔料及び体質顔料等を含有することができる。
【0030】
ウレタン変性ポリエステル樹脂(a)は、水酸基含有ポリエステル樹脂と、脂肪族イソシアネート化合物とを反応させて得ることができる。
【0031】
一般にポリエステル樹脂は、カルボン酸、酸無水物、酸塩化物などの酸成分と1価または多価アルコールとを重縮合することによって製造することができる。本発明で用いられる水酸基含有ポリエステル樹脂は、重縮合反応に用いられる酸成分中に、イソフタル酸を、酸成分の全モル数を基準にして80モル%以上含有する。酸成分中のイソフタル酸の量が80モル%を下回ると、得られる水酸基含有ポリエステル樹脂のガラス転移点(Tg)が所望の範囲より低くなり、好ましくない。
【0032】
イソフタル酸以外の酸成分としては、例えば、フタル酸、無水フタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロフタル酸、メチルテトラヒドロ無水フタル酸、無水ハイミック酸、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、テレフタル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、コハク酸、無水コハク酸、ドデセニルコハク酸、ドデセニル無水コハク酸等が挙げられる。また、酸成分として、ポリエステル樹脂の製造で通常使用される、多価カルボン酸及び酸無水物以外の酸を含んでもよい。このような酸として、例えばモノカルボン酸、ヒドロキシカルボン酸を挙げることができる。水酸基含有ポリエステル樹脂の製造に用いる酸成分として、イソフタル酸を単独で用いてもよく、またイソフタル酸と他の酸とを混合して用いてもよい。
【0033】
多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジオール、2,2−ジメチル−3−ヒドロキシプロピル−2,2−ジメチル−3−ヒドロキシプロピオネート、2,2,4−トリメチル−1,3−ペンタンジオール、ポリテトラメチレンエーテルグリコール、ポリカプロラクトンポリオール、グリセリン、ソルビトール、アンニトール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ヘキサントリオール、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。
【0034】
水酸基含有ポリエステル樹脂の製造において、上記の酸成分と多価アルコールとは別に、これらの成分と反応しうる他の成分を用いてもよい。このような他の成分として、例えば、酸塩化物、ラクトン類などの酸誘導体、エポキサイド化合物、並びに乾性油、反乾性油及びそれらの脂肪酸誘導体などを挙げることができる。ラクトン類は、多価カルボン酸及び多価アルコールのポリエステル樹脂類へ開環付加してグラフト鎖を形成し得る。ラクトン類として、例えばβ−プロピオラクロン、ジメチルプロピオラクトン、ブチルラクトン、γ−バレロラクトン、ε−カプロラクトン、γ−カプロラクトン、γ−カプリロラクトン、クロトラクトン、δ−バレロラクトン、δ−カプロラクトン等が挙げられるが、なかでもε−カプロラクトンが最も好ましい。具体的には、例えばカージュラE(シェル化学社製)等のモノエポキサイド化合物、ラクトン類がある。
【0035】
水酸基含有ポリエステル樹脂は、40〜80℃、好ましくは45〜75℃のガラス転移点(Tg)を有する。上記ガラス転移点(Tg)が40℃を下回ると塗膜硬度が低下し、80℃を上回ると耐チッピング性能が低下する。
【0036】
脂肪族イソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサン−1,4−ジイソシアネート、ジシクロヘキシルメタン−4,4−ジイソシアネート、メチルシクロヘキサンジイソシアネート、及びイソホロンジイソシアネートなどを挙げることができる。
【0037】
なかでも、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートを用いることが、塗膜の耐チッピング性能や耐候性の観点から好ましい。これらのビュレット体、イソシアヌレート体、及びアダクト体を用いてもよい。
【0038】
水酸基含有ポリエステル樹脂と脂肪族イソシアネート化合物との反応は、当業者に知られている方法で行うことができる。
【0039】
ウレタン変性ポリエステル樹脂(a)は数平均分子量(Mn)が1500〜3000、好ましくは1700〜2500である。1500より小さいと作業性および硬化性が十分でなく、3000を超えると塗装時の不揮発分が低くなりすぎ、かえって作業性が悪くなる。なお、本明細書では、数平均分子量はポリスチレンを標準とするGPC法により決定される。
【0040】
ウレタン変性ポリエステル樹脂(a)は、好ましくは30〜180の水酸基価(OHV)を有し、更に好ましくは40〜160の水酸基価を有する。水酸基価が180を超えると塗膜の耐水性が低下し、30を下回ると塗膜の硬化性が低下する。また、3〜30mgKOH/gの酸価(AV)を有することが好ましく、更に好ましくは5〜25mgKOH/gである。酸価が30mgKOH/gを超えると塗膜の耐水性が低下し、3mgKOH/gを下回ると塗膜の硬化性が低下する。
【0041】
中塗り塗料に含まれるウレタン変性ポリエステル樹脂(a)の量は、塗料中の樹脂固形分重量を基準にして40〜56重量%、好ましくは43〜50重量%である。含有量が40重量%を下回ると耐チッピング性能が不十分となり、56重量%を上回ると塗膜硬度が低下する。
【0042】
中塗り塗料の成分としてウレタン変性ポリエステル樹脂を含有させることで、塗膜の粘性が向上し、塗膜の耐チッピング性も向上すると考えられる。
【0043】
以下に説明するメラミン樹脂(b)及びブロックイソシアネート化合物(c)は、ウレタン変性ポリエステル樹脂(a)を硬化させるための成分である。
【0044】
メラミン樹脂(b)は、特に限定されるものではなく、メチル化メラミン樹脂、ブチル化メラミン樹脂あるいはメチル、ブチル混合型メラミン樹脂を用いることができる。例えば三井東圧株式会社から市販されている「サイメル−303」、「サイメル254」、「ユーバン128」、「ユーバン20N60」、住友化学工業株式会社から市販されている「スミマールシリーズ」等が挙げられる。
【0045】
中塗り塗料に含まれるメラミン樹脂(b)の量は塗料中の樹脂固形分重量を基準にして10〜30重量%、より好ましくは、15〜25重量%である。メラミン樹脂の含有量が10重量%を下回ると塗膜の硬化が不十分となり、20重量%を上回ると硬化塗膜が堅くなりすぎ脆くなる。
【0046】
ブロックイソシアネート化合物(c)は、脂肪族イソシアネート又はそれらの誘導体にブロック剤を付加させて得ることができる。ブロックイソシアネート化合物は、加熱されるとブロック剤が解離してイソシアネート基が発生し、ウレタン変性ポリエステル樹脂中の水酸基と反応し硬化させる。
【0047】
脂肪族イソシアネート及び誘導体の例には、ウレタン変性ポリエステル樹脂を調製する際に使用した化合物が挙げられる。ブロック剤の例には、アセチルアセトン、アセト酢酸エチル、マロン酸エチルなどの活性メチレン基を有する化合物が挙げられる。かかるブロック剤を使用することで、塗膜の粘性が向上し、塗膜の耐チッピング性も向上する。
【0048】
このようなブロックイソシアネート化合物は、例えば、旭化成社より、活性メチレン型ブロックイソシアネート「デュラネートMF−K60X」として市販されている。
【0049】
中塗り塗料に含まれるブロックイソシアネート化合物(c)の量は、塗料中の樹脂固形分重量を基準にして15〜30重量%、好ましくは17〜25重量%である。含有量が15重量%を下回ると硬化性が不十分となり、30重量%を上回ると硬化膜が堅くなりすぎ脆くなる。
【0050】
コアシェル構造を有する非水デイスパージョン樹脂(d)は、分散安定樹脂と有機溶剤との混合液中で、重合性単量体を共重合させることにより、この混合液に不溶な非架橋樹脂粒子として調製することができる。非架橋樹脂粒子を得るため分散安定樹脂の存在下で共重合させる単量体は、ラジカル重合性の不飽和単量体であれば特に制限されない。
【0051】
但し、上記分散安定樹脂及び非水ディスパージョンを合成するためには、官能基を有する重合性単量体を用いることが好ましい。官能基を有する非水ディスパージョンは官能基を含有せしめた分散安定樹脂と共に後記硬化剤と反応して三次元に架橋した塗膜を形成することができるからである。
【0052】
上記分散安定樹脂は、非水ディスパージョンを有機溶剤中で安定に合成できるものであれば特に限定されるものではない。具体的には、水酸基価が10〜250、好ましくは20〜180であり、酸価が0〜100mgKOH/g、好ましくは0〜50mgKOH/g、数平均分子量が800〜100000、好ましくは1000〜20000であるアクリル樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂等を用いることが好ましい。上限を超えると、樹脂のハンドリング性が低下し、非水ディスパージョン自身のハンドリングも低下する。下限を下回ると塗膜にした場合に樹脂が脱離したり、粒子の安定性が低下する恐れがある。
【0053】
上記分散安定樹脂の合成方法は、特に限定されるものではないが、ラジカル重合開始剤の存在下でラジカル重合により得る方法、縮合反応や付加反応により得る方法等が好ましいものとして挙げられる。更に、上記分散安定樹脂を得るために用いられる単量体としては、樹脂の特性に応じて適宜選択され得るが、後述する非水ディスパージョンを合成するために用いられる重合性単量体が有するような、水酸基、酸基等の官能基を有するものを用いることが好ましく、更に必要に応じて、グリシジル基、イソシアネート基等の官能基を有するものを用いてもよい。
【0054】
また、上記分散安定樹脂と上記重合性単量体との構成比率は目的に応じて任意に選択できるが、例えば、該両成分の合計重量に基いて分散安定樹脂は3〜80重量%、特に5〜60重量%、重合性単量体は97〜20重量%、特に95〜40重量%が好ましい。さらに有機溶剤中における分散安定樹脂と重合性単量体との合計濃度は合計重量を基準に、30〜80重量%、特に40〜60重量%が好ましい。
【0055】
上記非水ディスパージョンは、分散安定樹脂の存在下でラジカル重合性の単量体を重合させることによって得ることができる。この非水ディスパージョンとしては、水酸基価が50〜400、好ましくは100〜300であり、酸価が0〜200mgKOH/g、好ましくは0〜50mgKOH/g、平均粒径(D50)が0.05〜10μm、好ましくは0.1〜2μmであるものが好ましい。下限を超えると粒子形状を維持できず、上限を超えると塗料に分散した場合の安定性が低下する。
【0056】
上記非水ディスパージョンを合成するために用いられる官能基を有する重合性単量体としてその代表的なものは以下のとおりである。水酸基を有するものとして、例えば、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、メタクリル酸ヒドロキシメチル、アリルアルコール、(メタ)メタクリル酸ヒドロキシエチルとε−カプロラクトンとの付加物等が挙げられる。
【0057】
一方、酸性基を有するものとしては、カルボキシル基、スルホン酸基等を有する重合性単量体が挙げられる。カルボキシル基を有するものの例としては、(メタ)アクリル酸、クロトン酸、エタアクリル酸、プロピルアクリル酸、イソプロピルアクリル酸、イタコン酸、無水マレイン酸、フマール酸等が挙げられる。スルホン酸基を有する重合性単量体の例としては、t−ブチルアクリルアミドスルホン酸等が挙げられる。酸性基を有する重合性単量体を用いる場合は、酸性基の一部はカルボキシル基であることが好ましい。
【0058】
また、(メタ)アクリル酸グリシジル等のグリシジル基含有不飽和単量体、m−イソプロペニル−α,α−ジメチルベンジルイソシアネート、アクリル酸イソシアナトエチル等のイソシアネート基含有不飽和単量体等が官能基を有する重合性単量体として挙げられる。
【0059】
この他の重合性単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、メタクリル酸トリデシル等の(メタ)アクリル酸アルキルエステル、油脂肪酸とオキシラン構造を有するアクリル酸またはメタクリル酸エステルモノマーとの付加反応物(例えば、ステアリン酸とグリシジルメタクリレートの付加反応物等)、C以上のアルキル基を含むオキシラン化合物とアクリル酸またはメタクリル酸との付加反応物、スチレン、α−メチルスチレン、ο−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン、(メタ)アクリル酸ベンジル、イタコン酸エステル(イタコン酸ジメチルなど)、マレイン酸エステル(マイレン酸ジメチルなど)、フマール酸エステル(フマール酸ジメチルなど)、その他に、アクリロニトリル、メタクリロニトリル、メチルイソプロペニルケトン、酢酸ビニル、ベオバモノマー(シェル化学社製、商品名)、ビニルプロピオネート、ビニルピバレート、プロピオン酸ビニル、エチレン、プロピレン、ブタジエン、N,N−ジメチルアミノエチルアクリレート、N,N−ジメチルアミノエチルメタクリレート、アクリルアミド、ビニルピリジン等の重合性単量体が挙げられる。
【0060】
上記非水ディスパージョンを得るための重合反応は、ラジカル重合開始剤の存在下で行うことが好ましい。ラジカル重合開始剤としては、例えば2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系開始剤、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオクトエート等が挙げられる。これらの開始剤の使用量は重合性単量体合計100重量部あたり0.2〜10重量部、好ましくは0.5〜5重量部が望ましい。分散安定樹脂を含有する有機溶剤中での非水ディスパージョンを得るための重合反応は、一般に60〜160℃程度の温度範囲で約1〜15時間行うことが好ましい。
【0061】
また、上記非水ディスパージョンは架橋重合体微粒子と異なり、塗料中においては粒子成分であるが、塗膜においては粒子構造を形成しない特徴を有する。つまり非水ディスパージョンは粒子内に架橋部位が存在しないため、焼き付け過程で粒子形状が変化し、樹脂成分となり得る点が架橋重合体微粒子とは異なる。
【0062】
更に、例えば色材、48巻(1975)第28頁〜第34頁中に記載されているNAD塗料に用いられるNAD(Non Aqueous Dispersion、非水系重合体分散液)と言われる樹脂粒子も使用することができる。
【0063】
中塗り塗料中に含まれる非水デイスパージョン樹脂(d)の量は、塗料中の樹脂固形分重量を基準にして4〜15重量%、好ましくは5〜12重量%である。含有量が4重量%を下回ると塗膜外観が不十分となり、15重量%を上回ると耐チッピング性能が低下する。
【0064】
非水デイスパージョン樹脂(d)を使用することで塗膜の界面制御が容易になり、仕上がり外観が向上する。
【0065】
偏平顔料(e)としては、マイカ、アルミナ、タルク及びシリカ等を用いることができるが、タルクを用いることがチッピング性能の観点から好ましい。
【0066】
扁平顔料(e)の寸法は、長径が1〜10μmであり、数平均粒径が2〜6μmであることが好ましい。長径が上記範囲外であると塗膜外観が劣ったり、十分な耐チッピング性能が出なくなり、数平均粒径が上記範囲外であると同様に塗膜外観が劣ったり、十分な耐チッピング性能が出なくなる。
【0067】
扁平顔料(e)の含有量は、塗料中の樹脂固形分重量を100重量部として、0.4〜2重量部である。0.5〜1.5重量部であることが更に好ましい。上記範囲外では、下地塗膜との付着性が低下するので十分なチッピング性能を得られない。
【0068】
上記その他に含有させることができる樹脂としては、特に限定されるものではなく、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂等を挙げることができ、1種または2種以上を併用して用いることができる。
【0069】
また着色顔料として、例えば有機系のアゾキレート系顔料、不溶性アゾ系顔料、縮合アゾ系顔料、フタロシアニン系顔料、インジゴ顔料、ペリノン系顔料、ペリレン系顔料、ジオキサン系顔料、キナクリドン系顔料、イソインドリノン系顔料、金属錯体顔料等が挙げられ、無機系では黄鉛、黄色酸化鉄、ベンガラ、カーボンブラック、二酸化チタン等を用いることができる。また、体質顔料として、炭酸カルシウム、硫酸バリウム、アルミニウム粉、カオリン等が用いることができる。
【0070】
標準的には、カーボンブラックと二酸化チタンとを主要顔料としたグレー系のものが用いられる。更に、上塗りとの色相を合わせたものや各種の着色顔料を組み合わせたものを用いることもできる。
【0071】
また、上記中塗り塗料には、上塗り塗膜とのなじみ防止、塗装作業性を確保するために、粘性制御剤を添加することができる。粘性制御剤としては、一般にチクソトロピー性を示すものを含有でき、例えば、脂肪酸アマイドの膨潤分散体、アマイド系脂肪酸、長鎖ポリアミノアマイドの燐酸塩等のポリアマイド系のもの、酸化ポリエチレンのコロイド状膨潤分散体等のポリエチレン系等のもの、有機酸スメクタイト粘土、モンモリロナイト等の有機ベントナイト系のもの、ケイ酸アルミ、硫酸バリウム等の無機顔料、顔料の形状により粘性が発現する扁平顔料、架橋樹脂粒子等を粘性制御剤として挙げることができる。
【0072】
本発明で用いられる中塗り塗料の塗装時の全固形分量は、30〜80重量%であり、好ましくは35〜65重量%である。この範囲外では塗料安定性が低下する。また上限を超えると、粘性が高すぎて塗膜外観が低下し、下限を下回ると粘性が低すぎてなじみやムラ等の外観不良が発生する。
【0073】
本発明に用いられる中塗り塗料中には、上記成分の他に塗料に通常添加される添加剤、例えば、表面調整剤、酸化防止剤、消泡剤等を配合してもよい。これらの配合量は当業者の公知の範囲である。
【0074】
また、ウレタン変性ポリエステル樹脂その他に別の樹脂を含有させることもできる。このような樹脂としては、特に限定されるものではなく、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂等を挙げることができ、1種または2種以上を併用して用いることができる。
【0075】
本発明に用いられる塗料組成物の製造方法は、後述するものを含めて、特に限定されず、顔料等の配合物をニーダーまたはロール、SGミル等を用いて混練、分散する等の当業者に周知の全ての方法を用い得る。
【0076】
ベース塗膜
本発明の塗膜形成方法において用いられるベース塗料は、クリヤー塗料と共に上塗り塗膜を構成するために用いるものである。このベース塗料には、塗膜形成性樹脂、硬化剤、着色顔料、必要に応じて光輝性顔料等が含まれる。
【0077】
上記ベース塗料に含有される塗膜形成性樹脂としては、特に限定されるものではなく、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂等を好ましいものとして挙げることができ、1種または2種以上を併用して用いることができる。
【0078】
上記塗膜形成性樹脂は、硬化剤と組み合わせて用いることができるが、得られた塗膜の諸性能、コストの点からアミノ樹脂および/またはブロックイソシアネート樹脂が好ましいものとして用いられる。
【0079】
上記硬化剤の含有量は、塗膜形成性樹脂の固形分重量に対して20〜60重量%とすることが好ましく、更に好ましくは30〜50重量%である。含有量が20重量%を下回ると硬化性が不十分となり、60重量%を上回ると硬化膜が堅くなりすぎ脆くなる。
【0080】
また、上記着色顔料としては、例えば、上述の中塗り塗料についての記載で挙げたもの等を含有することができる。
【0081】
上記ベース塗料に必要に応じて含まれる光輝性顔料としては、形状は特に限定されず、更に着色されていても良いが、例えば、平均粒径(D50)が2〜50μmであり、且つ厚さが0.1〜5μmであるものが好ましい。また、平均粒径が10〜35μmの範囲のものが光輝感に優れ、更に好適に用いられる。光輝性顔料の、上記塗料中の顔料濃度(PWC)は、一般的に20.0%重量以下である。上限を超えると塗膜外観が低下する。好ましくは、0.01〜18.0重量%であり、より好ましくは、0.1〜15.0重量%である。光輝剤の含有量が20.0重量%を超えると、塗膜外観が低下する。
【0082】
上記光輝性顔料としては、アルミニウム、銅、亜鉛、鉄、ニッケル、スズ、酸化アルミニウム等の金属または合金等の無着色あるいは着色された金属製光輝剤及びその混合物が挙げられる。更に、干渉マイカ顔料、ホワイトマイカ顔料、グラファイト顔料その他の着色、有色扁平顔料等を併用しても良い。
【0083】
上記光輝性顔料およびその他の全ての顔料を含めた塗料中の全顔料濃度(PWC)としては、0.1〜50重量%であり、好ましくは、0.5〜40重量%であり、より好ましくは、1.0〜30重量%である。上限を超えると塗膜外観が低下する。
【0084】
更に、上記ベース塗料には、上述の中塗り塗料同様に、塗装作業性を確保するために、粘性制御剤を添加することが好ましい。粘性制御剤は、ムラ及びたれのない塗膜を良好に形成するために用いられるのであり、一般にチクソトロピー性を示すものを含有できる。このようなものとして、例えば、上述の中塗り塗料についての記載で挙げたものを含有することができる。
【0085】
本発明に用いられるベース塗料中には、上記成分の他に塗料に通常添加される添加剤、例えば、表面調整剤、増粘剤、酸化防止剤、紫外線防止剤、消泡剤等を配合してもよい。これらの配合量は当業者の公知の範囲である。
【0086】
本発明で用いられるベース塗料の塗装時の全固形分量は、10〜60重量%であり、好ましくは15〜50重量%である。上限および下限を超えると塗料安定性が低下する。上限を超えると、粘性が高すぎて塗膜外観が低下し、下限を下回ると粘性が低すぎてなじみやムラ等の外観不良が発生する。
【0087】
クリヤー塗膜
上記クリヤー塗膜の形成にはクリヤー塗料が用いられる。このクリヤー塗料は、特に限定されず、塗膜形成性熱硬化性樹脂および硬化剤等を含有するものを利用できる。このクリヤー塗料の形態としては、溶剤型、水性型および粉体型のものが挙げられる。
【0088】
上記溶剤型クリヤー塗料の好ましい例としては、透明性あるいは耐酸エッチング性等の点から、アクリル樹脂および/またはポリエステル樹脂とアミノ樹脂との組合わせ、アクリル樹脂および/またはポリエステル樹脂とイソシアネート化合物との組合わせ、あるいはカルボン酸・エポキシ硬化系を有するアクリル樹脂および/またはポリエステル樹脂等が挙げられる。
【0089】
また、上記水性型クリヤー塗料の例としては、上記溶剤型クリヤー塗料の例として挙げたものに含有される塗膜形成性樹脂を、塩基で中和して水性化した樹脂を含有するものが挙げることができる。この中和は重合の前又は後に、ジメチルエタノールアミンおよびトリエチルアミンのような3級アミンを添加することにより行うことができる。
【0090】
一方、粉体型クリヤー塗料としては、熱可塑性および熱硬化性粉体塗料のような通常の粉体塗料を用い得ることができる。良好な物性の塗膜が得られるため、熱硬化性粉体塗料が好ましい。熱硬化性粉体塗料の具体的なものとしては、エポキシ系、アクリル系およびポリエステル樹脂系の粉体クリヤー塗料等が挙げられるが、耐候性が良好なアクリル系粉体クリヤー塗料が特に好ましい。
【0091】
本発明に用いる粉体型クリヤー塗料として、硬化時の揮散物が無く、良好な外観が得られ、そして黄変が少ないことから、エポキシ含有アクリル樹脂/多価カルボン酸の系の粉体塗料が特に好ましい。
【0092】
更に、上記クリヤー塗料には、上述の中塗り塗料同様に、塗装作業性を確保するために、粘性制御剤を添加されていることが好ましい。粘性制御剤は、一般にチクソトロピー性を示すものを含有できる。このようなものとして、例えば、上述の中塗り塗料についての記載で挙げたものを含有することができる。また必要により、硬化触媒、表面調整剤等を含むことができる。
【0093】
基材
本発明の塗膜形成方法は、種々の基材、例えば金属、プラスチック、発泡体等、特に金属表面、および鋳造物に有利に用い得るが、カチオン電着塗装可能な金属製品に対し、特に好適に使用できる。
【0094】
上記金属製品としては、例えば、鉄、銅、アルミニウム、スズ、亜鉛等およびこれらの金属を含む合金が挙げられる。具体的には、乗用車、トラック、オートバイ、バス等の自動車車体および部品が挙げられる。これらの金属は予めリン酸塩、クロム酸塩等で化成処理されたものが特に好ましい。
【0095】
また、本発明の塗膜形成方法に用いられる基材には、化成処理された鋼板上に電着塗膜が形成されていても良い。電着塗膜を形成する電着塗料としては、カチオン型及びアニオン型を使用できるが、カチオン型電着塗料組成物が防食性において優れた積層塗膜を与えるため好ましい。
【0096】
【実施例】
以下、具体的な実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例により限定されるものではない。尚、以下に於いて「部」及び「%」は重量基準である。
【0097】
製造例1
ウレタン変性ポリエステル樹脂(a)の製造
窒素導入管、撹拌機、温度調節機、滴下ロートおよびデカンターを備えた冷却管を取り付けた2Lの反応容器にイソフタル酸440部、ヘキサヒドロフタル酸20部、アゼライン酸40部、トリメチロールプロパン300部及びネオペンチルグリコール200部とを仕込み、加熱により原料が溶解し撹拌可能となったところで、ジブチル錫オキサイド0.2部を投入し、撹拌を開始し、反応層温度を180から220℃まで3時間かけて徐々に昇温した。生成する縮合水は系外へ留去した。220℃に達したところで、1時間保温し、反応層内にキシレン20部を徐々に添加し、溶剤存在化で縮合反応を進行させた。樹脂酸価が10mgKOH/gに達したところで、100℃に冷却し、ヘキサメチレンジイソシアネート100部を30分間かけて徐々に添加した。更に、1時間保持後、キシレン200部および酢酸ブチル200部を加え、固形分70%、数平均分子量2000、酸価8mgKOH/g、水酸基価120、樹脂Tg60℃のウレタン変性ポリエステル樹脂を得た。
【0098】
製造例2
非水ディスパージョンの製造
(a)分散安定樹脂の製造
攪拌機、温度制御装置、還流冷却器を備えた容器に酢酸ブチル90部を仕込んだ。次に下記組成の溶液
【0099】
【表1】

Figure 2004275966
【0100】
の内20部を加え、攪拌しながら加熱し、温度を上昇させた。110℃で上記混合溶液の残り85部を3時間で滴下し、次いでアゾビスイソブチロニトリル0.5部と酢酸ブチル10部からなる溶液を30分間で滴下した。反応溶液をさらに2時間攪拌還流させて樹脂への変化率を上昇させた後、反応を終了させ、固形分50%、数平均分子量5600及びSP値9.5のアクリル樹脂を得た。
【0101】
(b)非水ディスパージョンの製造
攪拌機、冷却器、温度制御装置を備えた容器に酢酸ブチル90部、上記の(a)分散安定樹脂の製造で得たアクリル樹脂60部を仕込んだ。次に下記組成の溶液
【0102】
【表2】
Figure 2004275966
【0103】
を100℃で3時間で滴下し、次いでアゾビスイソブチロニトリル0.1部と酢酸ブチル1部からなる溶液を30分間で滴下した。反応溶液をさらに1時間攪拌を続けたところ、固形分60%、粒子径180nmのエマルジョンを得た。このエマルジョンを酢酸ブチルで希釈し、粘度300cps(25℃)、粒子径180nmの非水ディスパージョン含量40%のコアシェル型酢酸ブチル分散体を得た。この非水ディスパージョン樹脂のTgは23℃、水酸基価は162及びSP値は11.8であり、分散安定樹脂であるシェル部とこの非水ディスパージョン樹脂全体のSP値の差は2.3であった。
【0104】
実施例1
中塗り塗料
1Lのベッセルに、先の製造例で得られたウレタン変性ポリエステル樹脂ワニス107部、CR−97(石原産業社製酸化チタン)280部、MA−100(三菱化学社製カーボンブラック顔料)13部、LMS−100(富士タルク社製鱗片状タルク)7部、酢酸ブチル47部およびキシレン47部を仕込み、仕込み重量と同量のGB503M(粒径1.6mmガラスビーズ)を投入し、卓上SGミルを用いて室温で3時間分散し、灰色の顔料ペーストとした。グラインドゲージによる分散終了時の粒度は5μm以下であった。ガラスビーズを濾過して顔料ペーストを得た。この顔料ペーストに、表3に示した配合になるように中塗り塗料を調製した。更に、エトキシエチルプロピオネート/S−100(エクソン社製芳香族炭化水素溶剤)=1/1の混合溶剤で、No.4フォードカップを用いて19秒/20℃に希釈調整した。塗布時の不揮発分は49%であった。
【0105】
【表3】
Figure 2004275966
【0106】
ベース塗料
日本ペイント社製アクリルメラミン系メタリックベース塗料「オルガTO H600 18J グリーンメタリック」を用い、エトキシエチルプロピオネート/S−100(エクソン社製芳香族炭化水素溶剤)/トルエン=1/1/2の混合溶剤で、No.3フォードカップを用いて17秒/20℃に希釈調整した。塗布時の塗料不揮発分は31%であった。塗着時の不揮発分は65%であった。
【0107】
クリヤー塗料
日本ペイント社製酸エポキシ硬化系クリヤー塗料「マック O−1600 クリヤー」を用い、エトキシエチルプロピオネート/S−100(エクソン社製芳香族炭化水素溶剤)=1/1の混合溶剤で、No.4フォードカップを用いて26秒/20℃に希釈調整した。塗布時の塗料不揮発分は50%であった。また塗着時の不揮発分は61%であった。
【0108】
塗膜形成方法
厚さ0.8mm、縦30cm、横10cmのリン酸亜鉛処理したSPC鋼板に、カチオン電着塗料「パワートップV−20」(日本ペイント社製)を、乾燥膜厚が20μmとなるように電着塗装し、160℃で30分間焼き付けた。次に、電着塗膜が形成された鋼板を移動体に貼着し、移動させながら先の中塗り塗料を乾燥膜厚が20μmとなるように「マイクロベル」(回転霧化型静電塗装機)で塗装し、10分間放置してセッティングを行った。
【0109】
次いで、先のベース塗料を、乾燥膜厚15μmとなるように「マイクロベル」と「メタベル」で2ステージ塗装した。2回の塗布の間に、2.5分間のインターバルをおいた。2回目の塗布後、8分間セッティングを行った。次に、先のクリヤー塗料を、乾燥膜厚35μmとなるように「マイクロベル」により、1ステージ塗装し、10分間セッティングを行った。得られた積層塗膜の硬化条件は、硬化温度140℃及び硬化時間30分である。
【0110】
このように作製した塗装板を、40℃に設定された第一の乾燥炉内へ入れ、5分間保持した後140℃に設定された第二の乾燥炉へ移し、20分間保持した。その後、乾燥炉から塗装板を取り出して室温になるまで放置した。
【0111】
(1)硬化塗膜の仕上がり外観を、つや感の有無について目視評価した。試験結果を表5に示す。
【0112】
【表4】
評価基準
Figure 2004275966
【0113】
(2)次いで、硬化塗膜の表面状態をビックケミー社製塗膜外観測定装置「ウェーブスキャンDOI」を用いて試験した。試験結果を表5に示す。
【0114】
測定値Waは塗膜の肌のうねりのうち0.1〜0.3mmの粗度のものの量を意味し、塗膜のつや感を表している。Wcは塗膜の肌のうねりのうち1〜3mmの粗度のものの量を意味し、塗膜の下地隠蔽性を表している。Wdは塗膜の肌のうねりのうち3〜10mmの粗度のものの量を意味し、塗膜の平滑性を表している。各測定値とも数値が小さいほど良好である。
【0115】
(3)更に、得られた塗板の耐チッピング性を以下の様にして評価した。試験結果を表5に示す。
【0116】
グラベロテスター試験機(スガ試験機社製)を用いて、7号砕石300個を35cmの距離から3.0kgf/cmの空気圧で、塗膜に45°の角度で衝突させた。水洗乾燥後、ニチバン社製工業用ガムテープを用いて剥離テストを行い、その後、塗膜のはがれの程度を、剥離径と件数とに分け、目視により観察し評価した。
【0117】
実施例2〜4
硬化温度及び硬化時間を表5に示すように変更すること以外は実施例1に記載された方法と同様にして硬化塗膜を作製し、試験した。試験結果を表5に示す。
【0118】
比較例1
未硬化塗膜を焼付け硬化させる工程を、140℃で30分間一段階加熱することによって行うこと以外は実施例1に記載された方法と同様にして硬化塗膜を作製し、試験した。試験結果を表6に示す。
【0119】
比較例2
中塗り塗料として日本ペイント社製ポリエステル・メラミン系中塗り塗料「オルガTO H870グレー」を用い、硬化温度及び硬化時間を表6に示すように変更すること以外は実施例1に記載された方法と同様にして硬化塗膜を作製し、試験した。試験結果を表6に示す。
【0120】
参考例1
厚さ0.8mm、縦30cm、横10cmのリン酸亜鉛処理したSPC鋼板に、カチオン電着塗料「パワートップV−20」(日本ペイント社製)を、乾燥膜厚が20μmとなるように電着塗装し、160℃で30分間焼き付けた。次に、電着塗膜が形成された鋼板を移動体に貼着し、移動させながら先の中塗り塗料を乾燥膜厚が20μmとなるように「マイクロベル」(回転霧化型静電塗装機)で塗装し、10分間放置してセッティングを行った。
【0121】
この塗装板を140℃に設定された乾燥炉内へ入れ、20分間保持した。その後、乾燥炉から塗装板を取り出して室温になるまで放置した。この塗装板の上に、実施例1と同様にしてベース塗料及びクリヤー塗料を塗布し、積層塗膜を得た。
【0122】
このように作製した塗装板を、140℃に設定された乾燥炉へ入れ、30分間保持した。その後、乾燥炉から塗装板を取り出して室温になるまで放置した。得られた硬化塗膜を実施例1に記載された方法と同様にして、試験した。試験結果を表6に示す。
【0123】
参考例2
中塗り塗料として日本ペイント社製ポリエステル・メラミン系中塗り塗料「オルガTO H870グレー」を用い、硬化温度及び硬化時間を表6に示すように変更すること以外は参考例1に記載された方法と同様にして硬化塗膜を作製し、試験した。試験結果を表6示す。
【0124】
【表5】
Figure 2004275966
【0125】
【表6】
Figure 2004275966
【0126】
【発明の効果】
本発明の実施例では、3コート1ベーク法により積層塗膜を形成しても3コート2ベーク法と同等のつや感を達成することができた。また、本発明で行った塗装系は、焼付け回数が少ないにもかかわらず、耐チッピング性においても3コート2ベーク法で得られる積層塗膜と同等であった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming a laminated coating film, and more particularly to a method for forming a laminated coating film by a three-coat one-bake method.
[0002]
[Prior art]
As a method of forming a laminated coating film, there are a method of baking and hardening each time a plurality of paints are applied, and a method of simultaneously curing after coating each paint. For example, the two-coat one-bake method is generally performed to form a metallic coating film. Further, as disclosed in JP-A-11-114489 (Patent Document 1), In order to enhance the film quality, a method for forming a coating film in which a color base coating film, a metallic base coating film, and a clear coating film are sequentially formed, and three layers are baked and cured simultaneously has already been proposed.
[0003]
When forming an intermediate coating film, a base coating film, and a clear coating film by the three-coat one-bake method, a baking drying oven for the intermediate coating can be omitted. Therefore, the energy consumption and the coating process time can be reduced, and there are great economical and environmental advantages.
[0004]
However, in the three-coat one-bake method, three layers of coating films are applied wet or dry. Therefore, as compared with the conventional sequential baking method or two-coat one-bake method, the escape route of the solvent is limited, and the non-volatile content of the coating increases. In that case, the solvent contained in one coating film easily moves to the adjacent coating film particularly during heating. For this reason, at the time of baking and curing, a phenomenon called a so-called mixed phase in which adjacent coating films dissolve and components contained in each of the coating films are mixed easily occurs. When the mixed phase occurs, the finished appearance of the coating film deteriorates remarkably. In particular, the mixed phase significantly affects the glossiness of the laminated coating film.
[0005]
On the other hand, Japanese Patent Application Laid-Open No. 2000-84463 (Patent Document 2) discloses a baking and curing process under two heating conditions as a method for forming a coating film having excellent smoothness using a solution-type thermosetting paint. Is described. In this method, the surface of the coating film is prevented from being roughened by gently evaporating the solvent contained in the coating layer.
[0006]
The three-coat one-bake method also has the following problems, for example.
[0007]
When a vehicle travels or the like, the pebbles are flipped up and collide with the coating film, that is, so-called chipping may cause peeling of the coating film. In a conventional method of forming a laminated coating film such as baking each time each paint is applied or a two-coat one-bake method, the undercoating film and the intermediate coating film are each baked and cured. Therefore, a countermeasure against chipping can be taken such as providing an anti-chipping coating on or under the intermediate coating film, or adjusting the brightness with the top coating film, and providing an intermediate coating film with less noticeable chipping. Was.
[0008]
For example, JP-A-2002-249699 (Patent Document 3) and JP-A-9-208882 (Patent Document 4) disclose a chipping primer coating composition and a chipping-resistant coating film formed between laminated coating films. It is described.
[0009]
In Japanese Patent Application Laid-Open No. 6-256714 (Patent Document 5) or Japanese Patent Application Laid-Open No. 6-254482 (Patent Document 6), an improvement in chipping resistance is considered from the viewpoint of the composition of the intermediate coating composition. The level of improvement is insufficient for use in the one-bake method.
[0010]
[Patent Document 1]
JP-A-11-114489
[Patent Document 2]
JP 2000-84463 A
[Patent Document 3]
JP-A-2002-249699
[Patent Document 4]
JP-A-9-208882
[Patent Document 5]
JP-A-6-256714
[Patent Document 6]
JP-A-6-254482
[0011]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to provide a three-coat, one-bake which can form a laminated coating film having excellent finished appearance, particularly excellent glossiness, and excellent chipping resistance. An object of the present invention is to provide a method for forming a coating film by a method.
[0012]
[Means for Solving the Problems]
The present invention provides a process of sequentially applying an intermediate coating, a base coating, and a clear coating on a base material on which an electrodeposition coating film is formed on a wet-on-wet basis, and baking and curing the three coated layers at a time. A coating film forming method including a step of
The baking and curing step includes a low-temperature heating step of heating at a temperature of 25 to 80% of the curing temperature for 5 to 30% of the curing time, and a curing time of more than 80% and not more than 120% of the curing temperature. A method for forming a coating film, comprising a high-temperature heating step of heating for 30 to 130% of time, whereby the above object is achieved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Coating method
In the method for forming a coating film of the present invention, an intermediate coating film with an intermediate coating, a base coating with a base coating, and a clear coating with a clear coating are sequentially formed on a substrate in a wet-on-wet manner.
[0014]
When an automobile body is used as a base material, an electrodeposition coating film is formed in advance on a body steel plate as an anticorrosion coating film (generally referred to as an “undercoat film”). The method of applying the intermediate paint is multi-stage painting by air electrostatic spray painting, preferably two-stage painting, or air electrostatic spray painting and / or so-called “μμ (micro micro) bell”, “μ The coating can be performed by a rotary atomizing electrostatic coating machine called "(micro) bell" or "metabell".
[0015]
The thickness of the dried coating film of the intermediate coating varies depending on the desired use, but in many cases, 10 to 60 μm is useful. If the upper limit is exceeded, the sharpness may deteriorate, or problems such as unevenness or flow may occur at the time of coating. If the lower limit is not reached, the substrate cannot be concealed and the film is cut.
[0016]
In the method for forming a coating film of the present invention, a base coating material and a clear coating material are further applied on the uncured intermediate coating film by wet-on-wet to form a base coating film and a clear coating film.
[0017]
The base paint used to form the base coating film, like the intermediate coating, can be applied by air electrostatic spray coating or a rotary atomizing electrostatic coating machine such as metabell, μμbell, μbell, etc. The dried film thickness of the coating film can be set to 5 to 35 μm, and preferably 7 to 25 μm. When the thickness of the base coating film is more than 35 μm, the sharpness may be deteriorated or unevenness or flow may occur in the coating film. Both of these are not preferable because a film may be discontinuous).
[0018]
The clear coating film is formed to conceal and protect fine projections and the like caused by unevenness and glittering pigments caused by the base coating film when the pigments are included. Specifically, as a coating method, it is preferable to form a coating film by using a rotary atomizing electrostatic coating machine such as a μμ bell, μ bell or the like described above.
[0019]
The dry film thickness of the clear coating film is generally preferably about 10 to 80 μm, and more preferably about 20 to 60 μm. If the upper limit is exceeded, problems such as splashes and sagging may occur at the time of coating. If the lower limit is not reached, unevenness of the base cannot be concealed.
[0020]
The coating films laminated as described above are simultaneously heated and cured. Such a method is generally called a three-coat one-bake method. The thickness of the laminated coating film is often 30 to 300 μm, preferably 50 to 250 μm. When the ratio exceeds the upper limit, the physical properties of the film such as a thermal cycle decrease, and when the ratio is lower than the lower limit, the strength of the film itself decreases.
[0021]
In order to sufficiently cure the coating layer applied on the surface of the substrate, curing conditions are generally set for thermosetting coatings. When the thermosetting paint is cured under conditions that do not satisfy the curing conditions, the crosslinking of the coating film becomes insufficient, and the coating film performance decreases. Generally, a curing temperature (° C.) and a curing time are set as the curing conditions of the thermosetting paint.
[0022]
The curing temperature refers to the temperature of the environment in which the coating is installed when the coating is baked and cured by a conventional one-stage heating method. Generally, it is the set temperature of the drying oven into which the coating film is inserted. The curing temperature is determined by the curing temperature of the crosslinking system of the coating film and the equipment of the practical coating line to be applied.
[0023]
The curing time refers to the time required to cure the coating film at the curing temperature. The optimum curing time is determined empirically according to the type of coating material, the thickness of the coating film, and the like. The curing time is determined as a time at which the coating film performance required for practical use is obtained in consideration of the equipment specifications and the curing temperature of the applicable practical coating line.
[0024]
In the method of the present invention, the steps of baking and curing the three painted layers are performed for a predetermined time, each of which is divided into a low-temperature heating step and a high-temperature heating step. If the low-temperature heating step is performed in a short time, the entire heating time is not so long, so that the working efficiency does not decrease. It is considered that by performing the low-temperature heating step, the volatile components of the coating can be increased, thereby preventing the occurrence of mixed phases.
[0025]
In the low-temperature heating step of the present invention, the layer of the thermosetting paint formed on the surface of the substrate is cured at a temperature of 25 to 80%, preferably 35 to 60% of the curing temperature, for 5 to 30% of the curing time, preferably Heat for 10-20% of the time. If the curing temperature and the curing time are out of the range, the effect will be insufficient. For example, when the curing temperature is 140 ° C, the low-temperature heating temperature is 35 to 112 ° C, preferably 49 to 84 ° C. When the curing temperature is 100C, the low-temperature heating temperature is 25-80C, preferably 35-60C. When the curing time is 30 minutes, the low-temperature heating time is 2 to 9 minutes, preferably 3 to 6 minutes. When the curing time is 60 minutes, the low temperature heating time is 3 to 18 minutes, preferably 6 to 12 minutes.
[0026]
In the high-temperature heating step, the layer of thermosetting coating is cured at a temperature above 80% of the curing temperature and up to 120%, preferably at a temperature of 90-110%, for a curing time of 30-130%, preferably 50-100%. Heat for an additional hour. If the curing temperature and the curing time exceed the upper limits, stress and strain may accumulate and cracks may occur in the coating film. For example, when the curing temperature is 140 ° C., the high-temperature heating temperature is higher than 112 ° C. and 168 ° C. or less, preferably 126 to 154 ° C. When the curing temperature is 100 ° C., the high-temperature heating temperature is higher than 80 ° C. and 120 ° C. or less, preferably 90 to 110 ° C. When the curing time is 30 minutes, the high-temperature heating time is 10 to 40 minutes, preferably 15 to 30 minutes. When the curing time is 60 minutes, the high temperature heating time is 18 to 78 minutes, preferably 30 to 60 minutes.
[0027]
Heating can be performed using methods known to those skilled in the art. Generally, the material to be coated with the thermosetting paint may be held in a drying oven set at the heating temperature.
[0028]
Specifically, the coating material coated with the thermosetting paint is placed in a drying oven adjusted to a low heating temperature, held for a low heating time, and then the drying oven temperature is adjusted to a high heating temperature and then heated to a high temperature. Operation to hold time;
An entrance is opened at both ends, and a tunnel type dryer is prepared for drying by moving it through a belt conveyor.The inside of the tunnel is divided into a low temperature area and a high temperature area. Set the temperature to the high temperature heating temperature, first pass through the low temperature region with low temperature heating time, then pass through the high temperature region with high temperature heating time; and
A first drying oven whose temperature is adjusted to a low heating temperature and a second drying oven whose temperature is adjusted to a high heating temperature are prepared. During the low-temperature heating time, and then in the second drying furnace during the high-temperature heating time.
[0029]
Intermediate coating film
In the method of forming a coating film of the present invention, an intermediate coating material is used for forming the intermediate coating film, and the intermediate coating material is a urethane-modified polyester resin (a), a melamine resin (b), and a blocked isocyanate compound (c). , A non-aqueous dispersion resin having a core-shell structure (d), and a flat pigment (e). The intermediate coating may further contain various organic and inorganic coloring pigments and extenders.
[0030]
The urethane-modified polyester resin (a) can be obtained by reacting a hydroxyl group-containing polyester resin with an aliphatic isocyanate compound.
[0031]
Generally, a polyester resin can be produced by polycondensing an acid component such as a carboxylic acid, an acid anhydride or an acid chloride with a monohydric or polyhydric alcohol. The hydroxyl group-containing polyester resin used in the present invention contains 80% by mole or more of isophthalic acid in the acid component used for the polycondensation reaction, based on the total number of moles of the acid component. If the amount of isophthalic acid in the acid component is less than 80 mol%, the glass transition point (Tg) of the obtained hydroxyl group-containing polyester resin becomes lower than a desired range, which is not preferable.
[0032]
Acid components other than isophthalic acid include, for example, phthalic acid, phthalic anhydride, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, methyltetrahydrophthalic acid, methyltetrahydrophthalic anhydride, Acid, trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, terephthalic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, adipic acid, azelaic acid, sebacic acid, succinic acid, succinic anhydride Acid, dodecenyl succinic acid, dodecenyl succinic anhydride and the like. Further, as the acid component, an acid other than the polyvalent carboxylic acid and the acid anhydride which is usually used in the production of the polyester resin may be included. Such acids include, for example, monocarboxylic acids and hydroxycarboxylic acids. As the acid component used for producing the hydroxyl group-containing polyester resin, isophthalic acid may be used alone, or isophthalic acid and another acid may be used as a mixture.
[0033]
Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, and 1,4-butanediol. , 2,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 2,2-dimethyl-3-hydroxypropyl-2,2-dimethyl-3-hydroxypro Pionate, 2,2,4-trimethyl-1,3-pentanediol, polytetramethylene ether glycol, polycaprolactone polyol, glycerin, sorbitol, annitol, trimethylolethane, trimethylolpropane Trimethylol butane, hexanetriol, pentaerythritol, dipentaerythritol and the like.
[0034]
In the production of the hydroxyl group-containing polyester resin, apart from the acid component and the polyhydric alcohol, other components that can react with these components may be used. Examples of such other components include acid derivatives such as acid chlorides and lactones, epoxide compounds, and drying oils, anti-drying oils, and fatty acid derivatives thereof. Lactones can form a graft chain by ring opening addition of polyhydric carboxylic acids and polyhydric alcohols to polyester resins. As lactones, for example, β-propiolaclone, dimethylpropiolactone, butyllactone, γ-valerolactone, ε-caprolactone, γ-caprolactone, γ-caprolactone, crotlactone, δ-valerolactone, δ-caprolactone, and the like Among them, ε-caprolactone is most preferred. Specifically, there are, for example, monoepoxide compounds such as Kadura E (manufactured by Shell Chemical Company) and lactones.
[0035]
The hydroxyl group-containing polyester resin has a glass transition point (Tg) of 40 to 80C, preferably 45 to 75C. When the glass transition point (Tg) is lower than 40 ° C., the hardness of the coating film decreases, and when it exceeds 80 ° C., the chipping resistance decreases.
[0036]
Examples of the aliphatic isocyanate compound include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, dicyclohexylmethane-4,4-diisocyanate, methylcyclohexane diisocyanate, and isophorone diisocyanate.
[0037]
Among them, it is preferable to use hexamethylene diisocyanate and trimethylhexamethylene diisocyanate from the viewpoints of chipping resistance and weather resistance of the coating film. These burettes, isocyanurates, and adducts may be used.
[0038]
The reaction between the hydroxyl group-containing polyester resin and the aliphatic isocyanate compound can be performed by a method known to those skilled in the art.
[0039]
The urethane-modified polyester resin (a) has a number average molecular weight (Mn) of 1500 to 3000, preferably 1700 to 2500. If it is smaller than 1500, the workability and curability are not sufficient, and if it exceeds 3000, the non-volatile content at the time of coating is too low, and the workability is rather deteriorated. In this specification, the number average molecular weight is determined by a GPC method using polystyrene as a standard.
[0040]
The urethane-modified polyester resin (a) preferably has a hydroxyl value (OHV) of 30 to 180, and more preferably has a hydroxyl value of 40 to 160. When the hydroxyl value exceeds 180, the water resistance of the coating film decreases, and when it is less than 30, the curability of the coating film decreases. Further, it preferably has an acid value (AV) of 3 to 30 mgKOH / g, more preferably 5 to 25 mgKOH / g. When the acid value exceeds 30 mgKOH / g, the water resistance of the coating film decreases, and when the acid value is less than 3 mgKOH / g, the curability of the coating film decreases.
[0041]
The amount of the urethane-modified polyester resin (a) contained in the intermediate coating is 40 to 56% by weight, preferably 43 to 50% by weight, based on the weight of the resin solids in the coating. When the content is less than 40% by weight, the chipping resistance becomes insufficient, and when the content is more than 56% by weight, the coating film hardness decreases.
[0042]
It is thought that by including a urethane-modified polyester resin as a component of the intermediate coating, the viscosity of the coating film is improved and the chipping resistance of the coating film is also improved.
[0043]
The melamine resin (b) and the blocked isocyanate compound (c) described below are components for curing the urethane-modified polyester resin (a).
[0044]
The melamine resin (b) is not particularly limited, and a methylated melamine resin, a butylated melamine resin or a mixed melamine resin of methyl and butyl can be used. For example, "Symer-303", "Symel 254", "U-Van 128", "U-Van 20N60" available from Mitsui Toatsu Co., Ltd., and "Sumimar Series" available from Sumitomo Chemical Co., Ltd., etc. Can be
[0045]
The amount of the melamine resin (b) contained in the intermediate coating is from 10 to 30% by weight, more preferably from 15 to 25% by weight, based on the weight of the resin solids in the coating. When the content of the melamine resin is less than 10% by weight, curing of the coating becomes insufficient, and when it exceeds 20% by weight, the cured coating becomes too hard and brittle.
[0046]
The blocked isocyanate compound (c) can be obtained by adding a blocking agent to an aliphatic isocyanate or a derivative thereof. When heated, the blocked isocyanate compound dissociates the blocking agent to generate an isocyanate group, and reacts with a hydroxyl group in the urethane-modified polyester resin to be cured.
[0047]
Examples of the aliphatic isocyanates and derivatives include the compounds used in preparing the urethane-modified polyester resin. Examples of the blocking agent include compounds having an active methylene group such as acetylacetone, ethyl acetoacetate, and ethyl malonate. By using such a blocking agent, the viscosity of the coating film is improved, and the chipping resistance of the coating film is also improved.
[0048]
Such a blocked isocyanate compound is commercially available, for example, from Asahi Kasei Corporation as an active methylene-type blocked isocyanate “Duranate MF-K60X”.
[0049]
The amount of the blocked isocyanate compound (c) contained in the intermediate coating is 15 to 30% by weight, preferably 17 to 25% by weight, based on the weight of the resin solids in the coating. If the content is less than 15% by weight, the curability will be insufficient, and if it exceeds 30% by weight, the cured film will be too hard and brittle.
[0050]
The non-aqueous dispersion resin (d) having a core-shell structure is obtained by copolymerizing a polymerizable monomer in a mixed solution of a dispersion-stable resin and an organic solvent, thereby forming non-crosslinked resin particles insoluble in the mixed solution. Can be prepared as The monomer to be copolymerized in the presence of a dispersion-stable resin to obtain non-crosslinked resin particles is not particularly limited as long as it is a radically polymerizable unsaturated monomer.
[0051]
However, in order to synthesize the dispersion stable resin and the non-aqueous dispersion, it is preferable to use a polymerizable monomer having a functional group. This is because the non-aqueous dispersion having a functional group can form a three-dimensionally crosslinked coating film by reacting with a later-described curing agent together with the dispersion-stable resin containing the functional group.
[0052]
The dispersion-stable resin is not particularly limited as long as it can stably synthesize a non-aqueous dispersion in an organic solvent. Specifically, the hydroxyl value is 10 to 250, preferably 20 to 180, the acid value is 0 to 100 mgKOH / g, preferably 0 to 50 mgKOH / g, and the number average molecular weight is 800 to 100,000, preferably 1,000 to 20,000. It is preferable to use acrylic resin, polyester resin, polyether resin, polycarbonate resin, polyurethane resin or the like. If the upper limit is exceeded, the handleability of the resin will decrease, and the handling of the non-aqueous dispersion itself will also decrease. If the ratio is below the lower limit, the resin may be detached when the coating film is formed, or the stability of the particles may be reduced.
[0053]
The method for synthesizing the dispersion-stable resin is not particularly limited, but a method obtained by radical polymerization in the presence of a radical polymerization initiator, a method obtained by a condensation reaction or an addition reaction, and the like are preferred. Further, the monomer used to obtain the dispersion-stable resin may be appropriately selected according to the characteristics of the resin, and has a polymerizable monomer used to synthesize a nonaqueous dispersion described below. It is preferable to use such a compound having a functional group such as a hydroxyl group or an acid group. If necessary, a compound having a functional group such as a glycidyl group or an isocyanate group may be used.
[0054]
The composition ratio of the dispersion-stable resin and the polymerizable monomer can be arbitrarily selected according to the purpose. For example, the dispersion-stable resin is 3 to 80% by weight based on the total weight of the two components, and particularly, 5 to 60% by weight, and the polymerizable monomer is preferably 97 to 20% by weight, particularly preferably 95 to 40% by weight. Further, the total concentration of the dispersion-stable resin and the polymerizable monomer in the organic solvent is preferably from 30 to 80% by weight, particularly preferably from 40 to 60% by weight based on the total weight.
[0055]
The non-aqueous dispersion can be obtained by polymerizing a radically polymerizable monomer in the presence of a dispersion stable resin. The non-aqueous dispersion has a hydroxyl value of 50 to 400, preferably 100 to 300, an acid value of 0 to 200 mgKOH / g, preferably 0 to 50 mgKOH / g, and an average particle diameter (D50) Is 0.05 to 10 μm, preferably 0.1 to 2 μm. If it exceeds the lower limit, the particle shape cannot be maintained, and if it exceeds the upper limit, the stability when dispersed in the coating material is reduced.
[0056]
Typical examples of the polymerizable monomer having a functional group used for synthesizing the non-aqueous dispersion are as follows. Examples of those having a hydroxyl group include, for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxymethyl methacrylate, allyl alcohol, hydroxyethyl (meth) methacrylate and ε- And adducts with caprolactone.
[0057]
On the other hand, those having an acidic group include polymerizable monomers having a carboxyl group, a sulfonic acid group, and the like. Examples of those having a carboxyl group include (meth) acrylic acid, crotonic acid, ethacrylic acid, propylacrylic acid, isopropylacrylic acid, itaconic acid, maleic anhydride, fumaric acid, and the like. Examples of the polymerizable monomer having a sulfonic acid group include t-butylacrylamide sulfonic acid. When a polymerizable monomer having an acidic group is used, a part of the acidic group is preferably a carboxyl group.
[0058]
Glycidyl group-containing unsaturated monomers such as glycidyl (meth) acrylate, and isocyanate group-containing unsaturated monomers such as m-isopropenyl-α, α-dimethylbenzyl isocyanate and isocyanatoethyl acrylate are functional. Examples thereof include a polymerizable monomer having a group.
[0059]
Other polymerizable monomers include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-propyl (meth) acrylate, and n- (meth) acrylate. Butyl, t-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, Alkyl (meth) acrylates such as tridecyl methacrylate; addition products of oil fatty acids with acrylic acid or methacrylate monomers having an oxirane structure (for example, addition products of stearic acid and glycidyl methacrylate);3An addition reaction product of the above oxirane compound containing an alkyl group with acrylic acid or methacrylic acid, styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, ( Benzyl meth) acrylate, itaconic acid ester (dimethyl itaconate, etc.), maleic acid ester (dimethyl dimethyl maleate, etc.), fumaric acid ester (dimethyl fumarate, etc.), acrylonitrile, methacrylonitrile, methyl isopropenyl ketone, Vinyl acetate, Beoba monomer (trade name, manufactured by Shell Chemical Co., Ltd.), vinyl propionate, vinyl pivalate, vinyl propionate, ethylene, propylene, butadiene, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminoethyl methacrylate And polymerizable monomers such as acrylic acid, acrylamide, and vinylpyridine.
[0060]
The polymerization reaction for obtaining the non-aqueous dispersion is preferably performed in the presence of a radical polymerization initiator. Examples of the radical polymerization initiator include azo initiators such as 2,2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauryl peroxide, and the like. t-butyl peroctoate and the like. The amount of these initiators used is preferably 0.2 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, per 100 parts by weight of the total of polymerizable monomers. The polymerization reaction for obtaining a non-aqueous dispersion in an organic solvent containing a dispersion-stable resin is generally preferably performed in a temperature range of about 60 to 160 ° C. for about 1 to 15 hours.
[0061]
Further, the non-aqueous dispersion is different from the crosslinked polymer fine particles in that it is a particle component in a coating material, but has a characteristic that it does not form a particle structure in a coating film. That is, the non-aqueous dispersion is different from the crosslinked polymer fine particles in that the crosslinked portion does not exist in the particles, and thus the particle shape changes during the baking process and can be a resin component.
[0062]
Further, for example, resin particles called NAD (Non Aqueous Dispersion, non-aqueous polymer dispersion) used in a NAD paint described in Coloring Material, Vol. 48 (1975) pp. 28-34 are also used. be able to.
[0063]
The amount of the non-aqueous dispersion resin (d) contained in the intermediate coating is 4 to 15% by weight, preferably 5 to 12% by weight, based on the weight of the resin solid content in the coating. When the content is less than 4% by weight, the appearance of the coating film becomes insufficient, and when the content exceeds 15% by weight, the chipping resistance decreases.
[0064]
By using the non-aqueous dispersion resin (d), the interface control of the coating film is facilitated, and the finished appearance is improved.
[0065]
As the flat pigment (e), mica, alumina, talc, silica and the like can be used, but talc is preferable from the viewpoint of chipping performance.
[0066]
Regarding the dimensions of the flat pigment (e), the major axis is preferably 1 to 10 μm, and the number average particle diameter is preferably 2 to 6 μm. If the major axis is outside the above range, the appearance of the coating film is inferior, or sufficient chipping resistance cannot be obtained. Will not come out.
[0067]
The content of the flat pigment (e) is 0.4 to 2 parts by weight based on 100 parts by weight of the resin solid content in the paint. More preferably, it is 0.5 to 1.5 parts by weight. Outside the above range, sufficient chipping performance cannot be obtained because the adhesion to the undercoat film is reduced.
[0068]
The resin that can be contained in the above and other components is not particularly limited, and examples thereof include an acrylic resin, a polyester resin, an alkyd resin, and an epoxy resin. One or more of them may be used in combination. Can be.
[0069]
Examples of color pigments include, for example, organic azo chelate pigments, insoluble azo pigments, condensed azo pigments, phthalocyanine pigments, indigo pigments, perinone pigments, perylene pigments, dioxane pigments, quinacridone pigments, and isoindolinone pigments. Pigments, metal complex pigments and the like can be mentioned. In the case of inorganic materials, it is possible to use, for example, graphite, yellow iron oxide, red iron oxide, carbon black, titanium dioxide and the like. Calcium carbonate, barium sulfate, aluminum powder, kaolin, etc. can be used as the extender pigment.
[0070]
As a standard, a gray pigment containing carbon black and titanium dioxide as main pigments is used. Further, a combination of a hue with the top coat and a combination of various coloring pigments can also be used.
[0071]
In addition, a viscosity control agent can be added to the above-mentioned intermediate coating material in order to prevent adaptation to the top coating film and to ensure coating workability. As the viscosity control agent, those which generally show thixotropic properties can be contained, for example, swelling dispersions of fatty acid amides, amide-based fatty acids, polyamide-based ones such as long-chain polyaminoamide phosphates, and colloidal swelling dispersions of polyethylene oxide Body, such as polyethylene-based, organic acid smectite clay, organic bentonite-based such as montmorillonite, inorganic pigments such as aluminum silicate and barium sulfate, flat pigments that exhibit viscosity depending on the shape of the pigment, crosslinked resin particles, etc. It can be mentioned as a viscosity control agent.
[0072]
The total solid content of the intermediate coating used in the present invention at the time of application is 30 to 80% by weight, preferably 35 to 65% by weight. Outside this range, the paint stability decreases. If it exceeds the upper limit, the viscosity is too high, and the appearance of the coating film deteriorates. If it is less than the lower limit, the viscosity is too low, resulting in poor appearance such as adaptability and unevenness.
[0073]
The intermediate coating used in the present invention may contain, in addition to the above components, additives usually added to the coating, such as a surface conditioner, an antioxidant and an antifoaming agent. These amounts are within the range known to those skilled in the art.
[0074]
Further, another resin may be contained in the urethane-modified polyester resin or the like. Such a resin is not particularly limited, and examples thereof include an acrylic resin, a polyester resin, an alkyd resin, and an epoxy resin, and one or more of them can be used in combination.
[0075]
The method for producing the coating composition used in the present invention is not particularly limited, including those described below, and is known to those skilled in the art of kneading and dispersing a compound such as a pigment using a kneader or a roll, an SG mill or the like. All known methods can be used.
[0076]
Base coating
The base paint used in the coating film forming method of the present invention is used for forming a top coat together with the clear paint. The base paint contains a film-forming resin, a curing agent, a coloring pigment, and, if necessary, a bright pigment.
[0077]
The film-forming resin contained in the base paint is not particularly limited, and preferred examples include acrylic resin, polyester resin, alkyd resin, epoxy resin, and urethane resin. Two or more can be used in combination.
[0078]
The above-mentioned film-forming resin can be used in combination with a curing agent, but an amino resin and / or a blocked isocyanate resin are preferably used in view of various properties and cost of the obtained coating film.
[0079]
The content of the curing agent is preferably 20 to 60% by weight, more preferably 30 to 50% by weight, based on the solid content of the film-forming resin. If the content is less than 20% by weight, the curability becomes insufficient, and if it exceeds 60% by weight, the cured film becomes too hard and brittle.
[0080]
Further, as the above-mentioned coloring pigment, for example, those mentioned in the description of the above-mentioned intermediate coating material and the like can be contained.
[0081]
The glitter pigment contained in the base paint as required is not particularly limited in its shape, and may be further colored.50) Is 2 to 50 μm and the thickness is preferably 0.1 to 5 μm. Those having an average particle size in the range of 10 to 35 μm are excellent in glitter and are more preferably used. The pigment concentration (PWC) of the brilliant pigment in the paint is generally 20.0% by weight or less. If it exceeds the upper limit, the appearance of the coating film deteriorates. Preferably, it is 0.01 to 18.0% by weight, more preferably 0.1 to 15.0% by weight. When the content of the glittering agent exceeds 20.0% by weight, the appearance of the coating film is deteriorated.
[0082]
Examples of the glitter pigment include non-colored or colored metal glitters such as metals or alloys such as aluminum, copper, zinc, iron, nickel, tin and aluminum oxide, and mixtures thereof. Further, interference mica pigments, white mica pigments, graphite pigments and other colored or colored flat pigments may be used in combination.
[0083]
The total pigment concentration (PWC) in the paint including the glitter pigment and all other pigments is 0.1 to 50% by weight, preferably 0.5 to 40% by weight, more preferably Is 1.0 to 30% by weight. If it exceeds the upper limit, the appearance of the coating film deteriorates.
[0084]
Furthermore, it is preferable to add a viscosity control agent to the base paint, in order to ensure the workability of the coating, similarly to the above-mentioned intermediate paint. The viscosity controlling agent is used for favorably forming a coating film without unevenness and sagging, and generally contains a material having a thixotropic property. As such a material, for example, those described in the description of the intermediate coating material can be contained.
[0085]
In the base paint used in the present invention, in addition to the above components, additives usually added to the paint, for example, a surface conditioner, a thickener, an antioxidant, an ultraviolet ray inhibitor, an antifoaming agent and the like are compounded. You may. These amounts are within the range known to those skilled in the art.
[0086]
The total solid content of the base paint used in the present invention at the time of coating is 10 to 60% by weight, preferably 15 to 50% by weight. Exceeding the upper and lower limits lowers the paint stability. If it exceeds the upper limit, the viscosity is too high and the appearance of the coating film deteriorates. If it is less than the lower limit, the viscosity is too low and poor appearance such as familiarity and unevenness occurs.
[0087]
Clear coating
A clear paint is used for forming the clear coating film. The clear paint is not particularly limited, and a paint containing a film-forming thermosetting resin, a curing agent, and the like can be used. Examples of the form of the clear coating include a solvent type, an aqueous type and a powder type.
[0088]
Preferable examples of the solvent-type clear paint include a combination of an acrylic resin and / or a polyester resin and an amino resin, and a combination of an acrylic resin and / or a polyester resin and an isocyanate compound in terms of transparency or acid etching resistance. An acrylic resin and / or a polyester resin having a carboxylic acid / epoxy curing system may be used.
[0089]
Examples of the water-based clear coating include those containing a resin which is a film-forming resin contained in those exemplified as the solvent-based clear coating and which is made aqueous by neutralizing with a base. be able to. This neutralization can be performed before or after polymerization by adding a tertiary amine such as dimethylethanolamine and triethylamine.
[0090]
On the other hand, as the powder type clear coating material, an ordinary powder coating material such as a thermoplastic and thermosetting powder coating material can be used. A thermosetting powder coating is preferred because a coating film having good physical properties can be obtained. Specific examples of the thermosetting powder coating include an epoxy-based, acrylic-based, and polyester resin-based powder clear coating, and an acrylic powder clear coating having good weather resistance is particularly preferable.
[0091]
As a powder type clear coating material used in the present invention, there is no volatile matter at the time of curing, a good appearance is obtained, and since there is little yellowing, an epoxy-containing acrylic resin / polycarboxylic acid type powder coating material is used. Particularly preferred.
[0092]
Further, it is preferable that a viscosity control agent is added to the clear coating material in order to ensure coating workability, similarly to the intermediate coating material described above. The viscosity controlling agent may contain a substance exhibiting thixotropic properties. As such a material, for example, those described in the description of the intermediate coating material can be contained. If necessary, a curing catalyst, a surface conditioner and the like can be included.
[0093]
Base material
The coating film forming method of the present invention can be advantageously used for various substrates, for example, metals, plastics, foams, etc., particularly metal surfaces, and castings, but is particularly suitable for cationic electrodeposition-coatable metal products. Can be used for
[0094]
Examples of the metal product include iron, copper, aluminum, tin, zinc, and the like, and alloys containing these metals. Specific examples include automobile bodies and parts such as passenger cars, trucks, motorcycles, and buses. It is particularly preferable that these metals have been previously subjected to a chemical conversion treatment with a phosphate, a chromate or the like.
[0095]
The substrate used in the method for forming a coating film of the present invention may have an electrodeposition coating film formed on a chemically treated steel sheet. As the electrodeposition paint for forming the electrodeposition coating film, a cationic type and an anion type can be used, but a cationic type electrodeposition coating composition is preferable because it gives a laminated coating film having excellent corrosion resistance.
[0096]
【Example】
Hereinafter, the present invention will be described in detail with reference to specific examples, but the present invention is not limited to the following examples. In the following, “parts” and “%” are based on weight.
[0097]
Production Example 1
Production of urethane-modified polyester resin (a)
In a 2 L reaction vessel equipped with a nitrogen inlet pipe, a stirrer, a temperature controller, a dropping funnel and a cooling pipe equipped with a decanter, 440 parts of isophthalic acid, 20 parts of hexahydrophthalic acid, 40 parts of azelaic acid, 300 parts of trimethylolpropane And 200 parts of neopentyl glycol, and the raw material was dissolved by heating, and when stirring became possible, 0.2 parts of dibutyltin oxide was added, stirring was started, and the temperature of the reaction layer was raised from 180 to 220 ° C. for 3 hours. And the temperature gradually increased. The condensed water generated was distilled out of the system. When the temperature reached 220 ° C., the temperature was maintained for 1 hour, 20 parts of xylene was gradually added into the reaction layer, and the condensation reaction was allowed to proceed in the presence of a solvent. When the resin acid value reached 10 mgKOH / g, the mixture was cooled to 100 ° C., and 100 parts of hexamethylene diisocyanate was gradually added over 30 minutes. After further holding for 1 hour, 200 parts of xylene and 200 parts of butyl acetate were added to obtain a urethane-modified polyester resin having a solid content of 70%, a number average molecular weight of 2,000, an acid value of 8 mgKOH / g, a hydroxyl value of 120 and a resin Tg of 60 ° C.
[0098]
Production Example 2
Production of non-aqueous dispersion
(A) Production of dispersion stable resin
90 parts of butyl acetate was charged into a vessel equipped with a stirrer, a temperature controller and a reflux condenser. Next, a solution of the following composition
[0099]
[Table 1]
Figure 2004275966
[0100]
Was added and heated with stirring to raise the temperature. At 110 ° C., the remaining 85 parts of the above mixed solution was added dropwise over 3 hours, and then a solution composed of 0.5 parts of azobisisobutyronitrile and 10 parts of butyl acetate was added dropwise over 30 minutes. The reaction solution was further stirred and refluxed for 2 hours to increase the conversion to resin, and then the reaction was terminated to obtain an acrylic resin having a solid content of 50%, a number average molecular weight of 5,600 and an SP value of 9.5.
[0101]
(B) Production of non-aqueous dispersion
A container equipped with a stirrer, a cooler and a temperature controller was charged with 90 parts of butyl acetate and 60 parts of the acrylic resin obtained in the above (a) Production of dispersion stable resin. Next, a solution of the following composition
[0102]
[Table 2]
Figure 2004275966
[0103]
Was added dropwise at 100 ° C. for 3 hours, and then a solution consisting of 0.1 part of azobisisobutyronitrile and 1 part of butyl acetate was added dropwise for 30 minutes. When the reaction solution was further stirred for 1 hour, an emulsion having a solid content of 60% and a particle diameter of 180 nm was obtained. This emulsion was diluted with butyl acetate to obtain a core-shell butyl acetate dispersion having a viscosity of 300 cps (25 ° C.) and a particle diameter of 180 nm and a nonaqueous dispersion content of 40%. The Tg of this non-aqueous dispersion resin was 23 ° C., the hydroxyl value was 162, and the SP value was 11.8. Met.
[0104]
Example 1
Intermediate paint
In a 1 L vessel, 107 parts of the urethane-modified polyester resin varnish obtained in the above production example, 280 parts of CR-97 (titanium oxide manufactured by Ishihara Sangyo), 13 parts of MA-100 (carbon black pigment manufactured by Mitsubishi Chemical Corporation), 7 parts of LMS-100 (scale talc manufactured by Fuji Talc), 47 parts of butyl acetate and 47 parts of xylene were charged, and the same amount of GB503M (particle diameter 1.6 mm glass beads) as the charged weight was charged. And dispersed at room temperature for 3 hours to obtain a gray pigment paste. The particle size at the end of dispersion by a grind gauge was 5 μm or less. The glass beads were filtered to obtain a pigment paste. An intermediate coating was prepared from this pigment paste so as to have the composition shown in Table 3. Further, a mixed solvent of ethoxyethyl propionate / S-100 (an aromatic hydrocarbon solvent manufactured by Exxon) = 1/1, The dilution was adjusted to 19 seconds / 20 ° C. using a 4 Ford cup. The nonvolatile content at the time of coating was 49%.
[0105]
[Table 3]
Figure 2004275966
[0106]
Base paint
Mixing of ethoxyethyl propionate / S-100 (aromatic hydrocarbon solvent manufactured by Exxon) / toluene = 1/1/2 using acrylic melamine-based metallic base paint "OLGA TO H600 18J Green Metallic" manufactured by Nippon Paint Co., Ltd. No. The dilution was adjusted to 17 seconds / 20 ° C. using a 3 Ford cup. The nonvolatile content of the paint at the time of application was 31%. The non-volatile content at the time of coating was 65%.
[0107]
Clear paint
A mixed solvent of ethoxyethyl propionate / S-100 (an aromatic hydrocarbon solvent manufactured by Exxon) = 1/1 using an acid epoxy-curable clear paint "Mac O-1600 Clear" manufactured by Nippon Paint Co., Ltd. The dilution was adjusted to 26 seconds / 20 ° C. using a 4 Ford cup. The non-volatile content of the paint at the time of application was 50%. The nonvolatile content at the time of coating was 61%.
[0108]
Coating method
A cationic electrodeposition paint “Power Top V-20” (manufactured by Nippon Paint Co., Ltd.) was applied to a 0.8 mm thick, 30 cm long, 10 cm wide zinc phosphate-treated SPC steel sheet so that the dry film thickness became 20 μm. It was painted and baked at 160 ° C. for 30 minutes. Next, the steel sheet on which the electrodeposition coating film is formed is adhered to a moving body, and while moving, the intermediate coating is applied to a “microbell” (rotary atomization type electrostatic coating) so that the dry film thickness becomes 20 μm. Machine) and left for 10 minutes for setting.
[0109]
Next, the above-mentioned base paint was applied in two stages using “Microbell” and “Metabell” so as to have a dry film thickness of 15 μm. There was a 2.5 minute interval between the two applications. After the second application, setting was performed for 8 minutes. Next, the above-mentioned clear paint was applied in one stage by a “microbell” so as to have a dry film thickness of 35 μm, and setting was performed for 10 minutes. The curing conditions of the obtained laminated coating film are a curing temperature of 140 ° C. and a curing time of 30 minutes.
[0110]
The coated plate thus prepared was placed in a first drying oven set at 40 ° C., kept for 5 minutes, and then moved to a second drying oven set at 140 ° C., and kept for 20 minutes. Thereafter, the coated plate was taken out of the drying oven and left to reach room temperature.
[0111]
(1) The finished appearance of the cured coating film was visually evaluated for glossiness. Table 5 shows the test results.
[0112]
[Table 4]
Evaluation criteria
Figure 2004275966
[0113]
(2) Next, the surface condition of the cured coating film was tested using a film appearance measuring device “Wavescan DOI” manufactured by BYK Chemie. Table 5 shows the test results.
[0114]
The measured value Wa means the amount of the waviness of the skin of the coating film having a roughness of 0.1 to 0.3 mm, and represents the glossiness of the coating film. Wc means the amount of undulation of the skin of the coating film having a roughness of 1 to 3 mm, and represents the undercoat concealing property of the coating film. Wd means the amount of the undulation of the skin of the coating film having a roughness of 3 to 10 mm, and represents the smoothness of the coating film. The smaller the numerical value of each measured value, the better.
[0115]
(3) Further, the chipping resistance of the obtained coated plate was evaluated as follows. Table 5 shows the test results.
[0116]
Using a gravure tester tester (manufactured by Suga Test Instruments Co., Ltd.), 300 pieces of No. 7 crushed stones were 3.0 kgf / cm from a distance of 35 cm.2At an angle of 45 °. After washing and drying, a peeling test was performed using an industrial rubber tape manufactured by Nichiban Co., Ltd., and then the degree of peeling of the coating film was divided into a peeling diameter and the number of cases, and visually observed and evaluated.
[0117]
Examples 2 to 4
A cured coating film was prepared and tested in the same manner as in Example 1, except that the curing temperature and the curing time were changed as shown in Table 5. Table 5 shows the test results.
[0118]
Comparative Example 1
A cured coating film was prepared and tested in the same manner as described in Example 1 except that the step of baking and curing the uncured coating film was performed by heating one step at 140 ° C. for 30 minutes. Table 6 shows the test results.
[0119]
Comparative Example 2
The method described in Example 1 was repeated except that a polyester melamine-based intermediate coating “OLGA TO H870 Gray” manufactured by Nippon Paint Co., Ltd. was used as the intermediate coating and the curing temperature and curing time were changed as shown in Table 6. Similarly, a cured coating film was prepared and tested. Table 6 shows the test results.
[0120]
Reference Example 1
A cationic electrodeposition paint “Power Top V-20” (manufactured by Nippon Paint Co., Ltd.) was applied to a 0.8 mm thick, 30 cm long, 10 cm wide zinc phosphate-treated SPC steel sheet so that the dry film thickness became 20 μm. It was painted and baked at 160 ° C. for 30 minutes. Next, the steel sheet on which the electrodeposition coating film is formed is adhered to a moving body, and while moving, the intermediate coating is applied to a “microbell” (rotary atomization type electrostatic coating) so that the dry film thickness becomes 20 μm. Machine) and left for 10 minutes for setting.
[0121]
The coated plate was placed in a drying oven set at 140 ° C. and held for 20 minutes. Thereafter, the coated plate was taken out of the drying oven and left to reach room temperature. A base paint and a clear paint were applied on the painted plate in the same manner as in Example 1 to obtain a laminated coating film.
[0122]
The coated plate thus prepared was placed in a drying oven set at 140 ° C. and held for 30 minutes. Thereafter, the coated plate was taken out of the drying oven and left to reach room temperature. The cured coating film obtained was tested in the same manner as described in Example 1. Table 6 shows the test results.
[0123]
Reference Example 2
A polyester melamine-based intermediate coating “Olga TO H870 Gray” manufactured by Nippon Paint Co., Ltd. was used as the intermediate coating, and the method described in Reference Example 1 was used except that the curing temperature and the curing time were changed as shown in Table 6. Similarly, a cured coating film was prepared and tested. Table 6 shows the test results.
[0124]
[Table 5]
Figure 2004275966
[0125]
[Table 6]
Figure 2004275966
[0126]
【The invention's effect】
In the examples of the present invention, glossiness equivalent to that of the three-coat two-bake method could be achieved even when the laminated coating film was formed by the three-coat one-bake method. In addition, the coating system used in the present invention had the same chipping resistance as the laminated coating film obtained by the three-coat two-bake method, although the number of baking was small.

Claims (4)

電着塗膜が形成された基材の上に、中塗り塗料、ベース塗料及びクリヤー塗料を、順次ウェット・オン・ウェットで塗装する工程、塗装された3層を一度に焼付け硬化させる工程を包含する塗膜形成方法であって、
該焼付け硬化させる工程が、硬化温度の25〜80%の温度で硬化時間の5〜30%の時間加熱する低温加熱段階、及び硬化温度の80%を超え、120%以下の温度で硬化時間の30〜130%の時間加熱する高温加熱段階、を包含することを特徴とする塗膜形成方法。
Includes the steps of applying an intermediate coating, a base coating, and a clear coating sequentially on a base material on which an electrodeposition coating film is formed on a wet-on-wet basis, and baking and curing the three coated layers at once. Coating film forming method,
The baking and curing step includes a low-temperature heating step of heating at a temperature of 25 to 80% of the curing temperature for 5 to 30% of the curing time, and a curing time of over 80% of the curing temperature and 120% or less. A method for forming a coating film, comprising: a high-temperature heating step of heating for 30 to 130% of time.
前記中塗り塗料が、
(a)イソフタル酸を80モル%以上含有する酸成分と多価アルコールとの重縮合によって得られ、ガラス転移点(Tg)が40〜80℃である水酸基含有ポリエステル樹脂と脂肪族ジイソシアネート化合物とを反応して得られる、数平均分子量1500〜3000のウレタン変性ポリエステル樹脂40〜56重量%;
(b)メラミン樹脂10〜30重量%;
(c)ブロックイソシアネート化合物15〜30重量%;
(d)コアシェル構造を有する非水デイスパージョン樹脂4〜15重量%((a)〜(d)の量は樹脂固形分重量を基準にする。);及び
(e)扁平顔料0.4〜2重量部(樹脂固形分重量を100重量部とする。);
を含有することを特徴とする請求項1記載の塗膜形成方法。
The intermediate coating,
(A) a hydroxyl group-containing polyester resin obtained by polycondensation of an acid component containing 80% by mole or more of isophthalic acid with a polyhydric alcohol and having a glass transition point (Tg) of 40 to 80 ° C and an aliphatic diisocyanate compound; 40 to 56% by weight of a urethane-modified polyester resin having a number average molecular weight of 1500 to 3000 obtained by the reaction;
(B) 10-30% by weight of melamine resin;
(C) 15 to 30% by weight of a blocked isocyanate compound;
(D) 4 to 15% by weight of a non-aqueous dispersion resin having a core-shell structure (the amount of (a) to (d) is based on the weight of the solid content of the resin); 2 parts by weight (the resin solid content is 100 parts by weight);
The coating film forming method according to claim 1, further comprising:
前記ブロックイソシアネート化合物が、活性メチレン基を有する化合物でブロックされたものである、請求項2記載の塗膜形成方法。The coating film forming method according to claim 2, wherein the blocked isocyanate compound is a compound blocked with a compound having an active methylene group. 請求項1〜3のいずれか記載の方法によって形成された塗膜。A coating film formed by the method according to claim 1.
JP2003074007A 2003-03-18 2003-03-18 Coating method Expired - Fee Related JP4170805B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003074007A JP4170805B2 (en) 2003-03-18 2003-03-18 Coating method
GBGB0405880.6A GB0405880D0 (en) 2003-03-18 2004-03-16 Method for coated composite film
TW093107130A TW200427797A (en) 2003-03-18 2004-03-17 Method for coated composite film
GB0406010A GB2399520B (en) 2003-03-18 2004-03-17 Method for coated composite film
CNB2004100326017A CN100339163C (en) 2003-03-18 2004-03-18 Method for producing composite coating
KR1020040018311A KR20040082338A (en) 2003-03-18 2004-03-18 Method for coated composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074007A JP4170805B2 (en) 2003-03-18 2003-03-18 Coating method

Publications (2)

Publication Number Publication Date
JP2004275966A true JP2004275966A (en) 2004-10-07
JP4170805B2 JP4170805B2 (en) 2008-10-22

Family

ID=32171459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074007A Expired - Fee Related JP4170805B2 (en) 2003-03-18 2003-03-18 Coating method

Country Status (5)

Country Link
JP (1) JP4170805B2 (en)
KR (1) KR20040082338A (en)
CN (1) CN100339163C (en)
GB (2) GB0405880D0 (en)
TW (1) TW200427797A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008338A1 (en) * 2007-07-06 2009-01-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Coating method and coated member obtained by the same
JP2009034667A (en) * 2007-07-06 2009-02-19 Toyota Central R&D Labs Inc Coating method and coated body obtained thereby
JP2010082535A (en) * 2008-09-30 2010-04-15 Toyota Central R&D Labs Inc Coating method and coated body obtained by the same
JP2011503303A (en) * 2007-11-14 2011-01-27 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for adjusting the defined morphology of separated phases in thin layers
DE112008001822T5 (en) 2007-07-24 2011-02-17 Kansai Paint Co., Ltd., Amagasaki A method of forming a multilayer coating film
WO2011125490A1 (en) * 2010-04-08 2011-10-13 関西ペイント株式会社 Multilayer film forming method
US8592000B2 (en) 2009-01-23 2013-11-26 Kansai Paint Co., Ltd. Multilayer coating film-forming method
CN103588443A (en) * 2013-11-13 2014-02-19 武汉卓亿科技发展有限公司 Nano water-based functional ceramic composite coating and preparation method thereof
CN104073159A (en) * 2014-07-07 2014-10-01 南京工业职业技术学院 Preparation method for graphene heat-dissipation coating solution and application for prepared product
JP2015139759A (en) * 2014-01-30 2015-08-03 株式会社豊田中央研究所 Coating method and coated body obtained thereby
JP2015139758A (en) * 2014-01-30 2015-08-03 株式会社豊田中央研究所 Coating method and coated body obtained thereby

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060106157A1 (en) * 2004-11-17 2006-05-18 Sawant Suresh G Urethane acrylate tie coats
KR20160000118A (en) 2014-06-24 2016-01-04 윤기수 Coating of the paint composition and the coating of the paint coating material and the coating method of manufacturing a construction method
KR101867736B1 (en) * 2016-04-12 2018-07-23 주식회사 포스코 Resin composition and steel sheet coated with the same
CN106423805A (en) * 2016-11-28 2017-02-22 中信戴卡股份有限公司 Aluminum alloy surface coating and method for forming coating
CN109776837B (en) * 2018-12-18 2021-07-06 合肥乐凯科技产业有限公司 Prevent blue light protection film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122247A (en) * 1976-08-23 1978-10-24 General Electric Company Process for the polymerization of cyclic diorganopolysiloxanes with cation-complex catalysts
JPS6041788B2 (en) * 1978-11-06 1985-09-18 ケイディディ株式会社 Method for detecting faults in digital image processing equipment
CN1045941A (en) * 1989-03-27 1990-10-10 招应基 Sectional cure process for thermosetting plastic
JPH10216617A (en) * 1997-02-03 1998-08-18 Nof Corp Formation of three-layered coating film
JP2000084463A (en) * 1998-09-09 2000-03-28 Nippon Paint Co Ltd Method for forming coating film excellent in appearance
JP2001225006A (en) * 2000-02-17 2001-08-21 Kansai Paint Co Ltd Method for coating car body
CN1374152A (en) * 2001-03-05 2002-10-16 关西油漆株式会社 Multilayer film forming method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008338A1 (en) * 2007-07-06 2009-01-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Coating method and coated member obtained by the same
JP2009034667A (en) * 2007-07-06 2009-02-19 Toyota Central R&D Labs Inc Coating method and coated body obtained thereby
DE112008001732T5 (en) 2007-07-06 2010-10-14 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Coating method and coated article obtained therefrom
US8795835B2 (en) 2007-07-06 2014-08-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Coating method and coated article obtained by the same
DE112008001822T5 (en) 2007-07-24 2011-02-17 Kansai Paint Co., Ltd., Amagasaki A method of forming a multilayer coating film
DE112008001822B4 (en) * 2007-07-24 2013-04-18 Toyota Jidosha Kabushiki Kaisha A method of forming a multilayer coating film and articles comprising a multilayer coating film formed by the method
JP2011503303A (en) * 2007-11-14 2011-01-27 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for adjusting the defined morphology of separated phases in thin layers
JP2010082535A (en) * 2008-09-30 2010-04-15 Toyota Central R&D Labs Inc Coating method and coated body obtained by the same
US8592000B2 (en) 2009-01-23 2013-11-26 Kansai Paint Co., Ltd. Multilayer coating film-forming method
WO2011125490A1 (en) * 2010-04-08 2011-10-13 関西ペイント株式会社 Multilayer film forming method
JP5612671B2 (en) * 2010-04-08 2014-10-22 関西ペイント株式会社 Multi-layer coating formation method
CN103588443A (en) * 2013-11-13 2014-02-19 武汉卓亿科技发展有限公司 Nano water-based functional ceramic composite coating and preparation method thereof
JP2015139759A (en) * 2014-01-30 2015-08-03 株式会社豊田中央研究所 Coating method and coated body obtained thereby
JP2015139758A (en) * 2014-01-30 2015-08-03 株式会社豊田中央研究所 Coating method and coated body obtained thereby
US9931669B2 (en) 2014-01-30 2018-04-03 Toyota Jidosha Kabushiki Kaisha Coating method and coated article obtained by the same
CN104073159A (en) * 2014-07-07 2014-10-01 南京工业职业技术学院 Preparation method for graphene heat-dissipation coating solution and application for prepared product

Also Published As

Publication number Publication date
KR20040082338A (en) 2004-09-24
TW200427797A (en) 2004-12-16
JP4170805B2 (en) 2008-10-22
GB2399520B (en) 2005-05-25
GB0406010D0 (en) 2004-04-21
CN100339163C (en) 2007-09-26
CN1532004A (en) 2004-09-29
GB0405880D0 (en) 2004-04-21
GB2399520A (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP3831266B2 (en) Coating method
JP6587404B2 (en) Formation method of multilayer coating film
JP4139267B2 (en) Coating method
JP4170805B2 (en) Coating method
JP2009511251A (en) Method for forming a multilayer coating without primer baking on the car body
US20050176880A1 (en) Metallic base coating composition and process for producing a composite film
JP5058933B2 (en) LAMINATED COATING FORMATION METHOD AND COATED PRODUCT
JP5171709B2 (en) LAMINATED COATING FORMATION METHOD AND COATED PRODUCT
JP2004275965A (en) Method for forming coating film
JP2005220284A (en) Metallic base coating composition and method for forming laminated coating film
JP2005220287A (en) Metallic base coating composition and method for forming layered coating film
JP4476660B2 (en) Intermediate coating composition and method for forming laminated coating film
JP4582875B2 (en) Coating film forming method and article to be coated
JP2005220286A (en) Metallic base coating composition and method for forming layered coating film
JP2005220285A (en) Metallic base coating composition and method for forming layered coating film
JP4570430B2 (en) Coating method
JP2005220289A (en) Metallic base coating composition and method for forming layered coating film
JP2005220292A (en) Metallic base coating composition and method for forming laminated coating film
JP2005220291A (en) Metallic base coating composition and method for forming layered coating film
JP2005220293A (en) Metallic base coating composition and method for forming laminated coating film
JP2005220290A (en) Metallic base coating composition and method for forming laminated coating film
JP2004298745A (en) Coating film forming method
JP2005220288A (en) Metallic base coating composition and method for forming laminated coating film
JP2002153805A (en) Coating film forming method and laminated coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4170805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees