JP2004274360A - 増幅回路、受信回路及び光受信回路 - Google Patents
増幅回路、受信回路及び光受信回路 Download PDFInfo
- Publication number
- JP2004274360A JP2004274360A JP2003061900A JP2003061900A JP2004274360A JP 2004274360 A JP2004274360 A JP 2004274360A JP 2003061900 A JP2003061900 A JP 2003061900A JP 2003061900 A JP2003061900 A JP 2003061900A JP 2004274360 A JP2004274360 A JP 2004274360A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- amplifier
- voltage signal
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Amplification And Gain Control (AREA)
- Amplifiers (AREA)
- Optical Communication System (AREA)
Abstract
【解決手段】AGF回路16は、プリアンプ11から出力される電圧信号VAPを取り込んでフォトダイオードPDが受信する光入力信号の大きさを検出し、その検出結果に基づいてバンドパスフィルタ12の周波数特性とメインアンプ13のゲイン特性を自動調整する。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は増幅回路、受信回路及び光受信回路に関するものである。
近年、PDA(Personal Digital Assistants) 等の携帯端末、携帯電話等の電子機器には、光信号を利用し、空間を介してデータの送受信を行う光通信装置が搭載されている。例えば、赤外線を利用した赤外線データ通信機能等がそれである。また、コンピュータ等には、光ファイバ等の通信媒体を介してデータの送受信を行う光通信装置が搭載されている。これらの光通信装置では、低価格化と高性能化が求められている。
【0002】
【従来の技術】
図17は、従来の光受信アンプ70を示すブロック回路図である。
光受信アンプ70にはフォトダイオードPDが接続され、このフォトダイオードPDは受光量に対応した受信電流IPDを生成する。光受信アンプ70は、その受信電流IPDに基づく受信信号RXを出力する。
【0003】
この光受信アンプ70は差動型アンプであり、プリアンプ71、バンドパスフィルタ72、メインアンプ73及びコンパレータ74を備えている。プリアンプ71は、受信電流IPDを電流−電圧変換して電圧信号VAPを生成する。バンドパスフィルタ72は、そのプリアンプ71の差動出力を取り込んでフィルタリング処理を施した信号VB を出力する。メインアンプ73は、バンドパスフィルタ72から出力される信号VB を差動増幅して信号VAMを生成し、コンパレータ74は、メインアンプ73の差動出力を二値化して受信信号RXを出力する。
【0004】
【特許文献1】
特開2001−211040号公報(第7図)
【特許文献2】
特公平7−50862号公報
【0005】
【発明が解決しようとする課題】
ところで、上記のような光受信アンプ70では、入力光に、目的の信号以外の成分がある場合、光受信アンプ70の周波数特性やゲイン特性を調整して、S/N比を向上する必要がある。例えば、入力信号レベルが大きい(入力光量が多い)場合には、光受信アンプ70の総合ゲインを下げるとともに周波数特性を上げる(カットオフ周波数を高域側にする)等の調整を行う。
【0006】
従来より、ゲインを調整する方法として自動ゲイン調整(AGC)回路を用いた構成がある(例えば特許文献1参照)。一方、周波数特性を調整する方法として、プリアンプに設けた可変フィルタをメインアンプのピーク検出信号で外部の制御回路を介してフィードバックすることで、受信光の強度に応じた周波数特性の帯域補償を自動で行うようにした構成がある(例えば特許文献2参照)。
【0007】
これらの構成を用いることで、周波数特性とゲイン特性の双方の調整を行うことは可能である。しかしながら、従来において、周波数特性の調整は外部からの制御が必要であるため、それによる端子数の増加等に伴い、回路規模が大きくなるという問題があった。また、周波数特性の調整を上記のようにメインアンプのピーク検出信号に基づいて行う場合、入力信号レベルの小さな信号を検出することは困難であり、小入力でのロス量が大きくなるという問題があった。因みに、周波数特性をフィルタによって調整することも可能だが、3次以上の高精度フィルタ等が必要になり、回路規模の増大及びコストアップの問題がある。
【0008】
本発明は、上記問題点を解決するためになされたものであって、その目的は、受信光に応じたゲイン特性及び周波数特性に自動調整してS/N比の向上を容易に図ることのできる増幅回路、受信回路及び光受信回路を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明によれば、入力電流を第1の電圧信号に変換する第1の増幅器と、前記第1の電圧信号を第1のフィルタを介して帯域制限した信号を増幅して第2の電圧信号を生成する第2の増幅器と、を含む増幅回路であって、前記第1の電圧信号のレベルを検出し、その検出結果に応じて前記第1のフィルタの周波数特性を可変する自動周波数調整回路と、前記第1及び前記第2の電圧信号の何れか一方のレベルを検出し、その検出結果に応じて前記第1及び前記第2の増幅器の少なくとも一方のゲイン特性を可変する自動ゲイン調整回路とを備えた。この構成によれば、光入力信号の大きさを精度よく検出可能であり、光入力信号の小さい時は高ゲイン設定かつ周波数特性を低域側に設定し、光入力信号の大きい時は低ゲイン設定かつ周波数特性を高域側に設定することができる。その結果、受光量に応じた最適なゲイン特性及び周波数特性に自動調整してS/N比の向上を容易に図ることができる。
【0010】
請求項2に記載の発明によれば、入力電流を第1の電圧信号に変換する第1の増幅器と、前記第1の電圧信号を第1のフィルタを通して帯域制限した信号を増幅して第2の電圧信号を生成する第2の増幅器と、を含む増幅回路であって、前記第1の電圧信号のレベルを検出し、その検出結果に応じて、前記第1のフィルタの周波数特性と前記第1及び前記第2の増幅器の少なくとも一方のゲイン特性とを可変する自動ゲイン&周波数調整回路を備えた。この構成によれば、光入力信号の大きさを精度よく検出可能であり、光入力信号の小さい時は高ゲイン設定かつ周波数特性を低域側に設定し、光入力信号の大きい時は低ゲイン設定かつ周波数特性を高域側に設定することができる。その結果、受光量に応じた最適なゲイン特性及び周波数特性に自動調整してS/N比の向上を容易に図ることができる。また、回路規模を削減して、低コスト化を図ることができる。
【0011】
請求項3に記載の発明によれば、前記第1の電圧信号の信号帯域内に含まれる高周波数信号を抽出する第2のフィルタを備え、前記第1の電圧信号を前記第2のフィルタに取り込んでフィルタリング処理を施し、前記第2のフィルタの出力信号に基づいて前記第1の電圧信号のレベルを検出する。この構成によれば、高速ビットレートのパルス幅の細い信号のレベル検出をより高い精度で行うことができる。
【0012】
請求項4に記載の発明によれば、前記自動周波数調整回路は、前記第1の電圧信号のレベルを検出して保持するピークホールド回路と、前記ピークホールド回路の出力信号と第1基準信号との電位差を増幅して周波数調整信号を生成する増幅器とを含む。
【0013】
請求項5に記載の発明によれば、前記自動ゲイン&周波数調整回路は、前記第1の電圧信号のレベルを検出して保持するピークホールド回路と、前記ピークホールド回路の出力信号と第1基準信号との電位差を増幅して周波数調整信号を生成する増幅器と、前記ピークホールド回路の出力信号と第2基準信号との電位差を増幅してゲイン調整信号を生成する増幅器とを含む。この構成によれば、周波数調整とゲイン調整を簡易な回路構成で実現することができる。
【0014】
請求項6に記載の発明によれば、前記第2の電圧信号を二値化した二値信号を生成する比較器と、前記二値信号の遷移に応答して、前記第1の電圧信号のレベル検出結果に応じた一定のパルス幅を持つ信号を出力するワンショット・パルス回路とを備えた。この構成によれば、光入力信号の大きさに依らずに、安定したパルス幅を持つデジタル信号(二値信号)を出力することができる。
【0015】
請求項7に記載の発明によれば、前記第1及び前記第2の増幅器に供給される電源の電源変動を検出する電源検出回路を備え、前記電源検出結果による検出結果を取り込んで前記第1の電圧信号のレベルを検出する。この構成によれば、電源ノイズを検出することで、ノイズ耐性を向上することができる。
【0016】
請求項8に記載の発明によれば、光入力信号を受ける受光素子と、請求項1乃至7の何れか一項記載の増幅回路とを備えた光受信回路が実現される。
請求項9に記載の発明によれば、入力電流を電流電圧変換した電圧信号を所定の周波数に帯域制限するフィルタを有し、第1のビットレートを有する第1の信号と、前記第1のビットレートよりも低い第2のビットレートを有する第2の信号とを受信する受信回路において、自動周波数調整回路は、前記電圧信号のレベルが前記第1の信号を受信可能とするレベルよりも小さい場合に、前記フィルタの通過特性を前記第2の信号の周波数帯域に自動で設定することが可能である。
【0017】
請求項10に記載の発明によれば、前記自動周波数調整回路は、前記電圧信号のレベルが前記第1の信号を受信可能とするレベルを有している場合に、前記フィルタの通過特性を前記第1の信号の周波数帯域に自動で設定することが可能である。
【0018】
【発明の実施の形態】
(第一実施形態)
以下、本発明を具体化した第一実施形態を図1〜図8に従って説明する。
【0019】
図1は、第一実施形態の光受信アンプ10を示すブロック回路図である。
この光受信アンプ10の入力端子にはフォトダイオードPDが接続され、フォトダイオードPDは受光量に対応した受信電流IPDを生成する。光受信アンプ10は、その受信電流IPDに基づく受信信号RXを出力する。
【0020】
光受信アンプ10は差動型アンプであり、プリアンプ11、バンドパスフィルタ(帯域通過フィルタ)12、メインアンプ13、ディレイ回路14、コンパレータ15及び自動ゲイン&周波数調整(以下、AGF)回路16を備えている。
【0021】
プリアンプ11は差動出力を持ち、フォトダイオードPDが生成する受信電流IPDを電流−電圧(I−V)変換して電圧信号VAPを生成する。プリアンプ11のゲインは本実施形態では一定値に設定され、同プリアンプ11のトランスインピーダンスをZtとした場合、入力光量の変化に応じた受信電流IPDの変化量ΔIPDに対する電圧信号VAPの変化量ΔVAPは、ΔVAP=ΔIPD×Ztとなる。
【0022】
バンドパスフィルタ12は、プリアンプ11の差動出力を取り込んでフィルタリング処理を施し、受光量に応じて自動調整される周波数特性に従って電圧信号VAPを帯域制限した信号VB を出力する。メインアンプ13は、そのバンドパスフィルタ12の出力を取り込み、受光量に応じて自動調整されるゲインに従って信号VB を差動増幅した信号VAMをコンパレータ15に出力する。
【0023】
このメインアンプ13は差動出力を持ち、その差動出力の何れか一方はディレイ回路14を介してコンパレータ15に入力される。例えば、本実施形態においては、メインアンプ13の差動出力の一方がコンパレータ15の反転入力端子に入力され、他方がディレイ回路14を介して非反転入力端子に入力されるようになっている。コンパレータ15は、このようにして取り込んだメインアンプ13の出力信号VAMを二値化して受信信号RXを出力する。
【0024】
AGF回路16は、プリアンプ11から出力される電圧信号VAPを取り込んでフォトダイオードPDが受信する入力光の大きさ、即ち受信電流IPDの信号レベルを検出する。そして、AGF回路16は、その入力信号レベルに応じて、バンドパスフィルタ12の周波数特性を変更する周波数調整信号VAFC とメインアンプ13のゲインを変更するゲイン調整信号VAGC を生成する。
【0025】
図2は、AGF回路16の回路図である。
AGF回路16は、ハイパスフィルタ(高域通過フィルタ)21、ピークホールド回路22、第1アンプ23、第2アンプ24、第3アンプ25及び抵抗RG1,RG2を備えている。
【0026】
ハイパスフィルタ21は、プリアンプ11から出力される電圧信号VAPをフィルタリング処理した信号VH をピークホールド回路22に出力する。このピークホールド回路22は、アンプ26、ダイオードDPH及びコンデンサCPHを備えている。
【0027】
アンプ26の出力端子はダイオードDPHのアノードに接続され、ダイオードDPHのカソードはアンプ26の反転入力端子とコンデンサCPHの第1端子に接続され、コンデンサCPHの第2端子は低電位電源に接続されている。アンプ26の非反転入力端子にはハイパスフィルタ21の出力信号VH が入力される。このように構成されたピークホールド回路22は、ハイパスフィルタ21から入力する信号VH のピークレベルを保持した信号VPHを出力する。
【0028】
第1アンプ23は、非反転入力端子にピークホールド回路22の出力が接続され、反転入力端子に第1基準信号VREF1が入力される。この第1基準信号VREF1の電位は、図1のバンドパスフィルタ12の負荷抵抗を決定する。第1アンプ23は、ピークホールド回路22の出力信号VPHと第1基準信号VREF1の電位差に応じた電流IG1を抵抗RG1に流し、それによる電圧を持つ周波数調整信号VAFC を出力する。
【0029】
第2アンプ24は、非反転入力端子にピークホールド回路22の出力が接続され、反転入力端子に第2基準信号VREF2が入力される。この第2基準信号VREF2の電位は、図1のメインアンプ13のバイアス電圧を決定する。第2アンプ24は、ピークホールド回路22の出力信号VPHと第2基準信号VREF2の電位差に応じた電流IG2を抵抗RG2に流し、それによる電圧を持つゲイン調整信号VAGC を出力する。
【0030】
第3アンプ25は、非反転入力端子にピークホールド回路22の出力が接続され、反転入力端子に第3基準信号VREF3が入力される。第3アンプ25は、その出力が非反転入力端子に帰還入力される。この第3アンプ25は、ピークホールド回路22の出力信号VPHと第3基準信号VREF3の電位差を増幅した電流IDSを出力する。その電流IDSは第3アンプ25の非反転入力端子に帰還され、アンプ内部のカレントミラーなどで、例えば、1/10^6(10の6乗)にして出力される。この電流IDSは、ピークホールド回路22を構成するコンデンサCPHの保持電荷を放電する放電電流となる。
【0031】
図3は、バンドパスフィルタ12の回路図である。
バンドパスフィルタ12は、第1及び第2コンデンサC1,C2、第1及び第2抵抗R1,R2及び可変抵抗VRを含む。第1コンデンサC1と第1抵抗R1とから構成されるハイパスフィルタと、第2コンデンサC2と第2抵抗R2とから構成されるローパスフィルタとを直列に接続してバンドパスフィルタを構成している。第2抵抗R2には並列に可変抵抗VRが接続され、その可変抵抗VRには周波数調整信号VAFC が供給される。
【0032】
この周波数調整信号VAFC により可変抵抗VRの抵抗値が調整されてローパスフィルタのカットオフ周波数(遮断周波数)が変更され、それによってバンドパスフィルタ12の中心周波数が変更されるようになっている。より具体的には、図4に示すように、プリアンプ11の入力信号レベル(正確には信号VPHのレベル)が上記第1基準信号VREF1のレベルよりも大きい場合は、バンドパスフィルタ12の周波数特性を上げる(ローパスフィルタのカットオフ周波数を高域側にシフトする)べく自動調整を行うようになっている。
【0033】
図5は、メインアンプ13のゲイン特性を示す説明図である。
メインアンプ13のゲインは、上記AGF回路16から出力されるゲイン調整信号VAGC により変更される。より具体的には、プリアンプ11の入力信号レベル(正確には信号VPHのレベル)が上記第2基準信号VREF2のレベルよりも大きい場合は、メインアンプ13のゲイン特性を下げる(低ゲインにする)べく自動調整を行うようになっている。このように、メインアンプ13のゲイン特性は、上述したバンドパスフィルタ12の周波数特性と反比例して自動調整されるようになっている。
【0034】
以下、具体例として、本実施形態の光受信アンプ10を、光空間通信の1方式であるIrDA通信(赤外線通信)に適用した場合について図6を参照しながら説明する。
【0035】
IrDA通信(赤外線通信)においては、ベースバンド周波数と受信距離について明確な規定があり、低速115Kbps(パルス幅が1.63us)の方式と、高速1.152Mbps(パルス幅が217ns)の方式がある。規定によると、高速1.152Mbps(第1のビットレートを有する第1の信号を受信するモード;高速モード)に比べて、低速115Kbps(第2のビットレートを有する第2の信号を受信するモード;低速モード)の場合は受信感度が2.5倍必要である。
【0036】
このような通信方式に対応する場合において、AGF回路16によりメインアンプ13のゲインを調整すると同時にバンドパスフィルタ12の周波数特性をも可変する方法を用いる。例えば、あらかじめ、前述の低速115Kbpsに合わせてバンドパスフィルタ12の周波数特性を調整しておく。尚、この場合、AGF回路16内のハイパスフィルタ21(図2)の周波数特性は高速1.152Mbpsに合わせて設定される。
【0037】
今、光入力信号が小さい場合、即ちプリアンプ11に入力される信号レベルが小さい場合、メインアンプ13が高ゲインに設定されるとともにローパスフィルタのカットオフ周波数が低域側に設定される。この場合、光受信アンプ10は、高い感度が要求される低速モードに適した特性となる。
【0038】
一方、光入力信号が大きい場合、即ちプリアンプ11に入力される信号レベルが大きい場合、メインアンプ13が低ゲインに設定されるとともにローパスフィルタのカット周波数が高域側に設定される。よって、バンドパスフィルタ12及びメインアンプ13を介してコンパレータ15に入力される波形は、図6に(A1),(A2)で示すように破線から実線に示す波形に補正される。この場合、光受信アンプ10は高速モードに適した特性となる。
【0039】
以上のように、低速モードに比べて高速モードの方がゲインが小さくても良い場合において、光入力が小さい場合に適した低速モードではカットオフ周波数が低域側に設定されることで、帯域制限によってノイズマージンを大きくすることができる。一方、光入力が大きい場合には、カットオフ周波数が高域側にシフトされることで、より高速モードに適した特性となる。この高速モードでは、AGF回路16によってゲインが下がるので、ノイズマージンを大きくすることができる。
【0040】
次に、入出力回り込みによるノイズ対策について述べる。
デジタル出力とアナログ入力との間で、直接、あるいは電源ライン経由によって、回り込みが生じる場合、受信信号RXに発生するノイズが従来より問題となっていた。詳しくは、図7に示すように、入出力の回り込みが発生すると、受信信号RXのレベル変化時にスパイク電流が流れる。このスパイク電流はスイッチングノイズとなって、入力端子あるいはフォトダイオードPDに影響を与える。その結果、コンパレータの入力にノイズを発生させ、受信信号RXに不要なパルス(破線で囲むパルス)を発生させる。こうしたノイズはデジタル出力を利用する内部回路において誤動作の要因となり、場合によっては、この回り込みによって発振する虞もあった。
【0041】
本実施形態の光受信アンプ10では、メインアンプ13の差動出力の何れか一方にディレイ回路14が設けられている。この構成では、図8に示すように、ディレイ回路14を介してコンパレータ15の非反転入力端子(+)に入力される信号(メインアンプ13の出力)の位相が、コンパレータ15の反転入力端子(−)に入力されるそれに対して遅れる。その結果、スイッチングノイズによってコンパレータ15の(+)入力に発生するノイズを遅らせることができ、受信信号RXに不要なパルスが発生するのを抑止することができる。
【0042】
以上記述したように、本実施形態によれば、以下の効果を奏する。
(1)AGF回路16は、プリアンプ11の出力を取り込んでフォトダイオードPDが受信する光入力信号の大きさを検出し、その検出結果に基づいてバンドパスフィルタ12の周波数特性とメインアンプ13のゲイン特性を自動調整する。この構成によれば、光入力信号の大きさを精度よく検出することができ、光入力信号の小さい時は高ゲイン設定かつ周波数特性を低域側に設定し、光入力信号の大きい時は低ゲイン設定かつ周波数特性を高域側に設定することができる。これにより、受光量に応じた最適なゲイン特性及び周波数特性に自動調整してS/N比の向上を容易に図ることができる。
【0043】
(2)AGF回路16は、プリアンプ11の出力をハイパスフィルタ21を介してピークホールド回路22に取り込むことで、同プリアンプ11に入力される信号のピークレベルを検出する。この構成によれば、高速ビットレートのパルス幅に合わせて信号レベルの検出を行う。従って、高速ビットレートに対応したパルス幅の細い信号のレベル検出をより高い精度で行うことができる。
【0044】
(3)本実施形態の光受信アンプ10は、光入力信号の小さな時に主として低速モードを利用し、光入力信号の大きな時に主として高速モードを利用するIrDA通信(赤外線通信)においては特に有用な構成とすることができる。
【0045】
(4)本実施形態では、周波数特性の調整において、高精度フィルタ等は何ら必要とせず、プリアンプ11の出力を基にピークホールド検出した結果に基づいて、簡易な回路設定でゲイン特性の調整と同時に周波数特性をも調整することができる。従って、回路規模を削減して、コストダウンを図ることができる。
【0046】
(5)本実施形態では、メインアンプ13の差動出力の一方にディレイ回路14を設けたことで、入出力回り込みの影響を小さくできる。このため、光部品との実装において自由度が増え、実装を小型化することが可能である。
【0047】
(第二実施形態)
以下、本発明を具体化した第二実施形態を図9〜図12に従って説明する。
尚、本実施形態において、上記第一実施形態と同様な構成部分については同一符号を付してその説明を一部省略する。
【0048】
図9は、第二実施形態の光受信アンプ30を示すブロック回路図である。
この光受信アンプ30は、第一実施形態の光受信アンプ10(図1参照)に、一部構成を変更したAGF回路31、ワンショット・パルス回路(以下、ワンショット回路)32、ヒステリシスコンパレータ33、スイッチ回路34及びORゲート35を追加した構成であり、その他の構成は図1と同様である。
【0049】
ワンショット回路32はコンパレータ15に接続され、該コンパレータ15の出力信号の遷移に応答して、AGF回路31から出力されるパルス調整信号ITSに応じたパルス幅twを持つ信号TSを出力する。このワンショット回路32の出力信号TSは、ORゲート35の一方の入力端子に入力される。
【0050】
ヒステリシスコンパレータ33は、反転入力端子にAGF回路31から出力される周波数調整信号VAFC が入力され、非反転入力端子に閾値電圧VTHが入力される。ヒステリシスコンパレータ33は、周波数調整信号VAFC を閾値電圧VTHに基づいて二値化して制御信号SWを生成する。
【0051】
スイッチ回路34は、一端がコンパレータ15の出力に接続され、他端がORゲート35の他方の入力端子に接続されている。スイッチ回路34は、ヒステリシスコンパレータ33からの制御信号SWに応じてオン・オフされる。そして、このスイッチ回路34がオンされるとき、コンパレータ15の出力がORゲート35に入力されるようになっている。
【0052】
図10は、本実施形態のAGF回路31を示す回路図である。
このAGF回路31は、上記第一実施形態のAGF回路16(図2参照)に、第4アンプ36を追加した構成であり、その他の構成は図2と同様である。
【0053】
第4アンプ36は、非反転入力端子にピークホールド回路22の出力が接続され、反転入力端子に第4基準信号VREF4が入力される。この第4基準信号VREF4の電位は、図9のワンショット回路32の出力信号TSのパルス幅twを決定する。この第4アンプ36は、ピークホールド回路22の出力信号VPHと第4基準信号VREF4の電位差に応じた電流IG4を持つパルス調整信号ITSを出力する。そして、このパルス調整信号ITSに応じて、ワンショット回路32の出力信号TSのパルス幅twが変更されるようになっている。ここで、第4アンプ36における容量Cとした場合、パルス幅twは、tw=C×VREF4/IG4(ITS)で決定される。
【0054】
図11は、ワンショット回路32の動作波形図である。
ワンショット回路32は、パルス調整信号ITSに応答して、プリアンプ11の入力信号レベル(正確には信号VPHのレベル)が上記第4基準信号VREF4のレベルよりも大きい場合は、パルス幅twを細くするようになっている。即ち、ワンショット回路32は、光入力信号が小さい場合は低速モードに対応した幅広のパルス幅twを持つ信号TSを出力し、光入力信号が大きい場合は高速モードに対応した幅挟のパルス幅を持つ信号TSを出力するようになっている。
【0055】
図12は、スイッチ回路34の動作説明図である。
スイッチ回路34は、ヒステリシスコンパレータ33から出力される制御信号SWによって、光入力信号の小さい場合に適した低速モードではオフされ、光入力信号の大きい場合に適した高速モードではオンされるようになっている。そして、入力信号レベルに応じたオン・オフの切り替わり付近ではヒステリシスを持つように切り替えられる。このヒステリシスは必ずしも必要ではないが、このような切り替え制御とすることで、スイッチが頻繁に切り替わる際にパルス幅twがジッタのように変動するのを防止する効果がある。
【0056】
上記のように構成された光受信アンプ30では、IrDA通信に適用する場合において上記第一実施形態よりもさらに有用な構成とすることができる。即ち、本実施形態では、ワンショット回路32を追加したことで、ORゲート35から出力される受信信号RXのパルス幅を低速モード時と高速モード時とでそれぞれ安定させることができる。
【0057】
例えば、図6において(B)に示すように、光受信アンプ30が低速ビットレート(第2のビットレート)に対応した信号(第2の信号)を受信する場合であって、光入力信号が小さい時、同信号はパルス幅の細い状態となっている。このとき、ワンショット回路32は、低速ビットレートに対応した(幅広の)一定のパルス幅twを持つ信号TSを出力する。また、スイッチ回路34はオフされる。よって、ORゲート35は、ワンショット回路32から出力される低速ビットレート用の安定したパルス幅を持つ信号TSを受信信号RXとして出力する。従って、光受信アンプ30は低速ビットレート(低速モード)に対応するべく動作を行い、安定した出力を行う。
【0058】
一方、図6において(C)に示すように、光受信アンプ30が高速ビットレート(第1のビットレート)に対応した信号(第1の信号)を受信する場合であって、光入力信号が小さい時(具体的には第1の信号の受信感度付近(受信可能な付近)のレベル)、同信号はパルス幅の細い状態となっている。このとき、ワンショット回路32は、高速ビットレートに対応した(幅挟の)一定のパルス幅twを持つ信号TSを出力する。よって、ORゲート35は、ワンショット回路32から出力される高速ビットレート用の安定したパルス幅を持つ信号TSを受信信号RXとして出力する。従って、光受信アンプ30は高速ビットレート(高速モード)に対応するべく動作を行い、安定した出力を行う。
【0059】
因みに、このとき、スイッチ回路34はオンされる。よって、ORゲート35は、ワンショット回路32の出力信号TSとコンパレータ15の出力信号の論理和を取った信号を受信信号RXとして出力する。従って、この場合、光受信アンプ30は、低速ビットレートに対応した信号あるいは高速ビットレートに対応した信号の何れも受信可能となっている。
【0060】
詳述すると、高速ビットレートに対応した信号を受信する場合、上記したように、高速ビットレート用のパルス幅を持つワンショット回路32の出力信号TSをORゲート35を通して受信信号RXとして出力する。一方、低速ビットレートに対応した信号を受信する場合、コンパレータ15の出力信号をORゲート35を通して受信信号RXとして出力する。
【0061】
尚、上記第一実施形態で説明したように、光入力信号が大きい場合には、図6に(A1),(A2)で示すようにコンパレータ15の入力信号(パルス幅)が破線から実線に示す波形に補正される。従って、光受信アンプ30は、低速ビットレートあるいは高速ビットレートの何れの場合でも安定した出力を行うことができる。このため、光入力信号レベルが高速ビットレートの信号の受信感度付近よりも十分に大きい場合においては、ワンショット回路32によるパルス幅制御は特に必要ないが、本実施形態の構成によれば、高速ビットレートの信号の受信時に受信信号RXのパルス幅が細ることを確実に防止することができる。
【0062】
以上記述したように、本実施形態によれば、以下の効果を奏する。
(1)コンパレータ15の出力に基づいて、受光量に応じたパルス幅twを持つ信号TSを出力するワンショット回路32を設けた。これにより、低速ビットレートに対応した信号を小信号入力にて受信する場合に、安定したパルス幅を持つ受信信号RXを出力することができる。また、高速ビットレートに対応した信号を受信感度付近レベルで受信する場合において、同信号のパルス幅が細りすぎるのを防止することができる。
【0063】
(2)ワンショット回路32は、光入力信号が小さい時には幅広のパルス幅twを持つ信号TSを出力し、光入力信号が大きい時には幅挟のパルス幅twを持つ信号TSを出力する。このため、受信信号RXのパルス幅が細りすぎることを防止できる。従って、IrDA通信(赤外線通信)に適用する場合において、本実施形態の光受信アンプ30は、第一実施形態の光受信アンプ10よりもさらに有用な構成とすることができる。
【0064】
(第三実施形態)
以下、本発明を具体化した第三実施形態を図13に従って説明する。
尚、本実施形態において、上記第一実施形態と同様な構成部分については同一符号を付してその説明を一部省略する。
【0065】
図13は、第三実施形態の光受信アンプ40を示すブロック回路図である。
この光受信アンプ40は、第一実施形態の光受信アンプ10(図1参照)に、電源検出回路41を追加した構成であり、その他の構成は図1と同様である。
【0066】
電源検出回路41は、コンデンサC3とバッファ42とから構成され、コンデンサC3の第1端子は電源VCCに接続され、第2端子はバッファ42の入力に接続されている。電源VCCは、プリアンプ11,メインアンプ13等の各回路の電源である。バッファ42の出力はAGF回路16に接続されている。詳しくは、バッファ42の出力は、図2に示すAGF回路16内において、ハイパスフィルタ21の出力と論理和が取られ、この論理和出力がピークホールド回路22の非反転入力端子に入力されるようになっている。
【0067】
この電源検出回路41は、コンデンサC3での容量カップリングによって電源VCCの変動を検出し、該検出結果に基づいて電源変動に応じたバッファ42の出力を行う。そして、このバッファ42の出力とハイパスフィルタ21の出力(信号VH )との論理和を取った信号のピークレベルがピークホールド回路22により保持されるようになっている。
【0068】
このように構成された本実施形態の光受信アンプ40によれば、上記第一実施形態で奏する効果に加えて、以下の効果を奏する。
(1)電源VCCの変動を検出する電源検出回路41により電源ノイズの量を検出することができる。これにより、電源ノイズが大きい場合において、AGF回路16は、電源検出回路41の出力に基づいて、メインアンプ13のゲインを下げるべくゲイン調整信号VAGC を生成する。従って、電源ノイズに対する耐性を向上して、光受信アンプ40の誤動作を防止することができる。
【0069】
(第四実施形態)
以下、本発明を具体化した第四実施形態を図14,図15に従って説明する。尚、本実施形態において、上記第一実施形態と同様な構成部分については同一符号を付してその説明を一部省略する。
【0070】
図14は、第四実施形態の光受信アンプ50を示すブロック回路図である。
この光受信アンプ50は、第一実施形態の光受信アンプ10(図1参照)に、ヒステリシス発生回路51を追加した構成であり、その他の構成は図1と同様である。
【0071】
ヒステリシス発生回路51は、コンパレータ15の出力を取り込んでメインアンプ13の差動入力の一方にヒステリシスを発生させる。このヒステリシス発生回路51は、バッファ52、コンデンサCy及び抵抗Ryを備えている。バッファ52によって取り込んだ受信信号RXをコンデンサCy及び抵抗Ryを通してAC的なヒステリシスを含む信号Vyとし、この信号Vyをバンドパスフィルタ12の出力信号VB に重畳させた信号をメインアンプ13の一方の入力に与えるようになっている。
【0072】
このように構成されるヒステリシス発生回路51は、図15に示すように、受信信号RXのレベル変化時に入出力の回り込みが発生して、コンパレータ15の差動入力にノイズが発生する場合に、その一方の入力にヒステリシスをかけるように作用する。その結果、ディレイ回路14によるコンパレータ15入力の位相ずらしの量を第一実施形態のそれより小さくしても、受信信号RXに不要なパルスが発生するのを抑止して、十分なノイズマージンを得ることができる。
【0073】
以上記述した本実施形態の光受信アンプ50によれば、上記第一実施形態で奏する効果に加えて、以下の効果を奏する。
(1)コンパレータ15の差動入力の一方にAC的なヒステリシスを与えるヒステリシス発生回路51を追加した。これにより、ディレイ回路14による位相ずらしの量を第一実施形態に比べて小さくできる。その結果、入出力回り込みによるノイズの影響を軽減しながら、精度の高い受信信号RXを出力する光受信アンプ50を実現することができる。
【0074】
尚、上記各実施形態は、以下の態様で実施してもよい。
・第二実施形態の光受信アンプ30に第三実施形態の電源検出回路41を備えた構成としてもよい。
【0075】
・第二実施形態の光受信アンプ30に第四実施形態のヒステリシス発生回路51を備えた構成としてもよい。
・第二実施形態の光受信アンプ30に第三実施形態の電源検出回路41と第四実施形態のヒステリシス発生回路51を備えた構成としてもよい。
【0076】
・第三実施形態の光受信アンプ40に第四実施形態のヒステリシス発生回路51を備えた構成としてもよい。
・各実施形態では、プリアンプ11の出力に基づいて、メインアンプ13のゲイン特性を調整する方法としたが、プリアンプ11のゲイン特性を調整する方法としてもよい。また、プリアンプ11とメインアンプ13のゲイン特性をともに調整する方法としてもよい。
【0077】
・各実施形態では、バンドパスフィルタ12の周波数特性とメインアンプ13のゲイン特性の自動調整をそれぞれプリアンプ11の出力に基づいて行うようにとしたが、周波数調整のみをプリアンプ11の出力に基づいて行うようにしてもよい。即ち、メインアンプ13(又はプリアンプ11、又はメインアンプ13とプリアンプ11の双方)のゲイン調整に関しては、同メインアンプ13の出力に基づいて行うようにしてもよい。図16は、その一構成例を示す光受信アンプ60のブロック回路図である。尚、各実施形態と同様な構成部分については同一符号を付してその説明を一部省略する。この光受信アンプ60は、プリアンプ11の出力に基づいてバンドパスフィルタ12の周波数特性を自動調整する自動周波数調整(以下、AFC)回路61と、メインアンプ13の出力に基づいて同メインアンプ13のゲイン特性を自動調整する自動ゲイン調整(以下、AGC)回路62とを備えている。AFC回路61は、プリアンプ11の出力(電圧信号VAP)をハイパスフィルタ21を通してフィルタリング処理した信号VH のピークホールドを検出して周波数調整信号VAFC を生成する。AGC回路62は、メインアンプ13の出力信号VAMのピークホールドを検出してゲイン調整信号VAGC を生成する。尚、AGC回路62は、プリアンプ11、或いはプリアンプ11及びメインアンプ13の双方のゲインを調整するようにしてもよい。このように構成された光受信アンプ60では、第一実施形態の構成に比べて回路面積が若干大きくなるが、同様な効果を得ることができる。
【0078】
上記各実施形態の特徴をまとめると以下のようになる。
(付記1) 入力電流を第1の電圧信号に変換する第1の増幅器と、前記第1の電圧信号を第1のフィルタを介して帯域制限した信号を増幅して第2の電圧信号を生成する第2の増幅器と、を含む増幅回路であって、
前記第1の電圧信号のレベルを検出し、その検出結果に応じて前記第1のフィルタの周波数特性を可変する自動周波数調整回路と、
前記第1及び前記第2の電圧信号の何れか一方のレベルを検出し、その検出結果に応じて前記第1及び前記第2の増幅器の少なくとも一方のゲイン特性を可変する自動ゲイン調整回路と
を備えることを特徴とする増幅回路。
(付記2) 入力電流を第1の電圧信号に変換する第1の増幅器と、前記第1の電圧信号を第1のフィルタを通して帯域制限した信号を増幅して第2の電圧信号を生成する第2の増幅器と、を含む増幅回路であって、
前記第1の電圧信号のレベルを検出し、その検出結果に応じて、前記第1のフィルタの周波数特性と前記第1及び前記第2の増幅器の少なくとも一方のゲイン特性とを可変する自動ゲイン&周波数調整回路を備えることを特徴とする増幅回路。
(付記3) 前記第1の電圧信号の信号帯域内に含まれる高周波数信号を抽出する第2のフィルタを備え、
前記第1の電圧信号を前記第2のフィルタに取り込んでフィルタリング処理を施し、前記第2のフィルタの出力信号に基づいて前記第1の電圧信号のレベルを検出することを特徴とする付記1又は2記載の増幅回路。
(付記4) 前記自動周波数調整回路は、
前記第1の電圧信号のレベルを検出して保持するピークホールド回路と、
前記ピークホールド回路の出力信号と第1基準信号との電位差を増幅して周波数調整信号を生成する増幅器と
を含むことを特徴とする付記1又は3記載の増幅回路。
(付記5) 前記自動ゲイン&周波数調整回路は、
前記第1の電圧信号のレベルを検出して保持するピークホールド回路と、
前記ピークホールド回路の出力信号と第1基準信号との電位差を増幅して周波数調整信号を生成する増幅器と、
前記ピークホールド回路の出力信号と第2基準信号との電位差を増幅してゲイン調整信号を生成する増幅器と
を含むことを特徴とする付記2又は3記載の増幅回路。
(付記6) 前記第2の電圧信号を二値化した二値信号を生成する比較器と、
前記二値信号の遷移に応答して、前記第1の電圧信号のレベル検出結果に応じた一定のパルス幅を持つ信号を出力するワンショット・パルス回路と
を備えることを特徴とする付記1乃至5の何れか一記載の増幅回路。
(付記7) 前記二値信号と前記ワンショット・パルス回路の出力信号の論理和を出力するORゲートと、
前記第1の電圧信号のレベル検出結果に基づいて、前記ORゲートに前記二値信号を出力するスイッチ回路と、
を備えることを特徴とする付記6記載の増幅回路。
(付記8) 前記第1及び前記第2の増幅器に供給される電源の電源変動を検出する電源検出回路を備え、
前記電源検出結果による検出結果を取り込んで前記第1の電圧信号のレベルを検出することを特徴とする付記1乃至7の何れか一記載の増幅回路。
(付記9) 前記第2の増幅器は差動型アンプであり、
前記第2の増幅器の差動出力の何れか一方にディレイ回路を備えることを特徴とする付記1乃至8の何れか一記載の増幅回路。
(付記10) 前記二値信号を取り込んで前記第2の増幅器の差動入力の一方にヒステリシスを発生させるヒステリシス発生回路をさらに備えることを特徴とする付記9記載の増幅回路。
(付記11) 光信号を受ける受光素子と、
前記受光素子に流れる受信電流が前記入力電流として供給される付記1乃至10の何れか一記載の増幅回路と
を備えることを特徴とする光受信回路。
(付記12) 入力電流を電流電圧変換した電圧信号を所定の周波数に帯域制限するフィルタを有し、第1のビットレートを有する第1の信号と、前記第1のビットレートよりも低い第2のビットレートを有する第2の信号とを受信する受信回路において、
前記電圧信号のレベルが前記第1の信号を受信可能とするレベルよりも小さい場合に、前記フィルタの通過特性を前記第2の信号の周波数帯域に設定する自動周波数調整回路を備えることを特徴とする受信回路。
(付記13) 前記自動周波数調整回路は、
前記電圧信号のレベルが前記第1の信号を受信可能とするレベルを有している場合に、前記フィルタの通過特性を前記第1の信号の周波数帯域に設定することを特徴とする付記12記載の受信回路。
【0079】
【発明の効果】
以上詳述したように、本発明によれば、受信光に応じたゲイン特性及び周波数特性に自動調整してS/N比の向上を容易に図ることのできる増幅回路、受信回路及び光受信回路を提供することができる。
【図面の簡単な説明】
【図1】第一実施形態の光受信アンプを示すブロック回路図である。
【図2】第一実施形態のAGF回路を示す回路図である。
【図3】バンドパスフィルタを示す回路図である。
【図4】バンドパスフィルタの周波数特性を示す説明図である。
【図5】メインアンプのゲイン特性を示す説明図である。
【図6】第一実施形態を赤外線通信に適用した例を示す説明図である。
【図7】入出力回り込みを説明するための波形図である。
【図8】第一実施形態の動作波形図である。
【図9】第二実施形態の光受信アンプを示すブロック回路図である。
【図10】第二実施形態のAGF回路を示す回路図である。
【図11】ワンショット・パルス回路の動作波形図である。
【図12】スイッチ回路の動作説明図である。
【図13】第三実施形態の光受信アンプを示すブロック回路図である。
【図14】第四実施形態の光受信アンプを示すブロック回路図である。
【図15】第四実施形態の動作波形図である。
【図16】光受信アンプの別の構成例を示すブロック回路図である。
【図17】従来の光受信アンプを示すブロック回路図である。
【符号の説明】
10,30,40,50,60 増幅回路としての光受信アンプ
11 第1の増幅器としてのプリアンプ
12 第1のフィルタとしてのバンドパスフィルタ
13 第2の増幅器としてのメインアンプ
15 比較器としてのコンパレータ
16,31 自動ゲイン&周波数調整回路(AGF回路)
21 第2のフィルタとしてのハイパスフィルタ
22 ピークホールド回路
23 増幅器としての第1アンプ
24 増幅器としての第2アンプ
32 ワンショット・パルス回路
41 電源検出回路
61 自動周波数調整回路(AFC回路)
62 自動ゲイン調整回路(AGC回路)
PD 受光素子としてのフォトダイオード
IPD 受信電流(入力電流)
VAP 第1の電圧信号
VAM 第2の電圧信号
RX 二値信号としての受信信号
VAGC ゲイン調整信号
VAFC 周波数調整信号
VREF1 第1基準信号
VREF2 第2基準信号
VCC 電源
tw パルス幅
Claims (10)
- 入力電流を第1の電圧信号に変換する第1の増幅器と、前記第1の電圧信号を第1のフィルタを介して帯域制限した信号を増幅して第2の電圧信号を生成する第2の増幅器と、を含む増幅回路であって、
前記第1の電圧信号のレベルを検出し、その検出結果に応じて前記第1のフィルタの周波数特性を可変する自動周波数調整回路と、
前記第1及び前記第2の電圧信号の何れか一方のレベルを検出し、その検出結果に応じて前記第1及び前記第2の増幅器の少なくとも一方のゲイン特性を可変する自動ゲイン調整回路と
を備えることを特徴とする増幅回路。 - 入力電流を第1の電圧信号に変換する第1の増幅器と、前記第1の電圧信号を第1のフィルタを通して帯域制限した信号を増幅して第2の電圧信号を生成する第2の増幅器と、を含む増幅回路であって、
前記第1の電圧信号のレベルを検出し、その検出結果に応じて、前記第1のフィルタの周波数特性と前記第1及び前記第2の増幅器の少なくとも一方のゲイン特性とを可変する自動ゲイン&周波数調整回路を備えることを特徴とする増幅回路。 - 前記第1の電圧信号の信号帯域内に含まれる高周波数信号を抽出する第2のフィルタを備え、
前記第1の電圧信号を前記第2のフィルタに取り込んでフィルタリング処理を施し、前記第2のフィルタの出力信号に基づいて前記第1の電圧信号のレベルを検出することを特徴とする請求項1又は2記載の増幅回路。 - 前記自動周波数調整回路は、
前記第1の電圧信号のレベルを検出して保持するピークホールド回路と、
前記ピークホールド回路の出力信号と第1基準信号との電位差を増幅して周波数調整信号を生成する増幅器と
を含むことを特徴とする請求項1又は3記載の増幅回路。 - 前記自動ゲイン&周波数調整回路は、
前記第1の電圧信号のレベルを検出して保持するピークホールド回路と、
前記ピークホールド回路の出力信号と第1基準信号との電位差を増幅して周波数調整信号を生成する増幅器と、
前記ピークホールド回路の出力信号と第2基準信号との電位差を増幅してゲイン調整信号を生成する増幅器と
を含むことを特徴とする請求項2又は3記載の増幅回路。 - 前記第2の電圧信号を二値化した二値信号を生成する比較器と、
前記二値信号の遷移に応答して、前記第1の電圧信号のレベル検出結果に応じた一定のパルス幅を持つ信号を出力するワンショット・パルス回路と
を備えることを特徴とする請求項1乃至5の何れか一項記載の増幅回路。 - 前記第1及び前記第2の増幅器に供給される電源の電源変動を検出する電源検出回路を備え、
前記電源検出結果による検出結果を取り込んで前記第1の電圧信号のレベルを検出することを特徴とする請求項1乃至6の何れか一項記載の増幅回路。 - 光入力信号を受ける受光素子と、
前記受光素子に流れる受信電流が前記入力電流として供給される請求項1乃至7の何れか一項記載の増幅回路と
を備えることを特徴とする光受信回路。 - 入力電流を電流電圧変換した電圧信号を所定の周波数に帯域制限するフィルタを有し、第1のビットレートを有する第1の信号と、前記第1のビットレートよりも低い第2のビットレートを有する第2の信号とを受信する受信回路において、
前記電圧信号のレベルが前記第1の信号を受信可能とするレベルよりも小さい場合に、前記フィルタの通過特性を前記第2の信号の周波数帯域に設定する自動周波数調整回路を備えることを特徴とする受信回路。 - 前記自動周波数調整回路は、
前記電圧信号のレベルが前記第1の信号を受信可能とするレベルを有している場合に、前記フィルタの通過特性を前記第1の信号の周波数帯域に設定することを特徴とする請求項9記載の受信回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003061900A JP3980502B2 (ja) | 2003-03-07 | 2003-03-07 | 増幅回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003061900A JP3980502B2 (ja) | 2003-03-07 | 2003-03-07 | 増幅回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004274360A true JP2004274360A (ja) | 2004-09-30 |
JP3980502B2 JP3980502B2 (ja) | 2007-09-26 |
Family
ID=33123984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003061900A Expired - Fee Related JP3980502B2 (ja) | 2003-03-07 | 2003-03-07 | 増幅回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3980502B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011244350A (ja) * | 2010-05-20 | 2011-12-01 | Nec Corp | 光トランシーバ及び光トランシーバの制御方法 |
JPWO2020218472A1 (ja) * | 2019-04-24 | 2020-10-29 | ||
JP2021034792A (ja) * | 2019-08-20 | 2021-03-01 | 矢崎総業株式会社 | 光ファイバ無線通信の受信モジュールおよび光ファイバ無線通信システム |
-
2003
- 2003-03-07 JP JP2003061900A patent/JP3980502B2/ja not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011244350A (ja) * | 2010-05-20 | 2011-12-01 | Nec Corp | 光トランシーバ及び光トランシーバの制御方法 |
JPWO2020218472A1 (ja) * | 2019-04-24 | 2020-10-29 | ||
WO2020218472A1 (ja) * | 2019-04-24 | 2020-10-29 | 学校法人慶應義塾 | ヒステリシス比較器、及び通信回路 |
JP7324529B2 (ja) | 2019-04-24 | 2023-08-10 | 慶應義塾 | ヒステリシス比較器、及び通信回路 |
JP2021034792A (ja) * | 2019-08-20 | 2021-03-01 | 矢崎総業株式会社 | 光ファイバ無線通信の受信モジュールおよび光ファイバ無線通信システム |
JP7351673B2 (ja) | 2019-08-20 | 2023-09-27 | 矢崎総業株式会社 | 光ファイバ無線通信の受信モジュールおよび光ファイバ無線通信システム |
Also Published As
Publication number | Publication date |
---|---|
JP3980502B2 (ja) | 2007-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4005401B2 (ja) | 増幅回路及び光通信装置 | |
US7787781B2 (en) | Optical receiver reliably detectable loss-of-signal state | |
US20090196632A1 (en) | Optical burst receiver and method | |
US6597245B2 (en) | Preamplifier | |
US20020063937A1 (en) | Optical receiving apparatus | |
US8416886B2 (en) | Receiver | |
JP5480010B2 (ja) | 光受信回路 | |
JP3980502B2 (ja) | 増幅回路 | |
US8301038B2 (en) | Electronic circuit and communication system | |
US8144813B2 (en) | Receiving method and receiving circuit | |
JPH08288757A (ja) | ディジタル受信回路 | |
TWI279096B (en) | Optical receiver | |
JP2004260230A (ja) | 光電流・電圧変換回路 | |
JP2008177722A (ja) | 自動利得制御回路 | |
JP4137120B2 (ja) | 前置増幅回路及びクロック切替え回路及びそれを用いた光受信器 | |
JP5780282B2 (ja) | リミッタアンプ回路及びドライバ回路 | |
JP2000201113A (ja) | バ―スト光信号の受信方法及びその装置 | |
JP4060597B2 (ja) | パルス幅検出回路及び受信回路 | |
JP2002135214A (ja) | 光受信器 | |
JP2000312182A (ja) | 光受信装置 | |
JP4791435B2 (ja) | 直流成分キャンセル回路 | |
JP2007266726A (ja) | 受信器を搭載した電子装置 | |
JPH02206261A (ja) | 光入力断検出回路 | |
JP3426910B2 (ja) | 赤外線データ受信器 | |
JP2004186849A (ja) | 光入力断検出回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060808 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070626 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070627 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100706 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100706 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100706 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110706 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110706 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110706 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120706 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120706 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130706 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |