[go: up one dir, main page]

JP2004273315A - イオン発生装置、空気調節装置および荷電装置 - Google Patents

イオン発生装置、空気調節装置および荷電装置 Download PDF

Info

Publication number
JP2004273315A
JP2004273315A JP2003063727A JP2003063727A JP2004273315A JP 2004273315 A JP2004273315 A JP 2004273315A JP 2003063727 A JP2003063727 A JP 2003063727A JP 2003063727 A JP2003063727 A JP 2003063727A JP 2004273315 A JP2004273315 A JP 2004273315A
Authority
JP
Japan
Prior art keywords
electrode
ion generator
discharge
dielectric layer
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003063727A
Other languages
English (en)
Inventor
Tadashi Iwamatsu
正 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003063727A priority Critical patent/JP2004273315A/ja
Priority to US10/795,406 priority patent/US7160365B2/en
Publication of JP2004273315A publication Critical patent/JP2004273315A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Electrostatic Separation (AREA)

Abstract

【課題】イオン発生装置1の機械的強度を向上させる。放電時のオゾン発生量を低減して、人体や環境にやさしい空気調節装置および荷電装置を提供する。
【解決手段】誘導電極2と放電電極4とで誘電体層3を挟持してイオン発生装置1を構成する。このとき、誘導電極2を、例えばアルミニウムの金属基板で構成する。これにより、装置が大型化しても、脆性材料であるセラミック基板で誘電体層を構成していた従来に比べて、装置の機械的強度が向上する。また、誘電体層3を、絶縁破壊耐圧が30V/μm以上で、かつ、厚さが30μm以下の薄膜で構成し、放電電極4を、各線状電極の電極部の面積が、非電極部の面積よりも小さくなるように誘電体層3上に形成する。これにより、放電電圧を低電圧化でき、放電時に発生するオゾン量を低減することができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、誘導電極と放電電極との間に交互電圧を印加して、コロナ放電により正負両イオンを発生するイオン発生装置と、それを備えた空気調節装置および荷電装置とに関するものである。
【0002】
【従来の技術】
従来から、誘導電極と放電電極とで誘電体層を挟む構造のコロナ放電素子が知られている(例えば特許文献1参照)。この特許文献1に記載のコロナ放電素子は、厚さ0.5mmのアルミナ磁器の片面に、タングステンの線状放電電極を形成し、他方の面に、面状誘導電極を形成した沿面コロナ放電素子である。このようなコロナ放電素子は、例えばオゾナイザとして利用することが可能となっている。
【0003】
このコロナ放電素子の製造過程では、アルミナ基板上にタングステン放電電極を形成するときに、1500℃という高温焼成の製造工程が必要である。また、コロナ放電素子にて放電を発生させるためには、誘導電極と放電電極との間に10kHz、10kVpp(peak−to−peak)という高電圧を印加する必要がある。このため、人体の接触や誤動作などに対する信頼性・安全性の配慮が特に必要であり、また、高圧電源自体のコストが高価となり、消費電力も大きくなる。
【0004】
また、このコロナ放電素子は、オゾン発生効率が良いために、オゾナイザとしての利用には適しているが、空気清浄機や荷電装置への利用を考えると、人体に有害なオゾン発生量が多いがゆえに、困難である。
【0005】
一方、上記と同様の構造を有する放電素子を、荷電装置に応用した例もある(例えば特許文献2参照)。この特許文献2には、放電素子の一例として、ガラスの両側において、それぞれが交差するようにマトリックス状に線状電極を配置したものが開示されている。この構成では、各面の線状電極が互いに交差する複数の交点で選択的に放電させ、イオンを発生させることで、放電素子と対向する円筒状誘電体上に静電潜像を直接形成することができる。この静電潜像を電子写真の原理で可視化すれば、プリンタ、複写機、ファクシミリなどを実現することができる。
【0006】
また、放電素子を、上記のような荷電装置として使用する以外にも、素子の軸方向に一様に放電させて電子写真の感光体を帯電させる帯電器として使用する応用例も数多く提案されている。しかし、このような荷電装置や帯電器としての応用においても、上記と同様に、高温焼成の製造工程が必要であるとともに、高圧電源が必要であり、さらには、オゾン発生量が多いためにオゾン除去フィルタが必要である。
【0007】
また、上記とは別のタイプの放電素子も従来から提案されている(例えば特許文献3参照)。この特許文献3では、円筒形のガラス管を誘電体層として用いて放電素子を構成しており、放電により発生するH(HO)(mは自然数)の正イオンと、O (HO)(nは自然数)の負イオンとにより、大気中の浮遊細菌を殺菌する空気調節装置に、上記放電素子を応用できることが開示されている。
【0008】
この種の放電素子においても、放電をイオン発生の原理とする以上、オゾンの発生は避けられない。人体に有害なオゾン濃度に関し、安全基準値として0.1ppmという値が産業衛生協会により定められている。そこで、この空気調節装置では、オゾン発生量を上記の安全基準値以下とするために、オゾン濃度検知センサを設け、検知したオゾン濃度に基づいて、放電素子に印加する電圧などを制御手段にて制御している。この場合、オゾン濃度検知センサと制御手段とが装置に付加されるため、装置としてはコストアップするとともに大型化する。
【0009】
なお、例えば非特許文献1では、ワイヤ電極に高電圧を印加してコロナ放電を発生させたときのワイヤ径とオゾン発生量との関係が研究されている。この非特許文献1では、ワイヤ径が数十μmから150μmでの実験において、ワイヤ径が小さいほどオゾン発生量が少ないという線形関係が開示されている。この傾向は、正コロナでも負コロナでも同様であるが、正コロナは負コロナより約1桁オゾン発生量が少ない特性が示されている。これらの放電特性は、複写機の帯電器としての特性を検討したものであるから、帯電のためのイオン発生量は同じという条件で、人体に有害なオゾンが低減するものと考えられる。
【0010】
【特許文献1】
特公平2−22998号公報
【特許文献2】
米国特許第4155093号明細書
【特許文献3】
特開2002−95731号公報
【非特許文献1】
“Journal of Imaging Science”Vol.32, No.5, p.205−210, Sep./Oct. 1988
【0011】
【発明が解決しようとする課題】
ところが、上記した特許文献1の構成では、放電電極と誘導電極とで挟持される誘電体層が、アルミナ磁器のようなセラミック基板であるので、セラミックが脆性材料であるがゆえに、素子サイズが大型になるほど、機械的破壊強度が弱くなるという問題が生ずる。
【0012】
また、従来の放電素子(イオン発生装置)は、放電電極と誘導電極との間に高圧を印加して正負両イオンを発生させる構成であるので、高圧印加による人体に有害なオゾンの発生量が多く、空気調節装置や荷電装置への応用が懸念されている。
【0013】
本発明は、上記の問題点を解決するためになされたものであり、その主な目的は、誘導電極と放電電極とで誘電体層を挟む構造のイオン発生装置において、サイズが大型になっても、機械的破壊強度を損なわないイオン発生装置と、それを用いた空気調節装置および荷電装置とを提供することにある。また、本発明の他の目的は、低電圧駆動を容易に実現できるイオン発生装置を提供するとともに、これによって、放電時のオゾン発生量を低減して、人体や環境にやさしい空気調節装置および荷電装置を提供することにある。
【0014】
【課題を解決するための手段】
本発明によれば、誘電体層を挟持する誘導電極と放電電極とのうち、誘導電極を金属基板で構成している。この金属基板は、例えば、誘電体層よりも厚い金属基板(アルミニウム基板など)で構成することができる。このような誘導電極と放電電極との間に交互電圧を印加することにより、放電電極近傍にてコロナ放電が発生し、正負両イオンが発生する。
【0015】
このように、誘導電極が金属基板で構成されているので、イオン発生装置自体が大型化しても、脆性材料であるセラミック基板で誘電体層を構成していた従来に比べて、機械的強度の高いイオン発生装置を実現することができる。つまり、振動や外部からの衝撃に対して強く、高寿命のイオン発生装置を実現することができる。
【0016】
また、誘導電極自体を金属基板で構成しているので、誘導電極は、イオン発生装置の機械的強度を向上もしくは維持する機能と、放電電極との間で放電を行うための電極としての機能とを併せ持つことになる。つまり、誘導電極を金属基板で構成しても、誘導電極本来の機能(上記後者の機能)が損なわれることがない。これにより、素子を補強するための基板を別途用いることなく、機械的強度の高いイオン発生装置を安価に実現することができる。
【0017】
また、誘電体層が、絶縁破壊耐圧が30V/μm以上で、かつ、厚さが30μm以下の薄膜であれば、誘電体層の絶縁破壊を防止しながら、誘電体層を例えばアルマイト層で形成する場合よりもさらに薄膜化することができる。誘電体層の薄膜化により、放電時におけるイオン発生装置表面の外部空間の電界強度が増加するので、放電電極に印加する電圧を低くすることができる。その結果、放電時のオゾン発生量を低減することができる。
【0018】
また、放電電極が、誘電体層上でストライプ状に敷設される複数の線状電極で構成され、線状電極の敷設方向の1ピッチにおいて、当該線状電極の電極部の面積が、非電極部の面積よりも小さいと、例えば線状電極の1ピッチにおける電極部幅と非電極部幅とを等しくした場合に比べて、各線状電極に電界がより集中しやすくなり、しかも、より強い電界が得られる。したがって、放電電極に印加する電圧を低くしても放電を容易に実現することが可能となる。その結果、放電電圧の低電圧化により、放電時に発生するオゾン量を低減することができる。
【0019】
また、本発明のイオン発生装置を用いて空気調節装置や荷電装置を構成すれば、衝撃等に対して強く、高寿命の空気調節装置や荷電装置を実現することができるとともに、放電時のオゾン発生量の低減により、人体や環境にやさしい空気調節装置および荷電装置を提供することができる。
【0020】
【発明の実施の形態】
本発明の実施の一形態について、図1ないし図11に基づいて説明すれば、以下の通りである。
【0021】
(1.イオン発生装置の基本的構成)
図1は、本実施形態に係る放電素子としてのイオン発生装置1の基本的構成の概略を示す説明図である。同図に示すように、本発明のイオン発生装置1は、誘導電極2と、誘電体層3と、放電電極4と、表面コート層5と、電源6とを有している。
【0022】
誘導電極2は、アルミニウムなどの金属基板で構成されている。従来は、誘導電極2は、セラミックやガラスなどの機械的強度の弱いもので構成されていたが、本発明は、セラミック等に比べて機械的強度の強い金属基板で誘導電極2を構成し、この誘導電極2に、素子の補強と放電との両方の役割を持たせており、この点に本発明の大きな特徴がある。誘導電極2の厚さは、例えば誘電体層3の厚さよりも厚く形成されており、誘導電極2の機械的強度が確保されている。
【0023】
ここで、誘導電極2の具体的な厚さは、必要な機械的強度に応じて決定される。この機械的強度は、イオン発生装置1にかかる荷重によって決定される。例えば、イオン発生装置1が片持ち梁構造で支持される場合、誘導電極2の厚さの3乗に比例してその機械的強度が増加することがわかっている。したがって、誘導電極2の厚さが例えば1mm以上あれば、十分な機械的強度を得ることができると考えられる。
【0024】
なお、誘導電極2の材料は、上記のアルミニウムには限定されず、鉄やステンレスなど、金属材料であればどのようなものでも適用することができる。鉄やステンレスは、アルミニウムよりも機械的強度が高いので、これらの金属材料で誘導電極2を構成した場合には、誘導電極2をアルミニウムで構成する場合に比べて、誘導電極2の厚さを薄くすることが可能である。なお、同図に示すように、誘導電極2は接地されているが、接地されていなくても構わない。
【0025】
誘電体層3は、誘導電極2上に形成されており、誘導電極2と放電電極4とで挟持されている。本実施形態では、誘導電極2をアルミニウム基板で構成しているため、誘電体層3としては、アルミニウムの陽極酸化皮膜(アルマイト層)で構成されている。この誘電体層3の厚さは、例えば20〜30μmとなっている。
【0026】
放電電極4は、銅などの金属電極で構成されており、誘電体層3上にパターニング形成されている。本実施形態では、放電電極4は、例えば、誘電体層3上でストライプ状に敷設される複数の線状電極で構成されている。なお、放電電極4は、誘電体層3上で格子状に形成されてもよい。
【0027】
表面コート層5は、放電電極4を覆うように誘電体層3上に形成されている。表面コート層5は、例えば膜厚15μm以下の酸化膜(例えば酸化シリコン膜)や窒化膜(例えば窒化シリコン膜や窒化アルミニウム膜)などの薄膜誘電体で構成されており、放電電極4を保護している。
【0028】
電源6は、誘導電極2と放電電極4との間に交互電圧(交流電圧)を印加するものである。電源6によって、誘導電極2と放電電極4との間に交互電圧が印加されることにより、放電電極4近傍にてコロナ放電が起こり、放電電極4近傍から、H(HO)(mは自然数)の正イオンと、O (HO)(nは自然数)の負イオンとが発生するようになる。
【0029】
ここで、本実施形態のイオン発生装置1は、以下の方法により製造することが可能である。すなわち、まず、誘導電極2となるアルミニウム基板を用意し、この金属基板を陽極とした電気化学酸化により、その表面に膜厚20〜30μmの陽極酸化皮膜を形成し、誘電体層3を形成する。続いて、誘電体層3の上に、無電解メッキにより、銅をストライプ状にパターニングし、放電電極4を形成する。なお、電極材料は、上記の銅に限定されるものではなく、無電解メッキに適したニッケルやコバルトであってもよい。その後、スパッタ法により、放電電極4を覆うようにSiO薄膜を誘電体層3上に形成し、表面コート層5を形成する。そして、最後に、誘導電極2および放電電極4と電源6とを電気的に接続すれば、イオン発生装置1が完成する。
【0030】
以上のように、本発明のイオン発生装置1は、誘電体層3を挟持する誘導電極2と放電電極4との間に電源5により交互電圧を印加して放電させることにより、正負両イオンを発生するイオン発生装置1であって、誘導電極2は、金属基板で構成されている。これにより、イオン発生装置1自体が大型化しても、セラミック等の脆性材料で誘電体層を構成していた従来に比べて、イオン発生装置1全体としての機械的強度を向上させることができる。
【0031】
また、本発明では、誘導電極2自体を金属基板で構成しているので、誘導電極2は、イオン発生装置1の機械的強度を高める機能と、放電電極4との間で放電を行うための電極としての機能とを両方兼ね備えることになる。したがって、イオン発生装置1を補強するための基板を別途用いることなく、イオン発生装置1の機械的強度を高めることができ、機械的強度の高いイオン発生装置1を安価に得ることができる。
【0032】
また、本発明では、イオン発生装置1の誘導電極2を構成する金属基板は、アルミニウムからなっており、誘電体層3は、上記アルミニウムの陽極酸化皮膜からなっている。上記金属基板がアルミニウムであれば、陽極酸化という簡便な手法により、誘導電極2の表面に、薄膜の誘電体層3を容易に形成することができる。
【0033】
また、本発明では、誘導電極2としてアルミニウムのような金属基板を用いているために、放電電極4の高温焼成ができない。しかし、本発明では、放電電極4を、ニッケル・銅・コバルトの少なくとも1つを含む金属電極で構成しているので、無電界メッキによる放電電極4の形成が可能となる。言い換えれば、本発明では、高温焼成によらずに、放電電極4の形成が可能となる。
【0034】
また、本発明のイオン発生装置1は、放電電極4を覆うように誘電体層3上に形成される表面コート層5を備えている。放電電極4の表面近傍は、強電界が形成され、コロナ放電が発生しているため、気体分子の電離で生じた正イオン、負イオン、電子が存在している。これらの荷電粒子は、強電界により大きな運動エネルギーを獲得するが、これらのうち、イオン発生装置1方向に加速されたものが、放電電極4などの素子表面に衝突すると、イオン衝撃(スパッタリング)による素子破壊が生じることになる。しかし、上記のような表面コート層5を設けることにより、上記のスパッタリングによる放電電極4などの素子表面の破壊、ひいてはイオン発生装置1の破壊を防止することができる。
【0035】
また、放電電極4の材料であるニッケル、銅、コバルトは、タングステンなどの従来の放電電極材料と比べると耐スパッタ性が弱いが、放電電極4を覆うように表面コート層5を設けることで、これを克服することもできる。
【0036】
また、表面コート層5は、膜厚15μm以下の薄膜誘電体で構成されているので、後述する外部空間空気層における電界劣化を最小限に止めることができる。また、表面コート層5は、酸化膜または窒化膜で構成されているので、15μm以下の薄膜でも、良好な耐スパッタ性能を発揮することができる。
【0037】
(2.オゾン低減分析)
次に、イオン発生装置1での放電と同時に発生するオゾンの発生量を低減するための分析について説明する。
【0038】
前述した非特許文献1において研究されているワイヤ電極の放電電場を分析すると、ワイヤ径を小さくするほど、放電に必要な強電界領域がワイヤ周辺に集中することがわかる。すなわち、電界集中により強電界空間の体積が小さくなっているほど、オゾン発生量が小さいと言える。これは、空気を電離してイオンを発生させるエネルギーの方が、オゾン生成エネルギーより大きく、また、イオン発生が活発な強電界領域においては、生成したオゾンが再分解されるためと考えられる。
【0039】
したがって、イオン発生量を一定としたまま、オゾン発生量を低減するためには、電界集中による強電界空間の体積を小さくするように、イオン発生装置1を設計すればよいと言える。また、放電電圧や放電電流の低減は、オゾン発生量の低減につながる。
【0040】
そこで、上述した構造のイオン発生装置1において、放電電極4の形状の適正化や、誘電体層3の薄膜化により、放電部にて電界集中を起こし、オゾン発生量を低減することができる点について、以下の理論解析や実験結果に基づいて、具体的に説明する。
【0041】
(2−1.イオン発生装置の電場解析理論)
図2は、イオン発生装置1の内部および外部空間の電場解析モデルを示す説明図である。1層目は、誘導電極2の表面に形成された誘電体層3を示している。この誘電体層3において、層厚はl〔μm〕、比誘電率はε、ポテンシャル関数はφである。2層目は、イオン発生装置1の最表面に形成された表面コート層5を示している。この表面コート層5において、層厚はm〔μm〕、比誘電率はε、ポテンシャル関数はφである。3層目は、外部空間の空気層を示している。この空気層において、層厚はn〔μm〕、比誘電率はε、ポテンシャル関数はφである。なお、εを真空の誘電率(8.85×10−12〔F/m〕)とし、誘電体層3、表面コート層5および空気層の誘電率をそれぞれε、ε、εとすると、ε=ε×ε、ε=ε×ε、ε=ε×εである。
【0042】
誘電体層3の下部は、誘導電極2の役割を果たす導電性基板で、電位は0[V]とし、空気層の最上部の電位はV[V]とする。また、誘電体層3表面と表面コート層5との境界面には、実際にはパターニングされた放電電極4が存在し、これに電圧が印加されているが、この放電電極4の電荷密度分布を、数1式で表される正弦波状電荷密度分布σと仮定する。
【数1】
Figure 2004273315
【0043】
この正弦波状電荷密度分布σは、x軸方向には電荷密度が0からσまで周期的に変化し、紙面に垂直なy軸方向には均一な周期ライン状のパターンである。なお、各層の積層方向をz軸方向とすると、上記のx軸方向とは、z軸方向に対して垂直な平面内において、線状電極の敷設方向(隣接方向)を指しており、上記のy軸方向とは、上記平面内においてx軸方向と垂直な方向を指している。また、ωは、数1式に示すように、電極周期(隣接する線状電極間のピッチ)λ[mm]の逆数で定義される空間周波数である。
【0044】
図2に示したように、解析モデルがx軸、z軸方向の2次元モデルであることから、誘電体層3、表面コート層5および外部空間の空気層の電場は、それぞれ数2式に示すような2次元ラプラス方程式で記述することができる。なお、数式を簡略化するために、z軸方向は、ここでは、各層の境界を原点とするローカル座標(z,z,z)を考える。
【数2】
Figure 2004273315
【0045】
各層のポテンシャル関数φ、φ、φは、数3式のようなAC成分とDC成分の線形結合として定義することができる。
【数3】
Figure 2004273315
【0046】
このようなポテンシャル関数φ、φ、φの解析解は、数4式および数5式のような一般解で表される。
【数4】
Figure 2004273315
【数5】
Figure 2004273315
【0047】
電位の連続性と電束密度の連続性とを境界条件として導入することにより、上記一般解の係数を求めることができ、各層のポテンシャル関数φ、φ、φを導出することができる。
【0048】
ここで、AC成分の電位連続境界条件を、数6式に示す。
【数6】
Figure 2004273315
【0049】
また、AC成分の電束密度連続の境界条件を、数7式に示す。
【数7】
Figure 2004273315
【0050】
数6式および数7式の境界条件を、数4式に代入することにより、各層のポテンシャル関数φ、φ、φを導出することができる。例えば、3層目の外部空間空気層のポテンシャル関数φのAC成分は、数8式のように導出される。
【数8】
Figure 2004273315
【0051】
同様に、3層目の外部空間空気層のポテンシャル関数φのDC成分は、数9式のように導出される。
【数9】
Figure 2004273315
【0052】
(2−2.電場解析結果の例)
次に、上記の解析解を基にして、素子表面の外部空間空気層の電界特性を分析する。電場解析を行う際の各変数の標準値を表1に示す。
【表1】
Figure 2004273315
【0053】
ここで、放電電極4の電位に相当する正弦波状電荷密度分布σの振幅σの標準値を求める。まず、上述のポテンシャル関数φの導出と同様の方法で、表面コート層5のポテンシャル関数φを導出する。表1の値をポテンシャル関数φに代入することにより、ポテンシャル関数φは、xとzとσとの関数になる。数1式より、x=0、z=0の原点がσの最大値となるから、数10式を解くことにより、放電電極4の電荷密度の振幅σを算出することができる。算出の結果、振幅σは、654〔μC/m〕となる。
【数10】
Figure 2004273315
【0054】
上記のように導出した解析解に対して、表1の標準値および振幅σの値を代入することにより、様々な条件下での放電デバイス内外の電場を簡易的に計算することができる。
【0055】
一例として、放電電極4の境界面(誘電体層3と表面コート層5との境界面)のx軸方向電位分布を計算した結果を図3に示す。同図は、1mm周期で形成された線状電極に2300Vが印加されている状態を示している。表面コート層5の層厚が、表1に示した15μmの場合、表面コート層5表面における電位分布は、ほとんどこれと同一の結果であった。
【0056】
ここで、誘導電極2と放電電極4との距離が、表1に示したように450μmあるため、電荷密度が周期的に変化する線状電極間の電荷密度0の位置においても、1200V強の比較的大きな電位が存在している。また、放電電極4の電荷密度分布を正弦波状電荷密度分布σと仮定したため、電位も正弦波状の分布であり、そのデューティ(電極周期に対する電極部幅の割合)は50%となっている。実際の放電電極4では、電位分布は矩形状であったり、そのデューティも様々であるが、定性的傾向は、上述の正弦波状電荷密度分布σによる計算によって把握することができる。また、任意のデューティの矩形状電位分布の場合でも、後述するフーリエ級数を用いた計算方法で解析可能である。
【0057】
次に、この解析条件で外部空間空気層の電位分布を3次元的に表示した結果を図4に示す。イオン発生装置1の表面近傍(zが0に近づく方向)においては、電位が大きく変化しているが、装置表面から離れるほど、電位変動が小さくなっている。電位の変化の大きさは、電界強度の大きさであるから、装置表面近傍の電界強度が大きく、そこで放電が発生することがわかる。
【0058】
ところで、電界強度関数Eは、ポテンシャル関数φの勾配をとることで求められる。例えば、外部空間空気層の電界強度関数Eは、数11式により求めることができる。ここで、解析モデルが2次元であることから、勾配をとる微分演算子(grad)は2次元で、電界強度関数Eは2次元ベクトルである。
【数11】
Figure 2004273315
【0059】
さらに、この電界強度関数(ベクトル)Eの内積ノルムをとることにより、任意の位置での電界強度の大きさ(スカラー)Enrmを計算できる。例えば、外部空間空気層の電界強度の大きさEnrmは、数12式により求めることができる。
【数12】
Figure 2004273315
【0060】
以上の解析手法でイオン発生装置1の表面近傍の外部空間空気層の電界の様子を計算した結果を図5に示す。図5では、数11式による計算結果である電界ベクトルを矢印で、数12式の計算結果である電界強度の大きさを電界強度等高線として示している。装置表面(表面コート層5表面)に近づくほど、電界強度は強くなり、放電空気の絶縁破壊強度(放電開始電界)として一般的に知られている値(3〔MV/m〕)の電界強度が、装置表面近傍に形成されていることがわかる。
【0061】
以上では、放電電極4の電荷密度分布を正弦波状電荷密度分布σと仮定したため、電界強度はx軸方向にほぼ均一となる。すなわち、電界強度等高線は、装置表面とほぼ平行な線状の分布となる。しかし、実際の放電電極4の電位分布は、任意のデューティの矩形状電位分布となるため、電極エッジ部に電界集中が発生し、x軸方向には不均一な電界強度分布となる。このような任意デューティの矩形状電位分布の電場解析方法を次に説明する。
【0062】
(2−3.フーリエ級数による任意電極解析理論)
任意のデューティで線状電極が形成された放電電極4の電界を計算するために、次の関数を導入する。周期2π、幅2α、高さ1の矩形波の周期関数G(θ)は、フーリエ級数を用いて数13式で表される。
【数13】
Figure 2004273315
【0063】
ここで、放電電極4の線状電極の電極周期λを、線状電極の電極部幅Xと非電極部幅Xとの和とすると、数13式のαおよびθは、数14式のように表される。
【数14】
Figure 2004273315
【0064】
数14式を数13式に代入すると、任意デューティ矩形波周期関数Gは、xの関数として数15式のように書き直される。
【数15】
Figure 2004273315
【0065】
次に、電極周期ωに対する電位振幅の周波数特性は、MTF関数(Modified Transfer Function)を用いて表される。例えば、外部空間空気層のMTF関数は、x=0の位置の値を代表値とすると、数16式のようになる。
【数16】
Figure 2004273315
【0066】
数15式で示したフーリエ級数による任意デューティ矩形波周期関数G(x)の高次成分に対して、空間周波数に対応したMTF関数(数16式)を乗じることにより、数17式に示すようなレスポンス関数RFが得られる。このレスポンス関数RFは、矩形波周期関数GおよびMTF関数が規格化(振幅1)されていることから、規格化された関数となっている。
【数17】
Figure 2004273315
【0067】
したがって、実際の電位プロファイルVprfは、数18式に示すように、レスポンス関数RFに、電位振幅として表1の放電電極電位最大値Vchを乗ずることによって求められる。
【数18】
Figure 2004273315
【0068】
以上の解析方法を用いて、放電電極4のデューティが20%(電極周期1mm、電極部幅200μm、非電極部幅800μm)の条件で、外部空間空気層の電位分布を3次元的に表示した結果を図6に示す。また、z=0の位置であるイオン発生装置1の表面の電位分布を2次元的に表示した結果を図7に示す。同図より、イオン発生装置1の表面近傍において、電位がより大きく変化していることがわかる。
【0069】
また、図3と図7とを比較すると、電極周期に対して電極部幅を狭くしたことで、電極部間の電位が低下することがわかる。これにより、電位勾配が大きくなり、同一の印加電圧でより大きな電界強度が得られるものである。この電界強度の大きさをより定量的に把握するために、次に、外部空間空気層の電界強度関数Eを導出する。
【0070】
放電電極パターンが上述のように任意デューティの場合、外部空間空気層の電界強度関数Eは、上記電位プロファイル関数Vprfの勾配をとることで、数19式により求めることができる。ここで、外部空間空気層の厚さがz=100mmと十分長いことから、電界強度のDC成分は微少であり、これを無視することができる。また、解析モデルが2次元であることから、勾配をとる微分演算子(grad)は2次元で、電界強度関数Eは2次元ベクトルである。
【数19】
Figure 2004273315
【0071】
さらに、この電界強度関数(ベクトル)Eの内積ノルムをとることにより、任意の位置での電界強度の大きさ(スカラー)Emnrmを計算できる。したがって、外部空間空気層の電界強度の大きさEnrmは、数20式により求めることができる。
【数20】
Figure 2004273315
【0072】
以上の解析方法を用いてイオン発生装置1の表面近傍の外部空間空気層の電界の様子を計算した結果を図8に示す。数19式による計算結果である電界ベクトルを矢印で示し、数20式の計算結果である電界強度の大きさを電界強度等高線として示す。放電電極4の電極部であるx=±0.1mm(幅200μm)の領域が、強電界となっている様子がわかる。
【0073】
また、図5と図8とを比較すれば、電極周期に対して電極部幅を狭くしたことにより、放電電極4の線状電極近傍で電界集中が起こり、同一の印加電圧でより大きな電界強度が得られるという様子を、より定量的に把握することができる。図5の解析条件では、デューティが50%で弱い電界強度であったのに対し、図8の解析条件では、デューティが20%で電界集中を起こし、より強い電界強度となっている。すなわち、放電電極4の非電極部の面積より電極部の面積が小さいと、より電界集中を起こし、強い電界強度が得られると言える。電界集中を起こし、強い電界強度が得られると、電界集中によるオゾン発生量の低減および放電電圧の低電圧化によるオゾン発生量の低減の2重の効果が得られる。
【0074】
また、図8の解析結果において、放電空気の絶縁破壊強度(放電開始電界)として一般的に知られている値(3〔MV/m〕)を越える電界強度が、放電電極4近傍に形成されていることがわかる。実際に、表1の条件で、かつ、放電電極4の各線状電極の電極幅200μm、非電極部幅800μmの条件で作製したイオン発生装置1において、放電電極4近傍で放電を観察すると、本解析方法による計算結果は、実験と整合していた。また、放電電極4のデューティを小さくすることによって、オゾン発生量が低減できることも実験的に確認された。
【0075】
(2−4.内部誘電体層厚の影響)
次に、誘電体層3の層厚と、イオン発生装置1の表面近傍の外部空間空気層の電界強度との相関について解析する。上述の数11式に示した外部空間空気層の電界強度関数Eを用いて解析を行う。
【0076】
外部空間空気層の電界強度関数Eは、xおよびzの関数であるが、ここでは、誘電体層3の層厚lを変数とし、x=0の位置での電界強度特性を代表値として分析する。したがって、電界強度関数Eは、lおよびzの関数となる。誘電体層3の層厚をlとして、これを0.45mm(表1の標準値)、0.2mmおよび0.1mmとした場合のそれぞれの電界強度の計算結果を図9に示す。
【0077】
同図より、イオン発生装置1の誘電体層3の層厚を薄くするほど、イオン発生装置1表面の外部空間の電界強度が増加することがわかる。すなわち、誘電体層3を薄膜化するほど、放電電極4に印加する電圧をより低くでき、このような放電電圧の低電圧化により、オゾン発生量の低減という効果を得ることができるものと考えられる。
【0078】
(3.イオン発生装置の放電電極の構成)
以上の解析結果および実験結果に基づき、本実施形態では、イオン発生装置1の放電電極4は、以下の構成となっている。
【0079】
すなわち、放電電極4を構成する複数の線状電極は、誘電体層3上でほぼ等間隔で敷設されており、各線状電極の敷設方向(隣接方向)のピッチ(周期)は、ほぼ一定(例えば1mm)となっている。この場合、放電電極4の電荷密度は、各線状電極の敷設方向において周期的に変化する。このことから、放電電極4は、電荷密度が各線状電極の敷設方向において周期的に変化するような周期性を有するものであると言える。
【0080】
また、各線状電極の1ピッチにおいて、線状電極の電極部幅は、非電極部幅よりも小さくなるように、放電電極4が形成されている。なお、上記の電極部幅とは、線状電極の敷設方向の幅のことであり、上記の非電極部幅とは、線状電極の上記1ピッチにおいて、線状電極が形成されていない部位の上記敷設方向の幅を指している。例えば、本実施形態では、放電電極4の各線状電極の電極部幅は200μmであり、非電極部幅は800μmである。したがって、各線状電極の1ピッチにおいて、線状電極の電極部の面積は、非電極部の面積よりも小さいものとなっている。
【0081】
このようなパターンで放電電極4を誘電体層3上に形成することにより、例えば、線状電極の1ピッチにおいて、電極部の面積と非電極部の面積とが等しくなるように放電電極4を形成した場合に比べて、放電電極4の各線状電極に電界がさらに集中し、より強い電界強度を得ることができる。したがって、電界を線状電極にさらに集中させることにより、放電時のオゾン発生量を低減することができる。
【0082】
また、放電電極4の上記パターンによって、より強い電界強度を得ることができることから、放電電圧を小さくしても、放電を容易に発生させることができると言える。したがって、放電電圧の低減が可能であり、これによっても、放電時のオゾン発生量を低減することができる。
【0083】
つまり、放電電極4を上記パターンで形成することにより、電界集中によるオゾン発生量の低減効果と、放電電圧の低電圧化によるオゾン発生量の低減効果とを2重に得ることができる。
【0084】
(4.イオン発生装置の誘電体層の薄膜化)
上述の解析結果および実験結果から、誘電体層3を薄膜化すると、放電電圧の低電圧化によるオゾン発生量の低減という効果が得られることがわかった。ところが、誘電体層3の薄膜化には、誘電体層3の絶縁破壊が発生するため、薄膜化の限界がある。
【0085】
例えば、上述のアルマイト層(多孔質被膜)で誘電体層3を形成した場合、誘電体層3の厚さは、数μm〜数十μmが一般的である。ポーラス被膜を作製するときの電解液の種類、多孔質被膜の封孔処理方法、アルミニウムの種類、被膜の膜厚等によっても異なるが、30μmの膜厚では、通常、絶縁破壊耐圧として30V/μmが必要であることが実験的に得られている。したがって、アルマイト層で形成する場合よりも、さらに誘電体層3を薄膜化するためには、より絶縁破壊耐圧の高い材料を用いる必要がある。このような絶縁破壊耐圧の高い材料としては、例えばTa膜、Ta−Al複合膜、SrTiO薄膜などを挙げることができる。
【0086】
ちなみに、Ta膜や、反応性スパッタ法で作製したTa−Al複合膜の場合、これらの絶縁破壊耐圧は100V/μmである。また、マグネトロンスパッタ法により作製したSrTiO薄膜の場合、この薄膜の絶縁破壊耐圧は200V/μmである。
【0087】
このように、誘電体層3を、絶縁破壊耐圧の高いチタン、タンタル、ストロンチウムのうちの少なくとも1つを含む絶縁膜で構成することにより、30V/μm以上の絶縁破壊耐圧を比較的容易に実現することができ、誘電体層3の絶縁破壊を防止しながら、誘電体層3を、アルマイト層で構成する場合よりもさらに薄膜化することができる。このような誘電体層3の薄膜化により、上述したように、イオン発生装置1表面の外部空間の電界強度が増加するため、放電電極4に印加する電圧をより低くして、オゾン発生量をより低減することができる。
【0088】
つまり、誘電体層3を、絶縁破壊耐圧の高いチタン、タンタル、ストロンチウムのうちの少なくとも1つを含む絶縁膜で構成すれば、絶縁破壊耐圧が30V/μm以上で、かつ、厚さが30μm以下の薄膜を容易に、かつ、確実に実現することができる。そして、誘電体層3の薄膜化により、誘電体層3の絶縁破壊を確実に防止しながら、放電時のオゾン発生量を低減することができる。
【0089】
また、放電電圧の低電圧化により、電源6として大型のものを用いる必要がなくなるので、イオン発生装置1を小型化することもできる。
【0090】
(5.応用例)
本実施形態で説明したイオン発生装置1は、例えば空気清浄機や空気調和機(エアコンディショナー)などの空気調節装置に適用することが可能である。図10は、本発明のイオン発生装置1を適用した空気調節装置の概略の構成を示す説明図である。この空気調節装置は、上述したイオン発生装置1と、送風手段7と、空気流入口8と、空気排出口9とを本体10に備えている。送風手段7は、装置外部からイオン発生装置1に空気を供給するとともに、イオン発生装置1にて発生した正負両イオンを装置外部に送出するためのものであり、例えばモータやファンなどで構成されている。
【0091】
送風手段7が駆動されると、空気流入口8から装置外部の空気が本体10内に吸引され、イオン発生装置1に供給される。イオン発生装置1では、コロナ放電により正負両イオンが発生し、これらの正負両イオンが空気排出口9を介して装置外部の大気中に放出される。これにより、大気中の浮遊細菌が正負両イオンにより殺菌および滅菌されて空気が清浄化される。
【0092】
また、本実施形態で説明したイオン発生装置1は、画像形成装置の荷電装置として用いることも可能である。図11は、本発明のイオン発生装置1を荷電装置として適用した画像形成装置の概略の構成を示す説明図である。
【0093】
この画像形成装置は、感光体21と、各種の装置からなる画像形成プロセス手段(装置)とを備えている。感光体21は、静電潜像を担持する静電潜像担持体として機能するものである。感光体21は、画像形成動作時に図中矢印方向に一定速度で回転駆動されるドラム形状に形成されており、画像形成装置本体のほぼ中央部に配置されている。
【0094】
上記画像形成プロセス手段は、帯電器22と、光学系23と、現像装置24と、転写器25と、クリーニング装置26と、除電器27等の各種装置を備えている。これらの装置は、感光体21の周囲にこれと対向するように、感光体21の回転方向にこの順で配置されている。
【0095】
帯電器22は、感光体21表面を均一に帯電するものである。光学系23は、画像データに応じた光を感光体21表面に照射し、感光体21を露光することで、感光体21表面に、上記画像データに応じた静電潜像を形成する。
【0096】
より具体的には、光学系23は、画像形成装置がデジタル複写機やプリンタである場合には、画像データに応じて半導体レーザをON・OFF駆動した光像を感光体21に照射する。特に、デジタル複写機においては、コピー原稿からの反射光を画像読取センサ(CCD素子等)にて読取った画像データを、上記半導体レーザを含む光学系23へと入力し、光学系23から画像データに応じた光像を出力するようにしている。また、プリンタにおいては、他の処理装置(例えばワードプロセッサやパーソナルコンピュータ)から出力される画像データを、当該画像データに応じた光像に変換し、これを光学系23から感光体21に照射するようにしている。上記光像を感光体21に照射する手段としては、半導体レーザだけでなく、LED素子、液晶シャッタ等が利用される。
【0097】
現像装置24は、光学系23の露光によって感光体21表面に形成された静電潜像を、顕像化粒子であるトナー28により可視像化する。トナー28は、本実施形態では、例えば一成分現像剤であり、トナー28が感光体21表面に形成された静電潜像に、例えば静電気力により選択的に吸引されることで、現像が行われる。
【0098】
転写器25は、現像装置24によって現像されたトナー像を、適宜搬送されてくるシート状の用紙Pに転写させる。クリーニング装置26は、用紙Pへのトナー像の転写後に、用紙Pに転写されずに感光体21表面に残留する現像剤(トナー28)を除去する。除電器27は、感光体21表面に残る帯電電荷を除去する。
【0099】
また、上記画像形成プロセス手段は、画像形成装置本体における用紙排出側に、定着装置29をさらに備えている。定着装置29は、転写器25によって用紙P上に転写された未定着のトナー像を永久像として用紙Pに定着させるものである。
【0100】
この定着装置29は、ヒートローラと、加圧ローラとを有している。ヒートローラにおける用紙P(トナー像)と対向する面は、トナー28を溶融して用紙P上に定着させる温度に加熱されている。加圧ローラは、用紙Pをヒートローラ側へ加圧し、ヒートローラと密着させる。定着装置29を通過した用紙Pは、排出ローラ(図示せず)を介して画像形成装置外へと搬送され、排出トレイ(図示せず)上に排出処理される。
【0101】
このような画像形成装置において、画像形成動作を開始すると、感光体21が図中矢印方向に回転駆動され、帯電器22によって感光体21表面が特定極性の電位に均一帯電される。この帯電後に、光学系23により画像データに応じた光像が照射されると、その光像に応じた静電潜像が感光体21表面に形成される。この静電潜像は、現像装置24と対向する領域で、トナー28によって現像される。その後、トナー像は、感光体21の回転によって、転写器25との対向領域に向かう。
【0102】
一方、用紙Pは、例えばトレイまたはカセットに多量に収容されており、給送手段(図示せず)により、1枚ずつ、所定のタイミングで転写器25と感光体21との間の領域(転写領域)に送り込まれる。ここで、上記所定のタイミングとは、感光体21表面に形成されたトナー像の先端と、用紙Pの先端とが一致するようなタイミングを指している。
【0103】
感光体21表面のトナー像は、このように感光体21の回転に同期して搬送されてくる用紙P上に、転写器5によって静電転写される。このとき、トナー28の帯電極性とは逆の極性となるように、転写器25が用紙P背面を帯電させることで、トナー像が用紙P上に転写される。トナー像が転写された後の用紙Pは、剥離爪(図示せず)により、感光体21から剥離され、定着装置29へと送り込まれる。
【0104】
定着装置29では、用紙P上のトナー像は、ヒートローラにより溶融され、ヒートローラと加圧ローラとの間の加圧力により用紙Pに圧着され、融着される。そして、定着装置29を通過する用紙Pは、画像形成済み用紙Pとして、画像形成装置の外部に設けられている排出トレイ等に排出処理される。
【0105】
一方、用紙Pへのトナー像の転写後、感光体21表面には、用紙Pに転写されなかったトナー像の一部が残留している。この残留トナーは、クリーニング装置26にて、感光体21表面から除去される。そして、除電器27により、感光体21表面が均一電位(例えばほぼ0電位)に除電され、感光体21表面が次の画像形成に再利用される。
【0106】
このような電子写真方式の画像形成装置の帯電器22または除電器27に、本発明のイオン発生装置1を荷電装置として用いることが可能である。ここで、荷電装置とは、帯電器22や除電器27のように感光体21上に電荷を供給(除電の場合は、逆極性の電荷を供給)する装置を指している。本発明のイオン発生装置1を荷電装置として画像形成装置に適用すれば、イオン発生装置1における放電により、感光体21上に電荷が供給されるので、帯電器22や除電器27を容易に実現することができる。しかも、この場合、例えば、φ60μm程度のタングステンワイヤーに高圧を印加するワイヤーチャージャー方式のような従来の帯電器と比較すると、オゾンの発生を大幅に低減できる画像形成装置を実現することができる。
【0107】
以上、本発明のイオン発生装置1では、上述した放電電圧の低電圧化および誘電体層3の薄膜化により、オゾン発生量を低減できるので、このようなイオン発生装置1を空気調節装置や荷電装置に適用すれば、人体や環境にやさしい空気調節装置や荷電装置を提供することができる。
【0108】
また、本発明の空気調節装置では、従来必要であったオゾン濃度検知センサや放電電極への印加電圧を制御する制御手段が不要となり、本発明の荷電装置では、従来必要であったオゾン除去フィルタが不要となるので、装置の小型化、電源の小型化、低コスト化を実現することもできる。
【0109】
【発明の効果】
以上のように、本発明によれば、誘導電極を金属基板で構成しているので、イオン発生装置自体が大型化しても、脆性材料であるセラミック基板で誘電体層を構成していた従来に比べて、機械的強度の高いイオン発生装置を実現することができる。
【0110】
また、誘導電極自体を金属基板で構成しているので、誘導電極は、イオン発生装置の機械的強度を向上もしくは維持する機能と、放電電極との間で放電を行うための電極としての機能とを併せ持つことになる。つまり、誘導電極を金属基板で構成しても、誘導電極本来の機能(上記後者の機能)が損なわれることがない。これにより、素子を補強するための基板を別途用いることなく、機械的強度の高いイオン発生装置を安価に実現することができる。
【0111】
また、誘電体層が、絶縁破壊耐圧が30V/μm以上で、かつ、厚さが30μm以下の薄膜であれば、誘電体層の絶縁破壊を防止しながら、誘電体層を例えばアルマイト層で形成する場合よりもさらに薄膜化することができる。誘電体層の薄膜化により、放電時におけるイオン発生装置表面の外部空間の電界強度が増加するので、放電電極に印加する電圧を低くすることができる。その結果、放電時のオゾン発生量を低減することができる。
【0112】
また、放電電極を構成する線状電極の電極部の面積が、非電極部の面積よりも小さいので、各線状電極に電界がより集中しやすくなり、しかも、より強い電界が得られる。したがって、放電電極に印加する電圧を低くしても放電を容易に実現することが可能となる。その結果、放電電圧の低電圧化により、放電時に発生するオゾン量を低減することができる。
【0113】
また、本発明のイオン発生装置を用いて空気調節装置や荷電装置を構成すれば、衝撃等に対して強く、高寿命の空気調節装置や荷電装置を実現することができるとともに、放電時のオゾン発生量の低減により、人体や環境にやさしい空気調節装置および荷電装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係るイオン発生装置の概略の構成を示す説明図である。
【図2】上記イオン発生装置の内部および外部空間の電場解析モデルを示す説明図である。
【図3】上記イオン発生装置の放電電極の境界面のx軸方向の電位分布を示す説明図である。
【図4】上記放電電極のデューティが50%のときの、上記イオン発生装置の外部空間の空気層の電位分布を3次元的に表示した結果を示す説明図である。
【図5】上記外部空間空気層の電界の様子を示す説明図である。
【図6】上記放電電極のデューティが20%のときの、上記外部空間空気層の電位分布を3次元的に表示した結果を示す説明図である。
【図7】上記条件での上記イオン発生装置の表面のx軸方向の電位分布を示す説明図である。
【図8】上記条件での上記外部空間空気層の電界の様子を示す説明図である。
【図9】上記イオン発生装置の誘電体層の層厚を変化させたときの、z軸方向(厚さ方向)の位置と電界強度との関係を示す説明図である。
【図10】上記イオン発生装置を適用した空気調節装置の概略の構成を示す説明図である。
【図11】上記イオン発生装置を荷電装置として適用した画像形成装置の概略の構成を示す説明図である。
【符号の説明】
1 イオン発生装置
2 誘導電極
3 誘電体層
4 放電電極
5 表面コート層

Claims (11)

  1. 誘電体層を挟持する誘導電極と放電電極との間に交互電圧を印加して放電させることにより、正負両イオンを発生するイオン発生装置であって、
    上記誘導電極は、金属基板で構成されていることを特徴とするイオン発生装置。
  2. 上記金属基板は、アルミニウムからなり、
    上記誘電体層は、上記アルミニウムの陽極酸化皮膜からなっていることを特徴とする請求項1に記載のイオン発生装置。
  3. 上記誘電体層は、絶縁破壊耐圧が30V/μm以上、かつ、厚さが30μm以下の薄膜で構成されていることを特徴とする請求項1または2に記載のイオン発生装置。
  4. 上記誘電体層は、チタン、タンタル、ストロンチウムのうちの少なくとも1つを含む絶縁膜で構成されていることを特徴とする請求項1ないし3のいずれかに記載のイオン発生装置。
  5. 上記放電電極は、ニッケル、コバルト、銅のうちの少なくとも1つを含む金属電極で構成されていることを特徴とする請求項1ないし4のいずれかに記載のイオン発生装置。
  6. 上記放電電極は、上記誘電体層上でストライプ状に敷設される複数の線状電極で構成されており、線状電極の敷設方向の1ピッチにおいて、当該線状電極の電極部の面積が、非電極部の面積よりも小さいことを特徴とする請求項1ないし5のいずれかに記載のイオン発生装置。
  7. 上記放電電極を覆うように上記誘電体層上に形成される表面コート層をさらに備えていることを特徴とする請求項1ないし6のいずれかに記載のイオン発生装置。
  8. 上記表面コート層は、膜厚15μm以下の薄膜誘電体で構成されていることを特徴とする請求項7に記載のイオン発生装置。
  9. 上記表面コート層は、酸化膜または窒化膜で構成されていることを特徴とする請求項7または8に記載のイオン発生装置。
  10. 請求項1ないし9のいずれかに記載のイオン発生装置と、
    上記イオン発生装置にて発生した正負両イオンを装置外部に送出するための送風手段とを備えていることを特徴とする空気調節装置。
  11. 請求項1ないし9のいずれかに記載のイオン発生装置における放電により、静電潜像担持体上に電荷を供給することを特徴とする荷電装置。
JP2003063727A 2003-03-10 2003-03-10 イオン発生装置、空気調節装置および荷電装置 Pending JP2004273315A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003063727A JP2004273315A (ja) 2003-03-10 2003-03-10 イオン発生装置、空気調節装置および荷電装置
US10/795,406 US7160365B2 (en) 2003-03-10 2004-03-09 Ion generating apparatus, air conditioning apparatus, and charging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063727A JP2004273315A (ja) 2003-03-10 2003-03-10 イオン発生装置、空気調節装置および荷電装置

Publications (1)

Publication Number Publication Date
JP2004273315A true JP2004273315A (ja) 2004-09-30

Family

ID=33125236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063727A Pending JP2004273315A (ja) 2003-03-10 2003-03-10 イオン発生装置、空気調節装置および荷電装置

Country Status (2)

Country Link
US (1) US7160365B2 (ja)
JP (1) JP2004273315A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516380A (ja) * 2004-10-04 2008-05-15 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ 封入された電極を備えるマイクロ放電装置及び製造方法
JP2009164036A (ja) * 2008-01-09 2009-07-23 Sharp Corp イオン発生素子
JP5687369B1 (ja) * 2014-01-29 2015-03-18 保雄 寺谷 空気清浄機
CN112744790A (zh) * 2021-02-25 2021-05-04 陕西凯瑞宏星电器有限公司 一种延面式臭氧发生器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624731B1 (ko) * 2005-04-11 2006-09-20 엘지전자 주식회사 연면 방전형 공기정화장치
JPWO2007077897A1 (ja) * 2005-12-28 2009-06-11 日本碍子株式会社 集塵電極及び集塵機
JP5156993B2 (ja) * 2007-02-09 2013-03-06 独立行政法人産業技術総合研究所 イオン発生器及び除電器
JP4976911B2 (ja) * 2007-04-27 2012-07-18 新光電気工業株式会社 静電チャック
US20090065177A1 (en) * 2007-09-10 2009-03-12 Chien Ouyang Cooling with microwave excited micro-plasma and ions
DE102009021631B3 (de) * 2009-05-16 2010-12-02 Gip Messinstrumente Gmbh Verfahren und Vorrichtung zur Erzeugung einer bipolaren Ionenatmosphäre mittels elektrischer Sperrschichtentladung
JP2013166660A (ja) * 2012-02-14 2013-08-29 Murata Mfg Co Ltd オゾン発生素子及びその製造方法
JP6030848B2 (ja) * 2012-05-07 2016-11-24 上村工業株式会社 無電解銅めっき浴及び無電解銅めっき方法
JP2014107890A (ja) * 2012-11-26 2014-06-09 Panasonic Corp エレクトレット素子およびそれを用いた振動発電器
CN104540341A (zh) * 2014-10-23 2015-04-22 深圳富泰宏精密工业有限公司 壳体、应用该壳体的电子装置及其制作方法
CN104617491B (zh) * 2015-01-21 2017-11-24 华中科技大学 一种沿面击穿型两对棒极结构触发真空开关

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2740184A (en) * 1951-03-01 1956-04-03 Albert G Thomas Electrically charged material
US4155093A (en) 1977-08-12 1979-05-15 Dennison Manufacturing Company Method and apparatus for generating charged particles
US4391773A (en) * 1981-06-08 1983-07-05 Flanagan G Patrick Method of purifying air and negative field generator
JPS5944782A (ja) 1982-09-07 1984-03-13 増田 閃一 沿面コロナ放電素子およびその製造方法
US4874659A (en) * 1984-10-24 1989-10-17 Toray Industries Electret fiber sheet and method of producing same
DE3584371D1 (de) * 1985-05-30 1991-11-14 Japan Res Dev Corp Elektrostatischer staubabscheider.
US4743275A (en) * 1986-08-25 1988-05-10 Flanagan G Patrick Electron field generator
DE3888785T2 (de) * 1987-05-21 1994-11-24 Matsushita Electric Ind Co Ltd Staubsammelelektrode.
CA1319624C (en) * 1988-03-11 1993-06-29 William E. Pick Pleated charged media air filter
JPH04161208A (ja) * 1990-10-23 1992-06-04 Toyobo Co Ltd 高温気体用フィルター
US5084078A (en) * 1990-11-28 1992-01-28 Niles Parts Co., Ltd. Exhaust gas purifier unit
DE4200343C2 (de) * 1992-01-09 1993-11-11 Metallgesellschaft Ag Elektrostatischer Abscheider
RU2026751C1 (ru) * 1992-05-13 1995-01-20 Елена Владимировна Володина Устройство для стерилизации и тонкой фильтрации газа
US5582632A (en) * 1994-05-11 1996-12-10 Kimberly-Clark Corporation Corona-assisted electrostatic filtration apparatus and method
CA2263233C (en) * 1996-10-09 2002-01-15 Zero Emissions Technology Inc. Barrier discharge conversion of so2 and nox to acids
US5938823A (en) * 1997-04-18 1999-08-17 Carrier Corporation Integrated electrostatic collection and microwave sterilization for bioaerosol air purification
US6245126B1 (en) * 1999-03-22 2001-06-12 Enviromental Elements Corp. Method for enhancing collection efficiency and providing surface sterilization of an air filter
GB9908099D0 (en) * 1999-04-12 1999-06-02 Gay Geoffrey N W Air cleaning collection device
JP3680121B2 (ja) 2000-05-18 2005-08-10 シャープ株式会社 殺菌方法、イオン発生装置及び空気調節装置
AU8018901A (en) * 2000-08-28 2002-03-13 Sharp Kk Air refining device and ion generator used for the device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516380A (ja) * 2004-10-04 2008-05-15 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ 封入された電極を備えるマイクロ放電装置及び製造方法
JP2009164036A (ja) * 2008-01-09 2009-07-23 Sharp Corp イオン発生素子
JP5687369B1 (ja) * 2014-01-29 2015-03-18 保雄 寺谷 空気清浄機
CN112744790A (zh) * 2021-02-25 2021-05-04 陕西凯瑞宏星电器有限公司 一种延面式臭氧发生器

Also Published As

Publication number Publication date
US7160365B2 (en) 2007-01-09
US20040201946A1 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP2004273315A (ja) イオン発生装置、空気調節装置および荷電装置
JP2007279724A (ja) ナノストラクチャ被覆付高性能固体式帯電装置
US20130058677A1 (en) Active ozone scrubber
JP2018124382A (ja) 定着装置及び画像形成装置
JPH08217412A (ja) コロナ放電器
US7778561B2 (en) Charging device for charging charge receiving material, image forming apparatus including the same, control method of the charging device and computer-readable storage medium recording control program for the charging device
JPH04186381A (ja) 接触帯電装置
JPH08240968A (ja) 放電装置
JP2000348847A (ja) イオン発生装置及び帯電装置及び転写装置及び除電装置及び画像形成装置
JPH0594076A (ja) 画像形成装置
JPH0228669A (ja) 放電装置
JP2001257054A (ja) 帯電装置
JPH05119634A (ja) 転写材分離装置
JPS6167059A (ja) コロナ放電装置
JPH1097119A (ja) イオン発生装置及びこのイオン発生装置を備えた画像形成装置
JPH0210425B2 (ja)
JPH06110297A (ja) 帯電装置
JP2006350020A (ja) 画像形成装置
JP2000260551A (ja) 放電装置
JP2025083080A (ja) 定着装置及び画像形成装置
JP2009009862A (ja) イオン発生素子、帯電装置及び画像形成装置
JP2000258975A (ja) 除電帯電装置
JPH05323768A (ja) 帯電装置
JPH03153264A (ja) 画像形成装置
JPS6127569A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081224