[go: up one dir, main page]

JP2004267885A - Device for preventing adhesion of scale - Google Patents

Device for preventing adhesion of scale Download PDF

Info

Publication number
JP2004267885A
JP2004267885A JP2003061015A JP2003061015A JP2004267885A JP 2004267885 A JP2004267885 A JP 2004267885A JP 2003061015 A JP2003061015 A JP 2003061015A JP 2003061015 A JP2003061015 A JP 2003061015A JP 2004267885 A JP2004267885 A JP 2004267885A
Authority
JP
Japan
Prior art keywords
liquid
pipe
processed
frequency
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003061015A
Other languages
Japanese (ja)
Inventor
Teruo Hirota
輝夫 廣田
Hideo Yoshikawa
英夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YANAGAWA ENGINEERING CO Ltd
Original Assignee
YANAGAWA ENGINEERING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YANAGAWA ENGINEERING CO Ltd filed Critical YANAGAWA ENGINEERING CO Ltd
Priority to JP2003061015A priority Critical patent/JP2004267885A/en
Publication of JP2004267885A publication Critical patent/JP2004267885A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove scale adhering on the inner wall of piping and to prevent the adhesion of scale on the inner wall of the piping by letting the optimum Lorentz force act on a liquid to be treated passing through the piping without requiring a laboratory testing and continuously changing the frequency of a current for exciting a solenoid coil. <P>SOLUTION: At least two solenoid coils at an equal interval are arranged on the outer periphery of the piping through which the liquid to be treated passes and the frequency of an exciting signal for inducing an electromagnetic field in the solenoid coils is made synchronous to the flow velocity of the liquid to be treated passing through the piping. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、配管の外周に巻付けられたソレノイドコイルに交流電流を印加することにより電磁界を誘起させ、配管内を通流する液体に対しローレンツ力を作用させることにより、被処理液体から生成されるスケールの結晶体粒径を小粒径化し、配管の内面に付着したスケールの除去および付着の防止を行なう装置に係り、特に、配管の外周に巻付けられたソレノイドコイルに印加する交流電流の周波数の制御に関する。
【0002】
【従来の技術】
従来から、工業用水、工業排水、生活排水等が通流する配管の内壁に、これら流体に含まれる、例えばカルシウムイオンやマグネシウムイオン等から生成されるスケールが付着し、この付着したスケールの除去および付着を防止する装置として、被処理液体を通流する配管の外周にコイルを巻付け、このソレノイドコイルに電流を印加して電磁界を誘起させ、配管内を通流する被処理液体に対しローレンツ力を作用させて液体分子攪拌を起こすことにより、配管の内壁に付着したスケールと、被処理液体中に含まれるスケールを生成する成分の結晶体粒径を小粒径化し、被処理液体の流れによりこの結晶体を排出して、配管内に付着したスケールの除去および付着の防止を行なう装置が使用されてきた。
【0003】
このような従来のスケール付着防止装置の一例としては、内部に被処理液体を通流するラボテスト用配管の外周にコイルを巻付け、このコイルに周波数が連続的に変化する方形波の交流電流を流し磁界を発生させる制御装置を接続し、前記配管に被処理液体を通流し、前記コイルに対し前記制御装置により電流を印加して電磁界を誘起させ、配管内を通流する被処理液体に対しローレンツ力を作用させた後、この被処理液体を乾燥させ結晶体粒径が小粒化することを確認する。
【0004】
そして、実設備において、被処理液体が通流する配管の外周に1つのソレノイドコイルを巻付け、このコイルの両端に、このコイルに印可する電流の出力および周波数の調整を行なう制御装置を配設し、前記コイルに、ラボテストにより確認された、被処理液体中の結晶体粒径が小粒径化する電流値を、連続的に周波数を変化させ印加し電磁界を誘起し、前記配管内を通流する被処理液体に対しローレンツ力を作用させることにより被処理液体中の結晶体粒径が小粒径化させ、配管の内壁に付着したスケールの除去および付着の防止を行なっていた。
【0005】
また、従来のスケール付着防止装置の他の一例としては、実設備の被処理液体を通流する配管の外周に巻付けられた1つのソレノイドコイルと、このコイルの両端に接続され、このコイルに電磁界を誘起させ配管内を通流する被処理液体に対しローレンツ力を作用させる電流を出力する制御装置とを有し、この制御装置には、配管内を通流する被処理液体の流量を検出するトランサージュが接続されている。
【0006】
前記トランサージュには、配管内に配設する流量計、または、配管の外周に配置され、超音波により配管内を通流する被処理液体の流量を検出する超音波流量検出センサ等が接続されている。
【0007】
このような構成において、配管内を通流する被処理液体の流量を前記トランサージュにより検出し、前記制御装置は、検出された被処理液体の流量が増加した場合には、前記コイルに出力する電流の周波数の振幅を小さくし、流量が減少した場合には、前記コイルに出力する電流の周波数の振幅は大きくするよう制御を行ない、連続的に周波数を変化させて出力された電流により前記コイルに電磁界を誘起させ、配管内を通流する被処理液体に対しローレンツ力を作用させる。そして、このローレンツ力により被処理液体中の液体分子は方向性を持ち、液体中のカルシウムやマグネシウム等のイオンは析出して、例えば液体流路中に設置されたフィルタにより捕獲することができ、配管の内壁に付着したスケールの除去および付着の防止を行なっていた。
【0008】
【特許文献1】
特許3247942号公報 (第4−5頁、第図)
【特許文献2】
特開平8−42993号公報 (第3−4頁、第1図)
【0009】
【発明が解決しようとする課題】
従来のスケール付着防止装置は、ラボテストにおいて、被処理液体を通流する配管の内壁に付着するスケールの結晶体粒径が小粒径化する電流値および周波数を確認し、実設備において、ラボテストで確認された電流値を連続的に周波数を変化させてコイルに印加し、前記コイルにおいて電磁界を誘起して、配管内を通流する被処理液体に対してローレンツ力を作用させることにより、被処理液体中の結晶体粒径を小径化してスケールの付着防止および除去を行なっていたため、手間がかかり、また、実設備の他にラボテスト用の装置を必要とするため費用がかかっていた。
【0010】
本発明はこのような問題点に鑑みてなされたもので、ラボテストを必要とせず、さらに、実設備において、コイルに励磁する電流の周波数を広範囲に変化させ、配管内を通流する被処理液体に対し最適なローレンツ力を作用させることができ、配管の内壁に付着したスケールの除去および付着の防止を効果的に行なうことのできるスケール付着防止装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
前述した目的を達成するため本発明に係るスケール付着防止装置の特徴は、被処理液体が通流する配管の外周に等間隔に巻付けられ、電磁界を誘起し、被処理液体に対してローレンツ力を作用させるための直列に接続された少なくとも2個以上のソレノイドコイルと、このコイルの両端に接続され、各ソレノイドコイルに電磁界を誘起させるための励磁信号を生成して出力する制御装置とを備え、この制御装置に、出力する励磁信号の電流値、周波数および周期を設定する信号制御手段と、この励磁信号の周波数を発生させる間隔を設定する間隔設定手段とを配設し、前記信号制御手段により配管内を通流する被処理液体に含まれる結晶体を生成する成分に応じて周波数の値を設定し、前記間隔設定手段により出力する周波数を配管内を通流する被処理液体の流速に同期させる点にある。
【0012】
このような構成を採用したことにより、被処理液体を通流する配管の管径が一定であれば、被処理液体の流量が増加すれば流速は早くなり、逆に流量が減少すれば流速は遅くなるので、この流速に周波数を同期させることにより、被処理液体に対して各コイル毎に最適なローレンツ力を作用させることができ、被処理液体中に含まれるスケールを生成する成分の結晶体粒径を小粒径化させる効果が向上する。
【0013】
また、配管内を通流する被処理液体が、配管の外周の複数箇所に巻付けられた各コイルにおいてローレンツ力を受けるため、結晶体粒径を小粒径化する効果が増大し、配管の内壁に付着したスケールの除去および付着の防止をより効果的に行なうことができる。
【0014】
なお、被処理液体中のスケールを生成する成分の結晶体粒径が小粒径化する電流値および周波数値は、被処理液体中に含まれる成分毎に固有の値を有していることは過去の実験等により公知であり、また、被処理液体中の結晶体粒径が小粒径化する周波数が未知である場合には、印加する周波数を広範囲に変化させることにより小粒化させることができるので、あらかじめラボテストにより被処理液体中に含まれるスケールを生成する成分の結晶体粒径が小粒化する周波数を確認する必要が無い。
【0015】
【発明の実施の形態】
以下、本発明のスケール付着防止装置の実施形態を図1を用いて説明する。
【0016】
図1は、本発明のスケール付着防止装置の実施形態を示した概略図である。
【0017】
本発明の実施形態におけるスケール付着防止装置1は、内部に被処理液体を通流する管径A(m )の配管6の外周に、絶縁した銅線等の導電性ワイヤを巻付け、間隔T(m)毎に3個のソレノイドコイル2a,2b,2cが配設され、このソレノイドコイル2a,2b,2cの両端には、このコイル2a,2b,2cに電磁界を誘起させる励磁信号を出力する制御装置3が接続されており、この制御装置3には、前記コイル2a,2b,2cに印加する励磁信号の電流値、周波数、周期および周波数を発生させる間隔を設定する励磁信号設定手段4と、この励磁信号設定手段4により設定された励磁信号を生成し、この励磁信号を前記コイル2a,2b,2cに励磁する励磁信号発生装置5を備えている。
【0018】
本発明に係るスケール付着防止装置1では、各コイル2a,2b,2cに励磁する励磁信号の周波数を配管6内を通流する被処理液体の流速に同期させるが、これは、被処理液体が各コイル2a,2b,2c間を流れる時間を測定し、この時間毎に各コイル2a,2b,2cに周波数を発生させることにより達成される。
【0019】
この被処理液体が各コイル2a,2b,2c間を流れる時間t(秒)は、まず、被処理液体を通流する配管6の管径A(m )と被処理液体の処理量X(m /秒)から下記の(1)式により被処理液体の流速V(m/秒)を求め、次に、この流速V(m/秒)と各コイル2a,2b,2cそれぞれの間隔T(m)から、下記の(2)式により求める。
【0020】
V(m/秒)=X(m/秒)÷A(m)・・・(1)
t(秒)=T(m)÷V(m/秒)・・・(2)
【0021】
そして、前記励磁信号設定手段4により、被処理液体中に含まれるスケールを生成する成分の結晶体粒径が小粒径化する電流値および周波数を設定し、かつ、各コイル2a,2b,2cそれぞれに同様の周波数が励磁されるようにこの励磁信号の周波数の周期を設定し、さらに、上記(2)式により求められたt(秒)毎に周波数を発生するように設定を行なう。
【0022】
このとき、前記励磁信号設定手段4により設定される電流値および周波数は、被処理液体中に含まれる成分毎に固有の値を有しているが、これらは過去の実験等によりその値が公知であるため、あらかじめラボテストにより確認する必要はない。
【0023】
そして、前記励磁信号設定手段4により設定された励磁信号が、前記励磁信号発生装置5により生成され各コイル2a,2b,2cに励磁される。
【0024】
こうして、前記励磁信号発生装置5において生成、出力された励磁信号により各コイル2a,2b,2cにおいて誘起された電磁界により、被処理液体に対し最適なローレンツ力が連続して作用され、被処理液体中のスケールを生成する結晶体の粒径が小粒径化し、この結晶体は配管6の内壁に付着することなく被処理液体の流れにより排出され、さらに、既に付着していたスケールにおいてもその結晶体粒径が小粒径化し、被処理液体の流れにより排出され、配管6より除去することができる。
【0025】
なお、本発明は、前述した実施形態に限定されるものではなく、必要に応じて種々の変更が可能である。例えば、本実施形態においては、被処理液体の流速V(m/秒)を配管6の管径A(m )と被処理液体の処理量X(m /秒)から算出しているが、これを、配管6に流速計等を設置して計測してもよい。
【0026】
また、本実施形態においては、配管の外周に3つのソレノイドコイルを配設しているが、これをさらに増設することにより配管内を通流する被処理液体はより多くの回数の周波数を受けることになり、小粒径化の効果が増大させることができる。
【0027】
【発明の効果】
以上説明したように本発明によれば、配管内を通流する被処理液体に対して、流量に依存せずに最適なローレンツ力を作用させることができ、かつ、複数配設されたコイルの各箇所において連続してローレンツ力が作用されるので結晶体粒径の小粒径化を効果的に行なうことができ、配管内のスケールの除去および付着を防止する効果を飛躍的に向上させることができる。
【図面の簡単な説明】
【図1】本発明に係るスケール付着防止装置の実施形態を示した概略図
【符号の説明】
1 スケール付着防止装置
2a,2b,2c コイル
3 制御装置
4 励磁信号設定手段
5 励磁信号発生装置
6 配管
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, an electromagnetic field is induced by applying an alternating current to a solenoid coil wound around the outer periphery of a pipe, and a Lorentz force is applied to the liquid flowing through the pipe to generate the electromagnetic field from the liquid to be processed. The present invention relates to a device for reducing the crystal grain size of a scale to be removed and removing scale attached to the inner surface of a pipe and preventing the scale from adhering. In particular, an alternating current applied to a solenoid coil wound around the outer circumference of the pipe. Related to the control of the frequency.
[0002]
[Prior art]
Conventionally, industrial water, industrial wastewater, household wastewater, etc., the scale formed from, for example, calcium ions and magnesium ions contained in these fluids adheres to the inner wall of the pipe through which the scale adheres. As a device for preventing adhesion, a coil is wound around the outer periphery of the pipe through which the liquid to be processed flows, and an electric field is induced by applying a current to this solenoid coil, and Lorentz is applied to the liquid to be processed flowing through the pipe. By applying a force to agitate the liquid molecules, the scale adhering to the inner wall of the pipe and the crystal particle size of the components that generate the scale contained in the liquid to be treated are reduced, and the flow of the liquid to be treated is reduced. Accordingly, an apparatus has been used which discharges this crystal and removes scale attached to the pipe and prevents the scale from adhering.
[0003]
As an example of such a conventional scale adhesion preventing device, a coil is wound around an outer periphery of a lab test pipe through which a liquid to be treated flows, and an alternating current of a square wave whose frequency continuously changes is applied to the coil. A control device for generating a flowing magnetic field is connected, the liquid to be treated flows through the pipe, an electric field is induced by applying a current to the coil by the control device, and the liquid to be treated flows through the pipe. After the Lorentz force is applied, the liquid to be treated is dried to confirm that the crystal grain size is reduced.
[0004]
In the actual equipment, one solenoid coil is wound around the outer periphery of the pipe through which the liquid to be processed flows, and a control device for adjusting the output and frequency of the current applied to the coil is provided at both ends of the coil. Then, to the coil, a current value confirmed by a lab test, in which the crystal grain size in the liquid to be treated is reduced, is applied by continuously changing the frequency to induce an electromagnetic field, thereby causing the inside of the pipe to pass through. By applying a Lorentz force to the flowing liquid to be treated, the crystal grain diameter in the liquid to be treated is reduced, and scale attached to the inner wall of the pipe is removed and adhesion is prevented.
[0005]
Further, as another example of the conventional scale adhesion preventing device, one solenoid coil wound around the outer periphery of a pipe through which a liquid to be treated in actual equipment flows is connected to both ends of the coil. A control device that induces an electromagnetic field and outputs a current that causes Lorentz force to act on the liquid to be processed flowing through the piping, and the control device has a flow rate of the liquid to be processed flowing through the piping. The transage to be detected is connected.
[0006]
The transage is connected to a flow meter disposed in the pipe, or an ultrasonic flow rate detection sensor that is disposed on the outer periphery of the pipe and detects the flow rate of the liquid to be processed flowing through the pipe by ultrasonic waves. ing.
[0007]
In such a configuration, the flow rate of the liquid to be processed flowing in the pipe is detected by the transage, and the control device outputs the detected liquid to the coil when the flow rate of the liquid to be processed increases. When the amplitude of the frequency of the current is reduced and the flow rate is reduced, control is performed so that the amplitude of the frequency of the current output to the coil is increased, and the current is output by changing the frequency continuously. To induce a Lorentz force on the liquid to be processed flowing in the pipe. The liquid molecules in the liquid to be processed have directionality due to the Lorentz force, and ions such as calcium and magnesium in the liquid precipitate and can be captured by, for example, a filter installed in the liquid flow path. The scale attached to the inner wall of the pipe was removed and prevented from adhering.
[0008]
[Patent Document 1]
Japanese Patent No. 3247942 (Page 4-5, Figure)
[Patent Document 2]
JP-A-8-42993 (page 3-4, FIG. 1)
[0009]
[Problems to be solved by the invention]
In the conventional scale adhesion prevention device, in a lab test, the current value and frequency at which the crystal grain size of the scale attached to the inner wall of the pipe through which the liquid to be treated flows becomes smaller were confirmed, and in the actual equipment, the lab test was performed. By applying the confirmed current value to the coil while continuously changing the frequency, inducing an electromagnetic field in the coil and applying a Lorentz force to the liquid to be treated flowing through the pipe, In order to prevent and remove the scale by reducing the crystal grain size in the processing liquid, it takes time and effort, and requires a laboratory test apparatus in addition to the actual equipment, which is expensive.
[0010]
The present invention has been made in view of such problems, does not require a lab test, and furthermore, in an actual facility, changes the frequency of the current to be excited in the coil over a wide range, and allows the liquid to be processed to flow through the piping. It is an object of the present invention to provide a scale adhesion preventing device which can apply an optimal Lorentz force to the scale, and can effectively remove and prevent the adhesion of the scale attached to the inner wall of the pipe.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the feature of the scale adhesion preventing apparatus according to the present invention is that it is wound at equal intervals around the outer circumference of a pipe through which the liquid to be processed flows, induces an electromagnetic field, and Lorentz is applied to the liquid to be processed. At least two or more solenoid coils connected in series for applying a force, and a control device connected to both ends of the coil to generate and output an excitation signal for inducing an electromagnetic field in each solenoid coil; and The control device is provided with signal control means for setting the current value, frequency and cycle of the excitation signal to be output, and interval setting means for setting the interval at which the frequency of the excitation signal is generated, wherein the signal The value of the frequency is set in accordance with the component that forms the crystal contained in the liquid to be processed flowing in the pipe by the control means, and the frequency output by the interval setting means flows through the pipe. Lies in synchronizing the flow rate of the liquid to be treated that.
[0012]
By adopting such a configuration, if the pipe diameter through which the liquid to be treated flows is constant, the flow velocity increases if the flow rate of the liquid to be treated increases, and conversely, the flow velocity decreases if the flow rate decreases. By synchronizing the frequency with this flow velocity, the optimum Lorentz force can be applied to the liquid to be processed for each coil, and the crystal of the component that generates the scale contained in the liquid to be processed The effect of reducing the particle size is improved.
[0013]
Further, since the liquid to be processed flowing in the pipe receives Lorentz force in each coil wound around a plurality of locations on the outer circumference of the pipe, the effect of reducing the crystal grain size increases, and The scale attached to the inner wall can be removed and the adhesion can be prevented more effectively.
[0014]
It should be noted that the current value and the frequency value at which the crystal grain size of the component generating the scale in the liquid to be processed is reduced in particle size may have a unique value for each component contained in the liquid to be processed. If the frequency at which the crystal grain size in the liquid to be treated is small is known from past experiments and the like, and the frequency at which the crystal grain size is reduced is unknown, the size can be reduced by changing the applied frequency over a wide range. Since it is possible, it is not necessary to confirm in advance by a lab test the frequency at which the crystal grain size of the component for generating the scale contained in the liquid to be treated is reduced.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a scale adhesion preventing device of the present invention will be described with reference to FIG.
[0016]
FIG. 1 is a schematic view showing an embodiment of the scale adhesion preventing device of the present invention.
[0017]
In the scale adhesion preventing device 1 according to the embodiment of the present invention, an electrically conductive wire such as an insulated copper wire is wound around an outer periphery of a pipe 6 having a pipe diameter A (m 2 ) through which a liquid to be treated flows, and the interval is set. Three solenoid coils 2a, 2b, 2c are provided for each T (m), and excitation signals for inducing electromagnetic fields in the coils 2a, 2b, 2c are provided at both ends of the solenoid coils 2a, 2b, 2c. An output controller 3 is connected to the controller 3. The controller 3 includes an excitation signal setting means for setting a current value, a frequency, a period, and an interval for generating the frequency of the excitation signal applied to the coils 2a, 2b, 2c. And an excitation signal generator 5 for generating an excitation signal set by the excitation signal setting means 4 and exciting the excitation signal to the coils 2a, 2b, 2c.
[0018]
In the scale adhesion preventing device 1 according to the present invention, the frequency of the excitation signal that excites each of the coils 2a, 2b, and 2c is synchronized with the flow velocity of the liquid to be processed flowing through the pipe 6. This is achieved by measuring the time flowing between the coils 2a, 2b, 2c and generating a frequency in each coil 2a, 2b, 2c at each time.
[0019]
The time t (second) during which the liquid to be processed flows between the coils 2a, 2b, and 2c is first determined by the pipe diameter A (m 2 ) of the pipe 6 through which the liquid to be processed flows and the processing amount X ( m 3 / sec), the flow velocity V (m / sec) of the liquid to be treated is calculated by the following equation (1), and then the flow velocity V (m / sec) and the interval T between each of the coils 2 a, 2 b, 2 c are calculated. From (m), it is determined by the following equation (2).
[0020]
V (m / sec) = X (m 3 / sec) ÷ A (m 2 ) (1)
t (second) = T (m) ÷ V (m / second) (2)
[0021]
Then, the excitation signal setting means 4 sets a current value and a frequency at which the crystal grain diameter of the component for generating the scale contained in the liquid to be treated is reduced, and sets each coil 2a, 2b, 2c. The frequency cycle of this excitation signal is set so that the same frequency is excited in each case, and the setting is made so that the frequency is generated every t (seconds) obtained by the above equation (2).
[0022]
At this time, the current value and the frequency set by the excitation signal setting means 4 have unique values for each component contained in the liquid to be processed, but these values are known by past experiments and the like. Therefore, it is not necessary to confirm by lab test in advance.
[0023]
Then, the excitation signal set by the excitation signal setting means 4 is generated by the excitation signal generator 5 and is excited in each of the coils 2a, 2b, 2c.
[0024]
Thus, the optimal Lorentz force is continuously applied to the liquid to be processed by the electromagnetic fields induced in the coils 2a, 2b, 2c by the excitation signal generated and output in the excitation signal generator 5, and The crystal size of the crystal forming the scale in the liquid is reduced to a small particle size, and the crystal is discharged by the flow of the liquid to be treated without adhering to the inner wall of the pipe 6, and even in the scale that has already adhered. The crystal grain diameter is reduced to a small particle diameter, discharged by the flow of the liquid to be treated, and can be removed from the pipe 6.
[0025]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made as necessary. For example, in the present embodiment, the flow velocity V (m / sec) of the liquid to be treated is calculated from the pipe diameter A (m 2 ) of the pipe 6 and the throughput X (m 3 / sec) of the liquid to be treated. This may be measured by installing a flow meter or the like in the pipe 6.
[0026]
Further, in the present embodiment, three solenoid coils are disposed on the outer periphery of the pipe. However, by further increasing the number of the solenoid coils, the liquid to be processed flowing through the pipe receives a greater number of frequencies. And the effect of reducing the particle size can be increased.
[0027]
【The invention's effect】
As described above, according to the present invention, an optimum Lorentz force can be applied to a liquid to be processed flowing in a pipe without depending on the flow rate, and a plurality of coils can be provided. Since the Lorentz force is continuously applied at each location, the crystal grain size can be effectively reduced, and the effect of preventing scale removal and adhesion in the piping is dramatically improved. Can be.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a scale adhesion preventing device according to the present invention.
DESCRIPTION OF SYMBOLS 1 Scale adhesion prevention device 2a, 2b, 2c Coil 3 Controller 4 Excitation signal setting means 5 Excitation signal generator 6 Piping

Claims (1)

液体を通流する配管の外周に巻付けられたソレノイドコイルに交流電流を印加して電磁界を誘起させ、配管内を通流する液体に対しローレンツ力を作用させることによりこの被処理液体から生成されるスケールの結晶体粒径を小粒径化することにより配管の内面に付着したスケールの除去および付着の防止を行なう装置において、
被処理液体が通流する配管の外周に等間隔に巻付けられ、電磁界を誘起し、被処理液体に対してローレンツ力を作用させるための直列に接続された少なくとも2個以上のソレノイドコイルと、このコイルの両端に接続され、各ソレノイドコイルに電磁界を誘起させるための励磁信号を生成して出力する制御装置とを備え、この制御装置に、出力する励磁信号の電流値、周波数および周期を設定する信号制御手段と、この励磁信号の周波数を発生させる間隔を設定する間隔設定手段とを配設し、前記信号制御手段により配管内を通流する被処理液体に含まれる結晶体を生成する成分に応じて周波数の値を設定し、前記間隔設定手段により出力する周波数を配管内を通流する被処理液体の流速に同期させることを特徴とするスケール付着防止装置。
An alternating current is applied to a solenoid coil wound around the outer circumference of the pipe through which the liquid flows, to induce an electromagnetic field, and the Lorentz force is applied to the liquid flowing through the pipe to generate a liquid from the liquid to be processed. In the apparatus for removing the scale attached to the inner surface of the pipe and preventing the attachment by reducing the crystal grain size of the scale to be reduced,
At least two or more solenoid coils connected in series for inducing an electromagnetic field, and applying a Lorentz force to the liquid to be processed, which are wound at equal intervals around the outer circumference of a pipe through which the liquid to be processed flows A control device connected to both ends of the coil to generate and output an excitation signal for inducing an electromagnetic field in each solenoid coil, and the control device includes a current value, a frequency, and a cycle of the output excitation signal. And an interval setting means for setting an interval at which the frequency of the excitation signal is generated, and the signal control means generates a crystal contained in the liquid to be processed flowing through the pipe. A frequency value set in accordance with the component to be processed, and synchronizing the frequency output by the interval setting means with the flow rate of the liquid to be processed flowing through the pipe.
JP2003061015A 2003-03-07 2003-03-07 Device for preventing adhesion of scale Pending JP2004267885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061015A JP2004267885A (en) 2003-03-07 2003-03-07 Device for preventing adhesion of scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061015A JP2004267885A (en) 2003-03-07 2003-03-07 Device for preventing adhesion of scale

Publications (1)

Publication Number Publication Date
JP2004267885A true JP2004267885A (en) 2004-09-30

Family

ID=33123342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061015A Pending JP2004267885A (en) 2003-03-07 2003-03-07 Device for preventing adhesion of scale

Country Status (1)

Country Link
JP (1) JP2004267885A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110422A (en) * 2004-10-13 2006-04-27 Eiichi Suzuki Driving mechanism in water quality improving apparatus
CN1312052C (en) * 2005-03-04 2007-04-25 北京众博达石油科技有限公司 Intelligent broad spectrum electronic descaling and antiscaling method with little energy consumption
JP2009207958A (en) * 2008-02-29 2009-09-17 B Ii Denshi Kogyo Kk Electromagnetic treatment apparatus
JP2010110667A (en) * 2008-11-04 2010-05-20 Tohoku Tokushuko Kk Electromagnetic treatment apparatus and method
CN102627358A (en) * 2012-04-06 2012-08-08 轻工业西安机械设计研究院 Adjustable-frequency electromagnetic descaling instrument
CN103964584A (en) * 2014-03-11 2014-08-06 淮阴工学院 Electromagnetic scale inhibition and removal device with working current stabilizing capacity
JP2019013865A (en) * 2017-07-04 2019-01-31 月島機械株式会社 Sewage sludge treatment facility and sewage sludge treatment method
CN116282589A (en) * 2023-03-24 2023-06-23 瑞纳智能设备股份有限公司 Water treatment device and water treatment system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110422A (en) * 2004-10-13 2006-04-27 Eiichi Suzuki Driving mechanism in water quality improving apparatus
CN1312052C (en) * 2005-03-04 2007-04-25 北京众博达石油科技有限公司 Intelligent broad spectrum electronic descaling and antiscaling method with little energy consumption
JP2009207958A (en) * 2008-02-29 2009-09-17 B Ii Denshi Kogyo Kk Electromagnetic treatment apparatus
JP2010110667A (en) * 2008-11-04 2010-05-20 Tohoku Tokushuko Kk Electromagnetic treatment apparatus and method
CN102627358A (en) * 2012-04-06 2012-08-08 轻工业西安机械设计研究院 Adjustable-frequency electromagnetic descaling instrument
CN103964584A (en) * 2014-03-11 2014-08-06 淮阴工学院 Electromagnetic scale inhibition and removal device with working current stabilizing capacity
JP2019013865A (en) * 2017-07-04 2019-01-31 月島機械株式会社 Sewage sludge treatment facility and sewage sludge treatment method
CN116282589A (en) * 2023-03-24 2023-06-23 瑞纳智能设备股份有限公司 Water treatment device and water treatment system

Similar Documents

Publication Publication Date Title
JP2004267885A (en) Device for preventing adhesion of scale
JP5384829B2 (en) Fluid processing method and apparatus
RU2014116860A (en) DEVICE AND METHOD FOR REGISTRATION OF ELECTRIC WIRING PARTICLES IN LIQUID
JP2010532863A5 (en)
US20050121396A1 (en) Apparatus and method for treating substances with electromagnetic wave energy
US7351341B2 (en) Descaling method and descaling apparatus
JPH0243983A (en) Method and system for variable frequency electromagnetic liquid processing
JP7348266B2 (en) Inductive analysis of metal objects
CA2815977C (en) Method and apparatus for treating fluid in a conduit with radio - frequencies
JPS6314905B2 (en)
JPH0842993A (en) Removing and preventing device for scale
CN114371216B (en) Broadband magnetostriction SH guided wave detection device and method
JP3705194B2 (en) Electromagnetic field treatment method for fluid flowing in piping
JP2008311338A (en) Vacuum treatment apparatus and abnormal discharge precognition device used therefor, and control method of vacuum treatment apparatus
JPH09292471A (en) Metal detector
JP2004137532A (en) Apparatus and method for electromagnetic treatment of fluid to be treated which flows in fluid flow path
KR0143447B1 (en) Apparatus for treatment of fhsid by ultrasonic impact
RU2420743C1 (en) Device for measuring turbulent flow parametres of liquid (versions)
JPH10111363A (en) Metal detector
RU2400738C1 (en) Intra-pipe flaw detector (versions) and method of using said flaw detector
JP5797843B2 (en) Method and apparatus for testing material under test in a non-destructive manner
RU54935U1 (en) DEVICE FOR ELECTROMAGNETIC MAGNETO-ACOUSTIC TREATMENT OF WATER SYSTEMS
JP6695551B2 (en) Object component amount measuring device
JPWO2020187639A5 (en)
CN119595759A (en) Alternating-current magnetization magnetostriction flexible probe, detection device and detection method