[go: up one dir, main page]

JP2004263281A - Method for producing Ni-containing section steel excellent in strength and low-temperature toughness - Google Patents

Method for producing Ni-containing section steel excellent in strength and low-temperature toughness Download PDF

Info

Publication number
JP2004263281A
JP2004263281A JP2003057231A JP2003057231A JP2004263281A JP 2004263281 A JP2004263281 A JP 2004263281A JP 2003057231 A JP2003057231 A JP 2003057231A JP 2003057231 A JP2003057231 A JP 2003057231A JP 2004263281 A JP2004263281 A JP 2004263281A
Authority
JP
Japan
Prior art keywords
less
temperature
heat treatment
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003057231A
Other languages
Japanese (ja)
Inventor
Hiroyasu Yokoyama
泰康 横山
Yasuyuki Takeuchi
靖之 竹内
Shinji Mitao
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003057231A priority Critical patent/JP2004263281A/en
Publication of JP2004263281A publication Critical patent/JP2004263281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

【課題】熱処理回数を少なくするとともに、熱処理時の温度管理の範囲を広げた場合であっても優れた強度および低温靭性を確保することができるフランジ厚20mm未満のNi含有形鋼を製造する方法を提供する。
【解決手段】質量%で、C:0.01〜0.05%、Si:0.1〜0.5%、Mn:0.3〜0.7%、P:0.010%以下、S:0.010%以下、Mo:0.05〜0.3%、Ni:7.5〜10.5%を含有し、残部がFeおよび不可避不純物からなる鋼を、1350℃以下に加熱し、800℃以上の仕上温度で熱間圧延を行った後に放冷し、780℃以上930℃以下の温度域で均熱保持時間30分以下の熱処理を行い、さらに放冷後、650以上725℃以下の温度域で均熱保持時間30分以下の熱処理を行ってフランジ厚20mm未満の形鋼とする。
【選択図】 なし
A method for producing a Ni-containing section steel having a flange thickness of less than 20 mm that can ensure excellent strength and low-temperature toughness even when the number of heat treatments is reduced and the range of temperature control during heat treatment is expanded. I will provide a.
SOLUTION: In mass%, C: 0.01 to 0.05%, Si: 0.1 to 0.5%, Mn: 0.3 to 0.7%, P: 0.010% or less, S : A steel containing 0.010% or less, Mo: 0.05 to 0.3%, Ni: 7.5 to 10.5%, and the balance consisting of Fe and inevitable impurities is heated to 1350 ° C or less, After hot rolling at a finishing temperature of 800 ° C. or more, it is allowed to cool, and then heat-treated at a temperature range of 780 ° C. or more and 930 ° C. or less for a soaking time of 30 minutes or less. In the above temperature range, heat treatment is performed for a soaking time of 30 minutes or less to obtain a shaped steel having a flange thickness of less than 20 mm.
[Selection diagram] None

Description

【0001】
【発明の属する技術分野】
本発明は、LNGタンク等の低温環境で使用される構造部材または補剛部材として、高強度および低温における高靭性を必要とするフランジ厚20mm未満のNi含有形鋼の製造方法に関する。
【0002】
【従来の技術】
液化天然ガス(LNG)の輸送用船舶、貯蔵用容器には、マイナス162℃からマイナス196℃の極低温域において優れた機械的性質を有する各種構造用材料が多く使用される。そのような各種構造用材料の中でも、9%Ni鋼は、高い強度と優れた靭性を有することから、これらの用途に特に好適な鋼種としてすでに多くの使用実績がある。
【0003】
例えば、9%Ni厚鋼板のASTM規格のA353(焼ならし型)では、実使用向け熱処理方法として2回焼ならし−焼戻し処理が規定されている。また、ASTM規格のA553では再加熱焼入れ−焼戻し処理(RQ−T)が規定され、さらに、ASTM規格のA844では直接焼入れ−焼戻し処理(DQ−T)が規定されている。
【0004】
また、特に優れた高靭性が要求される鋼板では、例えば特許文献1に記載されているように上記熱処理に加えて、さらにAc変態点以上、Ac変態点以下の2相域に加熱後焼入れするQ’処理を途中に行う3段熱処理(RQ−Q’−TまたはDQ−Q’−T)が提案されている。
【0005】
さらに、構造部材および補剛部材としては、鋼板だけでなく、フランジ厚が20mm未満の比較的薄いH形鋼、山形鋼等の各種形鋼の9%Ni鋼も実用化されている。9%Ni形鋼の製造においては、形状制御の観点から、曲がりやひずみを生じ良好な形状の確保が困難となるため、熱処理において焼入れを実施することが困難である。
【0006】
このため、例えば特許文献2では、9%Ni形鋼の熱処理として鋼材を低Si−低Mn系の成分系とし、2回再加熱焼ならし後に焼戻しする熱処理(RN−N−T)、あるいは2相域加熱後空冷の熱処理を加えた3段熱処理(RN−N’−T)が提案されている。
【0007】
上記の様々な熱処理はいずれも、最終的な組織形態を微細な焼戻しマルテンサイトと最終焼戻し(T)時に析出する微細で安定な残留オーステナイト(γ)との複合組織とすることを目的としている。
【0008】
一方、Ni厚鋼板の製造では、水冷を適用した高冷速によって微細なマルテンサイトを生成し、その後の焼戻しによって安定なオーステナイトを生成することにより低温靭性の改善し、高い強度を確保している。
【0009】
【特許文献1】
特開昭58−73717号公報
【0010】
【特許文献2】
特開平2−194121号公報
【0011】
【発明が解決しようとする課題】
しかしながら、前述したように形鋼の製造では水冷が使用できないため、目標とする組織を得て低温靭性を改善するためには、3回の熱処理時に熱処理温度を非常に狭い範囲内に管理し、さらに、微細オーステナイト組織からの焼ならし(N)、あるいは最適なオーステナイトとフェライト(γ+α)の2相分率となる温度からの空冷(N’)を実施する必要があった。
【0012】
このようにNi含有形鋼の製造は、熱処理工程において非常に狭い範囲内に温度管理を行わなければならないだけでなく、3回もの熱処理が要求されるために多大な時間を要して製造日数が長期化するとともに、製造コストが大幅に上昇していた。
【0013】
本発明は上記の課題を解決するためになされたものであり、熱処理回数を少なくするとともに、熱処理時の温度管理の範囲を広げた場合であっても優れた強度および低温靭性を確保することができるフランジ厚20mm未満のNi含有形鋼を製造する方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の強度および低温靭性に優れたNi含有形鋼の製造方法は、質量%で、C:0.01〜0.05%、Si:0.1〜0.5%、Mn:0.3〜0.7%、P:0.010%以下、S:0.010%以下、Mo:0.05〜0.3%、Ni:7.5〜10.5%を含有し、残部がFeおよび不可避不純物からなる鋼を、1350℃以下に加熱し、800℃以上の仕上温度でフランジ厚20mm未満の形鋼とする熱間圧延を行った後に放冷し、780℃以上930℃以下の温度域で均熱保持時間30分以下の熱処理を行い、さらに放冷後、650℃以上725℃以下の温度域で均熱保持時間30分以下の熱処理を行うことを特徴とする。
【0015】
本発明のさらなる強度および低温靭性に優れたNi含有形鋼の製造方法は、質量%で、C:0.01〜0.05%、Si:0.1〜0.5%、Mn:0.3〜0.7%、P:0.010%以下、S:0.010%以下、Mo:0.05〜0.3%、Ni:7.5〜10.5%を含有し、残部がFeおよび不可避不純物からなる鋼を、1200℃以上1350℃以下の温度範囲に加熱し、800℃以上900℃以下の仕上温度でフランジ厚20mm未満の形鋼とする熱間圧延を行った後に放冷し、780℃以上930℃以下の温度域で均熱保持時間30分以下の熱処理を行い、さらに放冷後、650℃以上725℃以下の温度域で均熱保持時間30分以下の熱処理を行うことを特徴とする。
【0016】
さらに、上記鋼は、質量%で、Cu:0.5%以下、Cr:0.5%以下、Al:0.01〜0.07%、Ti:0.005〜0.05%からなる群より選択される1種または2種以上をさらに含有することが好ましい。
【0017】
【発明の実施の形態】
本発明者らは、鋼の化学成分と製造方法を詳細に検討した結果、以下の知見を得た。
【0018】
焼入れ性を高めるMoを適正量添加することにより、従来実施されていた2回再加熱焼ならし−焼戻し処理(RN−N−T)の熱処理のうち、2回再加熱焼ならし(RN−N)を行うことなく、焼ならし(N)を1回実施するだけで、2回再加熱焼ならし(RN−N)と同等のミクロ組織を得ることが可能になる。特に、加熱温度を1200℃以上1350℃以下とし、圧延終了温度を800℃以上950℃以下の範囲に制御することにより、より好ましいミクロ組織が得られる。
【0019】
また、上記のような成分・圧延条件の最適化により、熱間圧延後に熱処理を2回実施するだけで、優れた低温靭性を確保できる。さらに、焼ならし(N)の後の熱処理を650℃以上725℃以下の広範囲とすることが可能になる。特に、焼ならし(N)後の熱処理温度を650℃以上700℃以下の範囲とした場合には、従来の3段熱処理で得られていた靭性に優れた安定なオーステナイト組織が十分に得られるため、安定して優れた低温靭性を有するNi含有形鋼が得られる。
【0020】
このようにMoを適正量添加して焼入性を高めたNi含有形鋼は、成分および圧延条件を最適化することにより、従来法のように非常に狭い温度範囲に限定された複雑な熱処理を3回行うことなく、広い範囲の熱処理温度の管理下で優れた低温靭性を得ることができる。本発明は以上のような知見に基づいてなされたものである。
【0021】
以下、本発明の強度および低温靭性に優れたNi含有形鋼の製造方法について、詳しく説明する。まず、本発明の化学成分範囲について説明する。
【0022】
(1)C:0.0l〜0.05%
Cはオーステナイトまたはマルテンサイト中に固溶し、焼戻し時に析出することにより強化に寄与する元素であるが、その含有量が0.01%未満では十分な強度が確保できない。一方、0.05%を超えて添加すると、強度が著しく上昇して靭性を劣化させる。従って、C含有量は0.01〜0.05%の範囲に規定する。
【0023】
(2)Si:0.1〜0.5%
Siは脱酸のため添加するが、その含有量が0.1%未満では脱酸効果が十分でなく、清浄性が悪い。一方、0.5%を超えて添加すると固溶強化量が多くなるため、結果として靭性が劣化する。従って、Si含有量は0.1〜0.5%の範囲に規定する。
【0024】
(3)Mn:0.3〜0.7%
Mnは強度および靭性を確保するために添加するが、その含有量が0.3%未満ではその効果が十分でなく、強度が低下する。一方、0.7%を超えて添加すると偏析が生じやすくなり、靭性が劣化する。従って、Mn含有量は0.3〜0.7%の範囲に規定する。
【0025】
(4)P:0.010%以下
Pは粒界に偏析し、靭性を劣化させる不可避不純物元素であるため、その含有量が少ない方がよい。しかし、0.010%以下であれば実用上問題がないため、P含有量の上限を0.010%に規定する。
【0026】
(5)S:0.010%以下
Sは一般的には鋼中においてはMnS介在物となり、過度の存在により靭性を劣化させるため、その含有量が少ないほどよい。しかし、0.010%以下であれば問題がないため、S含有量の上限を0.010%に規定する。
【0027】
(6)Ni:7.5〜10.5%
Niは低温靭性を確保するため、本発明において非常に重要な元素である。その含有量を7.5%以上とすることで、焼戻しマルテンサイト相と安定な微細オーステナイト相との混合組織が得られ易くなる。一方、10.5%を超えて添加すると合金コストが上昇するだけでなく、強度が上昇して靭性の劣化が生じる。従って、Ni含有量は7.5〜10.5%の範囲に規定する。
【0028】
(7)Mo:0.05〜0.3%
Moは本発明において重要な元素である。その含有量を0.05%以上とすることで、熱間圧延後の冷却およびその後の焼戻し処理だけで、従来の複数回の熱処理と同様の微細マルテンサイト相と安定な微細オーステナイト相との混合組織が得られる。一方、0.3%を超えて添加すると合金コストが上昇するだけでなく、強度が上昇して靭性の劣化が生じる。従って、Mo含有量は0.05〜0.3%の範囲に規定する。
【0029】
本発明では、強度および低温靭性をさらに向上する目的で、以下に示すTi、Al、Cu、Crのうちの1種または2種以上を含有してもよい。
【0030】
(8)Ti:0.005〜0.05%
Tiは鋼中に含まれるNとTiNを形成し、加熱時のオーステナイト粒径の微細化に寄与し、結果として靭性の向上につながる。しかし、その含有量が0.005%未満ではその効果が十分ではない。一方、0.05%を超えて添加すると析出物が著しく粗大化し、靭性の劣化を生じさせる。従ってTiを添加する場合には、その含有量は0.005〜0.05%の範囲に規定する。
【0031】
(9)Al:0.01〜0.07%
Alは脱酸剤として添加されるが、その含有量が0.01%未満では効果がない。一方、0.07%を超えて添加すると鋼の清浄度が低下し、靭性の劣化につながる。従ってAlを添加する場合には、その含有量は0.01〜0.07%の範囲に規定する。
【0032】
(10)Cu:0.5%以下
Cuは適正な添加であれば靭性の改善と強度の上昇に有効な元素であるが、過剰な添加は靭性の劣化を引きおこす。従ってCuを添加する場合には、その含有量は0.5%を上限とする。
【0033】
(11)Cr:0.5%以下
CrはCuと同様に、適正な添加であれば強度上昇に寄与する。さらに、焼入れ性の向上により、Moと同等の効果を示すが、過剰な添加は靭性の劣化につながる。従ってCrを添加する場合には、その含有量は0.5%を上限とする。
【0034】
上記以外の残部は、Feおよび不可避不純物からなる。すなわち、本発明の作用効果を損なわない範囲内であれば他の微量元素を含有してもよい。
【0035】
また、Ca、希土類金属(REM)等のうちの1種または2種以上を適量(〜0.01%)添加して、鋼中介在物の形態制御を行い、靭性の向上を図ることもできる。
【0036】
次に、本発明の製造方法について説明する。
【0037】
本発明のNi含有鋼の製造方法は、上記の成分組成を有する鋼を用い、1350℃以下、より好ましくは、1200℃以上1350℃以下の温度範囲に加熱し、800℃以上、より好ましくは、800℃以上900℃以下の温度範囲で圧延を終了した後に放冷し、780℃以上930℃以下、より好ましくは、780℃以上830℃以下の温度域で均熱保持時間30分以下の熱処理を行い、さらに放冷後、650℃以上725℃以下、より好ましくは、650℃以上700℃以下の温度域で均熱保持時間30分以下の熱処理を行う。
【0038】
以下、各熱処理条件の限定理由についてより詳しく説明する。
【0039】
(i)加熱温度:1350℃以下
加熱温度が1350℃を超えると、加熱時のオーステナイト粒径が著しく粗大化し、靭性が劣化する。従って、加熱温度は1350℃以下とする。強度と低温靭性とのより優れたバランスを得るために、また形状・寸法精度を確保するために、加熱温度の下限値を1200℃とすることが好ましい。
【0040】
(ii)圧延終了温度:800℃以上
圧延終了温度が低いと、形状・寸法精度が十分に確保されないだけでなく、本来高靭性を示す安定なオーステナイトとなる組織に歪みが加わって不安定なオーステナイトとなり、靭性の劣化につながる。従って、圧延終了温度は800℃以上とする。なお、強度と靭性とのより優れたバランスを得るためには、圧延終了時のオーステナイト粒径を微細化するために、圧延終了温度の上限値を900℃とすることが望ましい。
【0041】
(iii)1回目の熱処理温度:780℃以上930℃以下
1回目の熱処理では、熱処理後の組織を微細で均質なマルテンサイトとすることが望ましい。このため1回目の熱処理では、熱処理している間の組織を細かなγ単相組織とする必要がある。熱処理温度が780℃未満の場合、γ単相とはならず、γとαの2相組織となり、熱処理後に好ましい均質なマルテンサイト組織が得られない。一方、熱処理温度が930℃を超えると、熱処理中のγ粒径が粗大化し、靭性の低下につながる。従って、1回目の熱処理温度は780℃以上930℃以下の範囲とする。特に、熱処理温度を780℃以上830℃以下に限定することにより、より好ましい微細なγ組織が得られる。
【0042】
(iv)1回目の熱処理均熱保持時間:30分以下
熱処理の均熱保持時間が30分を超えると製造コストが上昇するだけでなく、結晶粒の粗大化により靭性が低下する。従って、1回目の均熱保持時間は30分以下とする。良好な靭性を確保するために、1回目の均熱保持時間は3分以上とすることが好ましい。
【0043】
(v)2回目の熱処理温度:650℃以上725℃以下
2回目の熱処理では、熱処理後の組織をNiが濃化した微細で安定なγと微細な焼戻しマルテンサイトとする必要がある。ここで、安定なγとは、使用環境のマイナス196℃においてもマルテンサイトに変態しないものを指す。従って、2回目の熱処理での加熱温度はγとαの2相組織となる温度域とする必要があり、さらに2相組織のγ中にNiが十分に濃化する温度域としなければならない。
【0044】
ところで、γとαの2相域温度に加熱した場合、Niはγ中に濃化する傾向がある。しかし、鋼中に含まれるNiの含有量は決まっているため、γ中のNi濃度は2回目の熱処理中のγ分率と逆比例する傾向を示す。このことから、熱処理温度が725℃を超えると、熱処理中のγ分率が高くなり、結果としてγ中のNi濃度が低下し、熱処理後のγが不安定となって靭性の低下につながる。一方、熱処理温度が650℃未満の場合、γ分率が非常に少なく、Niの濃化した安定なγの量が十分ではなく、やはり靭性が低下する。従って、2回目の熱処理温度は650℃以上725℃以下の範囲とする。特に、2回目の熱処理温度を650℃以上700℃以下に限定することにより、より好ましいγ+α分率が得られる。
【0045】
(vi)2回目の熱処理均熱保持時間:30分以下
熱処理の均熱保持時間が30分を超えると製造コストが上昇する。さらに、1回目の熱処理を受けたマルテンサイトとNiが濃化したγとの間にNiの大きな濃度勾配が生じ、Niが濃化したγ相からα相へとNiが拡散し、結果としてNi濃度が低く、熱処理後に低温にすることでマルテンサイトに変態する不安定なγの分率が増大し、靭性の低下につながる。従って、2回目の均熱保持時間は30分以下とする。良好な靭性を確保するために、2回目の均熱保持時間は3分以上とすることが好ましい。
【0046】
【実施例】
(第1の実施例)
種々の化学成分を有する供試鋼を用いてフランジ厚12mmのH形鋼を製造した。用いた供試鋼(鋼種A〜Q)の化学成分を表1に示す。
【0047】
【表1】

Figure 2004263281
【0048】
このときの製造条件として、各H形鋼の加熱温度(℃)、圧延終了温度(℃)、1回目の熱処理温度(℃)、1回目の均熱保持時間(分)、2回目の熱処理温度(℃)、2回目の均熱保持時間(分)を表2に示す。
【0049】
得られたH形鋼の特性として、引張特性(強度)および衝撃特性(靭性)を調べた。引張特性としては、熱間圧延後、熱処理炉を用いて熱処理を行った後、フランジ1/4位置より圧延方向にJIS Z 2201に規定されている1A号板状引張試験片を採取し、降伏強度(MPa)および引張強度(MPa)を測定した。衝撃特性としては、JIS Z 2202に規定されている4号シャルピー衝撃試験片を採取し、マイナス196℃におけるシャルピー衝撃吸収エネルギー(J)を測定した。この結果を表2に併記する。
【0050】
なお、JIS G 3127の規格を満足し、さらに製造上のばらつきを考慮して、降伏強度が540MPa以上であるもの、引張強度が720MPa以上であるもの、マイナス196℃におけるシャルピー衝撃吸収エネルギーが75J以上であるものをそれぞれ強度、低温靭性に優れたNi含有形鋼として評価し、この評価基準を満たさないものを本発明範囲外とした。
【0051】
また、得られたH形鋼の形状・寸法精度がJIS G 3192の規格を満たすか否かについても表2に併記する。表2中、規格を満たしたものには○、規格を満たさなかったものには×、規格を満たすものの、規格値に対して余裕がなかったものには△を付した。
【0052】
【表2−1】
Figure 2004263281
【0053】
【表2−2】
Figure 2004263281
【0054】
化学成分および製造条件が本発明の範囲内である例1〜例10のH形鋼はいずれも、降伏強度が540MPa以上、引張強度が720MPa以上で、かつマイナス196℃のシャルピー衝撃吸収エネルギーが100J以上の優れた特性を示した。さらに、形状・寸法精度にも優れていた。
【0055】
一方、化学成分は本発明の範囲内であるものの、製造条件が本発明の範囲外である例11〜例18のH形鋼は、以下のような結果が得られた。すなわち、圧延終了温度が低かった例11のH形鋼は、加工歪みにより引張強度がJIS規格で規定されている規格値830MPa(830N/mm)を超えて高くなり、靭性が低下していた。さらに、形状・寸法精度が悪かった。
【0056】
1回目の熱処理温度が低かった例12のH形鋼は、完全なγ単相からの変態組織が得られていないため、低温靭性が劣化していた。
【0057】
1回目および2回目の熱処理温度がともに高かった例13のH形鋼は、低温靭性が劣化していた。これは、γが粗大化したか、もしくは逆変態により生じたγ中のNi濃度が低下して安定なγが減少したか、またはこの両者が起こったためであると考えられる。また、引張強度がJIS規格の規格値を超えて高かった。
【0058】
2回目の熱処理温度が低かった例14のH形鋼は、安定なγが十分に確保できないため、靭性が低かった。
【0059】
2回目の熱処理温度が高かった例15のH形鋼は、逆変態により生じたγ中のNi濃度が低下して安定なγが減少し、靭性が低下していた。
【0060】
1回目および2回目の均熱保持時間がともに長かった例16のH形鋼は、不安定なγが増加し、靭性が劣化していた。
【0061】
加熱温度および2回目の熱処理温度が高かった例17のH形鋼は、低温靭性が劣化していた。これは、加熱時のγ粒径が著しく粗大化したか、もしくは逆変態により生じたγ中のNi濃度が低下して安定なγが減少したか、またはこの両者が起こったためであると考えられる。さらに、加熱時の酸化スケールのため表面性状が劣化していた。
【0062】
加熱温度が1200℃を下回って低く、このため圧延終了温度も低下した例18のH形鋼は、加工歪みにより引張強度がJIS規格の規格値を超えて高くなり、靭性が低下していた。さらに、形状・寸法精度が悪かった。
【0063】
製造条件は本発明の範囲内であるものの、化学成分が本発明の範囲から外れる例19〜例30のH形鋼は以下のような結果が得られた。すなわち、C含有量が少なく、Mn含有量およびMo含有量が多かった例19のH形鋼は、十分な降伏強度および引張強度が得られなかった。
【0064】
C含有量およびMn含有量が多かった例20のH形鋼は、引張強度がJIS規格の規格値を超えて高くなり、靭性が劣化していた。
【0065】
Si含有量が少なく、C含有量およびMn含有量が多かった例21のH形鋼は、鋼の清浄性が低いため低温靭性が劣化していた。
【0066】
Si含有量およびMn含有量が多かった例22のH形鋼は、固溶強化により引張強度がJIS規格の規格値を超えて高くなり、低温靭性が劣化していた。
【0067】
Mn含有量が少なく、Mo含有量が多かった例23のH形鋼は、十分な降伏強度および引張強度が得られなかった。
【0068】
Mn含有量およびMo含有量が多かった例24のH形鋼は、偏析が著しく、靭性が劣化していた。
【0069】
C含有量、Mn含有量およびP含有量が多かった例25のH形鋼、および、C含有量およびS含有量が多かった例26のH形鋼はともに、低温靭性が劣化していた。
【0070】
Mo含有量が少なかった例27のH形鋼は、十分な焼入れ性が確保できないため、靭性が低下していた。
【0071】
Mo含有量が多かった例28のH形鋼は、引張強度がJIS規格の規格値を超えて高くなり、結果として靭性が劣化していた。
【0072】
Ni含有量が少なかった例29のH形鋼は、十分な低温靭性が得られなかった。
【0073】
C含有量およびNi含有量が多かった例30のH形鋼は、引張強度がJIS規格の規格値を超えて高くなり、靭性が劣化していた。さらに、製造コストが高くなった。
【0074】
(第2の実施例)
種々の化学成分を有する供試鋼を用いてフランジ厚15mmの不等辺不等厚山形鋼を製造した。用いた供試鋼(鋼種R〜Z)の化学成分を表3に示す。
【0075】
【表3】
Figure 2004263281
【0076】
このときの製造条件として各不等辺不等厚山形鋼の鋼片の加熱温度(℃)、圧延終了温度(℃)、1回目の熱処理温度(℃)、1回目の均熱保持時間(分)、2回目の熱処理温度(℃)、2回目の均熱保持時間(分)を表4に示す。
【0077】
得られた不等辺不等厚山形鋼の引張特性(強度)および衝撃特性(靭性)を、引張試験片をフランジ1/2位置より圧延方向に採取した以外は実施例1と同様に調べた。この結果を表4に併記する。なお、評価基準も実施例1と同様とした。
【0078】
【表4−1】
Figure 2004263281
【0079】
【表4−2】
Figure 2004263281
【0080】
化学成分および製造条件が本発明の範囲内である例31〜例45の形鋼はいずれも、降伏強度が540MPa以上、引張強度が720MPa以上で、かつマイナス196℃のシャルピー衝撃吸収エネルギーが100J以上の優れた特性を示した。さらに、形状・寸法精度にも優れていた。
【0081】
一方、化学成分は本発明の範囲内であるものの、製造条件が本発明から外れる例46〜例53の形鋼は以下のような結果が得られた。すなわち、圧延終了温度が低かった例46の形鋼は、加工歪みにより引張強度がJIS規格で規定されている規格値830MPa(830N/mm)を超えて高くなり、靭性も低下していた。さらに、形状・寸法精度が悪かった。
【0082】
1回目の熱処理温度が高かった例47の形鋼は、γ粒径が粗大化するため靭性が低下していた。
【0083】
1回目の熱処理温度が低かった例48の形鋼は、完全なγ単相からの変態組織が得られないため、低温靭性が劣化していた。
【0084】
2回目の熱処理温度が低かった例49の形鋼は、安定なγが十分に確保できないため、靭性が低かった。
【0085】
2回目の熱処理温度が高かった例50の形鋼は、逆変態により生じたγ中のNi濃度が低下して安定なγが減少し、靭性が低下していた。
【0086】
1回目および2回目の均熱保持時間が長かった例51の形鋼は、不安定なγが増加し、靭性が劣化していた。
【0087】
加熱温度が高かった例52の形鋼は、加熱時のγ粒径が著しく粗大化しているため、低温靭性が劣化していた。さらに、加熱時の酸化スケールのため表面性状が劣化していた。
【0088】
加熱温度が1200℃未満と低く、そのため圧延終了温度も低下した例53の形鋼は、下降歪みにより引張強度がJIS規格の規格値を超えて高くなり、靭性が低下していた。さらに、形状・寸法精度が悪かった。
【0089】
製造条件は本発明の範囲内であるものの、Cu含有量が多かった例54の形鋼は、引張強度がJIS規格の規格値を超えて高くなり、靭性が低下していた。
【0090】
製造条件は本発明の範囲内であるものの、Cr含有量が多かった例55の形鋼は、例54の形鋼と同様に、引張強度がJIS規格の規格値を超えて高くなり、靭性が劣化していた。
【0091】
製造条件は本発明の範囲内であるものの、Ti含有量が多かった例56の形鋼は、析出物が粗大化し、靭性が劣化していた。
【0092】
製造条件は本発明の範囲内であるものの、Al含有量が多かった例57の形鋼は、鋼の清浄度が低下し、靭性が劣化していた。
【0093】
【発明の効果】
以上詳述したように、本発明によれば、フランジ厚20mm未満のNi含有形鋼を製造する際の熱処理回数を少なくすることができるとともに、熱処理時の温度管理の範囲を広くすることができる。これにより、強度および低温靭性に優れたNi含有形鋼を安価に製造することが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a Ni-containing shaped steel having a flange thickness of less than 20 mm, which requires high strength and high toughness at low temperature, as a structural member or a stiffening member used in a low-temperature environment such as an LNG tank.
[0002]
[Prior art]
Various structural materials having excellent mechanical properties in an extremely low temperature range of −162 ° C. to −196 ° C. are often used for ships and storage vessels for transport of liquefied natural gas (LNG). Among such various structural materials, 9% Ni steel has high strength and excellent toughness, and thus has already been used as a steel type particularly suitable for these applications.
[0003]
For example, in ASTM standard A353 (normalized type) of 9% Ni thick steel plate, twice normalizing-tempering treatment is specified as a heat treatment method for practical use. Further, the reheating quenching-tempering process (RQ-T) is specified in A553 of ASTM standard, and the direct quenching-tempering process (DQ-T) is specified in A844 of ASTM standard.
[0004]
Further, in a steel sheet requiring particularly excellent high toughness, for example, as described in Patent Document 1, in addition to the above heat treatment, after further heating to a two-phase region of not less than Ac 1 transformation point and not more than Ac 3 transformation point. A three-step heat treatment (RQ-Q'-T or DQ-Q'-T) in which quenching Q 'treatment is performed halfway has been proposed.
[0005]
Furthermore, as structural members and stiffening members, not only steel plates but also 9% Ni steels of various shapes such as H-shaped steel and angle steel having a flange thickness of less than 20 mm have been put to practical use. In the production of 9% Ni section steel, from the viewpoint of shape control, bending and distortion occur and it is difficult to secure a good shape, so that it is difficult to perform quenching in heat treatment.
[0006]
For this reason, for example, in Patent Document 2, a heat treatment (RN-NT) in which a steel material is made into a low Si-low Mn-based component system as a heat treatment of a 9% Ni section steel and tempered after reheating and normalizing twice, or Three-stage heat treatment (RN-N'-T) in which air-cooling heat treatment is added after two-phase region heating has been proposed.
[0007]
All of the various heat treatments described above are intended to make the final structure form a composite structure of fine tempered martensite and fine and stable retained austenite (γ) precipitated during the final tempering (T).
[0008]
On the other hand, in the production of Ni thick steel sheets, fine martensite is generated by a high cooling rate using water cooling, and stable austenite is generated by subsequent tempering, thereby improving low-temperature toughness and securing high strength. .
[0009]
[Patent Document 1]
JP-A-58-73717
[Patent Document 2]
JP-A-2-194121
[Problems to be solved by the invention]
However, as described above, since water cooling cannot be used in the production of shaped steel, in order to obtain a target structure and improve low-temperature toughness, the heat treatment temperature is controlled within a very narrow range during three heat treatments, Further, normalizing (N) from a fine austenite structure or air cooling (N ') from a temperature at which an optimal two-phase fraction of austenite and ferrite (γ + α) had to be performed were required.
[0012]
As described above, the production of the Ni-containing section steel requires not only temperature control within a very narrow range in the heat treatment process, but also requires a large amount of time since three heat treatments are required. , And the production cost increased significantly.
[0013]
The present invention has been made to solve the above-described problems, and reduces the number of heat treatments, and can secure excellent strength and low-temperature toughness even when the range of temperature control during heat treatment is expanded. It is an object of the present invention to provide a method for producing a Ni-containing shaped steel having a possible flange thickness of less than 20 mm.
[0014]
[Means for Solving the Problems]
The method for producing a Ni-containing section steel excellent in strength and low-temperature toughness according to the present invention is, in mass%, C: 0.01 to 0.05%, Si: 0.1 to 0.5%, Mn: 0.3. 0.70.7%, P: 0.010% or less, S: 0.010% or less, Mo: 0.05 to 0.3%, Ni: 7.5 to 10.5%, the balance being Fe And a steel consisting of unavoidable impurities is heated to 1350 ° C. or less, hot-rolled to a shaped steel having a flange thickness of less than 20 mm at a finishing temperature of 800 ° C. or more, and allowed to cool, and then cooled to a temperature of 780 ° C. to 930 ° C. Heat treatment for 30 minutes or less in the temperature range, and after cooling, heat treatment for 30 minutes or less in the temperature range of 650 ° C or more and 725 ° C or less.
[0015]
The method for producing a Ni-containing section steel having further excellent strength and low-temperature toughness of the present invention is as follows: C: 0.01 to 0.05%, Si: 0.1 to 0.5%, Mn: 0. 3 to 0.7%, P: 0.010% or less, S: 0.010% or less, Mo: 0.05 to 0.3%, Ni: 7.5 to 10.5%, the balance being Steel consisting of Fe and unavoidable impurities is heated to a temperature range of 1200 ° C. or more and 1350 ° C. or less, and hot-rolled into a shaped steel having a flange thickness of less than 20 mm at a finishing temperature of 800 ° C. or more and 900 ° C. or less, and then cooled. Then, heat treatment is performed in a temperature range of 780 ° C. or more and 930 ° C. or less for a soaking time of 30 minutes or less. After cooling, heat treatment is performed in a temperature range of 650 ° C. or more and 725 ° C. or less of 30 minutes or less. It is characterized by the following.
[0016]
Further, the steel is a group consisting of, by mass%, Cu: 0.5% or less, Cr: 0.5% or less, Al: 0.01 to 0.07%, and Ti: 0.005 to 0.05%. It is preferable to further contain one or more selected from the above.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have studied the chemical composition of steel and the manufacturing method in detail, and have obtained the following findings.
[0018]
By adding an appropriate amount of Mo that enhances hardenability, two reheating normalizing (RN-NT) heat treatments (RN-NT), which are conventionally performed twice, are performed by reheating normalizing (RN-NT) twice. Only by performing normalizing (N) once without performing N), it becomes possible to obtain a microstructure equivalent to twice reheating normalizing (RN-N). In particular, by controlling the heating temperature to be 1200 ° C. or more and 1350 ° C. or less and controlling the rolling end temperature to be in the range of 800 ° C. or more and 950 ° C. or less, a more preferable microstructure can be obtained.
[0019]
Further, by optimizing the components and rolling conditions as described above, excellent low-temperature toughness can be ensured only by performing heat treatment twice after hot rolling. Further, the heat treatment after the normalization (N) can be performed over a wide range from 650 ° C to 725 ° C. In particular, when the heat treatment temperature after normalizing (N) is in the range of 650 ° C. or more and 700 ° C. or less, a stable austenite structure excellent in toughness obtained by the conventional three-step heat treatment can be sufficiently obtained. Therefore, a Ni-containing section steel having stable and excellent low-temperature toughness can be obtained.
[0020]
As described above, the Ni-containing section steel having the improved hardenability by adding an appropriate amount of Mo has a complicated heat treatment limited to a very narrow temperature range as in the conventional method by optimizing the components and rolling conditions. , The excellent low-temperature toughness can be obtained under the control of a wide range of heat treatment temperatures. The present invention has been made based on the above findings.
[0021]
Hereinafter, the method for producing a Ni-containing section steel excellent in strength and low-temperature toughness of the present invention will be described in detail. First, the chemical component range of the present invention will be described.
[0022]
(1) C: 0.01 to 0.05%
C is an element that forms a solid solution in austenite or martensite and precipitates during tempering, thereby contributing to strengthening. However, if its content is less than 0.01%, sufficient strength cannot be secured. On the other hand, if it exceeds 0.05%, the strength is remarkably increased and the toughness is deteriorated. Therefore, the C content is specified in the range of 0.01 to 0.05%.
[0023]
(2) Si: 0.1 to 0.5%
Si is added for deoxidation, but if its content is less than 0.1%, the deoxidizing effect is not sufficient and the cleanliness is poor. On the other hand, if it exceeds 0.5%, the amount of solid solution strengthening increases, and as a result, toughness deteriorates. Therefore, the Si content is specified in the range of 0.1 to 0.5%.
[0024]
(3) Mn: 0.3-0.7%
Mn is added to ensure strength and toughness, but if its content is less than 0.3%, its effect is not sufficient and the strength is reduced. On the other hand, when added in excess of 0.7%, segregation is likely to occur, and toughness is deteriorated. Therefore, the Mn content is specified in the range of 0.3 to 0.7%.
[0025]
(4) P: 0.010% or less Since P is an unavoidable impurity element that segregates at the grain boundary and deteriorates toughness, it is better that the content thereof is small. However, if the content is 0.010% or less, there is no practical problem. Therefore, the upper limit of the P content is set to 0.010%.
[0026]
(5) S: 0.010% or less S generally becomes MnS inclusions in steel and deteriorates toughness due to its excessive presence. Therefore, the smaller the content of S, the better. However, since there is no problem if the content is 0.010% or less, the upper limit of the S content is set to 0.010%.
[0027]
(6) Ni: 7.5 to 10.5%
Ni is a very important element in the present invention to ensure low-temperature toughness. When the content is 7.5% or more, a mixed structure of a tempered martensite phase and a stable fine austenite phase is easily obtained. On the other hand, if it is added in excess of 10.5%, not only does the alloy cost increase, but also the strength increases and the toughness deteriorates. Therefore, the Ni content is specified in the range of 7.5 to 10.5%.
[0028]
(7) Mo: 0.05 to 0.3%
Mo is an important element in the present invention. By setting the content to 0.05% or more, a mixture of the fine martensite phase and the stable fine austenite phase similar to the conventional heat treatment by only cooling after hot rolling and subsequent tempering treatment is performed. The organization is obtained. On the other hand, if it is added in excess of 0.3%, not only does the alloy cost increase, but also the strength increases and the toughness deteriorates. Therefore, the Mo content is defined in the range of 0.05 to 0.3%.
[0029]
In the present invention, for the purpose of further improving strength and low-temperature toughness, one or more of Ti, Al, Cu, and Cr shown below may be contained.
[0030]
(8) Ti: 0.005 to 0.05%
Ti forms N and TiN contained in steel, and contributes to refinement of the austenite grain size during heating, and as a result, leads to improvement in toughness. However, if the content is less than 0.005%, the effect is not sufficient. On the other hand, if it is added in excess of 0.05%, the precipitates become extremely coarse and cause deterioration in toughness. Therefore, when Ti is added, its content is specified in the range of 0.005 to 0.05%.
[0031]
(9) Al: 0.01 to 0.07%
Al is added as a deoxidizing agent, but there is no effect if its content is less than 0.01%. On the other hand, if added in excess of 0.07%, the cleanliness of the steel decreases, leading to a deterioration in toughness. Therefore, when Al is added, its content is specified in the range of 0.01 to 0.07%.
[0032]
(10) Cu: 0.5% or less Cu is an effective element for improving toughness and increasing strength if added properly, but excessive addition causes deterioration of toughness. Therefore, when Cu is added, its content is limited to 0.5%.
[0033]
(11) Cr: 0.5% or less Like Cu, Cr contributes to an increase in strength if added properly. Further, although the effect is the same as that of Mo by improving the hardenability, excessive addition leads to deterioration of toughness. Therefore, when Cr is added, the content is limited to 0.5%.
[0034]
The remainder other than the above consists of Fe and unavoidable impurities. That is, other trace elements may be contained as long as the functions and effects of the present invention are not impaired.
[0035]
In addition, one or more of Ca, rare earth metal (REM) and the like may be added in an appropriate amount (up to 0.01%) to control the form of inclusions in the steel, thereby improving toughness. .
[0036]
Next, the manufacturing method of the present invention will be described.
[0037]
The method for producing a Ni-containing steel of the present invention uses a steel having the above component composition, and is heated to a temperature range of 1350 ° C or lower, more preferably 1200 ° C or higher and 1350 ° C or lower, and 800 ° C or higher, more preferably After rolling is completed in a temperature range of 800 ° C. or more and 900 ° C. or less, it is left to cool, and is subjected to a heat treatment at a temperature range of 780 ° C. or more and 930 ° C. or less, more preferably 780 ° C. or more and 830 ° C. or less for 30 minutes or less. Then, after allowing to cool, a heat treatment is performed in a temperature range of 650 ° C. to 725 ° C., more preferably 650 ° C. to 700 ° C., for a soaking time of 30 minutes or less.
[0038]
Hereinafter, the reasons for limiting the respective heat treatment conditions will be described in more detail.
[0039]
(I) Heating temperature: 1350 ° C. or less If the heating temperature exceeds 1350 ° C., the austenite grain size during heating becomes extremely coarse, and the toughness deteriorates. Therefore, the heating temperature is 1350 ° C. or less. In order to obtain a better balance between strength and low-temperature toughness, and to secure shape and dimensional accuracy, it is preferable to set the lower limit of the heating temperature to 1200 ° C.
[0040]
(Ii) Rolling end temperature: When the rolling end temperature is lower than 800 ° C., not only the shape and dimensional accuracy are not sufficiently ensured, but also the austenite is unstable due to strain applied to a structure that is originally a stable austenite exhibiting high toughness. And leads to deterioration of toughness. Therefore, the rolling end temperature is set to 800 ° C. or higher. In order to obtain a better balance between strength and toughness, it is desirable to set the upper limit of the rolling end temperature to 900 ° C. in order to reduce the austenite grain size at the end of rolling.
[0041]
(Iii) First heat treatment temperature: 780 ° C. or more and 930 ° C. or less In the first heat treatment, it is desirable that the structure after the heat treatment be fine and uniform martensite. Therefore, in the first heat treatment, the structure during the heat treatment needs to be a fine γ single phase structure. When the heat treatment temperature is lower than 780 ° C., a single phase of γ is not formed, but a two-phase structure of γ and α is obtained, and a preferable homogeneous martensite structure cannot be obtained after heat treatment. On the other hand, if the heat treatment temperature exceeds 930 ° C., the γ grain size during the heat treatment becomes coarse, leading to a decrease in toughness. Therefore, the first heat treatment temperature is in a range of 780 ° C. to 930 ° C. Particularly, by limiting the heat treatment temperature to 780 ° C. or higher and 830 ° C. or lower, a more preferable fine γ structure can be obtained.
[0042]
(Iv) First heat treatment soaking time: 30 minutes or less If the soaking time of heat treatment exceeds 30 minutes, not only the production cost increases, but also the toughness decreases due to coarsening of crystal grains. Accordingly, the first soaking time is 30 minutes or less. In order to ensure good toughness, the first soaking time is preferably 3 minutes or more.
[0043]
(V) Second heat treatment temperature: In the second heat treatment at 650 ° C. or more and 725 ° C. or less, it is necessary to make the structure after the heat treatment a fine and stable γ and fine tempered martensite in which Ni is concentrated. Here, “stable γ” refers to a material that does not transform into martensite even at minus 196 ° C. in a use environment. Therefore, the heating temperature in the second heat treatment needs to be in a temperature range in which a two-phase structure of γ and α is formed, and further, a temperature range in which Ni is sufficiently concentrated in γ of the two-phase structure.
[0044]
By the way, when heated to a temperature in the two-phase region of γ and α, Ni tends to concentrate in γ. However, since the content of Ni contained in the steel is determined, the Ni concentration in γ tends to be inversely proportional to the γ fraction during the second heat treatment. From this, when the heat treatment temperature exceeds 725 ° C., the γ fraction during heat treatment increases, and as a result, the Ni concentration in γ decreases, γ after heat treatment becomes unstable, and the toughness decreases. On the other hand, when the heat treatment temperature is lower than 650 ° C., the γ fraction is extremely small, the amount of stable γ enriched with Ni is not sufficient, and the toughness is also lowered. Therefore, the second heat treatment temperature is set to be in a range of 650 ° C. to 725 ° C. Particularly, by limiting the temperature of the second heat treatment to 650 ° C. or more and 700 ° C. or less, a more preferable γ + α fraction can be obtained.
[0045]
(Vi) Second heat-treatment soaking time: 30 minutes or less If the heat-treatment soaking time of heat treatment exceeds 30 minutes, the production cost increases. Further, a large concentration gradient of Ni is generated between martensite subjected to the first heat treatment and γ in which Ni is concentrated, and Ni is diffused from the γ phase in which Ni is concentrated to the α phase. When the concentration is low and the temperature is lowered after the heat treatment, the fraction of unstable γ that transforms into martensite increases, leading to a decrease in toughness. Therefore, the second soaking time is 30 minutes or less. In order to ensure good toughness, the second soaking time is preferably 3 minutes or more.
[0046]
【Example】
(First embodiment)
An H-section steel having a flange thickness of 12 mm was manufactured using test steels having various chemical components. Table 1 shows the chemical components of the test steels (steel types A to Q) used.
[0047]
[Table 1]
Figure 2004263281
[0048]
As the manufacturing conditions at this time, the heating temperature (° C.), the end-of-rolling temperature (° C.), the first heat treatment temperature (° C.), the first soaking time (minute), and the second heat treatment temperature of each H-section steel (° C.) Table 2 shows the second soaking time (minutes).
[0049]
As properties of the obtained H-section steel, tensile properties (strength) and impact properties (toughness) were examined. As for the tensile properties, after hot rolling, heat treatment was performed using a heat treatment furnace, and a 1A plate-shaped tensile test piece specified in JIS Z 2201 was sampled in the rolling direction from the flange 1/4 position, and yielding was performed. The strength (MPa) and the tensile strength (MPa) were measured. As the impact characteristics, a No. 4 Charpy impact test specimen specified in JIS Z 2202 was sampled, and the Charpy impact absorption energy (J) at −196 ° C. was measured. The results are also shown in Table 2.
[0050]
In addition, those satisfying the standard of JIS G 3127 and further considering the manufacturing variation, those having a yield strength of 540 MPa or more, those having a tensile strength of 720 MPa or more, and those having a Charpy impact absorption energy at minus 196 ° C. of 75 J or more. Were evaluated as Ni-containing section steels having excellent strength and low-temperature toughness, and those not satisfying these evaluation criteria were outside the scope of the present invention.
[0051]
Table 2 also shows whether or not the shape and dimensional accuracy of the obtained H-shaped steel satisfies the JIS G 3192 standard. In Table 2, those satisfying the standard were marked with a circle, those not meeting the standard with a cross, and those meeting the standard but having no margin with respect to the standard value were marked with a triangle.
[0052]
[Table 2-1]
Figure 2004263281
[0053]
[Table 2-2]
Figure 2004263281
[0054]
Each of the H-section steels of Examples 1 to 10 whose chemical components and production conditions are within the range of the present invention has a yield strength of 540 MPa or more, a tensile strength of 720 MPa or more, and a Charpy impact absorption energy at minus 196 ° C of 100 J. The above excellent characteristics were exhibited. Furthermore, the shape and dimensional accuracy were excellent.
[0055]
On the other hand, although the chemical components were within the scope of the present invention, the H-shaped steels of Examples 11 to 18 whose production conditions were outside the scope of the present invention obtained the following results. That is, in the H-section steel of Example 11 in which the rolling end temperature was low, the tensile strength became higher than the standard value of 830 MPa (830 N / mm 2 ) specified by the JIS standard due to processing strain, and the toughness was lowered. . Furthermore, the shape and dimensional accuracy were poor.
[0056]
The H-section steel of Example 12 in which the first heat treatment temperature was low did not have a complete transformation structure from a single γ single phase, and thus had low temperature toughness.
[0057]
The H-section steel of Example 13 in which the first and second heat treatment temperatures were both high had deteriorated low-temperature toughness. This is considered to be due to coarsening of γ, a decrease in stable γ due to a decrease in the Ni concentration in γ caused by the reverse transformation, or a combination of both. Also, the tensile strength was higher than the JIS standard value.
[0058]
The H-section steel of Example 14 in which the second heat treatment temperature was low had a low toughness because stable γ could not be sufficiently secured.
[0059]
In the H-section steel of Example 15 in which the second heat treatment temperature was high, the Ni concentration in γ generated by the reverse transformation was reduced, stable γ was reduced, and toughness was reduced.
[0060]
In the H-section steel of Example 16 in which the first and second soaking times were both long, unstable γ increased and toughness was deteriorated.
[0061]
The H-shaped steel of Example 17 in which the heating temperature and the second heat treatment temperature were high had deteriorated low-temperature toughness. This is considered to be due to the fact that the γ particle size during heating was remarkably coarsened, or the Ni concentration in γ caused by the reverse transformation was reduced to reduce stable γ, or both of them occurred. . Further, the surface properties were deteriorated due to the oxide scale at the time of heating.
[0062]
The H-shaped steel of Example 18 in which the heating temperature was lower than 1200 ° C. and the rolling end temperature was lowered, the tensile strength became higher than the JIS standard value due to work strain, and the toughness was lowered. Furthermore, the shape and dimensional accuracy were poor.
[0063]
Although the manufacturing conditions were within the scope of the present invention, the H-shaped steels of Examples 19 to 30 whose chemical components were out of the scope of the present invention obtained the following results. That is, the H-section steel of Example 19 in which the C content was low and the Mn content and the Mo content were high was not able to obtain sufficient yield strength and tensile strength.
[0064]
The H-section steel of Example 20, which had a large C content and Mn content, had a tensile strength exceeding the JIS standard value and a high toughness.
[0065]
The H-section steel of Example 21 in which the Si content was low and the C content and Mn content were high had low temperature toughness due to low cleanliness of the steel.
[0066]
In the H-section steel of Example 22 having a large Si content and a large Mn content, the tensile strength became higher than the JIS standard value due to solid solution strengthening, and the low-temperature toughness was deteriorated.
[0067]
The H-section steel of Example 23 having a small Mn content and a large Mo content was not able to obtain sufficient yield strength and tensile strength.
[0068]
The H-section steel of Example 24 having a large Mn content and a large Mo content had remarkable segregation and deteriorated toughness.
[0069]
The H-section steel of Example 25 having a large C content, Mn content and P content, and the H-section steel of Example 26 having a large C content and S content both had deteriorated low-temperature toughness.
[0070]
The H-section steel of Example 27 in which the Mo content was small had insufficient toughenability, and thus had low toughness.
[0071]
The tensile strength of the H-section steel of Example 28 having a large Mo content was higher than the JIS standard value, and as a result, the toughness was deteriorated.
[0072]
The H-section steel of Example 29 in which the Ni content was small was not able to obtain sufficient low-temperature toughness.
[0073]
The H-section steel of Example 30, which had a large C content and a large Ni content, had a tensile strength exceeding the JIS standard value and a high toughness. In addition, manufacturing costs have increased.
[0074]
(Second embodiment)
An unequal-sided unequal thickness angle steel having a flange thickness of 15 mm was manufactured using test steels having various chemical components. Table 3 shows the chemical components of the test steels (steel types R to Z) used.
[0075]
[Table 3]
Figure 2004263281
[0076]
As the manufacturing conditions at this time, the heating temperature (° C.), the rolling end temperature (° C.), the first heat treatment temperature (° C.), and the first soaking time (minute) of the slab of each unequal-sided unequal thickness angle steel Table 4 shows the second heat treatment temperature (° C.) and the second soaking time (minute).
[0077]
Tensile properties (strength) and impact properties (toughness) of the obtained unequal-sided unequal thickness angle steel were examined in the same manner as in Example 1 except that a tensile test piece was sampled in the rolling direction from the flange 1/2 position. The results are shown in Table 4. The evaluation criteria were the same as in Example 1.
[0078]
[Table 4-1]
Figure 2004263281
[0079]
[Table 4-2]
Figure 2004263281
[0080]
Each of the section steels of Examples 31 to 45 whose chemical components and production conditions are within the range of the present invention has a yield strength of 540 MPa or more, a tensile strength of 720 MPa or more, and a Charpy impact absorption energy at −196 ° C. of 100 J or more. Showed excellent characteristics. Furthermore, the shape and dimensional accuracy were excellent.
[0081]
On the other hand, although the chemical components are within the scope of the present invention, the following results were obtained for the shaped steels of Examples 46 to 53 in which the production conditions deviated from the present invention. That is, in the section steel of Example 46 in which the rolling end temperature was low, the tensile strength became higher than the standard value 830 MPa (830 N / mm 2 ) specified by the JIS standard due to the processing strain, and the toughness was lowered. Furthermore, the shape and dimensional accuracy were poor.
[0082]
In the section steel of Example 47 in which the first heat treatment temperature was high, the toughness was reduced due to the coarse γ grain size.
[0083]
In the section steel of Example 48 in which the first heat treatment temperature was low, a low-temperature toughness was deteriorated because a transformation structure from a complete γ single phase was not obtained.
[0084]
The section steel of Example 49 in which the second heat treatment temperature was low had low toughness because stable γ could not be sufficiently ensured.
[0085]
In the section steel of Example 50 in which the second heat treatment temperature was high, the Ni concentration in γ generated by the reverse transformation was reduced, stable γ was reduced, and toughness was reduced.
[0086]
In the section steel of Example 51 in which the first and second soaking time was long, unstable γ increased and toughness was deteriorated.
[0087]
In the shaped steel of Example 52 in which the heating temperature was high, the γ grain size at the time of heating was extremely coarse, so that the low-temperature toughness was deteriorated. Further, the surface properties were deteriorated due to the oxide scale at the time of heating.
[0088]
The shape steel of Example 53, in which the heating temperature was as low as less than 1200 ° C. and the rolling end temperature was lowered, had a tensile strength higher than the JIS standard value due to the downward strain, and the toughness was lowered. Furthermore, the shape and dimensional accuracy were poor.
[0089]
Although the manufacturing conditions were within the range of the present invention, the section steel of Example 54 having a large Cu content had a tensile strength higher than the JIS standard value, and the toughness was reduced.
[0090]
Although the production conditions were within the range of the present invention, the shaped steel of Example 55 having a large Cr content had a tensile strength higher than the JIS standard value and a toughness similar to the shaped steel of Example 54. Had deteriorated.
[0091]
Although the manufacturing conditions were within the range of the present invention, the shaped steel of Example 56 having a large Ti content had coarse precipitates and deteriorated toughness.
[0092]
Although the manufacturing conditions were within the scope of the present invention, the steel shaped section of Example 57 having a large Al content had a low degree of cleanliness of the steel and a deteriorated toughness.
[0093]
【The invention's effect】
As described in detail above, according to the present invention, it is possible to reduce the number of heat treatments when manufacturing a Ni-containing shaped steel having a flange thickness of less than 20 mm, and to widen the range of temperature control during the heat treatment. . This makes it possible to manufacture a Ni-containing shaped steel excellent in strength and low-temperature toughness at low cost.

Claims (4)

質量%で、C:0.01〜0.05%、Si:0.1〜0.5%、Mn:0.3〜0.7%、P:0.010%以下、S:0.010%以下、Mo:0.05〜0.3%、Ni:7.5〜10.5%を含有し、残部がFeおよび不可避不純物からなる鋼を、1350℃以下に加熱し、800℃以上の仕上温度でフランジ厚20mm未満の形鋼とする熱間圧延を行った後に放冷し、780℃以上930℃以下の温度域で均熱保持時間30分以下の熱処理を行い、さらに放冷後、650℃以上725℃以下の温度域で均熱保持時間30分以下の熱処理を行うことを特徴とする強度および低温靭性に優れたNi含有形鋼の製造方法。In mass%, C: 0.01 to 0.05%, Si: 0.1 to 0.5%, Mn: 0.3 to 0.7%, P: 0.010% or less, S: 0.010 %, Mo: 0.05 to 0.3%, Ni: 7.5 to 10.5%, the balance being Fe and unavoidable impurities. After being subjected to hot rolling to form a steel sheet having a flange thickness of less than 20 mm at a finishing temperature, the steel sheet is allowed to cool, and then subjected to a heat treatment at a temperature range of 780 ° C. or more and 930 ° C. or less for a soaking time of 30 minutes or less. A method for producing a Ni-containing section steel excellent in strength and low-temperature toughness, wherein heat treatment is performed in a temperature range of 650 ° C or more and 725 ° C or less for a soaking time of 30 minutes or less. 前記鋼は、質量%で、Cu:0.5%以下、Cr:0.5%以下、Al:0.01〜0.07%、Ti:0.005〜0.05%からなる群より選択される1種または2種以上をさらに含有することを特徴とする請求項1に記載の製造方法。The steel is selected from the group consisting of, by mass%, Cu: 0.5% or less, Cr: 0.5% or less, Al: 0.01 to 0.07%, and Ti: 0.005 to 0.05%. The method according to claim 1, further comprising one or more of the following. 質量%で、C:0.01〜0.05%、Si:0.1〜0.5%、Mn:0.3〜0.7%、P:0.010%以下、S:0.010%以下、Mo:0.05〜0.3%、Ni:7.5〜10.5%を含有し、残部がFeおよび不可避不純物からなる鋼を、1200℃以上1350℃以下の温度範囲に加熱し、800℃以上900℃以下の仕上温度でフランジ厚20mm未満の形鋼とする熱間圧延を行った後に放冷し、780℃以上930℃以下の温度域で均熱保持時間30分以下の熱処理を行い、さらに放冷後、650℃以上725℃以下の温度域で均熱保持時間30分以下の熱処理を行うことを特徴とする強度および低温靭性に優れたNi含有形鋼の製造方法。In mass%, C: 0.01 to 0.05%, Si: 0.1 to 0.5%, Mn: 0.3 to 0.7%, P: 0.010% or less, S: 0.010 %, Mo: 0.05 to 0.3%, Ni: 7.5 to 10.5%, with the balance being Fe and unavoidable impurities, heated to a temperature range of 1200 ° C to 1350 ° C. Then, after performing hot rolling to a shaped steel having a flange thickness of less than 20 mm at a finishing temperature of 800 ° C. or more and 900 ° C. or less, it is allowed to cool, and is soaked in a temperature range of 780 ° C. or more and 930 ° C. or less for 30 minutes or less. A method for producing a Ni-containing section steel excellent in strength and low-temperature toughness, which comprises performing heat treatment, and after further cooling, performing heat treatment in a temperature range of 650 ° C. or more and 725 ° C. or less for a soaking time of 30 minutes or less. 前記鋼は、質量%で、Cu:0.5%以下、Cr:0.5%以下、Al:0.01〜0.07%、Ti:0.005〜0.05%からなる群より選択される1種または2種以上をさらに含有することを特徴とする請求項3に記載の製造方法。The steel is selected from the group consisting of, by mass%, Cu: 0.5% or less, Cr: 0.5% or less, Al: 0.01 to 0.07%, and Ti: 0.005 to 0.05%. 4. The production method according to claim 3, further comprising one or more of the following.
JP2003057231A 2003-03-04 2003-03-04 Method for producing Ni-containing section steel excellent in strength and low-temperature toughness Pending JP2004263281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057231A JP2004263281A (en) 2003-03-04 2003-03-04 Method for producing Ni-containing section steel excellent in strength and low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057231A JP2004263281A (en) 2003-03-04 2003-03-04 Method for producing Ni-containing section steel excellent in strength and low-temperature toughness

Publications (1)

Publication Number Publication Date
JP2004263281A true JP2004263281A (en) 2004-09-24

Family

ID=33120703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057231A Pending JP2004263281A (en) 2003-03-04 2003-03-04 Method for producing Ni-containing section steel excellent in strength and low-temperature toughness

Country Status (1)

Country Link
JP (1) JP2004263281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889391A4 (en) * 2012-08-23 2016-05-18 Kobe Steel Ltd Thick steel plate having good ultralow-temperature toughness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889391A4 (en) * 2012-08-23 2016-05-18 Kobe Steel Ltd Thick steel plate having good ultralow-temperature toughness

Similar Documents

Publication Publication Date Title
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JPH11140582A (en) High toughness thick steel plate excellent in toughness of weld heat affected zone and method of manufacturing the same
WO2020136829A1 (en) Nickel-containing steel sheet
JPH0941088A (en) High toughness low temperature steel sheet manufacturing method
JPH0920922A (en) High toughness low temperature steel sheet manufacturing method
JP4039268B2 (en) Method for producing Ni-containing steel with excellent strength and low temperature toughness
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
EP4438761A1 (en) Hot-rolled steel sheet and method for manufacturing same
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3643556B2 (en) High tensile rolled steel sheet without strength anisotropy and method for producing the same
JP2004263281A (en) Method for producing Ni-containing section steel excellent in strength and low-temperature toughness
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JP7367896B1 (en) Steel plate and its manufacturing method
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
EP4357476A1 (en) Ultra high strength steel sheet having high yield ratio and excellent bendability and method of manufacturing same
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JP2905306B2 (en) Method of manufacturing thick steel plate with small difference in mechanical properties in the thickness direction
JP3475866B2 (en) Architectural steel with excellent earthquake resistance and method of manufacturing the same
KR100447925B1 (en) Method of manufacturing high strength steel with high toughness
KR20240106695A (en) High strength cold rolled steel sheet and method of manufacturing the same
JP3007247B2 (en) Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JP2025519191A (en) Ultra-high strength cold rolled steel sheet and its manufacturing method
WO2023223694A1 (en) Steel sheet and method for producing same
KR20250053267A (en) Ultra-high strength cold rolled steel sheet and method of manufacturing the same