[go: up one dir, main page]

JP2004263034A - Methacrylic resin composition and laminate using the same - Google Patents

Methacrylic resin composition and laminate using the same Download PDF

Info

Publication number
JP2004263034A
JP2004263034A JP2003053352A JP2003053352A JP2004263034A JP 2004263034 A JP2004263034 A JP 2004263034A JP 2003053352 A JP2003053352 A JP 2003053352A JP 2003053352 A JP2003053352 A JP 2003053352A JP 2004263034 A JP2004263034 A JP 2004263034A
Authority
JP
Japan
Prior art keywords
mass
layer
methacrylic resin
polymer particles
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003053352A
Other languages
Japanese (ja)
Other versions
JP2004263034A5 (en
Inventor
Ryotaro Kuribayashi
亮太郎 栗林
Takao Hoshiba
孝男 干場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2003053352A priority Critical patent/JP2004263034A/en
Publication of JP2004263034A publication Critical patent/JP2004263034A/en
Publication of JP2004263034A5 publication Critical patent/JP2004263034A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】耐衝撃性、滑性および艶消し性に優れ、積層体の被覆層として適したメタクリル系樹脂組成物を提供する。
【解決手段】メタクリル系樹脂(A)、アクリル系多層構造重合体粒子(B)および平均粒子径が0.2〜20μmのシリコーン微粒子(C)からなるメタクリル系樹脂組成物、並びに該メタクリル系樹脂組成物からなる層を有する積層体によって上記課題が解決される。
【選択図】 なし
An object of the present invention is to provide a methacrylic resin composition which is excellent in impact resistance, lubricity and matting property and is suitable as a coating layer of a laminate.
A methacrylic resin composition comprising a methacrylic resin (A), acrylic multilayer polymer particles (B), and silicone fine particles (C) having an average particle diameter of 0.2 to 20 μm, and the methacrylic resin. The above problem is solved by a laminate having a layer made of the composition.
[Selection diagram] None

Description

【0001】
【発明の属する技術分野】
本発明は、耐衝撃性、滑性および艶消し性に優れたメタクリル系樹脂組成物、並びに該メタクリル系樹脂組成物からなる被覆層を有する積層体に関する。
【0002】
【従来の技術】
メタクリル系樹脂は美しい外観と耐候性を有するうえに、成形が容易であることから、電機部品、車両部品、装飾品、看板、建材等の用途に幅広く用いられる。一般にメタクリル系樹脂は比較的耐衝撃性に乏しいという問題点があったが、ゴム成分を含む多層構造重合体粒子を添加する方法(特許文献1等参照)により改良が行われている。
また、メタクリル系樹脂は耐候性や意匠性に優れていることから、複層成形品の被覆層としても用いられている(特許文献2等参照)。複層成形品を製造する際には、異形押出し法が用いられることが多いが、異形押出しでは金型との接触部分が多いことから良好な滑性を有することが必要である。
一般に樹脂材料の滑性を向上させる方法として、シリコーンオイル、フッ素系オイル等の潤滑剤を添加する方法、シリカ(特許文献3参照)、カオリン、クレイ、炭酸カルシウム(特許文献4参照)、ケイ酸アルミニウム、無水珪酸、リン酸カルシウム、アルミナ、ゼオライト等の微細な無機粒子を添加する方法、有機粒子を添加する方法(特許文献5参照)等が知られている。
【0003】
【特許文献1】
米国特許第3808180号明細書(特許請求の範囲)
【特許文献2】
特開平10−338792号公報(特許請求の範囲)
【特許文献3】
特開昭63−72730号公報(特許請求の範囲)
【特許文献4】
特開昭64−1515号公報(特許請求の範囲)
【特許文献5】
特開平9−165519号公報(特許請求の範囲)
【0004】
【発明が解決しようとする課題】
しかしながら、滑性改良のために潤滑剤を添加する方法は、樹脂材料の物性を損なったり、効果が持続しなかったり、ブリードアウトにより汚染を起こす可能性がある。微粒子を添加する方法は、耐衝撃性を低下させたり、表面に凹凸面を形成するため平滑性が損なわれたり、押出し成形の際、微粒子の分散不良のためプレートアウトと呼ばれる不良を起こし、外観が不良となる場合がある。特に無機粒子を用いる方法は、硬い粒子であるため成形時にノズル、ダイ、金型等の金属部品を磨耗させたり、基材樹脂との相溶性が低いためブツやダイライン等の欠点が発生したりする等の問題点がある。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために種々の検討を行った結果、メタクリル系樹脂、多層構造重合体粒子、およびシリコーン微粒子からなるメタクリル系樹脂組成物を用いることにより、耐衝撃性、滑性、および艶消し性に優れたメタクリル系樹脂組成物が得られることを見出し、本発明を完成するに至った。
【0006】
本発明によれば、上記目的は、
メタクリル系樹脂(A)60〜98質量%と多層構造重合体粒子(B)40〜2質量%との合計100質量部およびシリコーン微粒子(C)0.1〜5質量部からなるメタクリル系樹脂組成物であって;
(1)多層構造重合体粒子(B)が、内層の少なくとも1層に、アルキル基の炭素数が1〜8のアクリル酸アルキルエステル単位および/またはジエン系単量体単位を主体とするゴム層を有し、最外層に、アルキル基の炭素数が1〜8のメタクリル酸アルキルエステル単位を主体とする硬質層を有するアクリル系多層構造重合体粒子であり;
(2)シリコーン微粒子(C)が、オルガノシロキサンを主体とするシロキサン単位が3次元的に結合した非溶融性のエラストマー状であり、その平均粒子径が0.2〜20μmであり、標準偏差が4μm以下である;
ことを特徴とするメタクリル系樹脂組成物により達成される。
【0007】
さらに本発明は、上記のメタクリル系樹脂組成物からなるフィルムまたはシート、並びに、他の熱可塑性樹脂からなる基材層、および上記のメタクリル系樹脂組成物からなる少なくとも1つの層を有する積層体に関する。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で使用するメタクリル系樹脂(A)は、特に限定されないが、メタクリル酸メチル単位80質量%以上およびこれと共重合可能なビニル系単量体単位20質量%以下からなるメタクリル系熱可塑性樹脂であるのが好ましい。
【0009】
本発明で使用するメタクリル系樹脂(A)の配合割合は、メタクリル系樹脂(A)と多層構造重合体粒子(B)との合計を基準として、60〜98質量%であり、好ましくは70〜95質量%である。
【0010】
本発明で使用する多層構造重合体粒子(B)は、多層構造重合体粒子の内層の少なくとも1層に、アルキル基の炭素数が1〜8のアクリル酸アルキルエステル単位および/またはジエン系単量体単位を主体とするゴム層を有し、最外層に、アルキル基の炭素数が1〜8のメタクリル酸アルキルエステル単位を主体とする硬質層を有するアクリル系多層構造重合体粒子である。
【0011】
上記のゴム層を形成させる重合で用いられるアルキル基の炭素数が1〜8のアクリル酸エステルとしては、特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸オクチル等のアクリル酸アルキルエステル等が挙げられ、単独または2種類以上で使用される。中でも、アクリル酸ブチルまたはアクリル酸2−エチルヘキシルが好ましい。
【0012】
また、上記のゴム層を形成させる重合で用いられるジエン系単量体としては、特に限定されないが、例えば、1,3−ブタジエン、イソプレン等が挙げられる。
【0013】
上記のゴム層を形成させる重合においては、必要に応じてこれらの主成分に加えて、共重合可能な他の単官能性単量体を共重合させることができる。共重合可能な他の単官能性単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸アミル、メタクリル酸ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸オクチル、メタクリル酸デシル、メタクリル酸ドデシル、メタクリル酸オクタデシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸ナフチル、メタクリル酸イソボルニル等のメタクリル酸エステル;スチレン、α−メチルスチレン等の芳香族ビニル化合物;アクリロニトリル等が挙げられ、単独または2種類以上で使用される。
【0014】
これらの共重合可能な他の単官能性単量体を使用する場合、ゴム層を形成させるために使用される全単量体に対して、好ましくは0.1〜30質量%、より好ましくは0.5〜20質量%の範囲で使用される。
【0015】
上記のゴム層を形成させる重合で用いられるアルキル基の炭素数が1〜8のアクリル酸エステルおよび/またはジエン系単量体からなる重合体にゴム弾性を付与するために、必要に応じて架橋性単量体および/またはグラフト共重合性単量体を共重合させることができる。架橋性単量体やグラフト共重合性単量体としては、ゴム弾性を付与できるものであれば特に限定されないが、例えば、ヘキサンジオールジアクリレート、ヘキサンジオールジメタアクリレート等の多官能性(メタ)アクリル酸エステル等の架橋性単量体;アクリル酸アリル、メタクリル酸アリル等の不飽和カルボン酸アリルエステル等のグラフト共重合性単量体等が好ましく使用される。
【0016】
上記架橋性単量体および/またはグラフト共重合性単量体を使用する場合、ゴム層の重合体を形成させるために使用される全単量体に対して、好ましくは0.2〜15質量%、より好ましくは0.5〜10質量%の範囲で使用される。
【0017】
本発明に用いる多層構造重合体粒子において、多層構造重合体粒子に優れた耐衝撃性等の性能を付与するため、ゴム層の一部を分子量調節剤の存在下に形成させることができる。
【0018】
用いる分子量調節剤としては、特に限定されていないが、例えば、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、メルカプトエタノール等のメルカプタン類;ターピノーレン、ジペンテン、t−テルピネン等のテルペン類;クロロホルム、四塩化炭素等のハロゲン化炭化水素等が挙げられ、これらは単独で、または2種以上を混合して用いられる。これらの中でも、n−オクチルメルカプタン等のアルキルメルカプタン類が好ましく用いられる。
【0019】
ゴム層の形成のため単量体に添加する分子量調節剤の量は、特に限定されないが、取り扱い性と耐衝撃性とを十分に発揮させる観点から、ゴム層の重合体を形成させるために使用される全単量体に対して、好ましくは0〜3質量%、より好ましくは0〜1.5質量%の範囲で使用される。
【0020】
前記、多層構造重合体粒子の硬質層を形成させる重合で用いられるアルキル基の炭素数が1〜8のメタクリル酸アルキルエステルとしては、特に限定されないが、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸オクチル等のメタクリル酸エステルが挙げられ、単独または2種類以上で使用される。中でも、メタクリル酸メチルが好ましい。
【0021】
前記の硬質層を形成させる重合においては、必要に応じてこれらの主成分に加えて、共重合可能な他の単官能性単量体を共重合させることができる。共重合可能な他の単官能性単量体としては、メタクリル酸デシル、メタクリル酸ドデシル、メタクリル酸オクタデシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸ナフチル、メタクリル酸イゾボルニル等の他種のメタクリル酸エステル;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸オクチル等のアクリル酸アルキルエステル;スチレン、α−メチルスチレン等の芳香族ビニル化合物;アクリロニトリル等が挙げられ、単独または2種類以上で使用される。
【0022】
これらの共重合可能な他の単官能性単量体を使用する場合、硬質層を形成させるために使用される全単量体に対して、好ましくは0.1〜30質量%、より好ましくは0.5〜20質量%の範囲で使用される。
【0023】
本発明で使用する多層構造重合体粒子は、コア/シェルと称されている層構造、すなわち、外層により内層が覆われている内層/外層構造を一般的には有し、2層または3層で構成されていても4層以上で構成されていてもよい。2層構造の場合は、ゴム層(中心層)/硬質層(最外層)の構成であり、3層構造の場合は、硬質層(中心層)/ゴム層(中間層)/硬質層(最外層)、ゴム層(中心層)/ゴム層(中間層)/硬質層(最外層)またはゴム層(中心層)/硬質層(中間層)/硬質層(最外層)の構成であり、4層構造の場合には、例えば、ゴム層(中心層)/硬質層(中間層)/ゴム層(中間層)/硬質層(最外層)の構成である。
【0024】
本発明において特に好ましく用いることができるアクリル系多層構造重合体は、
(1)アルキル基の炭素数が1〜8のアクリル酸アルキルエステルを主体とする単量体を分子量調節剤の存在下に重合してなるゴム層(a)、
(2)アルキル基の炭素数が1〜8のアクリル酸アルキルエステル単位を主体とするゴム層(b)、
(3)メタクリル酸メチル単位を主体とする硬質層(c)
の少なくとも3層を含有し、ゴム層(a)、ゴム層(b)および硬質層(c)が、内側からこの順に配されている多層構造重合体粒子である。
【0025】
本発明において使用する多層構造重合体粒子を製造するための重合法については、特に制限がなく、例えば、通常の乳化重合に準じることにより、球状の多層構造重合体粒子を容易に得ることができる。なお、乳化重合後、ポリマーラテックスからの多層構造重合体粒子の分離取得は、公知の方法に従って、例えば酸析法、塩析法、凍結凝固法、スプレードライ法等によって行うことができる。
【0026】
本発明において、多層構造重合体粒子の粒子径は特には限定されないが、150〜700nmの範囲内であるのが好ましく、200〜650nmの範囲内であるのがより好ましい。粒子径が小さすぎると多層構造重合体粒子の工程中での取扱い性が低下する傾向があり、逆に大きすぎるとメタクリル系樹脂組成物における耐衝撃性改善効果が低下する傾向があるので好ましくない。
【0027】
上記多層構造重合体粒子の粒子径は、例えば、多層構造重合体粒子の電子顕微鏡観察に基づく多層構造重合体粒子の平均径測定、多層構造重合体粒子についての動的光散乱法測定等の方法によって決定することができる。
【0028】
本発明で使用する多層構造重合体粒子(B)の配合割合は、メタクリル系樹脂(A)と多層構造重合体粒子(B)との合計を基準として、2〜40質量%であり、好ましくは5〜30質量%である。2質量%より少ないと耐衝撃性改善効果が小さく、30質量%を超えるとメタクリル系樹脂本来の性質を損なうことがある。
【0029】
本発明で用いられるシリコーン微粒子は、ジメチルシロキサン、メチルフェニルシロキサン、メチルオクチルシロキサン、メチルシクロヘキシルシロキサン、ジフェニルシロキサン、メチル(3,3,3−トリフルオロプロピル)シロキサン等のオルガノシロキサンを主体をするシロキサン単位が、3次元的に結合した非溶融性のエラストマー状である。その平均粒子径は、0.2〜20μmであり、好ましくは0.5〜15μmである。平均粒子径が0.2μmより小さいと艶消し性能が小さくなる場合があり、20μmより大きいと表面均一性が損なわれる場合があり好ましくない。また、その標準偏差が4μm以下であり、好ましくは3μm以下である。標準偏差が4μmより大きいと、粒子径の大きい粒子が存在することがあるため、表面均一性が損なわれる場合があり好ましくない。
【0030】
本発明で用いられるシリコーン微粒子の粒子形状は、真球状であっても、不定形であってもよいが、特に表面平滑性を必要とする場合には真球状が好ましい。
【0031】
本発明のメタクリル系樹脂組成物を複層成形品の被覆層として用いる場合は、被覆層の厚みに留意してシリコーン微粒子の粒子径を選択する必要がある。被覆層の厚みと粒子径が同等以上、若しくはわずかに小さい程度であると、表面均一性が損なわれる場合がある。
【0032】
本発明で用いられるシリコーン微粒子の製造方法は特に制限はないが、例えば、特開昭59−68333号公報に記載されているように、特定の線状オルガノシロキサンブロックを含有する硬化性重合体または硬化性重合体組成物を噴霧状態で硬化させて球状粒子を得る方法が好ましい。架橋シリコーン樹脂を機械的に微粉砕する方法は、形状や粒子径の制御が困難なため好ましくない。
【0033】
本発明で使用するシリコーン微粒子(C)の配合割合は、メタクリル系樹脂(A)と多層構造重合体粒子(B)との合計100質量部に対して、0.1〜5質量部の範囲内であり、好ましくは0.5〜3質量部の範囲内である。0.1質量部より少ないと滑性改善効果が小さく、3質量部を超えると添加量に対する滑性改善効果小さく、メタクリル系樹脂本来の性質を損なうこともある。
【0034】
また、メタクリル系樹脂組成物中の多層構造重合体粒子(B)の量とシリコーン微粒子(C)の量とが下記式
【0035】
【式2】
−20>B−50C
【0036】
(上記式中のBはメタクリル系樹脂(A)と多層構造重合体粒子(B)との合計100質量部に対する多層構造重合体粒子(B)の質量部を表し、Cはメタクリル系樹脂(A)と多層構造重合体粒子(B)との合計100質量部に対するシリコーン微粒子(C)の質量部を表す。)
を満たすことが好ましい。上記式が満たされないと十分な滑性改善効果が得られない場合がある。
【0037】
メタクリル系樹脂、多層構造重合体粒子、およびシリコーン微粒子を溶融混合する方法は、特に限定されることなく、樹脂同士の溶融混合のために通常用いられている公知の方法を適用することができる。その際の溶融混練装置としては、加熱ロール機、加熱ニーダー機、スクリュー型押出機(エクストルーダー)等を使用することができる。
【0038】
上記における溶融混合に際し、メタクリル系樹脂、多層構造重合体粒子、およびシリコーン微粒子からなるメタクリル系樹脂組成物に、本発明の効果を損なわない範囲内で、顔料、ブロッキング防止剤、安定剤、帯電防止剤、可塑剤等の添加剤を添加することが可能である。これらの添加剤のうち、安定剤としては、例えば、酸化防止剤、熱安定剤、紫外線吸収剤等を挙げることができる。
【0039】
本発明のメタクリル系樹脂組成物は艶消し性を有しているため、表面に艶消し性を有する成形品、中でもフィルムまたはシートに好適に用いられる。表面の艶消し性は、60度鏡面光沢度において80%以下であるのが好ましい。
【0040】
本発明のメタクリル系樹脂組成物は、一般的に樹脂の成形に用いられる射出成形、押出成形、圧縮成形、ブロー成形、カレンダー成形、流延成形等の任意の成形方法で成形品を得ることができる。
【0041】
また本発明のメタクリル系樹脂組成物は、他の樹脂との接着性にも優れるため、各種の積層体にも好適に用いられる。積層体の基材層を構成する基材樹脂としては、本発明のメタクリル系樹脂組成物を除く他の熱可塑性樹脂(熱可塑性組成物である場合も含む)であれば特に制限されず、塩化ビニル樹脂、メタクリル樹脂、ポリカーボネート樹脂、フッ化ビニリデン樹脂、ABS樹脂、AES樹脂、アクリロニトリル−スチレン(AS)樹脂等からなるものが挙げられ、これらの1種または2種以上を組み合わせることもできる。
【0042】
上記の積層体の作製方法については、特に限定されることはなく、積層体の一般的な作製方法に準じることができ、積層シートを得る場合には例えば、共押出(Coextrusion)法、ラミネート法等を採用することができる。これらの中でも共押出法は、各層の流動体を合わせて積層一体化することができるので、各層間の密着性がよく、各層の成形歪も類似になる等の点で優れている。共押出では通常の押出機を2台以上使って、例えば、基材層形成用には40mmφ、60mmφ、90mmφ等の押出機を用い、また、本発明のメタクリル系樹脂組成物からなる被覆層の形成用としてはそれより小さい20mmφ、30mmφ、45mmφ等の押出機を用いるのが一般的である。押出温度は通常の温度範囲で行うことができる。
【0043】
また、ラミネート法の場合は、例えば、あらかじめ本発明のメタクリル系樹脂組成物からフィルムを作製しておき、このフィルムを押出機出口のポリシングロール部で、押出された基材シートと重ね合わせることにより積層体を作製することができる。この場合、重ね合わせ時の空気混入を防止し、密着性が良好となるようなロール温度等の条件を選ぶことが望ましい。なお、共押出またはラミネートの際、必要に応じて接着剤層を介して積層させてもよい。
【0044】
上記のような積層シートでは、積層シート全体の厚みは特に限定されないが、0.5〜10mmが一般的である。本発明のメタクリル系樹脂組成物からなる被覆層の厚みは、所望の性能を発揮させるに必要な最小厚み以上あればよく、その観点においては1μm以上であることが望ましいが、積層シート技術との関連においては一般には30〜300μmである。
【0045】
積層シートの面の形態としては、特に限定されないが、例えば平面、曲面、屈曲した面(例えば、波板状シート)等を採用することができる。
【0046】
また、シート以外の形態の積層体は、例えば、異形押出法、積層シートを2次成形することからなる方法等により製造することができる。
【0047】
【実施例】
次に、本発明の実施例を示すが、本発明はこれにより限定されるものではない。なお、参考例および実施例における物性値測定は次に示す方法(1)〜(5)で行った。
【0048】
(1)多層構造重合体粒子の粒子径
多層構造重合体粒子の粒子径については、レーザー粒径解析装置(大塚電子社製「PAR−III」)を用いて、動的光散乱法により平均値を測定した。
(2)動摩擦係数の測定
JIS K7125に準じ、相手材料をステンレス板(SUS430製)として動摩擦係数を測定した。
(3)耐衝撃性
JIS K7110に準じ、2号試験片を用い、A切り欠きのエッジワイズ衝撃によりアイゾット衝撃値を測定した。
(4)光沢度
JIS K7105に準じ、60度鏡面光沢度を測定した。
(5)積層シートの被覆層の厚み
成形した積層シートから試験片を切り出し、この断面を研磨してからその断面を光学顕微鏡を用いて測定した。
【0049】
シリコーン微粒子(C)は、GE東芝シリコーン社製「トスパール2000B」(オルガノシロキサン単位からなる非溶融性真球状エラストマー、平均粒子径6.0μm)を用いた。
【0050】
<参考例1>(多層構造重合体粒子(B)の製造例)
コンデンサー、温度計、撹拌機を備えたグラスライニング製重合槽に、イオン交換水147質量部を投入し、アルキルジフェニルエーテルジスルフォン酸ナトリウム0.015質量部および炭酸ナトリウム0.001質量部を溶解して、撹拌しながら80℃に昇温した。これとは別に、ステンレス製容器にアクリル酸ブチル(以下BAと略す)44.06質量部、1,4−ブタンジオールジアクリレート0.90質量部、n−オクチルメルカプタン0.05質量部を投入し、単量体混合物(I)を調製した。この単量体混合物(I)の10質量%を反応槽に一括添加した後、重合開始剤として過硫酸カリウム(以下KPSと略す)を0.045質量部投入し、重合を開始した。KPS添加30分後に、残りの単量体混合物(I)90質量%にジオクチルスルホコハク酸ナトリウム(以下SDOSSと略す)0.20質量部を溶解した乳化剤溶解単量体混合物(II)を0.83質量%/分の供給速度で連続的に供給し重合を行った。次いで乳化剤溶解単量体混合物(II)の供給が終了した後、撹拌しながら80℃で30分保持してさらにKPS0.045質量部を投入し、次いでBA44.1質量部、メタクリル酸アリル0.9質量部およびSDOSS0.23質量部からなる乳化剤溶解単量体混合物(III)を0.64質量%/分の供給速度で連続的に供給し重合を行った。乳化剤溶解単量体混合物(III)の供給が終了した後、撹拌しながら80℃で60分保持し、KPS0.01質量部を投入した後、メタクリル酸メチル9.50質量部、アクリル酸メチル0.50質量部、SDOSS0.05質量部からなる乳化剤溶解単量体混合物(4)を0.5質量%/分の供給速度で連続的に供給し重合を行った。乳化剤溶解単量体混合物(4)の供給が終了した後、さらに撹拌しながら80℃で60分保持して重合を完結させた。このようにして得られたラテックスにおける多層構造重合体粒子の粒子径は350nmであった。
【0051】
得られたラテックスを−30℃で12時間冷却して凝集させた後、凝集物を取り出し、40℃の温水にて洗浄後、遠心脱水機にて脱水し、50℃で12時間減圧振動乾燥させ、多層構造重合体粒子を得た。得られた多層構造重合体粒子はBA単位を主成分とするアクリル系ゴムを内層とし、メタクリル樹脂を硬質最外層とするコア/シェル型3層構造の粒子であった。
【0052】
<実施例1>
70℃で4時間乾燥させたメタクリル系樹脂(クラレ製パラペットG)82質量部、多層構造重合体粒子(B)18質量部、およびシリコーン微粒子(GE東芝シリコーン製トスパール2000B)2質量部をタンブラーに投入し混合した。この混合物を、単軸押出機(中央機械製作所製;L/D=28、40mmφ)を用いて溶融混練した後、ストランド状に押出し、切断して乳白色のメタクリル系樹脂組成物のペレットを製造した。得られたペレットを70℃で4時間乾燥させ、射出成形し厚み3.2mmのシート状成形品を得た。成形品の表面に目視では凹凸は認められなかった。動摩擦係数は0.38、アイゾット衝撃値は38J/m、光沢度は77%であった。
【0053】
<比較例1>
シリコーン微粒子を添加しない以外は実施例1と同様に行った。成形品の表面に目視では凹凸は認められなかった。動摩擦係数は0.48、アイゾット衝撃値は42J/m、光沢度は86%であった。
【0054】
<比較例2>
多層構造重合体粒子(B)を添加しない以外は実施例1と同様に行った。成形品の表面に目視では凹凸は認められなかった。動摩擦係数は0.36、アイゾット衝撃値は13J/m、光沢度は67%であった。
【0055】
<比較例3>
シリコーン微粒子に替えてマイカ(キララ製Y−4000M)を添加した以外は実施例1と同様に行った。成形品の表面に目視でも凹凸が認められた。動摩擦係数は0.39、アイゾット衝撃値は28J/m、光沢度は80%であった。
【0056】
【表1】

Figure 2004263034
【0057】
<実施例2>
実施例1のメタクリル系樹脂組成物のペレットを被覆層の樹脂、塩ビ樹脂(信越ポリマー製EX−282E)を基材層の樹脂として、それぞれサブ押出機(230℃;L/D=32;30mmφ)、メイン押出機(190℃;L/D=32;40mmφ)から押出すことによって共押出しを行った。積層シートの厚みはポリシングロールのクリアランスで調整し、被覆層の厚みは吐出量で調整した。得られた積層シートの基材層および被覆層の厚みはそれぞれ2.0mmおよび200μmであった。
積層シートにはフローマークや界面白化等の欠点は無く、被覆層と基材層の接着も十分であった。
【0058】
<実施例3〜8>
基材層の樹脂の種類とメイン押出機の温度を表2のように変更した以外は実施例2と同様に行った。
いずれの積層シートにもフローマークや界面白化等の欠点は無く、被覆層と基材層の接着も十分であった。
【0059】
【表2】
Figure 2004263034
【0060】
以上、本発明の実施例1と比較例1および2を比較すると、シリコーン微粒子を添加しない点で本発明と異なる比較例1は動摩擦係数が大きく、多層構造重合体粒子添加しない点で本発明と異なる比較例2は耐衝撃性が低く、シリコーン微粒子に替えてマイカを使用した比較例3は表面性が劣り、いずれも本発明の目的を達成できない。一方、実施例1は動摩擦係数、耐衝撃性、表面平滑性のいずれも改善されている。
さらに、実施例2〜8の積層シートは被覆層と基材層の接着も十分である。
【0061】
【発明の効果】
本発明によれば、耐衝撃性、滑性および艶消し性に優れたメタクリル系樹脂組成物が得られ、該メタクリル系樹脂組成物は、シート、フィルム、他の熱可塑性樹脂からなる基材層を有する積層体の被覆層として好適に使用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a methacrylic resin composition excellent in impact resistance, lubricity and matting property, and a laminate having a coating layer made of the methacrylic resin composition.
[0002]
[Prior art]
Methacrylic resins have a beautiful appearance and weather resistance and are easy to mold, so that they are widely used in applications such as electric parts, vehicle parts, decorative articles, signboards, and building materials. In general, methacrylic resins have a problem of relatively poor impact resistance, but improvements have been made by a method of adding multilayer polymer particles containing a rubber component (see Patent Document 1 and the like).
In addition, methacrylic resins are used as a coating layer of a multilayer molded article because of their excellent weather resistance and design properties (see Patent Document 2 and the like). When a multilayer molded article is produced, a profile extrusion method is often used. However, the profile extrusion requires a good lubricity due to a large number of contact portions with a mold.
Generally, as a method for improving the lubricity of a resin material, a method of adding a lubricant such as silicone oil or fluorine-based oil, silica (see Patent Document 3), kaolin, clay, calcium carbonate (see Patent Document 4), silicic acid A method of adding fine inorganic particles such as aluminum, silicic acid, calcium phosphate, alumina and zeolite, and a method of adding organic particles (see Patent Document 5) are known.
[0003]
[Patent Document 1]
US Patent No. 3,808,180 (Claims)
[Patent Document 2]
JP-A-10-338792 (Claims)
[Patent Document 3]
JP-A-63-72730 (Claims)
[Patent Document 4]
JP-A-64-1515 (Claims)
[Patent Document 5]
JP-A-9-165519 (Claims)
[0004]
[Problems to be solved by the invention]
However, the method of adding a lubricant to improve the lubricity may impair the physical properties of the resin material, fail to maintain its effect, or cause contamination by bleed-out. The method of adding fine particles reduces impact resistance, impairs smoothness due to the formation of an uneven surface, or causes a defect called plate-out due to poor dispersion of fine particles during extrusion, and appearance May be defective. In particular, in the method using inorganic particles, since hard particles are used, metal parts such as nozzles, dies, and dies are worn during molding, and defects such as bumps and die lines occur due to low compatibility with the base resin. Problems.
[0005]
[Means for Solving the Problems]
The present inventors have conducted various studies in order to solve the above problems, as a result of using a methacrylic resin, a methacrylic resin composition composed of multilayer polymer particles, and silicone fine particles, impact resistance, They have found that a methacrylic resin composition having excellent lubricity and matting properties can be obtained, and have completed the present invention.
[0006]
According to the invention, the object is
Methacrylic resin composition comprising a total of 100 parts by mass of methacrylic resin (A) 60 to 98% by mass and multilayer polymer particles (B) 40 to 2% by mass and silicone fine particles (C) 0.1 to 5 parts by mass. Thing;
(1) A rubber layer mainly composed of an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms and / or a diene-based monomer unit in at least one inner layer of the multilayer structure polymer particles (B). Acrylic multi-layer polymer particles having a hard layer mainly composed of alkyl methacrylate units having 1 to 8 carbon atoms in the outermost layer in the outermost layer;
(2) The silicone fine particles (C) are non-melting elastomers in which siloxane units mainly composed of organosiloxane are bonded three-dimensionally, have an average particle diameter of 0.2 to 20 μm, and have a standard deviation of Not more than 4 μm;
This is achieved by a methacrylic resin composition characterized in that:
[0007]
Furthermore, the present invention relates to a film or sheet comprising the above methacrylic resin composition, a base layer comprising another thermoplastic resin, and a laminate having at least one layer comprising the above methacrylic resin composition. .
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The methacrylic resin (A) used in the present invention is not particularly limited, but is a methacrylic thermoplastic resin comprising at least 80% by mass of methyl methacrylate units and at most 20% by mass of vinyl monomer units copolymerizable therewith. It is preferred that
[0009]
The compounding ratio of the methacrylic resin (A) used in the present invention is 60 to 98% by mass, preferably 70 to 98% by mass, based on the total of the methacrylic resin (A) and the multilayer polymer particles (B). 95% by mass.
[0010]
The multilayered polymer particles (B) used in the present invention comprise, in at least one inner layer of the multilayered polymer particles, an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms and / or a diene monomer. Acrylic multi-layer polymer particles having a rubber layer mainly composed of body units and having, as an outermost layer, a hard layer mainly composed of alkyl methacrylate units having an alkyl group of 1 to 8 carbon atoms.
[0011]
The acrylate having 1 to 8 carbon atoms in the alkyl group used in the polymerization for forming the rubber layer is not particularly limited, but includes, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, Examples include alkyl acrylates such as 2-ethylhexyl acrylate and octyl acrylate, and these are used alone or in combination of two or more. Among them, butyl acrylate or 2-ethylhexyl acrylate is preferable.
[0012]
The diene-based monomer used in the polymerization for forming the rubber layer is not particularly limited, and includes, for example, 1,3-butadiene and isoprene.
[0013]
In the above polymerization for forming the rubber layer, other copolymerizable monofunctional monomers can be copolymerized in addition to these main components, if necessary. Other monofunctional monomers that can be copolymerized include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, methacrylic acid. Methacrylic acid esters such as octyl acrylate, decyl methacrylate, dodecyl methacrylate, octadecyl methacrylate, phenyl methacrylate, benzyl methacrylate, naphthyl methacrylate, isobornyl methacrylate; aromatic vinyl compounds such as styrene and α-methylstyrene; acrylonitrile And the like, and used alone or in combination of two or more.
[0014]
When these other copolymerizable monofunctional monomers are used, preferably 0.1 to 30% by mass, more preferably 0.1 to 30% by mass, based on all the monomers used for forming the rubber layer. It is used in the range of 0.5 to 20% by mass.
[0015]
In order to impart rubber elasticity to a polymer comprising an acrylate ester and / or a diene monomer having 1 to 8 carbon atoms in the alkyl group used in the polymerization for forming the rubber layer, crosslinking is optionally performed. The reactive monomer and / or the graft copolymerizable monomer can be copolymerized. The crosslinkable monomer and the graft copolymerizable monomer are not particularly limited as long as they can impart rubber elasticity. For example, polyfunctional (meth) such as hexanediol diacrylate and hexanediol dimethacrylate are used. Crosslinkable monomers such as acrylates; graft copolymerizable monomers such as allyl carboxylate such as allyl acrylate and allyl methacrylate are preferably used.
[0016]
When the above-mentioned crosslinkable monomer and / or graft copolymerizable monomer is used, it is preferably 0.2 to 15% by mass based on all monomers used for forming the polymer of the rubber layer. %, More preferably in the range of 0.5 to 10% by mass.
[0017]
In the multilayer polymer particles used in the present invention, a part of the rubber layer can be formed in the presence of a molecular weight modifier in order to impart excellent properties such as impact resistance to the multilayer polymer particles.
[0018]
The molecular weight regulator to be used is not particularly limited, but for example, mercaptans such as n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, mercaptoethanol; terpinolene, dipentene, t-terpinene And halogenated hydrocarbons such as chloroform and carbon tetrachloride. These are used alone or as a mixture of two or more. Among these, alkyl mercaptans such as n-octyl mercaptan are preferably used.
[0019]
The amount of the molecular weight modifier added to the monomer for forming the rubber layer is not particularly limited, but is used for forming the polymer of the rubber layer from the viewpoint of sufficiently exhibiting handleability and impact resistance. It is preferably used in the range of 0 to 3% by mass, more preferably 0 to 1.5% by mass, based on all the monomers to be prepared.
[0020]
The alkyl methacrylate having 1 to 8 carbon atoms in the alkyl group used in the polymerization for forming the hard layer of the multilayer polymer particles is not particularly limited. Examples thereof include methyl methacrylate, ethyl methacrylate, and methacryl. Examples thereof include methacrylates such as propyl acrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, and octyl methacrylate, and may be used alone or in combination of two or more. Among them, methyl methacrylate is preferred.
[0021]
In the polymerization for forming the hard layer, other copolymerizable monofunctional monomers can be copolymerized in addition to these main components, if necessary. Other monofunctional monomers that can be copolymerized include decyl methacrylate, dodecyl methacrylate, octadecyl methacrylate, phenyl methacrylate, benzyl methacrylate, naphthyl methacrylate, and isozobornyl methacrylate. Alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate and octyl acrylate; aromatic vinyl compounds such as styrene and α-methylstyrene; acrylonitrile; And used alone or in combination of two or more.
[0022]
When these other copolymerizable monofunctional monomers are used, preferably 0.1 to 30% by mass, more preferably 0.1 to 30% by mass, based on all the monomers used for forming the hard layer. It is used in the range of 0.5 to 20% by mass.
[0023]
The multilayer polymer particles used in the present invention generally have a layer structure called a core / shell, that is, an inner layer / outer layer structure in which an inner layer is covered by an outer layer, and have two or three layers. Or four or more layers. In the case of a two-layer structure, it has a rubber layer (center layer) / hard layer (outermost layer) structure, and in the case of a three-layer structure, it has a hard layer (center layer) / rubber layer (intermediate layer) / hard layer (most layer). Outer layer), rubber layer (center layer) / rubber layer (intermediate layer) / hard layer (outermost layer) or rubber layer (center layer) / hard layer (intermediate layer) / hard layer (outermost layer). In the case of a layer structure, for example, it has a configuration of a rubber layer (center layer) / hard layer (intermediate layer) / rubber layer (intermediate layer) / hard layer (outermost layer).
[0024]
The acrylic multilayer polymer that can be particularly preferably used in the present invention,
(1) a rubber layer (a) obtained by polymerizing a monomer mainly containing an alkyl acrylate having 1 to 8 carbon atoms in the presence of a molecular weight modifier,
(2) a rubber layer (b) mainly composed of acrylic acid alkyl ester units having 1 to 8 carbon atoms in the alkyl group,
(3) Hard layer mainly composed of methyl methacrylate units (c)
And the rubber layer (a), the rubber layer (b) and the hard layer (c) are multilayer polymer particles arranged in this order from the inside.
[0025]
The polymerization method for producing the multilayer structure polymer particles used in the present invention is not particularly limited, and, for example, by following a normal emulsion polymerization, spherical multilayer structure polymer particles can be easily obtained. . After the emulsion polymerization, the multi-layered polymer particles can be separated and obtained from the polymer latex according to a known method, for example, by an acid precipitation method, a salting out method, a freeze coagulation method, a spray drying method, or the like.
[0026]
In the present invention, the particle size of the multilayer polymer particles is not particularly limited, but is preferably in the range of 150 to 700 nm, and more preferably in the range of 200 to 650 nm. If the particle diameter is too small, the handleability in the process of the multilayer polymer particles tends to decrease, and if too large, the impact resistance improving effect in the methacrylic resin composition tends to decrease, which is not preferable. .
[0027]
The particle size of the multilayer structure polymer particles, for example, the average diameter measurement of the multilayer structure polymer particles based on electron microscopic observation of the multilayer structure polymer particles, a method such as dynamic light scattering method measurement for the multilayer structure polymer particles Can be determined by
[0028]
The mixing ratio of the multilayer polymer particles (B) used in the present invention is 2 to 40% by mass based on the total of the methacrylic resin (A) and the multilayer polymer particles (B), and is preferably. 5 to 30% by mass. If it is less than 2% by mass, the effect of improving the impact resistance is small, and if it exceeds 30% by mass, the inherent properties of the methacrylic resin may be impaired.
[0029]
The silicone fine particles used in the present invention are siloxane units mainly composed of an organosiloxane such as dimethylsiloxane, methylphenylsiloxane, methyloctylsiloxane, methylcyclohexylsiloxane, diphenylsiloxane, methyl (3,3,3-trifluoropropyl) siloxane. Is a three-dimensionally bonded, non-meltable elastomeric material. The average particle size is from 0.2 to 20 μm, preferably from 0.5 to 15 μm. When the average particle diameter is smaller than 0.2 μm, the matting performance may be reduced, and when the average particle diameter is larger than 20 μm, the surface uniformity may be impaired, which is not preferable. The standard deviation is 4 μm or less, preferably 3 μm or less. If the standard deviation is larger than 4 μm, particles having a large particle diameter may be present, which may undesirably impair the surface uniformity.
[0030]
The particle shape of the silicone fine particles used in the present invention may be a true sphere or an irregular shape, but a true sphere is particularly preferable when surface smoothness is required.
[0031]
When the methacrylic resin composition of the present invention is used as a coating layer of a multilayer molded article, it is necessary to select the particle size of the silicone fine particles in consideration of the thickness of the coating layer. If the thickness and the particle size of the coating layer are equal to or more than or slightly smaller, the surface uniformity may be impaired.
[0032]
The method for producing the silicone fine particles used in the present invention is not particularly limited. For example, as described in JP-A-59-68333, a curable polymer containing a specific linear organosiloxane block or A method in which the curable polymer composition is cured in a spray state to obtain spherical particles is preferable. The method of mechanically pulverizing the crosslinked silicone resin is not preferable because it is difficult to control the shape and the particle diameter.
[0033]
The mixing ratio of the silicone fine particles (C) used in the present invention is in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass in total of the methacrylic resin (A) and the multilayer polymer particles (B). And preferably in the range of 0.5 to 3 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving lubricity is small, and if it exceeds 3 parts by mass, the effect of improving lubricity with respect to the added amount is small, and the inherent properties of the methacrylic resin may be impaired.
[0034]
The amount of the multilayer polymer particles (B) and the amount of the silicone fine particles (C) in the methacrylic resin composition are represented by the following formula:
[Equation 2]
-20> B-50C
[0036]
(B in the above formula represents parts by mass of the multilayer polymer particles (B) with respect to 100 parts by mass in total of the methacrylic resin (A) and the multilayer polymer particles (B), and C represents the methacrylic resin (A ) And the multilayer polymer particles (B) represent 100 parts by mass of the silicone fine particles (C) with respect to 100 parts by mass in total.)
It is preferable to satisfy the following. If the above expression is not satisfied, a sufficient lubrication improving effect may not be obtained.
[0037]
The method for melt-mixing the methacrylic resin, the multilayer polymer particles, and the silicone fine particles is not particularly limited, and a known method generally used for melt-mixing resins can be applied. As a melt-kneading device at that time, a heating roll machine, a heating kneader machine, a screw-type extruder (extruder) or the like can be used.
[0038]
Upon melt mixing in the above, a methacrylic resin, a multilayer structure polymer particles, and a methacrylic resin composition comprising silicone fine particles, within a range that does not impair the effects of the present invention, a pigment, an antiblocking agent, a stabilizer, and an antistatic. It is possible to add additives such as an agent and a plasticizer. Among these additives, examples of the stabilizer include an antioxidant, a heat stabilizer, and an ultraviolet absorber.
[0039]
Since the methacrylic resin composition of the present invention has a matting property, it is suitably used for a molded article having a matting property on its surface, especially for a film or sheet. The mattness of the surface is preferably 80% or less at a 60-degree specular gloss.
[0040]
The methacrylic resin composition of the present invention can obtain a molded article by any molding method generally used for molding a resin, such as injection molding, extrusion molding, compression molding, blow molding, calender molding, and cast molding. it can.
[0041]
In addition, the methacrylic resin composition of the present invention has excellent adhesiveness to other resins, and thus is suitably used for various laminates. The base resin constituting the base layer of the laminate is not particularly limited as long as it is another thermoplastic resin (including a thermoplastic composition) other than the methacrylic resin composition of the present invention. Examples include vinyl resin, methacrylic resin, polycarbonate resin, vinylidene fluoride resin, ABS resin, AES resin, acrylonitrile-styrene (AS) resin, and the like, and one or more of these may be combined.
[0042]
The method for producing the laminate is not particularly limited, and can be in accordance with a general method for producing a laminate. When a laminate sheet is obtained, for example, a coextrusion method or a lamination method Etc. can be adopted. Among these, the co-extrusion method is excellent in that the fluids of the respective layers can be combined and laminated and integrated, so that the adhesion between the respective layers is good and the molding distortion of the respective layers is similar. In co-extrusion, using two or more ordinary extruders, for example, an extruder of 40 mmφ, 60 mmφ, 90 mmφ, etc. for forming a base layer, and a coating layer made of the methacrylic resin composition of the present invention. For forming, it is common to use a smaller extruder of 20 mmφ, 30 mmφ, 45 mmφ or the like. The extrusion temperature can be performed in a normal temperature range.
[0043]
In the case of the laminating method, for example, a film is prepared in advance from the methacrylic resin composition of the present invention, and the film is overlapped with an extruded base sheet at a polishing roll portion at an extruder outlet. A laminate can be made. In this case, it is desirable to select conditions such as a roll temperature or the like that prevent air from being mixed at the time of superposition and improve the adhesion. In addition, at the time of co-extrusion or lamination, you may laminate | stack through an adhesive layer as needed.
[0044]
In the laminated sheet as described above, the thickness of the entire laminated sheet is not particularly limited, but is generally 0.5 to 10 mm. The thickness of the coating layer composed of the methacrylic resin composition of the present invention may be at least the minimum thickness necessary for exhibiting the desired performance, and from that viewpoint, it is preferably at least 1 μm. In the context, it is generally between 30 and 300 μm.
[0045]
Although the form of the surface of the laminated sheet is not particularly limited, for example, a flat surface, a curved surface, a curved surface (for example, a corrugated sheet) or the like can be adopted.
[0046]
In addition, a laminate other than a sheet can be manufactured by, for example, a profile extrusion method, a method of secondary forming a laminated sheet, or the like.
[0047]
【Example】
Next, examples of the present invention will be described, but the present invention is not limited thereto. The measurement of physical properties in Reference Examples and Examples was performed by the following methods (1) to (5).
[0048]
(1) Particle size of multilayer structure polymer particles The average particle size of the multilayer structure polymer particles is determined by a dynamic light scattering method using a laser particle size analyzer (“PAR-III” manufactured by Otsuka Electronics Co., Ltd.). Was measured.
(2) Measurement of dynamic friction coefficient According to JIS K7125, a dynamic friction coefficient was measured using a stainless steel plate (SUS430) as a mating material.
(3) Impact resistance Using a No. 2 test piece, an Izod impact value was measured by edgewise impact of a notch A according to JIS K7110.
(4) Glossiness A 60-degree specular glossiness was measured according to JIS K7105.
(5) A test piece was cut out from the laminated sheet in which the thickness of the coating layer of the laminated sheet was formed, the cross section was polished, and the cross section was measured using an optical microscope.
[0049]
As the silicone fine particles (C), “Tospearl 2000B” (non-melting spherical elastomer composed of organosiloxane units, average particle diameter 6.0 μm) manufactured by GE Toshiba Silicone Co., Ltd. was used.
[0050]
<Reference Example 1> (Production Example of Multilayer Structure Polymer Particle (B))
147 parts by mass of ion-exchanged water are charged into a polymerization tank made of glass lining equipped with a condenser, a thermometer, and a stirrer, and 0.015 parts by mass of sodium alkyldiphenylether disulfonate and 0.001 part by mass of sodium carbonate are dissolved. The temperature was raised to 80 ° C. while stirring. Separately, 44.06 parts by mass of butyl acrylate (hereinafter abbreviated as BA), 0.90 parts by mass of 1,4-butanediol diacrylate, and 0.05 parts by mass of n-octyl mercaptan are charged into a stainless steel container. To prepare a monomer mixture (I). After 10% by mass of the monomer mixture (I) was added to the reaction vessel at a time, 0.045 parts by mass of potassium persulfate (hereinafter abbreviated as KPS) was added as a polymerization initiator to initiate polymerization. Thirty minutes after the addition of KPS, an emulsifier-dissolved monomer mixture (II) obtained by dissolving 0.20 part by mass of sodium dioctylsulfosuccinate (hereinafter abbreviated as SDOSS) in 90% by mass of the remaining monomer mixture (I) was 0.83%. Polymerization was carried out by continuously supplying at a supply rate of mass% / min. Next, after the supply of the emulsifier-dissolved monomer mixture (II) is completed, the mixture is maintained at 80 ° C. for 30 minutes with stirring, and 0.045 parts by mass of KPS is further added. Then, 44.1 parts by mass of BA and 0.1 ml of allyl methacrylate are added. An emulsifier-dissolved monomer mixture (III) comprising 9 parts by mass and SDOSS 0.23 parts by mass was continuously supplied at a supply rate of 0.64% by mass / min to carry out polymerization. After the supply of the emulsifier-dissolved monomer mixture (III) was completed, the mixture was kept at 80 ° C. for 60 minutes with stirring, and after 0.01 part by mass of KPS was added, 9.50 parts by mass of methyl methacrylate and 0 part of methyl acrylate were added. The emulsifier-dissolved monomer mixture (4) consisting of .50 parts by mass and SDOSS 0.05 parts by mass was continuously supplied at a supply rate of 0.5% by mass / min to carry out polymerization. After the supply of the emulsifier-dissolved monomer mixture (4) was completed, the mixture was kept at 80 ° C. for 60 minutes with further stirring to complete the polymerization. The particle diameter of the multilayer polymer particles in the latex thus obtained was 350 nm.
[0051]
The obtained latex was cooled at −30 ° C. for 12 hours to coagulate, then the coagulated product was taken out, washed with warm water of 40 ° C., dehydrated by a centrifugal dehydrator, and dried under reduced pressure and vibration at 50 ° C. for 12 hours. Thus, multilayer polymer particles were obtained. The obtained multilayer polymer particles had a core / shell type three-layer structure in which an acrylic rubber containing a BA unit as a main component was used as an inner layer and a methacrylic resin was used as a hard outermost layer.
[0052]
<Example 1>
82 parts by mass of a methacrylic resin (Kuraray's Parapet G) dried at 70 ° C. for 4 hours, 18 parts by mass of multilayered polymer particles (B), and 2 parts by mass of silicone fine particles (GE Toshiba Silicone Tospearl 2000B) in a tumbler. Charged and mixed. This mixture was melt-kneaded using a single screw extruder (manufactured by Chuo Kikai Seisakusho; L / D = 28, 40 mmφ), extruded into strands, and cut to produce milky white methacrylic resin composition pellets. . The obtained pellets were dried at 70 ° C. for 4 hours and injection molded to obtain a 3.2 mm thick sheet-like molded product. No irregularities were visually observed on the surface of the molded article. The dynamic friction coefficient was 0.38, the Izod impact value was 38 J / m, and the glossiness was 77%.
[0053]
<Comparative Example 1>
The procedure was performed in the same manner as in Example 1 except that no silicone fine particles were added. No irregularities were visually observed on the surface of the molded article. The coefficient of kinetic friction was 0.48, the Izod impact value was 42 J / m, and the glossiness was 86%.
[0054]
<Comparative Example 2>
The procedure was performed in the same manner as in Example 1 except that the multilayer polymer particles (B) were not added. No irregularities were visually observed on the surface of the molded article. The dynamic friction coefficient was 0.36, the Izod impact value was 13 J / m, and the glossiness was 67%.
[0055]
<Comparative Example 3>
The procedure was performed in the same manner as in Example 1 except that mica (Y-4000M manufactured by Kirara) was added instead of the silicone fine particles. Irregularities were visually observed on the surface of the molded product. The coefficient of kinetic friction was 0.39, the Izod impact value was 28 J / m, and the glossiness was 80%.
[0056]
[Table 1]
Figure 2004263034
[0057]
<Example 2>
The pellets of the methacrylic resin composition of Example 1 were used as the resin for the coating layer, and the PVC resin (EX-282E made by Shin-Etsu Polymer) was used as the resin for the base layer, and each was a sub-extruder (230 ° C .; L / D = 32; 30 mmφ). ), Co-extrusion was performed by extruding from a main extruder (190 ° C .; L / D = 32; 40 mmφ). The thickness of the laminated sheet was adjusted by the clearance of the polishing roll, and the thickness of the coating layer was adjusted by the discharge amount. The thicknesses of the base layer and the coating layer of the obtained laminated sheet were 2.0 mm and 200 μm, respectively.
The laminated sheet had no defects such as flow marks and whitening of the interface, and the adhesion between the coating layer and the base material layer was sufficient.
[0058]
<Examples 3 to 8>
The procedure was performed in the same manner as in Example 2 except that the kind of the resin of the base material layer and the temperature of the main extruder were changed as shown in Table 2.
None of the laminated sheets had defects such as flow marks and whitening of the interface, and the adhesion between the coating layer and the base material layer was sufficient.
[0059]
[Table 2]
Figure 2004263034
[0060]
As described above, when Example 1 of the present invention is compared with Comparative Examples 1 and 2, Comparative Example 1 which is different from the present invention in that silicone fine particles are not added has a large kinetic friction coefficient and does not contain multilayer polymer particles. Comparative Example 2, which is different, has low impact resistance, and Comparative Example 3, which uses mica instead of silicone fine particles, has poor surface properties, and none of them can achieve the object of the present invention. On the other hand, in Example 1, the dynamic friction coefficient, impact resistance, and surface smoothness were all improved.
Further, the laminated sheets of Examples 2 to 8 have sufficient adhesion between the coating layer and the base material layer.
[0061]
【The invention's effect】
According to the present invention, a methacrylic resin composition having excellent impact resistance, lubricity and matting property can be obtained, and the methacrylic resin composition can be used as a sheet, film, or base layer made of another thermoplastic resin. Can be suitably used as a coating layer of a laminate having

Claims (8)

メタクリル系樹脂(A)60〜98質量%と多層構造重合体粒子(B)40〜2質量%との合計100質量部およびシリコーン微粒子(C)0.1〜5質量部からなるメタクリル系樹脂組成物であって;
(1)多層構造重合体粒子(B)が、内層の少なくとも1層に、アルキル基の炭素数が1〜8のアクリル酸アルキルエステル単位および/またはジエン系単量体単位を主体とするゴム層を有し、最外層に、アルキル基の炭素数が1〜8のメタクリル酸アルキルエステル単位を主体とする硬質層を有するアクリル系多層構造重合体粒子であり;
(2)シリコーン微粒子(C)が、オルガノシロキサンを主体とするシロキサン単位が3次元的に結合した非溶融性のエラストマー状であり、その平均粒子径が0.2〜20μmであり、標準偏差が4μm以下である;
ことを特徴とするメタクリル系樹脂組成物。
Methacrylic resin composition comprising a total of 100 parts by mass of methacrylic resin (A) 60 to 98% by mass and multilayer polymer particles (B) 40 to 2% by mass and silicone fine particles (C) 0.1 to 5 parts by mass. Thing;
(1) A rubber layer mainly composed of an alkyl acrylate unit having an alkyl group having 1 to 8 carbon atoms and / or a diene-based monomer unit in at least one inner layer of the multilayer structure polymer particles (B). Acrylic multi-layer polymer particles having a hard layer mainly composed of alkyl methacrylate units having 1 to 8 carbon atoms in the outermost layer in the outermost layer;
(2) The silicone fine particles (C) are non-melting elastomers in which siloxane units mainly composed of organosiloxane are bonded three-dimensionally, have an average particle diameter of 0.2 to 20 μm, and have a standard deviation of Not more than 4 μm;
A methacrylic resin composition, characterized in that:
アクリル系多層構造重合体粒子(B)が、
(1)アルキル基の炭素数が1〜8のアクリル酸アルキルエステルを主体とする単量体を分子量調節剤の存在下に重合してなるゴム層(a)、
(2)アルキル基の炭素数が1〜8のアクリル酸アルキルエステル単位を主体とするゴム層(b)、
(3)メタクリル酸メチル単位を主体とする硬質層(c)
の少なくとも3層を含有し、内側からゴム層(a)、ゴム層(b)および硬質層(c)の順に配されている構造を有する多層構造重合体粒子である請求項1に記載のメタクリル系樹脂組成物。
Acrylic multi-layer polymer particles (B)
(1) a rubber layer (a) obtained by polymerizing a monomer mainly containing an alkyl acrylate having 1 to 8 carbon atoms in the presence of a molecular weight modifier,
(2) a rubber layer (b) mainly composed of acrylic acid alkyl ester units having 1 to 8 carbon atoms in the alkyl group,
(3) Hard layer mainly composed of methyl methacrylate units (c)
The methacrylic polymer according to claim 1, wherein the methacrylic polymer is a multilayer polymer particle having a structure in which at least three layers of (a), (b), and (c) are arranged in this order from the inside. -Based resin composition.
メタクリル系樹脂組成物中の多層構造重合体粒子(B)の量とシリコーン微粒子(C)の量とが下記式で表される請求項1または2に記載のメタクリル系樹脂組成物。
【式1】
Figure 2004263034
(上記式中のBはメタクリル系樹脂(A)と多層構造重合体粒子(B)との合計100質量部に対する多層構造重合体粒子(B)の質量部を表し、Cはメタクリル系樹脂(A)と多層構造重合体粒子(B)との合計100質量部に対するシリコーン微粒子(C)の質量部を表す。)
The methacrylic resin composition according to claim 1 or 2, wherein the amount of the multilayer polymer particles (B) and the amount of the silicone fine particles (C) in the methacrylic resin composition are represented by the following formulas.
(Equation 1)
Figure 2004263034
(B in the above formula represents parts by mass of the multilayer polymer particles (B) with respect to 100 parts by mass in total of the methacrylic resin (A) and the multilayer polymer particles (B), and C represents the methacrylic resin (A ) And the multilayer polymer particles (B) represent 100 parts by mass of the silicone fine particles (C) with respect to 100 parts by mass in total.)
請求項1〜3のいずれか1項に記載のメタクリル系樹脂組成物からなるフィルムまたはシート。A film or sheet comprising the methacrylic resin composition according to claim 1. 60度鏡面光沢度が80%以下である請求項4に記載のフィルムまたはシート。The film or sheet according to claim 4, wherein the 60-degree specular gloss is 80% or less. 他の熱可塑性樹脂からなる基材層、および請求項1〜3のいずれか1項に記載のメタクリル系樹脂組成物からなる少なくとも1つの層を有する積層体。A laminate having a base layer made of another thermoplastic resin and at least one layer made of the methacrylic resin composition according to any one of claims 1 to 3. 熱可塑性樹脂が塩化ビニル樹脂である請求項6に記載の積層体。The laminate according to claim 6, wherein the thermoplastic resin is a vinyl chloride resin. 積層シートの形態を有する請求項6または7に記載の積層体。The laminate according to claim 6 or 7, which has a form of a laminate sheet.
JP2003053352A 2003-02-28 2003-02-28 Methacrylic resin composition and laminate using the same Pending JP2004263034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053352A JP2004263034A (en) 2003-02-28 2003-02-28 Methacrylic resin composition and laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053352A JP2004263034A (en) 2003-02-28 2003-02-28 Methacrylic resin composition and laminate using the same

Publications (2)

Publication Number Publication Date
JP2004263034A true JP2004263034A (en) 2004-09-24
JP2004263034A5 JP2004263034A5 (en) 2005-09-02

Family

ID=33117979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053352A Pending JP2004263034A (en) 2003-02-28 2003-02-28 Methacrylic resin composition and laminate using the same

Country Status (1)

Country Link
JP (1) JP2004263034A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023444A (en) * 2008-07-24 2010-02-04 Sumitomo Chemical Co Ltd Scratch resistant resin plate and its use application
WO2014167868A1 (en) 2013-04-12 2014-10-16 株式会社クラレ Acrylic resin film
WO2018062378A1 (en) 2016-09-29 2018-04-05 株式会社クラレ Acrylic resin film and production method therefor
WO2018155677A1 (en) 2017-02-27 2018-08-30 株式会社クラレ Resin composition containing polymer particles
JP2020528094A (en) * 2017-07-21 2020-09-17 ローム アンド ハース カンパニーRohm And Haas Company Poly (methyl methacrylate) resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023444A (en) * 2008-07-24 2010-02-04 Sumitomo Chemical Co Ltd Scratch resistant resin plate and its use application
WO2014167868A1 (en) 2013-04-12 2014-10-16 株式会社クラレ Acrylic resin film
KR20150142683A (en) 2013-04-12 2015-12-22 가부시키가이샤 구라레 Acrylic resin film
WO2018062378A1 (en) 2016-09-29 2018-04-05 株式会社クラレ Acrylic resin film and production method therefor
KR20190055808A (en) 2016-09-29 2019-05-23 주식회사 쿠라레 Acrylic resin film and manufacturing method thereof
WO2018155677A1 (en) 2017-02-27 2018-08-30 株式会社クラレ Resin composition containing polymer particles
KR20190120208A (en) 2017-02-27 2019-10-23 주식회사 쿠라레 Resin Compositions Containing Polymer Particles
JP2020528094A (en) * 2017-07-21 2020-09-17 ローム アンド ハース カンパニーRohm And Haas Company Poly (methyl methacrylate) resin composition
JP7305615B2 (en) 2017-07-21 2023-07-10 ローム アンド ハース カンパニー Poly(methyl methacrylate) resin composition

Similar Documents

Publication Publication Date Title
JP4262431B2 (en) Resin composition for capstock
JP5771713B2 (en) Method for producing fluororesin laminated acrylic resin film
CN106103584B (en) Acrylic resin composition, process for producing the same, and acrylic resin film
JP2011168681A (en) Fluorine-based (meth)acrylic resin, fluorine-based resin composition thereof, fluorine-based resin film thereof, and fluorine-based resin-laminated acrylic resin film
WO2019244791A1 (en) Matte acrylic resin film
WO2017188290A1 (en) Acrylic thermoplastic resin composition, molded article, film and method for producing same, and laminate
JP2004263034A (en) Methacrylic resin composition and laminate using the same
JP7561768B2 (en) Methacrylic resin composition
JPH10139973A (en) Acrylic multilayer polymer particles and composition thereof
JP2008207554A (en) Laminated film
US20090051078A1 (en) Multilayer, light-diffusing film for insert molding
JP2011046186A (en) Multilayered stretched film
JP2009113471A (en) Layered product and process for producing the same
JP2011031499A (en) Multilayered stretched film
JP2009255562A (en) Face material
JP2002273835A (en) Acrylic resin laminated film, method for manufacturing the same, and laminate using the same
JPH10338792A (en) Methacrylic resin composition and laminate by using the same
JP2004521986A (en) Resin composition for cap stock
JP4818914B2 (en) Thermoplastic elastomer composition
JP2018193534A (en) Matte thermoplastic resin film and matte thermoplastic resin laminate film
JP5108487B2 (en) Extruded mat sheet manufacturing method
WO2004020518A1 (en) Acrylic resin composition
JP4076420B2 (en) Dry joint material
KR102585620B1 (en) Composite sheet having matt metallic surface properties and preparation method thereof
JPH1081805A (en) Impact resistant methacrylic resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113