[go: up one dir, main page]

JP2004260582A - Patch antenna - Google Patents

Patch antenna Download PDF

Info

Publication number
JP2004260582A
JP2004260582A JP2003049428A JP2003049428A JP2004260582A JP 2004260582 A JP2004260582 A JP 2004260582A JP 2003049428 A JP2003049428 A JP 2003049428A JP 2003049428 A JP2003049428 A JP 2003049428A JP 2004260582 A JP2004260582 A JP 2004260582A
Authority
JP
Japan
Prior art keywords
conductor
dielectric
ground conductor
patch antenna
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003049428A
Other languages
Japanese (ja)
Inventor
Yoshimasa Sugimoto
好正 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003049428A priority Critical patent/JP2004260582A/en
Publication of JP2004260582A publication Critical patent/JP2004260582A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Abstract

【課題】広帯域で低背なパッチアンテナを提供する。
【解決手段】平面状の接地導体32と、接地導体32上に配置された板状の誘電体11と、誘電体11の上面に配されたパッチ状の放射導体21とを具備するパッチアンテナであって、接地導体32の長さは使用される周波数の自由空間波長の2分の1以下であり、かつ誘電体11および放射導体21の長さは接地導体32より短いパッチアンテナである。接地導体32の長さを2分の1波長以下とし、電波の放射を全方位的に可能な構成としていることから、誘電体11の厚みが厚くなくてもアンテナの周波数帯域を広くすることができる。
【選択図】 図1
A patch antenna having a wide band and a low profile is provided.
The patch antenna includes a planar ground conductor, a plate-shaped dielectric disposed on the ground conductor, and a patch-shaped radiation conductor disposed on an upper surface of the dielectric. The length of the ground conductor 32 is less than half the free space wavelength of the frequency used, and the length of the dielectric 11 and the radiation conductor 21 is shorter than that of the ground conductor 32. Since the length of the ground conductor 32 is set to be equal to or less than a half wavelength and the radio wave can be radiated in all directions, the frequency band of the antenna can be widened even if the thickness of the dielectric 11 is not large. it can.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、例えば携帯電話や無線LAN等の無線通信機器、その他の各種通信機器等において使用されるマイクロストリップ型のパッチアンテナに関するものである。
【0002】
【従来の技術】
例えば携帯電話や無線LAN等の無線通信機器、その他の各種通信機器等において使用される従来のマイクロストリップ型パッチアンテナの一例を図4に示す。
【0003】
図4において101は、誘電体111と、誘電体111の上面に配された放射導体121と、誘電体111の下面に配された第1の接地導体131(図示せず)より構成されるアンテナ基板、132は第1の接地導体131と接続し、一辺の長さL132が使用される周波数の自由空間波長よりも長い第2の接地導体である。
【0004】
この従来のマイクロストリップ型パッチアンテナでは、第2の接地導体132の一辺の長さが使用される周波数の自由空間波長よりも長いため、電波が放射導体121から各接地導体131・132の方向(図4ではZ軸の負方向)に放射されず、その反対の方向(図4ではZ軸の正方向)に放射され、放射特性が単指向性となる。
【0005】
また、従来のマイクロストリップ型パッチアンテナは、誘電体111の上面に配された放射導体121と誘電体111と第2の接地導体132とが誘電体111をはさんで放射導体121と第2の接地導体132の間に電界が生じ、その電界が空間に広がることにより電波が放射される構造になっている。ここで、放射導体121と第2の接地導体132との距離、すなわち誘電体111の厚みが厚いほど電界が空間に広がりやすくなり、結果として周波数帯域は広がり、逆の場合は電界が空間に広がりにくくなり、周波数帯域は狭くなる。このことから、従来アンテナの周波数帯域は、誘電体111の厚みを調整することにより行われていた。
【0006】
【特許文献1】
特開1997−148840号公報
【0007】
【発明が解決しようとする課題】
しかしながら、このような従来のマイクロストリップ型パッチアンテナでは、周波数帯域幅を広げるためには誘電体111の厚みを厚くする必要があり、広帯域化と低背化の両立が困難であるという問題点があった。
【0008】
本発明は上記問題点に鑑みて案出されたものであり、その目的は、低背で広帯域なマイクロストリップ型のパッチアンテナを提供することにある。
【0009】
【課題を解決するための手段】
本発明のパッチアンテナは、平面状の接地導体と、該接地導体上に配置された板状の誘電体と、この誘電体の上面に配されたパッチ状の放射導体とを具備するパッチアンテナであって、前記接地導体の長さは使用される周波数の自由空間波長の2分の1以下であり、かつ前記誘電体および前記放射導体の長さは前記接地導体より短いことを特徴とするものである。
【0010】
本発明のパッチアンテナによれば、接地導体の長さが放射導体の長さより長いため端部効果が生じ、放射導体と接地導体の間に電界が生じて、その電界によって空間に電波が放射されるパッチアンテナを提供することができる。
【0011】
また、本発明のパッチアンテナによれば、接地導体の長さが使用される周波数の自由空間波長の2分の1よりも同じか短いため、電波が、接地導体から見て放射導体がある側のみならず、その反対側の方向にも放射される。したがって、従来のアンテナのような放射特性が単指向性の場合に比べて、放射方向の偏りなく全方位的に電波が放射されるので、電波が放射されやすくなり、従来の単指向性のアンテナでは電波が放射されにくかった周波数帯域においても放射されるようになるので、アンテナから放射される電波の周波数帯域を広くすることができて、誘電体の厚みが厚くない低背なパッチアンテナを提供することができる。
【0012】
【発明の実施の形態】
以下、本発明のパッチアンテナを図面を参照しつつ説明する。
【0013】
図1は本発明のパッチアンテナの実施の形態の一例を示す斜視図である。図1において1は、板状の誘電体11と、誘電体11の上面に配されて一辺の長さがL21の導体が誘電体11に数ミクロンから数十ミクロンのほぼ均一の厚みで密着しているようなパッチ状の放射導体21より構成されるアンテナ基板、32は一辺の長さL32が放射導体21の一辺の長さL21より長く、使用される周波数の自由空間波長の2分の1以下である第2の接地導体である。そして誘電体11は接地導体32上に配置されている。
【0014】
図1のように構成された本発明のパッチアンテナによれば、接地導体32の長さL32が放射導体21の長さL21よりも長いため端部効果を生じ、放射導体と接地導体の間に電界が生じて、その電界によって空間に電波が放射される。接地導体32の長さL32は、放射導体21の端部と接地導体32との間に形成される電気力線のふくらみ、すなわち電界の端部効果を考慮し、放射導体21の長さL21より誘電体11の厚みの2倍程度長くするのが好ましい。このとき、放射導体21および接地導体32の一辺に隣接する辺の長さは、それぞれ一辺と同程度の長さとすればよい。放射導体21ならびに接地導体32は、通常、長方形または正方形等の四角形状とするが、パッチアンテナとして作用する形状であればどのような形状にしてもよい。また、放射導体21の一辺の長さL21は、使用する周波数の誘電体11中における実効波長の2分の1程度にすればよい。
【0015】
また、図1のように構成された本発明のパッチアンテナによれば、接地導体32の長さL32が使用される周波数の自由空間波長の2分の1と同じまたはそれよりも短いため、従来の単指向性のアンテナのように電波の放射の妨げとなるほど接地導体32が長くないことから、電波が接地導体32から見て放射導体21のある側(図1ではZ軸の正方向)のみならず、その反対側の方向(図1ではZ軸の負方向)にも放射される。したがって、図4に示す従来のパッチアンテナのような放射特性が単指向性の場合に比べて、放射方向の偏りがなく、全方位的に電波が放射されるので電波が放射されやすくなり、従来の単指向性のアンテナでは電波が放射されにくかった周波数帯域においても放射されるようになるので周波数帯域を広くすることができ、誘電体11の厚みが厚くなくてもアンテナの周波数帯域を広くすることができる。
【0016】
ここで、誘電体11は本発明のパッチアンテナにおいて放射導体21と接地導体32との間隔の保持、誘電体11の誘電率による放射導体21の小型化の機能を果たすものであり、厚みは必要な周波数帯域を満足するものであればよく、放射導体21の一辺の長さL21および一辺と隣接する辺の長さに対してそれ以上で必要な小型化の効果が得られるような大きさであればよい。
【0017】
本発明のパッチアンテナを形成するに当たり、誘電体11、放射導体21、接地導体32には、周知の高周波用配線基板に使用される種々の材料・形態のものと同様のものを使用することができる。
【0018】
誘電体11としては、例えばアルミナセラミックス・ムライトセラミックス等のセラミック材料やガラスセラミックス等の無機系材料、あるいは四フッ化エチレン−エチレン樹脂(ポリテトラフルオロエチレン;PTFE)・四フッ化エチレン−エチレン共重合樹脂(テトラフルオロエチレン−エチレン共重合樹脂;ETFE)・四フッ化エチレン−パーフルオロアルコキシエチレン共重合樹脂(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合樹脂;PFA)等のフッ素樹脂やガラスエポキシ樹脂・ポリイミド等の樹脂系材料等が用いられる。これらの材料による誘電体11の形状や寸法(厚みや幅・長さ)は、使用される周波数や用途等に応じて設定される。
【0019】
放射導体21、接地導体32は、高周波信号伝送用の金属材料の導体層、例えばCu層・Mo−Mnのメタライズ層上にNiメッキ層およびAuメッキ層を被着させたもの・Wのメタライズ層上にNiメッキ層およびAuメッキ層を被着させたもの・Cr−Cu合金層・Cr−Cu合金層上にNiメッキ層およびAuメッキ層を被着させたもの・TaN層上にNi−Cr合金層およびAuメッキ層を被着させたもの・Ti層上にPt層およびAuメッキ層を被着させたもの、またはNi−Cr合金層上にPt層およびAuメッキ層を被着させたもの等を用いて、厚膜印刷法あるいは各種の薄膜形成方法やメッキ法等により形成される。その厚みや幅等も、伝送される高周波信号の周波数や用途等に応じて設定される。
【0020】
接地導体32は、上記周知の高周波配線基板の他、電子機器によく用いられるプリント配線基板等の表面に導体を所定形状に設けたものや、板状の金属板等を用いてもよい。
【0021】
本発明のパッチアンテナの作製方法としては、まずアンテナ基板1を、例えば誘電体11がガラスセラミックスから成る場合であれば、まず誘電体11となるガラスセラミックスのグリーンシートを準備し、これに所定の打ち抜き加工を施して、放射導体21に給電を行なう給電導体(図1に図示せず)となる貫通導体が配設される貫通孔を形成した後、スクリーン印刷法によりCu等の導体ペーストを貫通孔に充填するとともに、放射導体21となる導体層のパターンおよび必要に応じてその他の所定の伝送線路パターンを印刷塗布する。次に、850〜1000℃で焼成を行ない、最後に各導体層の表面にNiメッキおよびAuメッキを施す。
【0022】
次にアンテナ基板1をプリント配線基板等の実装基板表面に作製された接地導体32に、活性ロウ付け等により取り付ける。接地導体32への取付けは、アンテナ基板1の下面に形成された金属層をロウ付けすることによってもよく、この場合は、上記アンテナ基板1の放射導体21等を形成するときにアンテナ基板1の下面にも金属層を形成しておき、その金属層に半田ペースト等を塗布し、リフロー炉やヒーターブロック等で約200℃に加熱することによって接地導体32に取り付ければよい。
【0023】
図2および図5はそれぞれ、図1に示す本発明のパッチアンテナの実施の形態の一例および図4に示す従来のパッチアンテナの例の5.15GHzにおけるY−Z面のX軸方向の偏波を示す放射特性図である。図2および図5において、円の外周の数字は、パッチアンテナの頂点方向(図1および図4にZ軸の正方向で示す方向)を0°とした方位を示す角度(単位:°)、円の半径方向は利得(単位:dBi)を示し、特性曲線は放射特性、すなわち利得の方位特性を示している。この線図に示す放射特性は、電磁界シミュレーションを用いて得たものである。
【0024】
なお、誘電体11(111)の厚みを1.6mm、一辺の長さを11mm、誘電率を8.8、放射導体21(121)の一辺の長さ:L21(L121)を9.2mm、図2に示す放射特性を得た本発明のパッチアンテナにおいては、接地導体32の一辺の長さL32を、放射導体21の長さL21=9.2mmよりも長く、使用する周波数5.15GHzの自由空間波長である約60mmの2分の1よりも短い20mm、図5に示す放射特性を得た従来のパッチアンテナにおいては、第2の接地導体132の一辺の長さL132を、使用する周波数5.15GHzの自由空間波長である約60mmに近い50mmとした。
【0025】
図5に示す従来のパッチアンテナの放射特性は0°方向の利得が高い単指向性であるのに対し、図2に示す本発明のパッチアンテナの放射特性は、図5に比べると、0°以外の方向の利得も高くなっている。
【0026】
図3および図6は、それぞれ図1に示す本発明のパッチアンテナの実施の形態の一例および図4に示す従来のパッチアンテナの例の反射特性を示す線図である。 図3および図6において、横軸は周波数(単位:GHz)、縦軸は給電導体(図示せず)を誘電体11を貫通して放射導体21(121)に接続し、給電導体に電磁波を給電して計測したVSWRであり、特性曲線は反射特性、すなわちVSWRの周波数特性を示している。この線図に示す反射特性は、放射特性を得るのに用いたものと同一の電磁界シミュレーションを用いて得たものであり、各パッチアンテナの各寸法および材料は反射特性を得るのに使用したものと同一とした。この結果より、図6に示す従来のパッチアンテナの例のVSWRが2以下の帯域幅が72MHzであるのに対して、図3に示す本発明のパッチアンテナの実施の形態の一例のVSWRが2以下の帯域幅が106MHzと広帯域になっているのが分かる。
【0027】
以上より、図1のように構成された本発明のパッチアンテナによれば、接地導体32の長さL32が放射導体11の長さL11より長いため、図2および図3に示す反射特性および放射特性が得られたように、接地導体32を放射導体21に対するパッチアンテナの接地導体とすることができる。
【0028】
また、図1のように構成された本発明のパッチアンテナによれば、接地導体32の長さL32が使用される周波数の自由空間波長の2分の1以下であるため、図2の放射特性に示すように、電波が放射導体21から接地導体32の放射導体21が配置された面の方向(図1ではZ軸の正方向、図2では0°の方向)のみならず、放射導体21が配置された面と反対側の方向(図1ではZ軸の負方向、図2では180°の方向)にも放射される。したがって、図4に示す従来のパッチアンテナのような放射特性が単指向性の場合に比べて、全方向に電波が放射されやすくなり、周波数帯域が従来のパッチアンテナの72MHzに比べて106MHzへと広がった。このとき、誘電体11(111)の厚みは1.6mmと一定であるので、誘電体の厚みを厚くせずに広帯域化ができたことが分かる。
【0029】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、上記説明においては、誘電体11・放射導体21・接地導体32を四角形状としたが、円形としてもよく、このような構成にすると、パッチアンテナを内蔵する装置の筐体が円形状であった場合好適となる。誘電体11・放射導体21・接地導体32が円形の場合は、放射導体21の直径が接地導体32の直径より短ければよく、接地導体32の直径は使用される周波数の自由空間波長の2分の1以下であればよい。
【0030】
また、放射導体21・接地導体32は、通常、平面に形成されるが、数ミリ程度の曲面や数ミリ程度の凹凸を有する平面状または板状の面に形成してもよい。
【0031】
【発明の効果】
本発明のパッチアンテナによれば、平面状の接地導体と、この接地導体上に配置された板状の誘電体と、この誘電体の上面に配されたパッチ状の放射導体とを具備するパッチアンテナであって、接地導体の長さは使用される周波数の自由空間波長の2分の1以下であり、かつ誘電体および放射導体の長さは接地導体よりも短いことから、接地導体の長さが放射導体の長さより長いため端部効果を生じ、放射導体と接地導体の間に電界が生じて、その電界によって空間に電波が放射されるパッチアンテナを提供することができる。
【0032】
また、本発明のパッチアンテナによれば、接地導体の長さが使用される周波数の自由空間波長の2分の1よりも同じか短いため、電波が、接地導体から見て放射導体がある側のみならず、その反対側の方向にも放射される。したがって、従来のパッチアンテナのように放射特性が単指向性の場合に比べて、電波が放射されやすくなり、アンテナから放射される周波数帯域を広くすることができて、誘電体の厚みが厚くない低背なパッチアンテナを提供することができる。
【0033】
以上により、本発明によれば、低背で広帯域なパッチアンテナを提供することができた。
【図面の簡単な説明】
【図1】本発明のパッチアンテナの実施の形態の一例を示す斜視図である。
【図2】本発明のパッチアンテナの放射特性を示す線図である。
【図3】本発明のパッチアンテナの反射特性を示す線図である。
【図4】従来のパッチアンテナの例を示す斜視図である。
【図5】従来のパッチアンテナの放射特性を示す線図である。
【図6】従来のパッチアンテナの反射特性を示す線図である。
【符号の説明】
1・・・アンテナ基板
11・・・誘電体
21・・・放射導体
32・・・接地導体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a microstrip type patch antenna used in wireless communication devices such as mobile phones and wireless LANs, and various other communication devices.
[0002]
[Prior art]
FIG. 4 shows an example of a conventional microstrip patch antenna used in a wireless communication device such as a mobile phone and a wireless LAN, and various other communication devices.
[0003]
In FIG. 4, an antenna 101 includes a dielectric 111, a radiation conductor 121 disposed on an upper surface of the dielectric 111, and a first ground conductor 131 (not shown) disposed on a lower surface of the dielectric 111. The substrate 132 is a second ground conductor connected to the first ground conductor 131 and having a side length L132 longer than the free space wavelength of the frequency used.
[0004]
In this conventional microstrip patch antenna, since the length of one side of the second ground conductor 132 is longer than the free space wavelength of the used frequency, radio waves are transmitted from the radiation conductor 121 to the respective ground conductors 131 and 132 ( In FIG. 4, the light is not radiated in the negative direction of the Z axis, but is radiated in the opposite direction (the positive direction of the Z axis in FIG. 4), and the radiation characteristic becomes unidirectional.
[0005]
Further, in the conventional microstrip type patch antenna, the radiation conductor 121, the dielectric 111, and the second ground conductor 132 disposed on the upper surface of the dielectric 111 sandwich the radiation conductor 121 and the second ground conductor 132 with the dielectric 111 interposed therebetween. An electric field is generated between the ground conductors 132, and the electric field spreads in space, so that radio waves are emitted. Here, as the distance between the radiating conductor 121 and the second ground conductor 132, that is, the thickness of the dielectric 111 increases, the electric field spreads more easily in the space. As a result, the frequency band increases, and conversely, the electric field spreads in the space. And the frequency band becomes narrower. For this reason, the frequency band of the conventional antenna has been adjusted by adjusting the thickness of the dielectric 111.
[0006]
[Patent Document 1]
JP-A-1997-148840
[Problems to be solved by the invention]
However, in such a conventional microstrip type patch antenna, it is necessary to increase the thickness of the dielectric 111 in order to widen the frequency bandwidth, and it is difficult to achieve both a wide band and a low profile. there were.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a microstrip type patch antenna having a low height and a wide band.
[0009]
[Means for Solving the Problems]
The patch antenna of the present invention is a patch antenna including a planar ground conductor, a plate-shaped dielectric disposed on the ground conductor, and a patch-shaped radiating conductor disposed on an upper surface of the dielectric. Wherein the length of the ground conductor is less than half the free space wavelength of the frequency used, and the length of the dielectric and the radiation conductor is shorter than that of the ground conductor. It is.
[0010]
According to the patch antenna of the present invention, since the length of the ground conductor is longer than the length of the radiation conductor, an end effect occurs, an electric field is generated between the radiation conductor and the ground conductor, and the electric field radiates radio waves into space. Patch antenna can be provided.
[0011]
According to the patch antenna of the present invention, since the length of the ground conductor is equal to or shorter than one half of the free space wavelength of the frequency used, the radio wave is transmitted to the side where the radiation conductor is located when viewed from the ground conductor. Not only that, it is also emitted in the opposite direction. Therefore, radio waves are radiated in all directions without bias in the radiation direction, compared to the case where the radiation characteristics of a conventional antenna are unidirectional. In this case, radio waves can be radiated even in frequency bands that are difficult to radiate, so it is possible to broaden the frequency band of radio waves radiated from the antenna and provide a low-profile patch antenna with a thick dielectric material can do.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a patch antenna of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a perspective view showing an example of an embodiment of a patch antenna according to the present invention. In FIG. 1, reference numeral 1 denotes a plate-shaped dielectric 11 and a conductor disposed on the upper surface of the dielectric 11 and having a side length of L21 adheres to the dielectric 11 with a substantially uniform thickness of several microns to several tens of microns. The antenna substrate 32 composed of the patch-shaped radiation conductor 21 has a length L32 of one side longer than the length L21 of one side of the radiation conductor 21 and is a half of a free space wavelength of a used frequency. The following is the second ground conductor. The dielectric 11 is disposed on the ground conductor 32.
[0014]
According to the patch antenna of the present invention configured as shown in FIG. 1, since the length L32 of the ground conductor 32 is longer than the length L21 of the radiation conductor 21, an end effect occurs, and the distance between the radiation conductor and the ground conductor is increased. An electric field is generated, and the electric field radiates radio waves into space. The length L32 of the ground conductor 32 is larger than the length L21 of the radiation conductor 21 in consideration of the swelling of lines of electric force formed between the end of the radiation conductor 21 and the ground conductor 32, that is, the end effect of the electric field. It is preferable to make the thickness of the dielectric 11 approximately twice as long. At this time, the length of the side adjacent to one side of the radiation conductor 21 and the ground conductor 32 may be approximately the same as each side. The radiation conductor 21 and the ground conductor 32 are generally formed in a rectangular shape such as a rectangle or a square, but may be formed in any shape as long as the shape acts as a patch antenna. In addition, the length L21 of one side of the radiation conductor 21 may be set to about one half of the effective wavelength in the dielectric 11 at the frequency to be used.
[0015]
Further, according to the patch antenna of the present invention configured as shown in FIG. 1, since the length L32 of the ground conductor 32 is equal to or shorter than one half of the free space wavelength of the used frequency, Since the ground conductor 32 is not long enough to obstruct the emission of radio waves as in the unidirectional antenna of FIG. 1, the radio waves are viewed only from the side of the radiation conductor 21 as viewed from the ground conductor 32 (the positive direction of the Z axis in FIG. 1). Instead, it is also radiated in the opposite direction (the negative direction of the Z axis in FIG. 1). Therefore, compared with the case of the conventional patch antenna shown in FIG. 4 in which the radiation characteristics are unidirectional, radio waves are radiated in all directions since there is no bias in the radiation direction, and radio waves are easily radiated. In the unidirectional antenna described above, radio waves can be radiated even in a frequency band that is difficult to radiate, so that the frequency band can be widened, and the frequency band of the antenna can be widened even if the dielectric 11 is not thick. be able to.
[0016]
Here, the dielectric 11 functions to maintain the interval between the radiation conductor 21 and the ground conductor 32 and to reduce the size of the radiation conductor 21 by the dielectric constant of the dielectric 11 in the patch antenna of the present invention. The length L21 of one side of the radiation conductor 21 and the length of the side adjacent to the one side should be larger than the length L21 of the side of the radiation conductor 21 so that the required size reduction effect can be obtained. I just need.
[0017]
In forming the patch antenna of the present invention, the dielectric 11, the radiation conductor 21, and the ground conductor 32 may be the same as those of various materials and forms used for known high-frequency wiring boards. it can.
[0018]
Examples of the dielectric 11 include ceramic materials such as alumina ceramics and mullite ceramics, inorganic materials such as glass ceramics, and ethylene tetrafluoride-ethylene resin (polytetrafluoroethylene; PTFE) / tetrafluoroethylene-ethylene copolymer. Fluororesin such as resin (tetrafluoroethylene-ethylene copolymer resin; ETFE), ethylene tetrafluoride-perfluoroalkoxyethylene copolymer resin (tetrafluoroethylene-perfluoroalkylvinyl ether copolymer resin; PFA), glass epoxy resin, etc. A resin material such as polyimide is used. The shape and dimensions (thickness, width, length) of the dielectric 11 made of these materials are set according to the frequency used, the application, and the like.
[0019]
The radiating conductor 21 and the grounding conductor 32 are formed by applying a Ni plating layer and an Au plating layer on a conductor layer of a metal material for transmitting a high-frequency signal, for example, a Cu layer / Mo-Mn metallization layer. A Ni-plated layer and an Au-plated layer adhered thereon; a Cr-Cu alloy layer; a Ni-plated layer and an Au-plated layer adhered on a Cr-Cu alloy layer; and Ni over a Ta 2 N layer. -A Cr alloy layer and an Au plating layer are applied.-A Pt layer and an Au plating layer are applied on a Ti layer, or a Pt layer and an Au plating layer are applied on a Ni-Cr alloy layer. It is formed by a thick film printing method, various thin film forming methods, a plating method, or the like. The thickness, width, and the like are also set according to the frequency, use, and the like of the transmitted high-frequency signal.
[0020]
The ground conductor 32 may be a well-known high-frequency wiring board, a printed wiring board often used for electronic equipment, or the like, in which a conductor is provided in a predetermined shape on the surface, a plate-shaped metal plate, or the like.
[0021]
As a method of manufacturing the patch antenna of the present invention, first, when the dielectric substrate 11 is made of glass ceramic, for example, a green sheet of glass ceramic to be the dielectric 11 is first prepared, and a predetermined After a punching process is performed to form a through hole in which a through conductor serving as a power supply conductor (not shown in FIG. 1) for supplying power to the radiation conductor 21 is formed, a conductor paste such as Cu is penetrated by screen printing. In addition to filling the holes, a pattern of a conductor layer to be the radiation conductor 21 and other predetermined transmission line patterns as necessary are printed and applied. Next, baking is performed at 850 to 1000 ° C., and finally, the surface of each conductor layer is subjected to Ni plating and Au plating.
[0022]
Next, the antenna substrate 1 is attached to a ground conductor 32 formed on the surface of a mounting board such as a printed wiring board by active brazing or the like. The antenna substrate 1 may be attached to the ground conductor 32 by brazing a metal layer formed on the lower surface of the antenna substrate 1. In this case, when forming the radiation conductor 21 and the like of the antenna substrate 1, A metal layer may also be formed on the lower surface, a solder paste or the like may be applied to the metal layer, and the metal layer may be heated to about 200 ° C. in a reflow furnace, a heater block, or the like, and attached to the ground conductor 32.
[0023]
FIGS. 2 and 5 respectively show an example of the embodiment of the patch antenna of the present invention shown in FIG. 1 and the example of the conventional patch antenna shown in FIG. FIG. 2 and 5, the numbers on the outer circumference of the circle are angles (unit: °) indicating an azimuth with the vertex direction of the patch antenna (the direction indicated by the positive direction of the Z axis in FIGS. 1 and 4) being 0 °, The radial direction of the circle indicates the gain (unit: dBi), and the characteristic curve indicates the radiation characteristic, that is, the azimuth characteristic of the gain. The radiation characteristics shown in this diagram are obtained by using an electromagnetic field simulation.
[0024]
The thickness of the dielectric 11 (111) is 1.6 mm, the length of one side is 11 mm, the dielectric constant is 8.8, the length of one side of the radiation conductor 21 (121): L21 (L121) is 9.2 mm, In the patch antenna of the present invention having the radiation characteristics shown in FIG. 2, the length L32 of one side of the ground conductor 32 is longer than the length L21 of the radiation conductor 21 = 9.2 mm, and the frequency 5.15 GHz used is used. In a conventional patch antenna having a radiation characteristic shown in FIG. 5 which is 20 mm shorter than a half of the free space wavelength of about 60 mm and which has the radiation characteristic shown in FIG. It was 50 mm, which is close to about 60 mm, which is a free space wavelength of 5.15 GHz.
[0025]
The radiation characteristic of the conventional patch antenna shown in FIG. 5 is unidirectional with a high gain in the direction of 0 °, whereas the radiation characteristic of the patch antenna of the present invention shown in FIG. The gain in other directions is also higher.
[0026]
3 and 6 are diagrams showing reflection characteristics of the example of the embodiment of the patch antenna of the present invention shown in FIG. 1 and the example of the conventional patch antenna shown in FIG. 4, respectively. 3 and 6, the horizontal axis represents frequency (unit: GHz), and the vertical axis connects a feed conductor (not shown) to the radiating conductor 21 (121) through the dielectric 11, and applies an electromagnetic wave to the feed conductor. This is a VSWR measured by supplying power, and the characteristic curve indicates a reflection characteristic, that is, a frequency characteristic of the VSWR. The reflection characteristics shown in this diagram were obtained using the same electromagnetic field simulation used to obtain the radiation characteristics, and the dimensions and materials of each patch antenna were used to obtain the reflection characteristics. It was the same as the one. From this result, while the bandwidth of the example of the conventional patch antenna shown in FIG. 6 where the VSWR is 2 or less is 72 MHz, the VSWR of the example of the embodiment of the patch antenna of the present invention shown in FIG. It can be seen that the following bandwidth is as wide as 106 MHz.
[0027]
As described above, according to the patch antenna of the present invention configured as shown in FIG. 1, since the length L32 of the ground conductor 32 is longer than the length L11 of the radiation conductor 11, the reflection characteristics and the radiation shown in FIGS. As the characteristics are obtained, the ground conductor 32 can be used as the ground conductor of the patch antenna with respect to the radiation conductor 21.
[0028]
Further, according to the patch antenna of the present invention configured as shown in FIG. 1, since the length L32 of the ground conductor 32 is equal to or less than half the free space wavelength of the frequency used, the radiation characteristic of FIG. As shown in FIG. 1, the radio wave is transmitted not only from the direction from the radiation conductor 21 to the surface on which the radiation conductor 21 of the ground conductor 32 is arranged (the positive direction of the Z axis in FIG. 1 and the direction of 0 ° in FIG. 2), but also Are also radiated in the direction opposite to the surface on which the is disposed (the negative direction of the Z-axis in FIG. 1 and the direction of 180 ° in FIG. 2). Therefore, compared to the case where the radiation characteristic of the conventional patch antenna shown in FIG. 4 is unidirectional, radio waves are more likely to be radiated in all directions, and the frequency band is increased to 106 MHz compared to 72 MHz of the conventional patch antenna. Spread. At this time, since the thickness of the dielectric 11 (111) is constant at 1.6 mm, it can be seen that the band could be widened without increasing the thickness of the dielectric.
[0029]
It should be noted that the present invention is not limited to the above-described embodiments, and various changes can be made without departing from the gist of the present invention. For example, in the above description, the dielectric 11, the radiation conductor 21, and the ground conductor 32 are square, but may be circular. With such a configuration, the housing of the device incorporating the patch antenna has a circular shape. It is preferable if there is. When the dielectric 11, the radiation conductor 21, and the ground conductor 32 are circular, the diameter of the radiation conductor 21 may be shorter than the diameter of the ground conductor 32, and the diameter of the ground conductor 32 is two minutes of the free space wavelength of the frequency used. It is sufficient if it is 1 or less.
[0030]
The radiating conductor 21 and the ground conductor 32 are usually formed on a plane, but may be formed on a flat or plate-like surface having a curved surface of about several millimeters or irregularities of about several millimeters.
[0031]
【The invention's effect】
According to the patch antenna of the present invention, a patch including a planar ground conductor, a plate-shaped dielectric disposed on the ground conductor, and a patch-shaped radiating conductor disposed on the upper surface of the dielectric In the antenna, the length of the ground conductor is less than half the free space wavelength of the frequency used, and the length of the dielectric and the radiation conductor is shorter than that of the ground conductor. Since the length is longer than the length of the radiating conductor, an end effect occurs, an electric field is generated between the radiating conductor and the ground conductor, and the patch electric field radiates radio waves into space by the electric field.
[0032]
According to the patch antenna of the present invention, since the length of the ground conductor is equal to or shorter than one half of the free space wavelength of the frequency used, the radio wave is transmitted to the side where the radiation conductor is located when viewed from the ground conductor. Not only that, it is also emitted in the opposite direction. Therefore, compared to the case where the radiation characteristics are unidirectional as in a conventional patch antenna, radio waves are easily radiated, the frequency band radiated from the antenna can be widened, and the thickness of the dielectric is not thick A low-profile patch antenna can be provided.
[0033]
As described above, according to the present invention, a low-profile and wide-band patch antenna can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating an example of an embodiment of a patch antenna of the present invention.
FIG. 2 is a diagram showing radiation characteristics of the patch antenna of the present invention.
FIG. 3 is a diagram showing reflection characteristics of the patch antenna of the present invention.
FIG. 4 is a perspective view showing an example of a conventional patch antenna.
FIG. 5 is a diagram showing radiation characteristics of a conventional patch antenna.
FIG. 6 is a diagram showing reflection characteristics of a conventional patch antenna.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Antenna board 11 ... Dielectric 21 ... Radiation conductor 32 ... Ground conductor

Claims (1)

平面状の接地導体と、該接地導体上に配置された板状の誘電体と、該誘電体の上面に配されたパッチ状の放射導体とを具備するパッチアンテナであって、前記接地導体の長さは使用される周波数の自由空間波長の2分の1以下であり、かつ前記誘電体および前記放射導体の長さは前記接地導体より短いことを特徴とするパッチアンテナ。A patch antenna comprising: a planar ground conductor, a plate-shaped dielectric disposed on the ground conductor, and a patch-shaped radiation conductor disposed on an upper surface of the dielectric; A patch antenna, wherein the length is less than half the free space wavelength of the frequency used, and the length of the dielectric and the radiation conductor is shorter than the ground conductor.
JP2003049428A 2003-02-26 2003-02-26 Patch antenna Pending JP2004260582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049428A JP2004260582A (en) 2003-02-26 2003-02-26 Patch antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049428A JP2004260582A (en) 2003-02-26 2003-02-26 Patch antenna

Publications (1)

Publication Number Publication Date
JP2004260582A true JP2004260582A (en) 2004-09-16

Family

ID=33115151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049428A Pending JP2004260582A (en) 2003-02-26 2003-02-26 Patch antenna

Country Status (1)

Country Link
JP (1) JP2004260582A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103628A (en) * 2019-12-25 2021-07-15 日本アンテナ株式会社 Lighting fixture
JP2022523001A (en) * 2019-01-17 2022-04-21 キョウセラ インターナショナル インコーポレイテッド Antenna device with integrated filter with laminated planar resonator
US12166293B2 (en) 2020-12-07 2024-12-10 Samsung Electronics Co., Ltd. Electronic device including antenna and method of manufacturing the electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022523001A (en) * 2019-01-17 2022-04-21 キョウセラ インターナショナル インコーポレイテッド Antenna device with integrated filter with laminated planar resonator
JP2022523002A (en) * 2019-01-17 2022-04-21 キョウセラ インターナショナル インコーポレイテッド Antenna array with antenna elements with integrated filter
JP7507769B2 (en) 2019-01-17 2024-06-28 キョウセラ インターナショナル インコーポレイテッド Antenna array having antenna elements with integrated filters - Patents.com
JP7547349B2 (en) 2019-01-17 2024-09-09 キョウセラ インターナショナル インコーポレイテッド Antenna arrangement with integrated filter having laminated planar resonators - Patents.com
JP2021103628A (en) * 2019-12-25 2021-07-15 日本アンテナ株式会社 Lighting fixture
JP7339153B2 (en) 2019-12-25 2023-09-05 日本アンテナ株式会社 lighting equipment
US12166293B2 (en) 2020-12-07 2024-12-10 Samsung Electronics Co., Ltd. Electronic device including antenna and method of manufacturing the electronic device

Similar Documents

Publication Publication Date Title
CN100353612C (en) Dual band dipole antenna structure
TWI699042B (en) Antenna structure
US20030156064A1 (en) Multi-band planar antenna
CN1577958A (en) Method and apparatus for reducing SAR exposure in a communications handset device
WO2006079994A1 (en) Radiation enhanced cavity antenna with dielectric
US8704714B2 (en) Surface mount module embedded antenna
CN112736439A (en) Antenna, antenna module and electronic equipment
TWM605393U (en) Microstrip antenna
JPH11274845A (en) Antenna system
TW200537737A (en) Antenna device and mobile unit using the same
JP2004260582A (en) Patch antenna
JP2004186731A (en) Chip antenna and wireless communication apparatus using the same
KR100872685B1 (en) Inverted f antenna
KR20190138945A (en) Micro strip module having air layer and mobile communication device for high frequency comprising the same
US11239560B2 (en) Ultra wide band antenna
TWI411161B (en) A five - frequency antenna for portable electronic devices
TWI863384B (en) Dual-frequency antenna
JP3735582B2 (en) Multilayer dielectric antenna
JP3771878B2 (en) Multilayer dielectric antenna
JP4206333B2 (en) antenna
TWI866222B (en) Antenna structure
JP2007174153A (en) Loop antenna and communication equipment
TWI807633B (en) Antenna system
JP2004180034A (en) Diversity antenna
TW201417395A (en) Antenna assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Effective date: 20060210

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A02 Decision of refusal

Effective date: 20061017

Free format text: JAPANESE INTERMEDIATE CODE: A02