[go: up one dir, main page]

JP2004259850A - Annular magnet and its manufacturing method - Google Patents

Annular magnet and its manufacturing method Download PDF

Info

Publication number
JP2004259850A
JP2004259850A JP2003047343A JP2003047343A JP2004259850A JP 2004259850 A JP2004259850 A JP 2004259850A JP 2003047343 A JP2003047343 A JP 2003047343A JP 2003047343 A JP2003047343 A JP 2003047343A JP 2004259850 A JP2004259850 A JP 2004259850A
Authority
JP
Japan
Prior art keywords
cylindrical
preforms
arc
ring
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003047343A
Other languages
Japanese (ja)
Other versions
JP3754675B2 (en
Inventor
Giichi Ukai
義一 鵜飼
Taizo Iwami
泰造 石見
Takeshi Araki
健 荒木
Shuichi Takahama
修一 高浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003047343A priority Critical patent/JP3754675B2/en
Publication of JP2004259850A publication Critical patent/JP2004259850A/en
Application granted granted Critical
Publication of JP3754675B2 publication Critical patent/JP3754675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an annular magnet having structure wherein arcuate preforms can be stuck with each other more stiffly and surely. <P>SOLUTION: A cylindrical molding member 1 is formed by a method wherein five radially oriented preforms 2 are combined and end surfaces 3 in arcuate direction of the preforms 2 are stuck with each other. The end surface 3 in arcuate direction of the preform 2 is formed in a surface which is inclined 45° to a radial direction from a surface perpendicular to a circumference direction of the cylindrical molding member 1. Since the surface which is inclined 45° is formed, sticking of the mutual preforms 2 can be performed surely with lower pressurizing force. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、モータの回転子等に用いられるリング型磁石に係り、特に軸方向に長尺の磁石を得るための構造及びその製造方法に関するものである。
【0002】
【従来の技術】
一般に、小型モータに多用されているラジアル異方性リング磁石を成形するにあたって、軸方向に長い円筒状の磁石を磁場成形する場合、配向磁場強度が十分に得られず、磁性粉末の配向率が低下し、高い磁気特性が得られないという問題点がある。
【0003】
この問題点を解決するために、例えば、ラジアル方向に配向された比較的、成形の容易な円弧状の予備成形体を、所定の個数だけ組み合わせ、円弧の両端面間を突き合わせて、静水圧加圧を行うことにより、リング状成形体を得、このリング状成形体を焼結することで異方性リング型磁石を得ることが提示されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平7−161512号公報(第2頁−第3頁、図2)
【0005】
【発明が解決しようとする課題】
従来のラジアル異方性リング型磁石は、以上のようにラジアル方向に配向された円弧状の予備成形体を磁場配向成形した後、所定の個数だけ組み合わせて円弧の両端面を固着しているが、固着する円弧の両端面が円弧の円周方向と垂直になっているので、固着時に十分な加圧力を加えることが困難であり、また、固着を十分に行うために静水圧加圧を高くし過ぎると、予備成形体が破損するという問題点があった。
【0006】
この発明は上記のような問題点を解消するためになされたもので、円弧状の予備成形体同士をより強固に確実に固着することができる構造のリング型磁石及びその製造方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
この発明に係るリング型磁石は、ラジアル配向が施された複数の円弧状の予備成形体を用い、該予備成形体の円弧方向の端面を組み合わせ、該端面を固着して円筒状に形成した円筒状成形体からなるリング型磁石において、上記固着した端面が、上記円筒状成形体の円周方向と垂直な面に対して傾いた面であるものである。
【0008】
【発明の実施の形態】
以下、この発明の実施の形態を図に基づいて説明する。
実施の形態1.
図1は、この発明の実施の形態1におけるリング型磁石を製作するための円筒状成形体の構成を示す斜視図、図2は、図1における円筒状成形体を構成する予備成形体を示す斜視図である。
【0009】
図1に示したように、円筒状成形体1は、5個のラジアル方向に配向した予備成形体2を組み合わせ、予備成形体2の円弧の端面3同士を固着してなる。各予備成形体2は、図2に示したように、円弧の端面3が、円筒状成形体1の円周方向(矢印方向)と垂直な面4から径方向に対して45゜傾いた面を有するようにしたものである。
【0010】
上記のように、固着する円弧の端面3を、円筒状成形体1の円周方向と垂直な面4から傾いた面とすることによって、予備成形体2同士を固着するための加圧力を、固着する円弧の端面3に対して強く作用させることができるので、予備成形体2同士の固着をより低い加圧力で確実に行うことができる。
【0011】
図3は、ラジアル方向に配向処理した予備成形体を成形する磁場成形法を示す平面図である。
【0012】
予備成形体2を磁場成形するための粉末成形金型5は、ステンレス鋼または非磁性超硬材料などの非磁性体5cを備え、粉末成形金型5には、NdFe14B等からなる磁性粉末材料が充填される予備成形体2の形状の空洞(キャビティー)5aが形成され、キャビティー5aの円弧を挟むように鋼または超硬材料(強磁性体)等からなる強磁性体5bが埋設されている。キャビティー5aの円弧方向端面は、円弧の円周方向と垂直な面から径方向に対して45゜傾いた面を有するように形成されている。
【0013】
また、粉末成形金型5を挟み込むように、一対の電磁コイル6が配置され、一対の電磁コイル6は、粉末成形金型5を挟む空間に平行磁場を発生させ、発生した平行磁場は強磁性体5bによって円弧状のキャビティー5aのラジアル方向(破線矢印)となる。
【0014】
磁性粉末材料を、粉末成形金型5のキャビティー5a内に充填し、電磁コイル6によって、例えば、1.5Tの磁場を発生させ、この磁場中で磁性粉末材料をラジアル方向に配向しながら、非磁性体の上下パンチ5dを用いて10〜20MPaの圧力で圧縮成形することにより、図2に示した円弧状の予備成形体2が得られる。
【0015】
図4は、得られた予備成形体を組み合わせて固着し、円筒状成形体を得るための固着方法を示す平面図(a)及び断面図(b)である。
【0016】
図4に示したように、金型7は、金属からなるダイ7aと、ダイ7a内に挿入されるゴム状の加圧用コア7dと、予備成形体2を上下方向から拘束するための上パンチ7b及び下パンチ7cを備えている。
【0017】
ダイ7aの内径は、予備成形体2をリング状に組み合わせたときの外径よりも0.01〜0.1mm大きくし、上下パンチ7b,7cの断面の形状及び径は予備成形体2をリング状に組み合わせたときの断面の形状及び径と同じにし、加圧用コア7dの外径は予備成形体2をリング状に組み合わせたときの内径よりも0.01〜0.1mm小さくする。
【0018】
ダイ7a内に下パンチ7cを挿入し、下パンチ7cがセットされたダイ7aに予備成形体2を5個組み合わせて挿入する。次に、上パンチ7bと加圧用コア7dを挿入して、上パンチ7b及び下パンチ7cで予備成形体2の上下方向を拘束し、加圧用コア7dに軸方向の圧縮加圧力を加え、加圧用コア7dを径方向に膨張させることによって、予備成形体2の壁面に加圧力、50〜100MPaを加える。
【0019】
ダイ7aの内径を、予備成形体2をリング状に組み合わせたときの外径より0.01mm以上大きくすることによって、組み合わせて予備成形体2の挿入が容易に行われるようになり、加圧用コア7dの外径を組み合わせた予備成形体2の内径よりも0.01mm以上小さくすることによって、挿入したリング状の予備成形体2へ加圧用コア7dを挿入するのを容易にすることができる。
【0020】
また、ダイ7aの内径を、予備成形体2をリング状に組み合わせたときの外径より0.1mmを越えるように大きくし、加圧用コア7dの外径を組み合わせた予備成形体2の内径よりも0.1mmを越えて小さくすると、加圧用コア7dの加圧力が組み合わせた予備成形体2に伝達されにくくなる。
【0021】
固着する予備成形体2の端面3は、円弧の円周方向(円筒状成形体の円周方向)と垂直な面から径方向に対して45°傾いた面となっているので、加圧力は固着する端面3に対して強く作用させることができ、予備成形体2同士の固着をより低い加圧力で確実に行うことができる。
【0022】
固着によって予備成形体2を一体化した後、金型7から円筒状成形体を取り出し、取り出された円筒状成形体1を焼結し、熱処理してラジアル配向されたリング型磁石が得られる。例えば、磁性粉末材料にNdFe14Bを用いた場合、約1080℃で焼結し、550〜900℃の時効処理を加える。
【0023】
なお、予備成形体2の端面3が、円弧の円周方向と垂直な面から径方向に対して45°傾いた面の場合を示したが、45°に限られるものではなく、固着する予備成形体2の端面3が、円弧の円周方向と垂直な面から径方向に対して傾いた面であれば、この実施の形態における効果が得られる。
【0024】
また、予備成形体2を組み合わせて固着する際の圧縮加圧力は、作製しようとするリング型磁石の大きさ等で変わるものである。
【0025】
また、図5の平面図(a)及び部分拡大平面図(b)に示すように、端面3に、端面と周面との円筒状成形体1の径方向断面においてなす角度が、鋭角のエッジに面取り部またはR付部3aを設け、鈍角のエッジに面取り部またはR付部3aが密着する形状部を設けることによって、エッジの欠け、割れを防止することができる。
【0026】
また、図6の平面図に示すように、予備成形体2の端面3に0.01mm〜0.5mm程度の凹凸3bを設けることによって、固着面積が大きくなり、さらに、微細な凹凸が若干つぶれて凹凸がなじみ合うことで、固着力が大きくなる。
【0027】
凹凸は、0.01mmよりも小さい場合にはつぶれて、その効果が得られず、0.5mmよりも大きいと、凹凸がなじまず、局所に応力集中がおこり、組み合わせた予備成形体2が破損する。
【0028】
実施の形態2.
図7は、この発明の実施の形態2における円筒状成形体の構成を示す斜視図である。図において、上記実施の形態1と同一符号は、同一部分または相当部分を示している。
【0029】
図7に示したように、円弧状の予備成形体2の固着する端面3を、円筒状成形体1の周方向と垂直な面から、円筒状成形体1の軸方向に対して傾けている。
【0030】
図8は、ラジアル方向に配向処理した予備成形体を成形する磁場成形法を示す断面図である。
【0031】
図8(a)に示したように、磁場成形するための粉末成形金型は、ステンレス鋼または非磁性超硬材料などの非磁性体5c及び非磁性体5cに埋め込まれた強磁性体5bからなるダイと、強磁性体からなる下パンチ5d及び強磁性体の先端両側に埋め込まれた非磁性体5cからなる上パンチ5dよって、NdFe14B等からなる磁性粉末材料が充填される予備成形体の形状の空洞(キャビティー)5aが形成されている。また、上下パンチ5dの加圧方向に磁場を発生する電磁コイル6が配設されている。非磁性体5cに埋め込まれた強磁性体5b、及び上パンチ5dの先端両側に埋め込まれた非磁性体5cは、発生した磁束がキャビティー5aのラジアル方向を向くように形成したものである。
【0032】
キャビティー5aを図8(a)の上方から見た形状は、図8(b)に示したように、円弧方向の端面5eが軸方向に対して傾くようにしている。
【0033】
予備成形体成形用の磁性粉末材料を、粉末成形金型5のキャビティー5a内に充填し、電磁コイル6によって、例えば、1.5Tの磁場を発生させ、この磁場中で磁性粉末材料をラジアル方向に配向しながら、上下パンチ5dを用いて10MPa〜20MPaの圧力で圧縮成形することにより、図7に示した円弧状の予備成形体2が得られる。
【0034】
図9は、予備成形体を組み合わせて固着し、円筒状成形体を得るための固着方法を示す平面図(a)及び断面図(b)である。
【0035】
図9に示したように、金型7は、金属からなるダイ7aと、ダイ7a内に挿入されるゴム状の加圧用コア7dと、予備成形体2を上下方向から加圧するための上パンチ7b及び下パンチ7cを備えている。
【0036】
この実施の形態では、ダイ7aに下パンチ7cを挿入し、下パンチ7cがセットされたダイ7aに予備成形体2を5個組み合わせて挿入する。次に、上パンチ7bと加圧用コア7dを挿入して、上パンチ7b及び下パンチ7cで予備成形体2の加圧を行う。
【0037】
この実施の形態によれば、固着する予備成形体2の端面3は、円筒状成形体1の円周方向と垂直な面から軸方向に対して傾いた面となっているので、パンチ7a,7bによる軸方向の加圧力は固着する端面3に対して強く作用させることができ、予備成形体2同士の固着をより低い加圧力で確実に行うことができる。
【0038】
なお、この実施の形態においては、固着する予備成形体2の端面3を、円筒状成形体1の円周方向と垂直な面から軸方向に対して傾いた面としたが、同時に、上記実施の形態1と同様、端面3を円筒状成形体1の円周方向と垂直な面から径方向に対して傾いた面とすることによって、径方向と軸方向との加圧力に分散することができるので、固着するために必要な加圧力をより小さくすることができる。
【0039】
また、上記実施の形態1及び2では予備成形体2を5個組み合わせる例を示したが、この数に限られるものではない。
【0040】
【発明の効果】
この発明に係るリング型磁石によれば、ラジアル配向が施された複数の円弧状の予備成形体を用い、該予備成形体の円弧方向の端面を組み合わせ、該端面を固着して円筒状に形成した円筒状成形体からなるリング型磁石において、上記固着した端面が、上記円筒状成形体の円周方向と垂直な面に対して傾いた面であるので、上記予備成形体同士の固着をより低い加圧力で確実に行うことができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1におけるリング磁石の構成を示す斜視図である。
【図2】この発明の実施の形態1における予備成形体の構成を示す斜視図である。
【図3】この発明の実施の形態1における予備成形体を磁場成形する方法を示す平面図である。
【図4】この発明の実施の形態1における予備成形体からリング状の成形体を得るための固着方法を示す平面図(a)及び断面図(b)である。
【図5】実施の形態1における円弧状の端面の形状を示す平面図である。
【図6】実施の形態1における円弧状の端面の別形状を示す平面図である。
【図7】この発明の実施の形態2におけるリング磁石の構成を示す斜視図である。
【図8】この発明の実施の形態2における予備成形体を磁場成形する方法を示す断面図である。
【図9】この発明の実施の形態2における予備成形体からリング状の成形体を得るための固着方法を示す平面図(a)及び断面図(b)である。
【符号の説明】
1 円筒状成形体、2 予備成形体、3 円弧の端面、3a 面取り、
3b 凹凸、4 円弧の円周方向と垂直な面、5 粉末成形金型、
5a 空洞(キャビティー)、5b 強磁性体、5c 非磁性体、
5d 上下パンチ、5e 端面、6 電磁コイル、7 金型、7a ダイス、
7b 上パンチ、7c 下パンチ、7d 加圧用コア、
13,17,22 円筒状成形体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ring-type magnet used for a rotor of a motor or the like, and more particularly to a structure for obtaining a magnet elongated in the axial direction and a manufacturing method thereof.
[0002]
[Prior art]
In general, when forming a radial anisotropic ring magnet often used in a small motor, when forming a magnetic field of a cylindrical magnet that is long in the axial direction, sufficient magnetic field strength cannot be obtained, and the orientation rate of the magnetic powder is low. There is a problem in that the high magnetic characteristics cannot be obtained.
[0003]
In order to solve this problem, for example, a predetermined number of arc-shaped preforms that are oriented in the radial direction and are relatively easy to mold are combined, and both ends of the arc are butted together to apply hydrostatic pressure. It has been proposed to obtain a ring-shaped molded body by performing pressure and obtain an anisotropic ring-type magnet by sintering the ring-shaped molded body (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-161512 (page 2 to page 3, FIG. 2)
[0005]
[Problems to be solved by the invention]
In the conventional radial anisotropic ring magnet, after arc-shaped preforms oriented in the radial direction as described above are subjected to magnetic field orientation molding, a predetermined number of them are combined to fix both end faces of the arc. Because both end faces of the arc to be fixed are perpendicular to the circumferential direction of the arc, it is difficult to apply sufficient pressure at the time of fixing, and the hydrostatic pressure is increased to sufficiently fix the arc. When too much, there was a problem that the preform was damaged.
[0006]
The present invention has been made to solve the above-described problems, and provides a ring magnet having a structure capable of firmly and securely fixing arc-shaped preforms to each other and a method for manufacturing the same. It is intended.
[0007]
[Means for Solving the Problems]
The ring-type magnet according to the present invention uses a plurality of arc-shaped preforms with radial orientation, combines the arc-shaped end faces of the preforms, and fixes the end faces to form a cylinder In the ring-shaped magnet made of a shaped molded body, the fixed end face is a surface inclined with respect to a plane perpendicular to the circumferential direction of the cylindrical shaped body.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a perspective view showing a configuration of a cylindrical molded body for manufacturing a ring-type magnet in Embodiment 1 of the present invention, and FIG. 2 shows a preformed body constituting the cylindrical molded body in FIG. It is a perspective view.
[0009]
As shown in FIG. 1, the cylindrical shaped body 1 is formed by combining five preformed bodies 2 oriented in the radial direction and fixing the arc end surfaces 3 of the preformed bodies 2 together. As shown in FIG. 2, each preform 2 has a circular arc end surface 3 inclined by 45 ° with respect to the radial direction from a surface 4 perpendicular to the circumferential direction (arrow direction) of the cylindrical molded body 1. It is made to have.
[0010]
As described above, by applying the end surface 3 of the arc to be fixed to a surface inclined from the surface 4 perpendicular to the circumferential direction of the cylindrical molded body 1, a pressing force for fixing the preforms 2 to each other is obtained. Since it can be made to act strongly with respect to the end surface 3 of the arc to be fixed, the preforms 2 can be firmly fixed to each other with a lower pressure.
[0011]
FIG. 3 is a plan view showing a magnetic field forming method for forming a preform that has been oriented in the radial direction.
[0012]
A powder molding die 5 for magnetic field molding of the preform 2 includes a nonmagnetic body 5c such as stainless steel or a nonmagnetic superhard material, and the powder molding die 5 is made of Nd 2 Fe 14 B or the like. A cavity 5a having a shape of the preform 2 filled with the magnetic powder material is formed, and a ferromagnetic body 5b made of steel, a super hard material (ferromagnetic body) or the like so as to sandwich an arc of the cavity 5a. Is buried. The end surface in the arc direction of the cavity 5a is formed to have a surface inclined by 45 ° with respect to the radial direction from a plane perpendicular to the circumferential direction of the arc.
[0013]
In addition, a pair of electromagnetic coils 6 is disposed so as to sandwich the powder molding die 5, and the pair of electromagnetic coils 6 generates a parallel magnetic field in a space sandwiching the powder molding die 5, and the generated parallel magnetic field is ferromagnetic. The radial direction (broken line arrow) of the arcuate cavity 5a is formed by the body 5b.
[0014]
The magnetic powder material is filled in the cavity 5a of the powder molding die 5, and a magnetic field of 1.5T, for example, is generated by the electromagnetic coil 6, and the magnetic powder material is oriented in the radial direction in this magnetic field, The arc-shaped preform 2 shown in FIG. 2 is obtained by compression molding at a pressure of 10 to 20 MPa using the nonmagnetic upper and lower punches 5d.
[0015]
FIG. 4 is a plan view (a) and a cross-sectional view (b) showing a fixing method for combining and fixing the obtained preforms to obtain a cylindrical molded body.
[0016]
As shown in FIG. 4, the mold 7 includes a die 7a made of metal, a rubber-like pressurizing core 7d inserted into the die 7a, and an upper punch for restraining the preform 2 from above and below. 7b and lower punch 7c.
[0017]
The inner diameter of the die 7a is 0.01 to 0.1 mm larger than the outer diameter when the preform 2 is combined in a ring shape, and the cross-sectional shape and diameter of the upper and lower punches 7b and 7c are the same as the ring of the preform 2 The outer diameter of the pressing core 7d is made 0.01 to 0.1 mm smaller than the inner diameter when the preform 2 is combined in a ring shape.
[0018]
The lower punch 7c is inserted into the die 7a, and five preforms 2 are combined and inserted into the die 7a on which the lower punch 7c is set. Next, the upper punch 7b and the pressing core 7d are inserted, the vertical direction of the preform 2 is constrained by the upper punch 7b and the lower punch 7c, and an axial compression pressure is applied to the pressing core 7d to apply pressure. By expanding the pressure core 7d in the radial direction, a pressure of 50 to 100 MPa is applied to the wall surface of the preform 2.
[0019]
By making the inner diameter of the die 7a 0.01 mm or more larger than the outer diameter when the preformed body 2 is combined in a ring shape, the preformed body 2 can be easily inserted in combination. The pressure core 7d can be easily inserted into the inserted ring-shaped preform 2 by making it smaller than the inner diameter of the preform 2 combined with the outer diameter of 7d by 0.01 mm or more.
[0020]
Also, the inner diameter of the die 7a is made larger than the outer diameter when the preform 2 is combined in a ring shape so as to exceed 0.1 mm, and the inner diameter of the preform 2 combined with the outer diameter of the pressing core 7d. However, if it is made smaller than 0.1 mm, it is difficult to transmit the pressing force of the pressing core 7d to the combined preform 2.
[0021]
Since the end surface 3 of the preliminarily molded body 2 to be fixed is a surface inclined by 45 ° with respect to the radial direction from a plane perpendicular to the circumferential direction of the arc (circumferential direction of the cylindrical molded body), the applied pressure is It can be made to act strongly with respect to the end face 3 to adhere, and the preformed bodies 2 can be firmly secured to each other with a lower applied pressure.
[0022]
After the preformed body 2 is integrated by fixing, the cylindrical shaped body is taken out from the mold 7, and the taken out cylindrical shaped body 1 is sintered and heat-treated to obtain a radially oriented ring magnet. For example, when Nd 2 Fe 14 B is used as the magnetic powder material, sintering is performed at about 1080 ° C., and an aging treatment at 550 to 900 ° C. is applied.
[0023]
In addition, although the case where the end surface 3 of the preform 2 is a surface inclined by 45 ° with respect to the radial direction from a surface perpendicular to the circumferential direction of the circular arc is not limited to 45 °, the preliminary surface to be fixed is fixed. If the end surface 3 of the molded body 2 is a surface inclined with respect to the radial direction from a surface perpendicular to the circumferential direction of the arc, the effect in this embodiment is obtained.
[0024]
Further, the compression pressure when the preform 2 is fixed in combination varies depending on the size of the ring magnet to be manufactured.
[0025]
Further, as shown in a plan view (a) and a partially enlarged plan view (b) of FIG. 5, the angle formed in the radial cross section of the cylindrical molded body 1 between the end surface and the peripheral surface is an acute edge. By providing the chamfered portion or the R-attached portion 3a and providing the obtuse-angled edge with the chamfered portion or the R-attached portion 3a, it is possible to prevent the edge from being chipped or broken.
[0026]
Further, as shown in the plan view of FIG. 6, by providing the end surface 3 of the preform 2 with the unevenness 3b of about 0.01 mm to 0.5 mm, the fixing area is increased, and the fine unevenness is slightly crushed. As the irregularities become compatible, the fixing force increases.
[0027]
If the unevenness is smaller than 0.01 mm, the effect is not obtained, and if the unevenness is larger than 0.5 mm, the unevenness is not adapted, stress concentration occurs locally, and the combined preform 2 is damaged. To do.
[0028]
Embodiment 2. FIG.
FIG. 7 is a perspective view showing a configuration of a cylindrical molded body according to Embodiment 2 of the present invention. In the figure, the same reference numerals as those in the first embodiment indicate the same or corresponding parts.
[0029]
As shown in FIG. 7, the end surface 3 to which the arc-shaped preform 2 is fixed is inclined with respect to the axial direction of the cylindrical molded body 1 from a surface perpendicular to the circumferential direction of the cylindrical molded body 1. .
[0030]
FIG. 8 is a cross-sectional view showing a magnetic field forming method for forming a preform that has been subjected to orientation treatment in the radial direction.
[0031]
As shown in FIG. 8 (a), a powder molding die for magnetic field molding is made up of a nonmagnetic body 5c such as stainless steel or a nonmagnetic cemented carbide material and a ferromagnetic body 5b embedded in the nonmagnetic body 5c. comprising die and, upper punch 5d made of a nonmagnetic material 5c embedded in the tip sides of the lower punch 5d and ferromagnetic body made of ferromagnetic material thus spare magnetic powder material consisting of Nd 2 Fe 14 B or the like is filled A cavity 5a in the shape of a molded body is formed. In addition, an electromagnetic coil 6 that generates a magnetic field in the pressing direction of the upper and lower punches 5d is disposed. The ferromagnetic body 5b embedded in the nonmagnetic body 5c and the nonmagnetic body 5c embedded on both sides of the top end of the upper punch 5d are formed so that the generated magnetic flux faces the radial direction of the cavity 5a.
[0032]
The shape of the cavity 5a viewed from above in FIG. 8 (a) is such that the end face 5e in the arc direction is inclined with respect to the axial direction, as shown in FIG. 8 (b).
[0033]
The magnetic powder material for molding the preform is filled in the cavity 5a of the powder molding die 5, and a magnetic field of 1.5T, for example, is generated by the electromagnetic coil 6, and the magnetic powder material is radial in this magnetic field. The arc-shaped preform 2 shown in FIG. 7 is obtained by compression molding at a pressure of 10 MPa to 20 MPa using the upper and lower punches 5d while being oriented in the direction.
[0034]
FIG. 9 is a plan view (a) and a cross-sectional view (b) showing a fixing method for obtaining a cylindrical molded body by combining and fixing a preformed body.
[0035]
As shown in FIG. 9, the mold 7 includes a die 7a made of metal, a rubber-like pressing core 7d inserted into the die 7a, and an upper punch for pressing the preform 2 from above and below. 7b and lower punch 7c.
[0036]
In this embodiment, the lower punch 7c is inserted into the die 7a, and five preforms 2 are combined and inserted into the die 7a on which the lower punch 7c is set. Next, the upper punch 7b and the pressing core 7d are inserted, and the preform 2 is pressed with the upper punch 7b and the lower punch 7c.
[0037]
According to this embodiment, since the end surface 3 of the preformed body 2 to be fixed is a surface inclined with respect to the axial direction from the surface perpendicular to the circumferential direction of the cylindrical molded body 1, the punch 7a, The pressing force in the axial direction by 7b can be made to act strongly on the end face 3 to be fixed, so that the preforms 2 can be firmly fixed to each other with a lower pressing force.
[0038]
In this embodiment, the end surface 3 of the preformed body 2 to be fixed is a surface inclined with respect to the axial direction from the surface perpendicular to the circumferential direction of the cylindrical molded body 1. As in the first embodiment, the end surface 3 is a surface inclined from the surface perpendicular to the circumferential direction of the cylindrical molded body 1 with respect to the radial direction, whereby the applied pressure in the radial direction and the axial direction can be dispersed. As a result, the pressing force required for fixing can be further reduced.
[0039]
In Embodiments 1 and 2, an example in which five preforms 2 are combined has been described, but the number is not limited to this.
[0040]
【The invention's effect】
According to the ring-type magnet according to the present invention, a plurality of arc-shaped preforms with radial orientation are used, end faces in the arc direction of the preforms are combined, and the end faces are fixed to form a cylindrical shape. In the ring-shaped magnet composed of the cylindrical molded body, the fixed end surface is a surface inclined with respect to a plane perpendicular to the circumferential direction of the cylindrical molded body, so that the preliminary molded bodies are more firmly fixed to each other. It can be reliably performed with a low pressure.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a ring magnet according to Embodiment 1 of the present invention.
FIG. 2 is a perspective view showing a configuration of a preformed body according to Embodiment 1 of the present invention.
FIG. 3 is a plan view showing a method for magnetic field shaping of a preform in Embodiment 1 of the present invention.
4A and 4B are a plan view and a cross-sectional view showing a fixing method for obtaining a ring-shaped molded body from a preformed body according to Embodiment 1 of the present invention.
5 is a plan view showing the shape of an arcuate end face in the first embodiment. FIG.
FIG. 6 is a plan view showing another shape of the arc-shaped end face in the first embodiment.
FIG. 7 is a perspective view showing a configuration of a ring magnet according to Embodiment 2 of the present invention.
FIG. 8 is a cross-sectional view showing a method for magnetic field shaping of a preform in Embodiment 2 of the present invention.
9A and 9B are a plan view and a cross-sectional view showing a fixing method for obtaining a ring-shaped molded body from a preformed body according to Embodiment 2 of the present invention.
[Explanation of symbols]
1 cylindrical shaped body, 2 preformed body, 3 arc end face, 3a chamfer,
3b Unevenness, 4 Surface perpendicular to the circumferential direction of the arc, 5 Powder molding die,
5a Cavity, 5b Ferromagnetic material, 5c Non-magnetic material,
5d top and bottom punch, 5e end face, 6 electromagnetic coil, 7 mold, 7a die,
7b Upper punch, 7c Lower punch, 7d Pressure core,
13, 17, 22 Cylindrical molded body.

Claims (8)

ラジアル配向が施された複数の円弧状の予備成形体を用い、該予備成形体の円弧方向の端面を組み合わせ、該端面を固着して円筒状に形成した円筒状成形体からなるリング型磁石において、上記固着した端面が、上記円筒状成形体の円周方向と垂直な面に対して傾いた面であることを特徴とするリング型磁石。In a ring-shaped magnet comprising a plurality of arc-shaped preforms with radial orientation, combining the end faces in the arc direction of the preforms, and fixing the end faces to form a cylindrical shape The ring-type magnet is characterized in that the fixed end surface is a surface inclined with respect to a surface perpendicular to the circumferential direction of the cylindrical molded body. 上記固着した端面が、上記円筒状成形体の径方向に対して傾いた面であることを特徴とする請求項1記載のリング型磁石。2. The ring magnet according to claim 1, wherein the fixed end surface is a surface inclined with respect to the radial direction of the cylindrical molded body. 上記固着した端面が、上記円筒状成形体の軸方向に対して傾いた面であることを特徴とする請求項1記載のリング型磁石。2. The ring magnet according to claim 1, wherein the fixed end surface is a surface inclined with respect to the axial direction of the cylindrical molded body. 上記固着した端面が、上記円筒状成形体の径方向及び軸方向に対して傾いた面であることを特徴とする請求項1記載のリング型磁石。2. The ring magnet according to claim 1, wherein the fixed end face is a face inclined with respect to the radial direction and the axial direction of the cylindrical molded body. 上記固着した端面と周面との上記径方向断面においてなす角度が、鋭角のエッジに面取り部またはR付部が設けられ、鈍角のエッジに上記面取り部またはR付部が密着する形状部が設けられていることを特徴とする請求項2または4記載のリング型磁石。A chamfered portion or an R-attached portion is provided at an acute edge, and a shape portion at which the chamfered portion or the R-attached portion adheres to an obtuse angle edge is provided at an angle formed in the radial section between the fixed end surface and the peripheral surface. The ring magnet according to claim 2 or 4, wherein the ring magnet is formed. 上記固着した端面に、0.01mm〜0.5mmの凹凸が形成されていることを特徴とする請求項1記載のリング型磁石。The ring magnet according to claim 1, wherein unevenness of 0.01 mm to 0.5 mm is formed on the fixed end face. ラジアル配向が施された複数の円弧状の予備成形体を用い、
上記予備成形体を組み合わせ、上記複数の予備成形体を円筒にして、金型のダイに挿入し、
上記円筒にした予備成形体の軸方向端面を円筒形状の上下パンチで拘束し、
上記円筒にした予備成形体の内部に円柱形状のゴム状の加圧用コアを挿入し、
上記加圧用コアに軸方向の圧縮加圧力を加えることにより、加圧用コアを径方向に変形させて、上記円筒にした予備成形体の壁面を加圧することによって、上記円筒にした予備成形体の円弧方向の端面を固着するリング型磁石の製造方法において、
上記予備成形体の円弧方向の端面を上記円弧状の円周方向と垂直な面に対して径方向に傾いた面に形成して、この傾いた面を組み合わせて上記複数の予備成形体を円筒に形成するとともに、
上記ダイの径を上記円筒の外径よりも0.01〜0.1mm大きくし、
上記上下パンチの外径及び内径を上記円筒と同じにし、
上記加圧用コアの外径を上記円筒の内径よりも0.01〜0.1mm小さくしたことを特徴とするリング型磁石の製造方法。
Using a plurality of arc-shaped preforms with radial orientation,
Combining the preforms, making the plurality of preforms cylindrical, and inserting them into a die of a mold,
Restrain the axial end face of the cylindrical preform with cylindrical upper and lower punches,
Inserting a cylindrical rubber-like pressure core into the cylindrical preform,
By applying axial compressive pressure to the pressurizing core, the pressurizing core is deformed in the radial direction and the wall surface of the cylindrical preform is pressed, thereby forming the cylindrical preform. In the manufacturing method of the ring-type magnet for fixing the end face in the arc direction,
An end face in the arc direction of the preform is formed into a surface inclined in a radial direction with respect to a plane perpendicular to the arc-shaped circumferential direction, and the plurality of preforms are formed into a cylinder by combining the inclined surfaces. And forming
The diameter of the die is 0.01 to 0.1 mm larger than the outer diameter of the cylinder,
The outer diameter and inner diameter of the upper and lower punches are the same as the cylinder,
A method for producing a ring-type magnet, wherein the outer diameter of the pressurizing core is 0.01 to 0.1 mm smaller than the inner diameter of the cylinder.
ラジアル配向が施された複数の円弧状の予備成形体を用い、
上記予備成形体を組み合わせ、上記複数の予備成形体を円筒にして、金型のダイに挿入し、
上記円筒にした予備成形体の軸方向端面を円筒形状の上下パンチで拘束し、
上記円筒にした予備成形体の内部に円柱形状のゴム状の加圧用コアを挿入し、
上記円筒にした予備成形体の円弧方向の端面を加圧して固着するリング型磁石の製造方法において、
上記予備成形体の円弧方向の端面を上記円弧状の円周方向と垂直な面に対して軸方向に傾いた面に形成して、この傾いた面を組み合わせて上記複数の予備成形体を円筒に形成するとともに、
上記上下パンチにより上記円弧方向の端面を加圧することにより固着することを特徴とするリング型磁石の製造方法。
Using a plurality of arc-shaped preforms with radial orientation,
Combining the preforms, making the plurality of preforms cylindrical, and inserting them into a die of a mold,
Restrain the axial end face of the cylindrical preform with cylindrical upper and lower punches,
Inserting a cylindrical rubber-like pressure core into the cylindrical preform,
In the manufacturing method of the ring-shaped magnet that presses and fixes the end face in the arc direction of the cylindrical preform,
An end face in the arc direction of the preform is formed on a surface inclined in an axial direction with respect to a plane perpendicular to the arc-shaped circumferential direction, and the plurality of preforms are formed into a cylinder by combining the inclined surfaces. And forming
A method of manufacturing a ring-type magnet, wherein the upper and lower punches are fixed by pressing the end face in the arc direction.
JP2003047343A 2003-02-25 2003-02-25 Method for manufacturing ring magnet Expired - Fee Related JP3754675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047343A JP3754675B2 (en) 2003-02-25 2003-02-25 Method for manufacturing ring magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047343A JP3754675B2 (en) 2003-02-25 2003-02-25 Method for manufacturing ring magnet

Publications (2)

Publication Number Publication Date
JP2004259850A true JP2004259850A (en) 2004-09-16
JP3754675B2 JP3754675B2 (en) 2006-03-15

Family

ID=33113624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047343A Expired - Fee Related JP3754675B2 (en) 2003-02-25 2003-02-25 Method for manufacturing ring magnet

Country Status (1)

Country Link
JP (1) JP3754675B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768872B1 (en) 2005-07-29 2007-10-19 에스엠시 가부시키가이샤 Annular magnet
WO2010007673A1 (en) * 2008-07-16 2010-01-21 ミネベア株式会社 Manufacturing method for rare earth-iron based annular magnet and motor
CN103943302A (en) * 2014-05-04 2014-07-23 海安县巨力磁材有限责任公司 Radial anisotropic magnetic ring combination
CN103943303A (en) * 2014-05-04 2014-07-23 海安县巨力磁材有限责任公司 Combined radial opposite-polarity magnet ring
WO2015147304A1 (en) * 2014-03-27 2015-10-01 Tdk株式会社 Arcuate magnet piece, permanent magnet piece, permanent magnet assembly, permanent-magnet application device, and motor
JP2019114696A (en) * 2017-12-25 2019-07-11 Tdk株式会社 Permanent magnet piece, permanent magnet assembly, and permanent magnet application device
CN112721226A (en) * 2020-12-12 2021-04-30 爱驰汽车有限公司 Method for manufacturing telescopic rod and telescopic rod
WO2025100058A1 (en) * 2023-11-09 2025-05-15 株式会社Ihi Method for manufacturing rotor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768872B1 (en) 2005-07-29 2007-10-19 에스엠시 가부시키가이샤 Annular magnet
CN100422570C (en) * 2005-07-29 2008-10-01 Smc株式会社 ring magnet
WO2010007673A1 (en) * 2008-07-16 2010-01-21 ミネベア株式会社 Manufacturing method for rare earth-iron based annular magnet and motor
JP5088519B2 (en) * 2008-07-16 2012-12-05 ミネベア株式会社 Rare earth-iron ring magnet manufacturing method and motor
US8421293B2 (en) 2008-07-16 2013-04-16 Minebea Co., Ltd. Method of rare earth-iron based annular magnet and motor fabricated thereby
JP7173119B2 (en) 2014-03-27 2022-11-16 Tdk株式会社 permanent magnet piece
EP3866306A1 (en) * 2014-03-27 2021-08-18 TDK Corporation Permanent magnet piece, permanent magnet assembly, permanent-magnet application device, and motor
WO2015147304A1 (en) * 2014-03-27 2015-10-01 Tdk株式会社 Arcuate magnet piece, permanent magnet piece, permanent magnet assembly, permanent-magnet application device, and motor
CN106165257A (en) * 2014-03-27 2016-11-23 Tdk株式会社 Arch flat thin magnet, permanent magnet pieces, permanent magnet assemble body, permanent magnet application apparatus and motor
JPWO2015147304A1 (en) * 2014-03-27 2017-04-13 Tdk株式会社 Bow-shaped magnet piece, permanent magnet piece, permanent magnet assembly, permanent magnet application device and motor
EP3125405A4 (en) * 2014-03-27 2018-07-04 TDK Corporation Arcuate magnet piece, permanent magnet piece, permanent magnet assembly, permanent-magnet application device, and motor
US10186360B2 (en) 2014-03-27 2019-01-22 Tdk Corporation Arcuate magnet piece, permanent magnet piece, permanent magnet assembly, permanent magnet application device, and motor
CN110086301B (en) * 2014-03-27 2022-04-05 Tdk株式会社 Permanent magnet piece
CN110086301A (en) * 2014-03-27 2019-08-02 Tdk株式会社 Arch flat thin magnet, permanent magnet pieces, permanent magnet assembly, permanent magnet application apparatus and motor
JP2021065092A (en) * 2014-03-27 2021-04-22 Tdk株式会社 Permanent magnet piece
CN103943302A (en) * 2014-05-04 2014-07-23 海安县巨力磁材有限责任公司 Radial anisotropic magnetic ring combination
CN103943303A (en) * 2014-05-04 2014-07-23 海安县巨力磁材有限责任公司 Combined radial opposite-polarity magnet ring
JP2019114696A (en) * 2017-12-25 2019-07-11 Tdk株式会社 Permanent magnet piece, permanent magnet assembly, and permanent magnet application device
JP7073711B2 (en) 2017-12-25 2022-05-24 Tdk株式会社 Permanent magnet pieces, permanent magnet assemblies and permanent magnet application equipment
CN112721226A (en) * 2020-12-12 2021-04-30 爱驰汽车有限公司 Method for manufacturing telescopic rod and telescopic rod
CN112721226B (en) * 2020-12-12 2022-10-28 爱驰汽车有限公司 Method for manufacturing telescopic rod and telescopic rod
WO2025100058A1 (en) * 2023-11-09 2025-05-15 株式会社Ihi Method for manufacturing rotor

Also Published As

Publication number Publication date
JP3754675B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP4853771B2 (en) Yoke-integrated bonded magnet and motor magnet rotor using the same
CN109314412B (en) Pressed powder core, stator core and stator
KR100908424B1 (en) Parts for magnetic circuits and manufacturing method thereof
CN105393318B (en) The ring-shaped sintered magnet of mechanical strength with radial magnetisation and enhancing
JP3754675B2 (en) Method for manufacturing ring magnet
JP4900775B2 (en) Rotor for motor and manufacturing method thereof
JP4279757B2 (en) Ring-type magnet molded body manufacturing apparatus and ring-type sintered magnet manufacturing method
JP2003124019A (en) Permanent magnet and rotor of rotary motor using it
JP2003347142A (en) Method of manufacturing cylindrical anisotropic magnet and cylindrical anisotropic magnet
JP2006230099A (en) Ring-type magnet, ring-type magnet manufacturing apparatus, and ring-type magnet manufacturing method
JP4371310B2 (en) Arc-shaped resin-bonded rare earth permanent magnet and molding method thereof
JP6935689B2 (en) Bond magnet embedded rotor manufacturing method and manufacturing equipment
JP4069040B2 (en) Radially oriented ring magnet molding die and manufacturing method of radial oriented ring magnet
JP3651098B2 (en) Manufacturing method of long radial anisotropic ring magnet
JPS62217607A (en) Manufacture of nd-fe-b based magnet
JPS60240112A (en) Metal mold for compression forming in magnetic field
JP3421779B2 (en) Cylindrical radial anisotropic magnet and manufacturing method thereof
JPH06140223A (en) Manufacture of annular magnet material
JPH0726804Y2 (en) Cylindrical outer peripheral multi-pole magnet
JP2006203184A (en) Cylindrical sintered magnet, motor, and manufacturing method of cylindrical sintered magnet
JPH05326232A (en) Magnetic circuit component and manufacturing method thereof
JP2000012359A (en) Magnet and its manufacture
JP2005117785A (en) Ring-type magnet and manufacturing method thereof
JPH0234817Y2 (en)
JPH10212502A (en) Preforming die

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3754675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees