[go: up one dir, main page]

JP2004254519A - Cell culture method - Google Patents

Cell culture method Download PDF

Info

Publication number
JP2004254519A
JP2004254519A JP2003046060A JP2003046060A JP2004254519A JP 2004254519 A JP2004254519 A JP 2004254519A JP 2003046060 A JP2003046060 A JP 2003046060A JP 2003046060 A JP2003046060 A JP 2003046060A JP 2004254519 A JP2004254519 A JP 2004254519A
Authority
JP
Japan
Prior art keywords
cells
cell
msc
magnetic
culture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003046060A
Other languages
Japanese (ja)
Other versions
JP4160842B2 (en
Inventor
Akira Ito
彰 井藤
Hiroyuki Honda
裕之 本多
Takeshi Kobayashi
猛 小林
Minoru Ueda
実 上田
Hideaki Kagami
秀明 各務
Kenichiro Hatake
賢一郎 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tissue Engineering Co Ltd
Original Assignee
Japan Tissue Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tissue Engineering Co Ltd filed Critical Japan Tissue Engineering Co Ltd
Priority to JP2003046060A priority Critical patent/JP4160842B2/en
Publication of JP2004254519A publication Critical patent/JP2004254519A/en
Application granted granted Critical
Publication of JP4160842B2 publication Critical patent/JP4160842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】短期間で細胞を増殖させることができる。
【解決手段】まず骨髄液を含む培地を培養容器に入れて静置する。すると、血球系細胞は浮遊性のためそのまま骨髄液に浮遊しているが間葉系幹細胞(MSC)は接着依存性のため培養容器の底面に接着する。その後、培地交換を行って浮遊性細胞を除去することにより培養容器の底面に接着したMSCが残るが、MSCはもともと骨髄液中に含まれる絶対数が少ないため疎な状態で培養容器の底面に接着しているに過ぎない。そこで、ここへ磁性微粒子を投入してMSCに磁性微粒子を保持させることによりMSCを磁性化する。その後、培養容器の底面に磁石を配置することにより磁力の作用によって磁性微粒子を保持したMSCを磁石の近傍へと集める。そして、MSCが適正な密集度になったあと培養することによりMSCは効率よく増殖する。
【選択図】 図1
A cell can be grown in a short period of time.
A medium containing a bone marrow fluid is first placed in a culture vessel and allowed to stand. Then, the blood cells are suspended in the bone marrow fluid as they are due to the floating properties, but the mesenchymal stem cells (MSCs) adhere to the bottom surface of the culture vessel due to the adhesion dependence. Thereafter, the medium is replaced to remove the buoyant cells, leaving the MSC adhered to the bottom of the culture vessel. However, since the absolute number of MSCs originally contained in the bone marrow fluid is small, the MSC is sparsely attached to the bottom of the culture vessel. It is just glued. Therefore, the MSC is magnetized by introducing the magnetic fine particles therein and holding the magnetic fine particles on the MSC. Then, the MSC holding the magnetic fine particles is collected near the magnet by the action of the magnetic force by disposing the magnet on the bottom surface of the culture vessel. Then, by culturing the cells after the MSCs have a proper density, the MSCs can be efficiently proliferated.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、細胞培養方法に関する。
【0002】
【従来の技術】
細胞は血球系細胞のような浮遊性細胞と、上皮細胞のような接着依存性細胞の2種に大別される。例えば、骨髄液中には浮遊性細胞として造血幹細胞が、接着依存性細胞として間葉系幹細胞が存在している。間葉系幹細胞(MSC,Mesenchymal Stem Cells)は、多分化能を有する細胞として注目を浴びており、胚性幹細胞(ESC,Embryonic Stem Cells)と並んで多くの研究がなされている。骨髄液中からMSCを分離する方法としては、MSCが接着依存性細胞であることと、骨髄液中のその他多くの細胞が浮遊性細胞であることが利用されており、骨髄液を培養容器内で静置することで、容器底面に接着したMSCのみを選別する方法が一般に知られている。また、特許文献1のように、磁力によって細胞を選別する装置も知られている。
【0003】
【特許文献1】
特公平7−57177号公報
【0004】
【発明が解決しようとする課題】
ところで、接着依存性細胞の培養に関しては、播種密度が小さすぎると増殖が著しく遅くなるため、適正な播種密度に調整したうえで培養することが重要である。これは、適正な播種密度で培養することで細胞が産生するサイトカインのパラクライン作用やオートクライン作用によって細胞増殖が活発になると考えられる。
【0005】
しかしながら、前出のMSCは骨髄液から採取可能な絶対数が少ないため、容器底面にはMSCが疎な状態で接着しているにすぎず、細胞増殖に時間がかかる。これはMSCに限らず、取り出した組織・臓器に含まれる絶対数が少ない細胞に共通の課題である。
【0006】
このように細胞増殖に時間がかかるのを解消する手法としては、容器底面に低密度で接着した細胞をトリプシン等の酵素で処理することにより容器底面から剥がし、剥がれた細胞を集めて適正な播種密度となるように容器に播種したあと増殖させる手法が考えられ、こうすれば効率よく増殖させることは可能である。しかし、適正な播種密度となるように容器に播種する手間がかかるという問題がある。
【0007】
本発明は、上述した課題に鑑みなされたものであり、短期間で細胞を増殖させることができる細胞増殖方法を提供することを目的の一つとする。また、手間をかけずに細胞を密集させることができる細胞増殖方法を提供することを目的の一つとする。
【0008】
【課題を解決するための手段、発明の実施の形態及び発明の効果】
上述した目的の少なくとも一つを達成するために、本発明は以下の手法を採用した。即ち、本発明は、細胞を培養する細胞培養方法であって、
培養しようとする細胞に磁性微粒子を保持させることにより該細胞を磁性化する磁性化工程と、
前記磁性化工程で磁性化された細胞を磁力によって該細胞が適正に増殖し得る密集度となるように集める集合化工程と、
前記集合化工程で集められた細胞を培養する培養工程と
を含むものである。
【0009】
この細胞培養方法では、集合化工程前には細胞が疎な状態で存在していたとしても集合化工程後には細胞が適正に増殖し得る密集度になるため、比較的短期間で細胞を増殖させることができる。また、集合化工程では磁力によって細胞を密集させるため、手間をかけずに細胞を密集させることができる。
【0010】
ここで、「細胞が適正に増殖し得る密集度」とは、培養しようとする細胞ごとに該細胞の増殖に適する密集度を予め実験的又は理論的に求めておき、その密集度に基づいて設定された値である。細胞の増殖に適するか否かは、予め設定した基準をクリアするか否かで判定すればよく、例えば所定の細胞数に達するまでの培養時間に基準値を設けてその基準値をクリアするか否かで判定してもよいし、所定の培養時間内で増殖した細胞の数に基準値を設けてその基準値をクリアするか否かで判定してもよい。
【0011】
本発明の細胞培養方法において、培養しようとする細胞は接着依存性細胞であることが好ましい。接着依存性細胞は、足場依存性細胞とも呼ばれるが、一旦容器の内面に付着したあと伸展しやがて分裂する細胞である。この接着依存性細胞は、疎な状態で容器の内面に付着している場合にはそのまま培養するか、酵素で処理して容器の内面から剥がして集めたあと適正な播種密度となるように播種することが考えられるが、前者では増殖に時間がかかり、後者では手間がかかる。このため、接着依存性細胞に本発明を適用することにより、手間をかけずに細胞を密集させて効率よく増殖させることができる。
【0012】
ここで、「接着依存性細胞」としては、例えば、ヒト、マウス、ラット、モルモット、ハムスター、ニワトリ、ウサギ、ブタ、ヒツジ、ウシ、ウマ、イヌ、ネコ、サル等の温血動物から採取された種々の細胞が挙げられる。この温血動物の細胞としては、例えば、角化細胞、脾細胞、神経細胞、グリア細胞、膵臓β細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、線維芽細胞、繊維細胞、筋細胞、脂肪細胞、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞若しくは間質細胞、又はこれらの細胞の前駆細胞のほか、胚性幹細胞(ESC)や間葉系幹細胞(MSC)などの幹細胞や接着依存性のガン細胞が挙げられる。このうち、ESCやMSCが好ましく、MSCが特に好ましい。なお、培養しようとする接着依存性細胞が底面に接着している場合には、トリプシン等の酵素で処理して剥がしたあと磁力によって密集させてもよいし、接着力よりも磁力が勝るのであれば酵素で処理せずに磁力によって密集させてもよいし、通常の酵素使用量よりも低量の酵素を用いて接着力が磁力よりも弱くなるように処理したあと磁力によって細胞を密集させてもよい。
【0013】
本発明の細胞培養方法において、培養しようとする細胞がMSCの場合には、磁性化工程の前に、骨髄液を含む溶液を播種した容器の底面に接着依存性のMSCが接着したあと培地交換を行って浮遊性細胞を除去することにより培養しようとするMSCを得る前処理工程を実施することが好ましい。具体的には、例えば、図1に示す手順にしたがって培養してもよい。即ち、まず骨髄液を含む培地を培養容器に入れて静置する(図1(a)参照)。すると、血球系細胞は浮遊性のためそのまま骨髄液に浮遊しているがMSCは接着依存性のため培養容器の底面に接着する(図1(b)参照)。その後、培地交換を行って浮遊性細胞を除去することにより培養容器の底面に接着したMSCが残るが、MSCはもともと骨髄液中に含まれる絶対数が少ないため疎な状態で培養容器の底面に接着しているに過ぎない(図1(c)参照)。その後、必要に応じてトリプシン等の酵素で処理を行ったあと、磁性微粒子を投入してMSCに磁性微粒子を保持させることによりMSCを磁性化する(図1(d)参照)。その後、培養容器の底面に磁石を配置することにより磁力の作用によって磁性微粒子を保持したMSCを磁石の近傍へと集める(図1(e)参照)。このとき、予め実験によって求めたMSCの適正な密集度となるように磁石の磁力や大きさ(寸法)を選定しておく。そして、MSCが適正な密集度になったあと培養することによりMSCは効率よく増殖する。
【0014】
本発明の細胞培養方法において、前記密集度は細胞の集まっている部分の細胞密度が1000cells/cm以上であることが好ましく、4000〜6000cells/cmであることが特に好ましい。この範囲であれば、細胞(特にMSCのような接着依存性細胞)が産生するサイトカインの作用によって細胞が増殖しやすい。なお、単に「細胞密度」と表現せずに「細胞の集まっている部分の細胞密度」と表現したのは、単に「細胞密度」と表現した場合にはある面積の全体に所定数の細胞が分布している場合と同面積の一部に同数の細胞が密集している場合とを数値上区別できないため、「細胞の集まっている部分の細胞密度」と表現することにより両者を区別できるようにしたのである。
【0015】
本発明の細胞培養方法において、前記磁性微粒子は磁性微粒子封入正電荷リポソーム(MPCL,Magnetic particle cationic liposome)内の磁性微粒子であり、前記磁性化工程では前記培養しようとする細胞に前記MPCLを取り込ませることにより該細胞を磁性化することが好ましい。MPCLは、図2に一例を示すようにマグネタイト等の磁性微粒子をリポソームで封入しリポソーム間に正電荷脂質を備えた構造を持つ。多くの細胞は負電荷を有しているため正電荷を持つMPCLと結合しやすく、またMPCLはリポソームを有しているため細胞内に取り込まれやすい。このため、本発明において磁性微粒子としてMPCLを採用すれば、種々の細胞の培養に適用することができる。なお、MPCLは、例えばJpn.J. Cancer Res.第87巻第1179〜1183頁(1996年)に記載されたマグネタイト封入正電荷リポソーム(MCL,Magnetite cationic lipsome)の製造方法を参照して調製すればよい。このように磁性化工程でMPCLを採用するときには、MPCLを1細胞当り磁性微粒子として1〜150pg、特に20〜150pg使用することが好ましく、また、磁性化工程では培養しようとする細胞とMPCLとの接触を開始してから0.5〜8時間後、特に3〜5時間後に次工程へ進むことが好ましい。とりわけ、培養しようとする細胞がMSCのときに、これらの数値範囲を適用することが好ましい。MPCLの使用量が1細胞当り磁性微粒子として1pg未満では磁力によって集合させるのに十分な量のMPCLを細胞に保持させることが難しいため好ましくなく、150pg超では保持されないMPCLが増えて経済的でないため好ましくない。なお、使用量としては特に20〜150pgが好ましい。また、細胞とMPCLとの接触を開始してから0.5〜8時間後に細胞がMPCLを取り込む量がピークとなるため、この0.5〜8時間後に次工程へ進むのが好ましい。なお、ピーク範囲としては特に3〜5時間後が好ましい。
【0016】
本発明の細胞培養方法において、前記磁性微粒子は抗体を固定化した磁性微粒子封入リポソーム(AML,Antibody−immobilized magnetoliposome)内の磁性微粒子であり、前記磁性化工程では前記培養しようとする細胞と該細胞に特異的に結合する抗体を固定化したAMLとを結合させることにより細胞を磁性化することも好ましい。AMLは、図3に一例を示すように、マグネタイト等の磁性微粒子をリポソームで封入しリポソーム間に抗体を備えた構造を持つ。抗体としては培養しようとする特定の細胞に特異的に結合するものを選択する。こうすれば、多数の細胞の中から特定の細胞を選別して集合させることができる。例えば、培養しようとする細胞がMSC、磁性微粒子がAMLの場合、図4に示す手順にしたがって培養してもよい。即ち、まず、骨髄液を含む溶液を培養容器に入れ、ここへAMLを添加する(図4(a)参照)。骨髄液には微量のMSCのほかに多量の浮遊性細胞が含まれるが、AMLの抗体にはMSC以外の細胞は結合しないためMSCのみがAMLの抗体と結合して選択的に磁性化される(図4(b)参照)。なお、MSCはAMLの抗体と結合したあとリポソームの存在によりAMLを細胞内に取り込む。続いて、培養容器の底面に磁石を配置することにより磁力の作用によって磁性微粒子を保持したMSCを磁石の近傍へと集める(図4(c)参照)。このとき、予め実験によって求めたMSCの適正な密集度となるように磁石の磁力や大きさ(寸法)を選定しておく。続いて、磁性化したMSCを磁力により密集させたまま培地交換を行って浮遊性細胞を除去する(図4(d)参照)。その後、MSCを培養する。このとき、MSCは適正な密集度になっているため効率よく増殖する。なお、MSCと特異的に結合する抗体としては、例えばCD105,CD73,CD29,CD44などが挙げられる。また、この方法では、培養しようとする細胞が接着依存性細胞のときでも細胞が接着する前に集合化工程を行うことができるため、トリプシン等の酵素を用いる処理を省略でき、細胞のダメージを軽減化できる。
【0017】
上述したAMLは、例えばJ. Chem. Eng. Jpn.第34巻第66〜72頁(2001年)に記載された方法を参照して調製すればよい。このように磁性化工程でAMLを採用するときには、AMLを1細胞当り磁性微粒子として1〜150pg、特に20〜150pg使用することが好ましく、また、磁性化工程では培養しようとする細胞とAMLとの接触を開始してから0.5〜8時間後、特に3〜5時間後に次工程へ進むことが好ましい。AMLの使用量が1細胞当り磁性微粒子として1pg未満では磁力によって集合させるのに十分な量のAMLを細胞に保持させることが難しいため好ましくなく、150pg超では保持されないAMLが増えて経済的でないため好ましくない。なお、使用量としては特に20〜150pgが好ましい。また、細胞とAMLとの接触を開始してから0.5〜8時間後に細胞がMPCLを取り込む量がピークとなるため、この0.5〜8時間後に次工程へ進むのが好ましい。なお、ピーク範囲としては特に3〜5時間後が好ましい。
【0018】
本発明は、骨髄、組織、血液等から細胞を分離・培養する際に適用することができる。特に、磁性微粒子としてAMLを採用する場合には血液等から細胞を分離・培養するのに有効である。また、磁性微粒子としては、細胞にくっつく(保持される)ものであれば特にMPCLやAMLに限定されるものではなく、例えば第一化学製品社のMACS(Magnetic Cell Soting and Separation of Biomolecules)に用いられる磁性マイクロビーズや、ベリタス社の磁性ナノパーティクル(商品名EasySep)などを採用してもよい。これらの磁性微粒子のうち、MPCLやAMLのようにリポソームを含む磁性微粒子は、リポソームの存在によって細胞内に取り込まれるので一つの細胞が多くの磁性微粒子を取り込むことができ、磁力によって密集可能な程度の磁気を容易に持つことができるため、好ましい。
【0019】
【実施例】
[実施例1]
(1)使用細胞及び培養条件
ヒト間葉系幹細胞(MSC)はBio Whittaker社製のものを用いた。実験には、培地としてMSC増殖用培地MSCGM(Bio Whittaker社)を用い、培養容器として100mmの組織培養皿(tissue culture dish,旭テクノグラス社)を使用し、37℃、5%COを含む加湿空気環境下にて培養した。
【0020】
(2)マグネタイト封入正電荷リポソーム(MCL,Magnetite cationic lipsome)の調製
MCLは、Jpn. J.Cancer Res.第87巻第1179〜1183頁(1996年)に記載された方法により調製した。具体的には、まず3種類のリン脂質、即ちN−(α−トリメチルアンモニオアセチル)ジドデシル−D−グルタメート クロリド(相互薬工社製)、ジラウロイルホスファチジルクロリド(シグマケミカル社製)、ジオレイルホスファチジルエタノールアミン(シグマケミカル社製)をモル比1:2:2で含むリポソーム膜を作成し、続いて1mLのコロイド状マグネタイト(マグネタイト量20mg、マグネタイトは戸田工業社製)を添加して、周知のボルテックス法にてMCLを作成した。マグネタイト濃度はチオシアン酸カリウム法で測定したところ、18mg/mlであった。
【0021】
(3)MSCにおけるMCLの取り込み
組織培養皿で対数増殖期にあるMSCの培地をMCLが入ったMSCGMに交換することで、MCLをMSCに取り込ませた。MCL濃度は、MSCの細胞数に対して1細胞当りマグネタイトとして100pgになるように添加した。
【0022】
(4)磁石を用いた細胞培養方法
MCLを添加してから4時間後、MCLを取り込んだMSCは組織培養皿の底面に接着していたためトリプシンで処理することにより底面から剥がし、細胞数が1000個になるように10mlのMSCGM中に調製し、100mmの組織培養皿に播種した。その際に、細胞を播種するために振盪器を用いて60rpmで10分間、8の字に振盪した。この際に、100mm組織培養皿の底面にネオジ磁石(外形2.2cmφ、表面磁束密度0.45T)を組織培養皿の底面の中央に設置した。対照例として、ネオジ磁石を設置せずに同様にして振盪した。MCLを取り込んだMSC(細胞数1000個)は、ネオジ磁石を設置した場合には組織培養皿の底面の中央で2.2cmφの円内に密集したのに対して、ネオジ磁石を設置しなかった場合には組織培養皿の底面全域に疎な状態で分布していた。なお、ネオジ磁石を設置した場合、磁石の縁の方(磁束密度の高い部分)に細胞が集まり、そのように細胞の集まっている部分の面積は1cmであった。したがって、細胞が集まっている部分の細胞密度(密集度)は1000cells/cmである。
【0023】
(5)細胞数の測定
培養7日後の細胞数はWST−8を発色基質としたセルカウンティングキット−8(Cell Counting Kit−8(同人化学社製))を用いて測定した。測定方法は、セルカウンティングキット−8の取扱説明書に従った。
【0024】
(6)実験結果
実験結果を図5に示す。図5は培養7日後のMSCの細胞数であり、左側が対照例(磁石なし)、右側が本実施例(磁石あり)を示す。図5から明らかなように、MCLを取り込んだMSCを磁石で密集させることで、MSCの細胞数は対照実験と比べて約4倍となった。
【0025】
[実施例2]
イヌMSCに対するMCLの毒性を調べるために、MCL入りの培地とMCLなしの培地を使用する以外は同じ条件でイヌMSCを培養し、時間に対する細胞数の推移をグラフ化した。その結果を図6に示す。図6から明らかなように、MCLを1細胞当りマグネタイトとして100pgとなるように加えた培地を使用した場合と、MCLを加えない培地を使用した場合とでは格別な差は見られなかった。このことから、MCLは1細胞当りマグネタイトとして100pgの濃度ではMSCの細胞増殖阻害を示さないことがわかった。
【0026】
[実施例3]
イヌMSCがMCLを取り込む量を調べるために、MCLを1細胞当りマグネタイトとして100pgとなるように加えた培地を使用して培養し、時間に対する1細胞当たりのMCL量の推移をグラフ化した。その結果を図7に示す。図7から明らかなように、MCLを添加してから約4時間後に1細胞当たりのMCLのマグネタイト量がピークを示した。このピーク時において、1細胞当たりマグネタイトとして100pgとなるように加えられたうちの30pgがイヌMSCに取り込まれた。
【0027】
なお、本発明は上記実施例に何等限定されるものではなく、本発明の技術的範囲を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】本発明の細胞培養方法の一実施形態を表す説明図である。
【図2】磁性微粒子封入正電荷リポソーム(MPCL)の一例の模式図である。
【図3】抗体が固定化された磁性微粒子封入リポソーム(AML)の一例の模式図である。
【図4】本発明の細胞培養方法の一実施形態を表す説明図である。
【図5】培養7日後のMSCの細胞数を表すグラフである。
【図6】イヌMSCに対するMCLの毒性試験結果を表すグラフである。
【図7】時間に対する1細胞当たりのMCL取り込み量を表すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cell culture method.
[0002]
[Prior art]
Cells are broadly classified into two types: floating cells such as blood cells and adhesion-dependent cells such as epithelial cells. For example, bone marrow fluid contains hematopoietic stem cells as floating cells and mesenchymal stem cells as adhesion-dependent cells. Mesenchymal stem cells (MSCs, Mesenchymal Stem Cells) have received attention as pluripotent cells, and many studies have been made alongside embryonic stem cells (ESCs, Embryonic Stem Cells). As a method for separating MSC from bone marrow fluid, it is utilized that MSC is an adhesion-dependent cell and that many other cells in bone marrow fluid are floating cells. A method is generally known in which only the MSC adhered to the bottom surface of the container is sorted out by leaving the container still. Further, as in Patent Document 1, an apparatus for sorting cells by magnetic force is also known.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 7-57177
[Problems to be solved by the invention]
By the way, regarding the culture of the adhesion-dependent cells, if the seeding density is too low, the growth becomes extremely slow. Therefore, it is important to adjust the seeding density before culturing. This is thought to be due to the fact that cell proliferation is activated by paracrine or autocrine action of cytokines produced by cells when cultured at an appropriate seeding density.
[0005]
However, since the above-mentioned MSC has a small absolute number that can be collected from the bone marrow fluid, the MSC merely adheres to the bottom of the container in a sparse state, and it takes time for cell proliferation. This is a problem common not only to MSC but also to cells having a small absolute number contained in the extracted tissue / organ.
[0006]
As a method of eliminating the time required for cell proliferation, a method of treating cells adhered to the bottom surface of the container at a low density with an enzyme such as trypsin is used to separate the cells from the bottom surface of the container, collect the separated cells, and properly inoculate the cells. A method is considered in which the cells are seeded in a container so as to have a density and then propagated. In this case, it is possible to efficiently grow the plants. However, there is a problem that it takes time and effort to sow the container so as to have an appropriate sowing density.
[0007]
The present invention has been made in view of the above-described problems, and has as its object to provide a cell growth method capable of growing cells in a short period of time. Another object of the present invention is to provide a cell growth method capable of concentrating cells without trouble.
[0008]
Means for Solving the Problems, Embodiments of the Invention and Effects of the Invention
In order to achieve at least one of the above objects, the present invention employs the following method. That is, the present invention is a cell culture method for culturing cells,
A magnetizing step of magnetizing the cells to be cultured by holding the magnetic microparticles on the cells,
An assembling step of collecting the cells that have been magnetized in the magnetizing step by magnetic force so that the cells have a density that allows the cells to proliferate properly;
Culturing the cells collected in the assembling step.
[0009]
In this cell culture method, even if the cells exist in a sparse state before the aggregation step, the cells will grow in a relatively short period of time after the aggregation step because they will be dense enough to proliferate properly. Can be done. In addition, since the cells are densely packed by the magnetic force in the assembling step, the cells can be densely packed without trouble.
[0010]
Here, "the density at which the cells can grow properly" means that the density suitable for the growth of the cells to be cultured is previously determined experimentally or theoretically, and based on the density. This is the set value. Whether or not the cell is suitable for proliferation may be determined by whether or not a preset standard is cleared.For example, a standard value may be set for a culture time until a predetermined number of cells is reached and the standard value may be cleared. Alternatively, the determination may be made by setting a reference value for the number of cells grown within a predetermined culture time and clearing the reference value.
[0011]
In the cell culture method of the present invention, the cells to be cultured are preferably adhesion-dependent cells. The adhesion-dependent cells, which are also called anchorage-dependent cells, are cells that once attach to the inner surface of the container and then extend and divide. If the adhesion-dependent cells adhere to the inner surface of the container in a sparse state, they can be cultured as they are, or they can be treated with an enzyme, peeled off from the inner surface of the container, collected, and then seeded to obtain an appropriate seeding density. However, the former requires a long time to proliferate, and the latter requires time. Therefore, by applying the present invention to the adhesion-dependent cells, the cells can be densely grown without any trouble and can be efficiently proliferated.
[0012]
Here, the “adhesion-dependent cells” are, for example, collected from warm-blooded animals such as humans, mice, rats, guinea pigs, hamsters, chickens, rabbits, pigs, sheep, cows, horses, dogs, cats, monkeys, etc. Various cells are included. Examples of the cells of this warm-blooded animal include keratinocytes, spleen cells, nerve cells, glial cells, pancreatic β cells, mesangial cells, Langerhans cells, epidermal cells, epithelial cells, endothelial cells, fibroblasts, fiber cells, Muscle cells, adipocytes, synovial cells, chondrocytes, osteocytes, osteoblasts, osteoclasts, mammary cells, hepatocytes or stromal cells, or precursor cells of these cells, as well as embryonic stem cells (ESC) And stem cells such as mesenchymal stem cells (MSCs) and adhesion-dependent cancer cells. Among them, ESC and MSC are preferable, and MSC is particularly preferable. If the adhesion-dependent cells to be cultured are adhered to the bottom surface, they may be treated with an enzyme such as trypsin and peeled off before being concentrated by magnetic force, or the magnetic force may be superior to the adhesive force. If it is not treated with an enzyme, it may be condensed by magnetic force, or cells may be condensed by magnetic force after treatment using a lower amount of enzyme than usual amount of enzyme so that the adhesive force is weaker than magnetic force Is also good.
[0013]
In the cell culture method of the present invention, when the cells to be cultured are MSCs, the medium is replaced after the adhesion-dependent MSCs have adhered to the bottom surface of the container in which the solution containing the bone marrow fluid has been seeded before the magnetizing step. It is preferable to carry out a pretreatment step of obtaining MSCs to be cultured by removing floating cells by carrying out the above. Specifically, for example, the cells may be cultured according to the procedure shown in FIG. That is, first, a culture medium containing a bone marrow fluid is placed in a culture vessel and allowed to stand (see FIG. 1A). Then, the blood cells are suspended in the bone marrow fluid as they are due to the buoyancy, but the MSCs adhere to the bottom surface of the culture vessel due to adhesion dependence (see FIG. 1 (b)). Thereafter, the medium is replaced to remove the buoyant cells, leaving the MSC adhered to the bottom of the culture vessel. However, since the absolute number of MSCs originally contained in the bone marrow fluid is small, the MSC is sparsely attached to the bottom of the culture vessel. They are merely adhered (see FIG. 1 (c)). After that, if necessary, treatment with an enzyme such as trypsin is performed, and then the magnetic fine particles are charged and the MSCs are magnetized by holding the magnetic fine particles on the MSC (see FIG. 1 (d)). Thereafter, the MSC holding the magnetic fine particles is collected near the magnet by the action of the magnetic force by disposing the magnet on the bottom surface of the culture vessel (see FIG. 1 (e)). At this time, the magnetic force and size (dimensions) of the magnets are selected in advance so that the density of MSCs obtained by experiments is appropriate. Then, by culturing the cells after the MSCs have a proper density, the MSCs can be efficiently proliferated.
[0014]
In the cell culture method of the present invention, the confluence is preferably such that the cell density of a portion where cells are gathered is 1000 cells / cm 2 or more, and particularly preferably 4000 to 6000 cells / cm 2 . Within this range, the cells tend to proliferate due to the action of cytokines produced by the cells (especially adhesion-dependent cells such as MSC). It should be noted that the expression "cell density of a portion where cells are gathered" instead of simply "cell density" means that a predetermined number of cells occupy an entire area when simply expressed as "cell density". Since it is impossible to numerically distinguish between the case where the cells are distributed and the case where the same number of cells are densely packed in a part of the same area, the two can be distinguished by expressing them as `` the cell density of the area where the cells are gathered '' It was.
[0015]
In the cell culture method of the present invention, the magnetic microparticles are magnetic microparticles in a magnetic microparticle-encapsulated positively charged liposome (MPCL), and the cells to be cultured incorporate the MPCL in the magnetizing step. Preferably, the cells are thereby magnetized. The MPCL has a structure in which magnetic fine particles such as magnetite are encapsulated in liposomes and a positively charged lipid is provided between the liposomes, as shown in an example in FIG. Many cells have a negative charge and thus easily bind to MPCL having a positive charge, and MPCL has liposomes and thus is easily taken into cells. Therefore, if MPCL is employed as the magnetic fine particles in the present invention, it can be applied to culture of various cells. MPCL is, for example, Jpn. J. Cancer Res. 87, pp. 1179-1183 (1996) may be prepared by referring to the method for producing magnetite-encapsulated positive liposomes (MCL, Magnetite catic lipsome) described in Vol. As described above, when MPCL is employed in the magnetizing step, it is preferable to use 1 to 150 pg, particularly 20 to 150 pg, of MPCL as magnetic fine particles per cell. It is preferable to proceed to the next step 0.5 to 8 hours, particularly 3 to 5 hours after the start of the contact. In particular, when the cells to be cultured are MSCs, it is preferable to apply these numerical ranges. When the amount of MPCL used is less than 1 pg as magnetic fine particles per cell, it is not preferable because it is difficult to hold the MPCL in a cell in an amount sufficient to aggregate by magnetic force. Not preferred. The amount used is particularly preferably 20 to 150 pg. In addition, since the amount of the cells taking in the MPCL reaches its peak 0.5 to 8 hours after the start of the contact between the cells and the MPCL, it is preferable to proceed to the next step after 0.5 to 8 hours. The peak range is particularly preferably after 3 to 5 hours.
[0016]
In the cell culture method of the present invention, the magnetic microparticles are magnetic microparticles in a magnetic microparticle-encapsulated liposome (AML, Antibody-immobilized magnetosome) immobilized with an antibody, and the cells to be cultured and the cells are used in the magnetizing step. It is also preferable to magnetize the cells by binding to AML on which an antibody that specifically binds to is immobilized. As shown in FIG. 3, AML has a structure in which magnetic fine particles such as magnetite are encapsulated in liposomes and an antibody is provided between the liposomes. An antibody that specifically binds to a specific cell to be cultured is selected. In this case, a specific cell can be selected from a large number of cells and aggregated. For example, when the cells to be cultured are MSC and the magnetic fine particles are AML, the cells may be cultured according to the procedure shown in FIG. That is, first, a solution containing a bone marrow fluid is placed in a culture vessel, and AML is added thereto (see FIG. 4A). Bone marrow fluid contains a large amount of buoyant cells in addition to a small amount of MSC. However, cells other than MSC do not bind to the AML antibody, so only MSC binds to the AML antibody and is selectively magnetized. (See FIG. 4B). After binding to the AML antibody, MSC takes up AML into cells due to the presence of the liposome. Subsequently, by arranging a magnet on the bottom surface of the culture vessel, MSCs holding the magnetic fine particles are collected near the magnet by the action of magnetic force (see FIG. 4C). At this time, the magnetic force and size (dimensions) of the magnets are selected in advance so that the density of MSCs obtained by experiments is appropriate. Subsequently, the medium is exchanged while keeping the magnetized MSCs dense by magnetic force to remove the floating cells (see FIG. 4D). Thereafter, the MSCs are cultured. At this time, since the MSCs have an appropriate density, they grow efficiently. In addition, examples of the antibody that specifically binds to MSC include CD105, CD73, CD29, and CD44. Further, in this method, even when the cells to be cultured are adhesion-dependent cells, the aggregation step can be performed before the cells adhere, so that treatment using an enzyme such as trypsin can be omitted, and cell damage can be prevented. Can be reduced.
[0017]
The above-described AML is described in, for example, Chem. Eng. Jpn. It may be prepared by referring to the method described in Vol. 34, pp. 66-72 (2001). As described above, when AML is employed in the magnetizing step, it is preferable to use 1 to 150 pg, particularly 20 to 150 pg, of AML as magnetic fine particles per cell. It is preferable to proceed to the next step 0.5 to 8 hours, particularly 3 to 5 hours after the start of the contact. If the amount of AML used is less than 1 pg as magnetic fine particles per cell, it is not preferable because it is difficult to hold a sufficient amount of AML in the cells to aggregate by magnetic force, and if it exceeds 150 pg, the amount of AML that is not held increases and it is not economical. Not preferred. The amount used is particularly preferably 20 to 150 pg. In addition, the amount of MPCL taken up by the cells becomes 0.5 to 8 hours after the start of the contact between the cells and the AML. Therefore, it is preferable to proceed to the next step after 0.5 to 8 hours. The peak range is particularly preferably after 3 to 5 hours.
[0018]
The present invention can be applied when cells are separated and cultured from bone marrow, tissue, blood, and the like. In particular, when AML is used as the magnetic fine particles, it is effective for separating and culturing cells from blood or the like. The magnetic fine particles are not particularly limited to MPCL and AML as long as they adhere (retain) to cells. For example, they are used for MACS (Magnetic Cell Sorting and Separation of Biomolecules) of Daiichi Kagaku Co., Ltd. Magnetic microbeads, magnetic nanoparticles of Veritas (EasySep), or the like may be used. Among these magnetic fine particles, the magnetic fine particles containing liposomes, such as MPCL and AML, are taken into cells by the presence of the liposome, so that one cell can take in many magnetic fine particles and can be densely packed by magnetic force. This is preferable because the magnetism can be easily obtained.
[0019]
【Example】
[Example 1]
(1) Cells Used and Culture Conditions Human mesenchymal stem cells (MSCs) were manufactured by Bio Whittaker. In the experiment, an MSC growth medium MSCGM (Bio Whittaker) was used as a medium, and a 100 mm tissue culture dish (tissue culture dish, Asahi Techno Glass Co., Ltd.) was used as a culture vessel. The medium contained 37 ° C. and 5% CO 2 . Culture was performed in a humidified air environment.
[0020]
(2) Preparation of Magnetite Encapsulated Positively Charged Liposomes (MCL, Magnetite Cationic Lipsome) MCL was prepared according to Jpn. J. Cancer Res. 87, pages 1179 to 1183 (1996). Specifically, first, three types of phospholipids, namely, N- (α-trimethylammonioacetyl) didodecyl-D-glutamate chloride (manufactured by Mutual Pharmaceutical Co., Ltd.), dilauroylphosphatidyl chloride (manufactured by Sigma Chemical Company), and dioleyl A liposome membrane containing phosphatidylethanolamine (Sigma Chemical Co., Ltd.) at a molar ratio of 1: 2: 2 was prepared, followed by addition of 1 mL of colloidal magnetite (magnetite amount 20 mg, magnetite manufactured by Toda Kogyo Co., Ltd.) MCL was prepared by the vortex method described above. The magnetite concentration was 18 mg / ml as measured by the potassium thiocyanate method.
[0021]
(3) Incorporation of MCL into MSC MCL was taken into MSC by replacing the medium of MSC in the logarithmic growth phase with MSCGM containing MCL in a tissue culture dish. The MCL concentration was added so as to be 100 pg of magnetite per cell with respect to the number of MSC cells.
[0022]
(4) Cell Culture Method Using Magnet Four hours after the addition of MCL, the MSC into which MCL was taken was adhered to the bottom surface of the tissue culture dish, so that it was peeled off from the bottom surface by treatment with trypsin, and the number of cells was 1000. Individually prepared in 10 ml MSCGM and seeded in 100 mm tissue culture dishes. At that time, the cells were shaken in a figure 8 at 60 rpm for 10 minutes using a shaker to inoculate the cells. At this time, a neodymium magnet (outer diameter 2.2 cmφ, surface magnetic flux density 0.45 T) was placed on the bottom of the 100 mm tissue culture dish at the center of the bottom of the tissue culture dish. As a control, shaking was performed in the same manner without installing a neodymium magnet. The MSCs (1000 cells) loaded with MCL were densely packed in a 2.2 cmφ circle at the center of the bottom of the tissue culture dish when the neodymium magnet was installed, whereas no neodymium magnet was installed. In some cases, it was distributed sparsely over the entire bottom surface of the tissue culture dish. When the neodymium magnet was installed, cells gathered toward the edge of the magnet (the part having a high magnetic flux density), and the area where such cells gathered was 1 cm 2 . Therefore, the cell density (density) of the portion where the cells are gathered is 1000 cells / cm 2 .
[0023]
(5) Measurement of Number of Cells The number of cells after 7 days of culture was measured using a cell counting kit-8 (Cell Counting Kit-8 (manufactured by Dojindo Chemical)) using WST-8 as a coloring substrate. The measuring method followed the instruction manual of the cell counting kit-8.
[0024]
(6) Experimental Results The experimental results are shown in FIG. FIG. 5 shows the number of MSC cells after 7 days of culture. The left side shows a control example (without magnet), and the right side shows this example (with magnet). As is clear from FIG. 5, the number of MSC cells was approximately four times higher than that in the control experiment by densely packing the MCL-loaded MSCs with a magnet.
[0025]
[Example 2]
In order to examine the toxicity of MCL to dog MSC, dog MSCs were cultured under the same conditions except that a medium containing MCL and a medium without MCL were used, and the change in cell number over time was graphed. FIG. 6 shows the result. As is clear from FIG. 6, no remarkable difference was observed between the case where the medium in which MCL was added to give 100 pg of magnetite per cell was used and the case where the medium in which MCL was not added was used. From this, it was found that MCL did not inhibit cell growth of MSC at a concentration of 100 pg as magnetite per cell.
[0026]
[Example 3]
In order to examine the amount of MCL taken up by dog MSCs, the cells were cultured using a medium in which MCL was added at 100 pg as magnetite per cell, and the change in MCL amount per cell over time was graphed. FIG. 7 shows the result. As apparent from FIG. 7, about 4 hours after the addition of MCL, the amount of MCL magnetite per cell showed a peak. At this peak, 30 pg of the added magnetite per cell to 100 pg was incorporated into dog MSCs.
[0027]
It should be noted that the present invention is not limited to the above embodiment at all, and it is needless to say that the present invention can be implemented in various forms without departing from the technical scope of the present invention.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing one embodiment of the cell culture method of the present invention.
FIG. 2 is a schematic diagram of an example of a positively charged liposome (MPCL) encapsulating magnetic fine particles.
FIG. 3 is a schematic diagram of an example of a magnetic microparticle-encapsulated liposome (AML) on which an antibody is immobilized.
FIG. 4 is an explanatory diagram showing one embodiment of the cell culture method of the present invention.
FIG. 5 is a graph showing the number of MSC cells after 7 days of culture.
FIG. 6 is a graph showing the results of a toxicity test of MCL on dog MSC.
FIG. 7 is a graph showing the amount of MCL uptake per cell over time.

Claims (9)

細胞を培養する細胞培養方法であって、
培養しようとする細胞に磁性微粒子を保持させることにより該細胞を磁性化する磁性化工程と、
前記磁性化工程で磁性化された細胞を磁力によって該細胞が適正に増殖し得る密集度となるように集める集合化工程と、
前記集合化工程で集められた細胞を培養する培養工程と
を含む細胞培養方法。
A cell culture method for culturing cells, comprising:
A magnetizing step of magnetizing the cells to be cultured by holding the magnetic microparticles on the cells,
An assembling step of collecting the cells that have been magnetized in the magnetizing step by magnetic force so that the cells have a density that allows the cells to proliferate properly;
Culturing the cells collected in the assembling step.
前記細胞は接着依存性細胞である、請求項1に記載の細胞培養方法。The cell culture method according to claim 1, wherein the cells are adhesion-dependent cells. 前記接着依存性細胞は間葉系幹細胞(MSC)である、請求項2に記載の細胞培養方法。The cell culture method according to claim 2, wherein the adhesion-dependent cell is a mesenchymal stem cell (MSC). 前記磁性化工程の前に、骨髄液を含む溶液を播種した容器の底面に接着依存性のMSCが接着したあと培地交換を行って浮遊性細胞を除去することにより培養しようとするMSCを得る前処理工程を実施する、請求項3に記載の細胞培養方法。Before the magnetizing step, before the adhesion-dependent MSC adheres to the bottom of the container in which the solution containing the bone marrow fluid has been inoculated, the culture medium is replaced to remove the floating cells before obtaining the MSC to be cultured. The cell culture method according to claim 3, wherein a treatment step is performed. 前記密集度は細胞の集まっている部分の細胞密度が1000〜6000cells/cmである、請求項1〜4のいずれかに記載の細胞培養方法。The cell culture method according to any one of claims 1 to 4, wherein the confluence is such that a cell density of a portion where cells are collected is 1000 to 6000 cells / cm 2 . 前記磁性微粒子は磁性微粒子封入正電荷リポソーム(MPCL)内の磁性微粒子であり、前記磁性化工程では前記培養しようとする細胞に前記MPCLを取り込ませることにより該細胞を磁性化する、請求項1〜5のいずれかに記載の細胞培養方法。The magnetic particles are magnetic particles in a positively charged liposome (MPCL) encapsulating magnetic particles, and in the magnetizing step, the cells to be cultured are magnetized by incorporating the MPCL into the cells. 6. The cell culture method according to any one of 5. 前記磁性化工程では前記MPCLを1細胞当り磁性微粒子として1〜150pg使用する、請求項6に記載の細胞培養方法。The cell culture method according to claim 6, wherein in the magnetizing step, the MPCL is used in an amount of 1 to 150 pg as magnetic fine particles per cell. 前記磁性化工程では前記培養しようとする細胞と前記MPCLとの接触を開始してから0.5〜8時間後に次工程へ進む、請求項6又は7に記載の細胞培養方法。The cell culture method according to claim 6, wherein in the magnetizing step, the cell proceeds to the next step 0.5 to 8 hours after the contact of the cell to be cultured with the MPCL is started. 前記磁性微粒子は抗体を固定化した磁性微粒子封入リポソーム(AML)内の磁性微粒子であり、前記磁性化工程では前記培養しようとする細胞と該細胞に特異的に結合する抗体を固定化した前記AMLとを結合させることにより細胞を磁性化する、請求項1〜5のいずれかに記載の細胞培養方法。The magnetic microparticles are magnetic microparticles in a magnetic microparticle-encapsulated liposome (AML) in which an antibody is immobilized. In the magnetizing step, the cells to be cultured and the AML in which an antibody that specifically binds to the cells is immobilized. The cell culture method according to any one of claims 1 to 5, wherein the cells are magnetized by binding to
JP2003046060A 2003-02-24 2003-02-24 Cell culture method Expired - Fee Related JP4160842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046060A JP4160842B2 (en) 2003-02-24 2003-02-24 Cell culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046060A JP4160842B2 (en) 2003-02-24 2003-02-24 Cell culture method

Publications (2)

Publication Number Publication Date
JP2004254519A true JP2004254519A (en) 2004-09-16
JP4160842B2 JP4160842B2 (en) 2008-10-08

Family

ID=33112715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046060A Expired - Fee Related JP4160842B2 (en) 2003-02-24 2003-02-24 Cell culture method

Country Status (1)

Country Link
JP (1) JP4160842B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230316A (en) * 2005-02-25 2006-09-07 Japan Health Science Foundation Cell having wound healing ability without scar and method for preparing the same
WO2007116594A1 (en) * 2006-03-30 2007-10-18 National University Corporation Nagoya University Method for formation of cell structure
WO2008059945A1 (en) 2006-11-17 2008-05-22 Japan Tissue Engineering Co., Ltd. Tissue piece pinching device and culture kit
EP2210937A1 (en) 2005-05-09 2010-07-28 Olympus Corporation Culture method for mesenchymal stem cell and process for production of supporting material for biological tissue
JP2010161953A (en) * 2009-01-13 2010-07-29 Dainippon Printing Co Ltd Method for producing biological tissue
JP2010161954A (en) * 2009-01-13 2010-07-29 Dainippon Printing Co Ltd Method for producing biological tissue
JP2011015662A (en) * 2009-07-10 2011-01-27 Kinki Univ Method for producing mesenchymal cell or cartilage cell, and method for suppressing carcinogenicity
EP2308964A1 (en) 2009-09-28 2011-04-13 GC Corporation Culturing method of mesenchymal stem cell
US20140220672A1 (en) * 2010-08-10 2014-08-07 Nano3D Biosciences, Inc Hardware for magnetic 3d culture
WO2015005299A1 (en) * 2013-07-09 2015-01-15 ユニバーサル・バイオ・リサーチ株式会社 Culture device, culture system, and culture method
JP2018046785A (en) * 2016-09-23 2018-03-29 国立大学法人名古屋大学 Method of grouping heterologous microorganisms and method of constructing symbiotic relationships
JP2019154285A (en) * 2018-03-09 2019-09-19 大日本印刷株式会社 Container for observation, and observation method of biological sample

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230384B1 (en) * 2010-10-11 2013-02-07 서울대학교산학협력단 Method for cell proliferation and apoptosis control with magnetic particle and magnetic field

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230316A (en) * 2005-02-25 2006-09-07 Japan Health Science Foundation Cell having wound healing ability without scar and method for preparing the same
EP2210937A1 (en) 2005-05-09 2010-07-28 Olympus Corporation Culture method for mesenchymal stem cell and process for production of supporting material for biological tissue
WO2007116594A1 (en) * 2006-03-30 2007-10-18 National University Corporation Nagoya University Method for formation of cell structure
WO2008059945A1 (en) 2006-11-17 2008-05-22 Japan Tissue Engineering Co., Ltd. Tissue piece pinching device and culture kit
JP2010161953A (en) * 2009-01-13 2010-07-29 Dainippon Printing Co Ltd Method for producing biological tissue
JP2010161954A (en) * 2009-01-13 2010-07-29 Dainippon Printing Co Ltd Method for producing biological tissue
US9440004B2 (en) 2009-01-13 2016-09-13 Dai Nippon Printing Co., Ltd. Method for preparing biological tissue
JP2011015662A (en) * 2009-07-10 2011-01-27 Kinki Univ Method for producing mesenchymal cell or cartilage cell, and method for suppressing carcinogenicity
US8039256B2 (en) 2009-09-28 2011-10-18 Gc Corporation Culturing method of mesenchymal stem cell
EP2308964A1 (en) 2009-09-28 2011-04-13 GC Corporation Culturing method of mesenchymal stem cell
US20140220672A1 (en) * 2010-08-10 2014-08-07 Nano3D Biosciences, Inc Hardware for magnetic 3d culture
US10407660B2 (en) * 2010-08-10 2019-09-10 Greiner Bio-One North America, Inc. Hardware for magnetic 3D culture
WO2015005299A1 (en) * 2013-07-09 2015-01-15 ユニバーサル・バイオ・リサーチ株式会社 Culture device, culture system, and culture method
JPWO2015005299A1 (en) * 2013-07-09 2017-03-02 ユニバーサル・バイオ・リサーチ株式会社 CULTURE DEVICE, CULTURE SYSTEM, AND CULTURE METHOD
US11332704B2 (en) 2013-07-09 2022-05-17 Universal Bio Research Co., Ltd. Culture device, culture system, and culture method
JP2018046785A (en) * 2016-09-23 2018-03-29 国立大学法人名古屋大学 Method of grouping heterologous microorganisms and method of constructing symbiotic relationships
JP2019154285A (en) * 2018-03-09 2019-09-19 大日本印刷株式会社 Container for observation, and observation method of biological sample

Also Published As

Publication number Publication date
JP4160842B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4160842B2 (en) Cell culture method
Matsunaga et al. Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization
CN103298922B (en) Multifunctional bioreactor system and methods for cell sorting and culturing
JP4504920B2 (en) Cell culture method
CA2583151C (en) Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue
US5480827A (en) Use of porous polycrystalline aragonite as a support material for in vitro culture of cells
KR20150013471A (en) Alternating ionic magnetic resonance (aimr) multiple-chambered culture apparatus and methods of use
JP5889523B2 (en) Spheroid production apparatus and spheroid production method
JP2006509502A5 (en)
CN106854634B (en) Cell culture carrier module, bioreactor and cell recovery method
JP2005312386A (en) Cell culture method and cultured cell body
CN101415816A (en) Method of characterizing a biologically active compound
CN107794223A (en) Anaerobic bacteria and the in vitro study model and method of aerobic cell interaction in cell co-culture device and analogue body
Lasfargues New approaches to the cultivation of human breast carcinomas
AU754250B2 (en) The production of primmorphs from disassociated cells of sponges, corals and other invertebrates, and use thereof
CN108753702A (en) A kind of Periodontal ligament stem cell subgroup and its dryness detection method by cell surface marker specific enrichment
RU2000109193A (en) METHOD FOR INDICATING THE CASES OF SIBERIAN ANALYSIS IN THE OBJECTS OF THE EXTERNAL ENVIRONMENT
US8790907B2 (en) Method for detachment and preparation of living microorganisms
EP2558568B1 (en) Method for obtaining a population of stromal progenitor cells
EP2514819B1 (en) Method for immobilizing living microorganisms and method for preparing living microorganisms
CN1673358A (en) Method for separating mesenchy mall stem/ancestral cells for bone parenchyma
RU2123527C1 (en) Biotropic magnetic structure
JPS6163284A (en) Cultivation of animal cells
JPH0569462B2 (en)
JP2024140266A (en) Method for producing carrier-bound cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080718

R150 Certificate of patent or registration of utility model

Ref document number: 4160842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees