[go: up one dir, main page]

JP2004250387A - Method for catalytic hydrogenation reaction using palladium carried by silica gel with dual pore system - Google Patents

Method for catalytic hydrogenation reaction using palladium carried by silica gel with dual pore system Download PDF

Info

Publication number
JP2004250387A
JP2004250387A JP2003043400A JP2003043400A JP2004250387A JP 2004250387 A JP2004250387 A JP 2004250387A JP 2003043400 A JP2003043400 A JP 2003043400A JP 2003043400 A JP2003043400 A JP 2003043400A JP 2004250387 A JP2004250387 A JP 2004250387A
Authority
JP
Japan
Prior art keywords
group
palladium
silica gel
hydrogenation reaction
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003043400A
Other languages
Japanese (ja)
Inventor
Tomoji Sato
智司 佐藤
Ryoji Takahashi
亮治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP2003043400A priority Critical patent/JP2004250387A/en
Publication of JP2004250387A publication Critical patent/JP2004250387A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently carrying out catalytic hydrogenation reaction of a site to be hydrogenated without problems of difficulty in handling, e.g. the danger of ignition, possessed by a conventionally used palladium-carbon catalyst. <P>SOLUTION: This method for carrying out the hydrogenation reaction of the site to be hydrogenated involves bringing a compound having the site to be hydrogenated into contact with hydrogen gas in the presence of the palladium carried by the silica gel with the dual pore system comprising macro pores having 0.5-25 μm pore diameters and mesopores having 5-25 nm pore diameters. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特定の孔径を有するマクロ細孔と特定の孔径を有するメソ細孔を有する二元細孔シリカゲルに担持されたパラジウムの存在下、水素化される部位を有する化合物に水素ガスを接触させることを特徴とする、当該水素化される部位の接触水素添加反応方法に関するものである。
【0002】
【従来の技術】
パラジウム触媒は、例えば水素添加反応、水素化分解反応等に於いて良好な活性、選択性を示すことから、工業的に利用されているが、その活性成分であるパラジウムは比較的高価なため、一般的に担体に担持された担持触媒として用いられる。
【0003】
パラジウム担持触媒の担体としては、例えばシリカゲル、アルミナ、活性炭、アルカリ土類金属の炭酸塩及び硫酸塩等が知られている。
【0004】
パラジウム−炭素触媒は、例えば炭素−炭素二重結合を有する化合物の水素添加反応触媒として使用されているが、この触媒は粉体であるため取扱が難しく、また発火等の危険性を伴う等の欠点を有していた。
【0005】
一方、シリカゲルは、例えばクロマトグラフィー、ガスクロマトグラフィー等の充填剤、触媒担体等として知られており、従来は2nm以下のミクロ細孔を有するものが用いられていた。しかし、これらのシリカゲルは、例えばクロマトグラフィー用充填剤として使用した場合、流体の流速抵抗が大きいため、圧力損失が大きく、それ故、単位時間当たりの流量が少なくなり、クロマトグラフィーとして用いるには分析に長時間を要するという欠点を有していた。
【0006】
そこで、圧力損失を小さくするため、従来のものが有していた細孔径よりも大きな孔径を有するシリカゲルの研究が進められた。
【0007】
特許文献1には、500nm以上の孔径を有する貫通孔(マクロ孔)と5〜100nmの孔径を有する細孔(メソ孔)を有するシリカゲルからなるカラムが開示されている。また、このカラムにパラジウム等の触媒を担持させた場合、流体がカラムを通過する過程でパラジウムと効率よく反応する旨記載されている。しかしながら、当該特許文献1はカラムに関するものであり、当該カラムにパラジウムを担持させた場合の具体的な記載、更にはパラジウムを担持させる場合のシリカゲルの好ましいメソ細孔径の記載、またこれを用いた好ましい反応については何ら示唆されていない。
【0008】
このような状況下、従来使用していたパラジウム−炭素触媒が有していた、例えば発火等の危険性を伴う、粉体のため取扱が難しい等の問題点を有することなく、パラジウムの触媒活性を増大させたシリカゲルに担持させたパラジウムを触媒として用いることにより効率よく接触水素添加反応を行う方法等の開発が望まれている。
【0009】
【特許文献1】
特開平6−293574号公報
【特許文献2】
国際公開第WO02/085785号公報
【非特許文献1】
日本化学会編,「新実験化学講座15 酸化と還元(II)」,丸善株式会社,昭和52年2月20日、p.420−p.447
【0010】
【発明が解決しようとする課題】
本発明は、上記した如き状況に鑑みなされたもので、特定の孔径を有するマクロ細孔と特定の孔径を有するメソ細孔からなる二元細孔シリカゲルに担持されたパラジウムの存在下、水素化される部位を有する化合物に水素ガスを接触させることにより当該水素化される部位の接触水素添加反応を効率よく行う方法を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明は、上記課題を解決する目的でなされたものであり、0.5〜25μmの孔径を有するマクロ細孔と5〜25nmの孔径を有するメソ細孔からなる二元細孔シリカゲルに担持されたパラジウムの存在下、水素化される部位を有する化合物に水素ガスを接触させることを特徴とする、当該水素化される部位の接触水素添加反応方法、の発明である。
【0012】
即ち、発明者等は上記目的を達成すべく鋭意研究を重ねた結果、0.5〜25μmである特定の孔径を有するマクロ細孔と5〜25nmである特定の孔径を有するメソ細孔からなる二元細孔シリカゲルに担持されたパラジウムを触媒として用いて、水素化される部位を有する化合物に水素ガスを接触させれば、従来使用していたパラジウム−炭素触媒が有していた、例えば発火等の危険性を伴う、粉体のため取扱が難しい等の問題点を有することなく、効率よく当該水素化される部位を水素化し得ることを見出し、本発明を完成するに至った。
【0013】
本発明に係る0.5〜25μmの孔径を有するマクロ細孔と5〜25nmの孔径を有するメソ細孔からなる二元細孔シリカゲル(以下、本発明に係る二元細孔シリカゲルと略記する。)が有するマクロ細孔の孔径としては、当該二元細孔シリカゲルの粒子中にマクロ細孔が存在し得る孔径であれば如何なるものでもよく、通常0.5〜25μm、好ましくは0.5〜10μm、より好ましくは2〜5μmである。
【0014】
本発明に係る二元細孔シリカゲルが有するメソ細孔の孔径としては、通常5〜25nm、好ましくは5〜18nm、より好ましくは7〜15nmである。
【0015】
本発明に係る二元細孔シリカゲルの粒子径は、粒子中にマクロ細孔が存在し得る大きさであれば如何なるものでもよいが、小さすぎると取扱が難しく、大きすぎると物質移動抵抗が大きくなり触媒活性が低下するため、例えば取扱の簡便さ、反応溶液からの分離回収の利便性等を考慮すると、通常10〜500μm、好ましくは20〜200μm、より好ましくは25〜100μmである。
【0016】
本発明に係る二元細孔シリカゲルに担持されるパラジウムの担持量は、通常0.5〜15wt%、好ましくは3〜10wt%である。
【0017】
本発明に係る二元細孔シリカゲルは、例えば特許文献1、特許文献2等に記載された方法に準じて調製すればよい。
【0018】
より具体的には、例えば0.1〜5N酸性水溶液中に水溶性ポリマーを撹拌しながら添加し溶解した後、これにアルコキシシラン又は水ガラス(水ガラスは予め酸性水溶液に溶解し酸性状態にしておく。)のシリカ成分を添加し、均一になるまで室温で撹拌する。得られた透明ゾルを密閉容器中で、0〜80℃恒温槽で0.5〜100時間静置する。次いで、得られたゲルを蒸留水で洗浄した後、メソ細孔制御を目的として必要に応じて、これにアンモニア水を添加し、0〜100℃恒温槽で5〜200時間静置する。次いで、アンモニア水を除去し、0〜100℃恒温槽で1〜5時間乾燥させる。乾燥後、500〜800℃で1〜5時間焼成する。得られたシリカゲルを、粉砕した後ふるいにかけ、粒子径を均一にすることにより、本発明に係る二元細孔シリカゲルが得られる。
【0019】
酸性水溶液としては、焼成後に不純物残留が少ないものが挙げられ、具体的には、例えば塩酸、硝酸、硫酸、酢酸等の水溶液が挙げられ、中でも、例えば硝酸、酢酸等の水溶液が好ましく、就中、硝酸水溶液がより好ましい。
【0020】
水溶性ポリマーとしては、アルコキシシラン又は水ガラスのシリカ成分との反応物が水溶性を示すものであれば如何なるものでもよく、具体的には、例えばポリエチレンオキサイド、ポリプロピレンオキサイド等のポリアルキレンオキサイド類、例えばポリアクリル酸、ポリメタクリル酸、ポリクロトン酸、ポリイソクロトン酸、ポリスチレンスルホン酸、ポリビニルピロリドン等が挙げられ、中でも、シリカ成分がアルコキシシランの場合はポリエチレンオキサイド、シリカ成分が水ガラスの場合はポリアクリル酸が好ましい。
【0021】
シリカ成分として挙げられるアルコキシシランとしては、例えば一般式[1]
【0022】
【化1】

Figure 2004250387
【0023】
(式中、Rはアルコキシ基を表し、Rは水素原子、アルキル基、アリール基又はビニル基を表し、nは1〜4の整数を表す。)で示されるものが挙げられる。
【0024】
一般式[1]に於いて、Rで示されるアルコキシ基としては、直鎖状、分枝状或いは環状の何れでもよく、通常炭素数1〜8のもの、好ましくは1〜4のもの、より好ましくは1〜2のものが挙げられ、具体的には、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、イソペンチルオキシ基、sec−ペンチルオキシ基、tert−ペンチルオキシ基、ネオペンチルオキシ基、n−ヘキシルオキシ基、イソヘキシルオキシ基、sec−ヘキシルオキシ基、tert−ヘキシルオキシ基、ネオヘキシルオキシ基、n−ヘプチルオキシ基、イソヘプチルオキシ基、sec−ヘプチルオキシ基、tert−ヘプチルオキシ基、ネオヘプチルオキシ基、n−オクチルオキシ基、イソオクチルオキシ基、sec−オクチルオキシ基、tert−オクチルオキシ基、ネオオクチルオキシ基、シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基等が挙げられる。
【0025】
で示されるアルキル基としては、直鎖状、分枝状或いは環状の何れでもよく、通常炭素数1〜20、好ましくは1〜10、より好ましくは1〜5、更に好ましくは1〜3のものが挙げられ、具体的には、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、2−メチルブチル基、1−エチルプロピル基、n−ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、ネオヘキシル基、2−メチルペンチル基、3−メチルペンチル基、1,2−ジメチルブチル基、2,2−ジメチルブチル基、1−エチルブチル基、2−エチルブチル基、n−ヘプチル基、イソヘプチル基、sec−ヘプチル基、tert−ヘプチル基、ネオヘプチル基、2−メチルヘキシル基、3−メチルヘキシル基、2,2−ジメチルペンチル基、3−エチルペンチル基、2,4−ジメチルペンチル基、1−エチル−1−メチルブチル基、1,2,3−トリメチルブチル基、n−オクチル基、イソオクチル基、sec−オクチル基、tert−オクチル基、ネオオクチル基、n−ノニル基、イソノニル基、sec−ノニル基、tert−ノニル基、ネオノニル基、n−デシル基、イソデシル基、sec−デシル基、tert−デシル基、ネオデシル基、n−ウンデシル基、イソウンデシル基、sec−ウンデシル基、tert−ウンデシル基、ネオウンデシル基、n−ドデシル基、イソドデシル基、sec−ドデシル基、tert−ドデシル基、ネオドデシル基、n−トリデシル基、イソトリデシル基、sec−トリデシル基、tert−トリデシル基、ネオトリデシル基、n−テトラデシル基、イソテトラデシル基、sec−テトラデシル基、tert−テトラデシル基、ネオテトラデシル基、n−ペンタデシル基、イソペンタデシル基、sec−ペンタデシル基、tert−ペンタデシル基、ネオペンタデシル基、n−ヘキサデシル基、イソへキサデシル基、sec−へキサデシル基、tert−へキサデシル基、ネオへキサデシル基、n−ヘプタデシル基、イソヘプタデシル基、sec−ヘプタデシル基、tert−ヘプタデシル基、ネオヘプタデシル基、n−オクタデシル基、イソオクタデシル基、sec−オクタデシル基、tert−オクタデシル基、ネオオクタデシル基、n−ノナデシル基、イソノナデシル基、sec−ノナデシル基、tert−ノナデシル基、ネオデシル基、n−イコシル基、イソイコシル基、sec−イコシル基、tert−イコシル基、ネオイコシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリデシル基、シクロテトラデシル基、シクロペンタデシル基、シクロへキサデシル基、シクロヘプタデシル基、シクロオクタデシル基、シクロノナデシル基、シクロイコシル基等が挙げられる。
【0026】
で示されるアリール基としては、通常炭素数6〜10のものが挙げられ、具体的には、例えばフェニル基、ナフチル基等が挙げられる。
【0027】
nは、通常1〜4の整数、好ましくは3〜4整数、より好ましくは4である。
【0028】
一般式[1]で示されるアルコキシシランの好ましい具体例としては、例えば例えばテトラメトキシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、ジメトキシジエトキシシラン等のテトラアルコキシシラン類、例えばメチルトリメトキシシラン、エチルトリメトキシシラン等のトリアルコキシアルキルシラン類、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン等のトリアルコキシビニルシラン類、例えばトリメトキシシラン、トリエトキシシラン等のトリアルコキシシラン類、例えばフェニルトリメトキシシラン、フェニルトリエトキシシラン等のトリアルコキシフェニルシラン類、例えばジメトキシジメチルシラン、ジエトキシメチルシラン等のジアルキルジアルコキシシラン類、例えばジメトキシジフェニルシラン、ジメトキシジメチルフェニルシラン等のジアルコキシアルキルフェニルシラン類、例えばトリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシトリアルキルシラン類等が挙げられ、中でも、例えばテトラアルコキシシラン類が好ましく、就中、例えばテトラエトキシシランがより好ましい。
【0029】
シリカ成分として挙げられる水ガラスは市販のものを用いてもよいし、常法により適宜調製したものを用いてもよい。当該水ガラスは強塩基性であるため、予め例えば濃硝酸等の強酸に溶解させて酸性水溶液としたものを使用する。
【0030】
使用する酸性水溶液の濃度は、通常0.1〜5N、好ましくは0.2〜3N、より好ましくは0.5〜3Nである。
【0031】
アルコキシシラン又は水ガラスの使用量は、使用する水溶性ポリマー、酸性水溶液等の種類により異なるが、通常1〜90wt%、好ましくは5〜80wt%、より好ましくは10〜70wt%である。
【0032】
水溶性ポリマーの使用量は、本発明に係る二元細孔シリカゲルが有するマクロ細孔の孔径の大きさにより適宜選択されるが、アルコキシシラン又は水ガラスに対して、通常0.01〜5倍重量、好ましくは0.03〜1倍重量、より好ましくは0.05〜0.5倍重量となる量である。
【0033】
使用するアンモニア水の濃度は、通常0.01〜10N、好ましくは0.01〜5N、より好ましくは0.01〜1Nである。
【0034】
当該アンモニア水の使用量は、本発明に係る二元細孔シリカゲルが有するメソ細孔の孔径の大きさにより適宜選択されるが、シリカゲルの体積に対して、通常0.5〜20倍、好ましくは1〜15倍、より好ましくは3〜10倍となる量である。
【0035】
当該アンモニア水を添加して、得られたゲルを静置させる恒温槽の温度は、本発明に係る二元細孔シリカゲルが有するメソ細孔の孔径の大きさにより適宜選択されるが、通常0〜100℃、好ましくは20〜80℃、より好ましくは30〜50℃である。
【0036】
また、本発明に係る二元細孔シリカゲル担持パラジウムは、例えば以下のように調製すればよい。
即ち、上記方法により得られた当該二元細孔シリカゲルを、パラジウム化合物を反応溶媒に溶解させた溶液に含浸させた後、400〜700℃で1〜5時間焼成することにより、本発明に係る二元細孔シリカゲル担持パラジウムが得られる。
【0037】
パラジウム化合物としては、例えば塩化パラジウム、酢酸パラジウム、硝酸パラジウム、硫酸パラジウム等が挙げられ、中でも塩化パラジウム、酢酸パラジウム等が好ましく、就中、酢酸パラジウムがより好ましい。
【0038】
反応溶媒としては、パラジウム化合物を溶解し得るものであれば特に限定されないが、具体的には、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、シクロヘキサン、シクロヘプタン等の炭素数5〜11の脂肪族炭化水素類、例えばベンゼン等の芳香族炭化水素類、例えばトルエン、キシレン、メシチレン、エチルベンゼン、プロピルベンゼン、クメン、ブチルベンゼン、イソブチルベンゼン、tert−ブチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン等のアルキル置換芳香族炭化水素類、例えばフルオロベンゼン、ジフルオロベンゼン、クロロベンゼン、ジクロロベンゼン、ブロモベンゼン、ジブロモベンゼン、ヨードベンゼン、ジヨードベンゼン、トリヨードベンゼン、テトラヨードベンゼン、ペンタヨードベンゼン、ヘキサヨードベンゼン、フルオロトルエン、クロロトルエン、ブロモトルエン、ヨードトルエン等のハロゲン置換芳香族炭化水素類、例えばメタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ベンジルアルコール等のアルコール類、例えばアセトン、メチルエチルケトン、ジエチルケトン、ヘキサノン、シクロヘキシルアセトン、アセトフェノン、プロピオフェノン、アセトイン等のケトン類、例えばジエチルエーテル、ジイソプロピルエーテル、tert−ブチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサン、シクロペンチルフェニルエーテル等のエーテル類等の有機溶媒、水等が挙げられ、中でも、例えばアセトン、エタノール、水等が好ましく、就中、アセトンがより好ましい。これら溶媒は、パラジウム化合物の種類等によって適宜選択され、単独で用いても二種以上適宜組み合わせて用いてもよい。
【0039】
溶液中のパラジウム化合物の濃度は、当該二元細孔シリカゲルに対して通常0.5〜15wt%、好ましくは3〜10wt%のパラジウム担持触媒が得られるように適宜選択される。
【0040】
得られた本発明に係る二元細孔シリカゲル担持パラジウムは、各反応に付す前の前処理として、必要に応じて、乾燥、還元等の処理を行ってもよい。
【0041】
本発明に係る二元細孔シリカゲル担持パラジウムは、従来のパラジウム−炭素触媒に於いて行われる如何なる触媒反応にも、パラジウム−炭素触媒と同様の触媒として使用することができる。当該触媒反応の代表的なものとしては、接触水素添加反応が挙げられ、具体的には、例えば(1)水素添加反応方法、(2)水素化分解(加水素分解)反応方法等が挙げられる。
【0042】
水素添加反応としては、例えば非特許文献1(p.420〜435及びp.440〜445の記載参照。)に記載されているようなものが挙げられ、具体的には、例えば非共役二重結合、共役二重結合、エノン類、エノールエーテル類、エノールエステル類等の炭素−炭素二重結合の水素添加反応、例えばアセチレン化合物等の炭素−炭素三重結合の水素添加反応、例えば芳香族カルボニル化合物(例えばキノン類、1,2−ジケトン類、α−ケトエステル類、トリフルオロメチルケトン等も含む。)、例えば脂肪族アルデヒド、脂肪族ケトン等の脂肪族カルボニル化合物、不飽和カルボニル化合物等のカルボニル化合物の水素添加反応、例えばカルボキシル基を有する化合物、エステル類、ラクトン類、酸無水物等の有機酸又はその誘導体の水素添加反応、例えばニトロ基、ニトロソ基、アゾ基、アゾキシ基等を有する化合物、アジド類、ニトリル類、オキシム類、イミン類、ヒドラゾン類等の含窒素官能基含有化合物の水素添加反応等が挙げられる。
【0043】
水素化分解(加水素分解)反応としては、例えば非特許文献1(p.436〜439及びp.447の記載参照。)に記載されているようなものが挙げられ、具体的には、例えば炭素−炭素結合、炭素−ハロゲン結合、炭素−酸素結合、炭素−硫黄結合、炭素−窒素結合、酸素−酸素結合、硫黄−硫黄結合、窒素−酸素結合、窒素−窒素結合等を有する化合物の水素化分解反応等が挙げられる。
【0044】
これらの接触水素添加反応方法の好ましい具体例としては、例えば(1)当該二元細孔シリカゲル担持パラジウムの存在下、炭素−炭素二重結合、炭素−炭素三重結合又は/及び水素添加反応により水素化(還元)される基を有する化合物に水素ガスを接触させることにより、当該炭素−炭素二重結合、炭素−炭素三重結合又は/及び水素添加反応により水素化(還元)される基を水素添加反応させる方法、(2)当該二元細孔シリカゲル担持パラジウムの存在下、水素化分解(加水素分解)反応により切断(除去)される基を有する化合物に水素ガスを接触させることにより、当該水素化分解(加水素分解)反応により切断(除去)される基を水素化分解反応させる方法等が挙げられる。
【0045】
本発明の水素添加反応に於いて、炭素−炭素二重結合、炭素−炭素三重結合又は/及び水素添加反応により水素化(還元)される基を有する化合物としては、夫々の化合物で定義される種類の基や結合を有するものであれば如何なるものでもよい。
【0046】
本発明の加水素分解反応に於いて、加水素分解によって切断(除去)される基を有する化合物としては、当該化合物で定義される種類の基を有するものであれば如何なるものでもよい。
【0047】
炭素−炭素二重結合を有する化合物としては、反応性二重結合を有するものであれば如何なるものでもよく、例えばオレフィン、ジエン化合物、不飽和環式炭化水素化合物等はもちろんのこと、分子内に反応性二重結合を1個以上有するものであれば、高分子化合物でも、如何なる官能基及び/又は芳香環を置換基として有しているものでもよい。
【0048】
炭素−炭素三重結合を有する化合物としては、反応性三重結合を有するものであれば如何なるものでもよく、例えばアセチレンはもちろんのこと、分子内に反応性三重結合を1個以上有するものであれば、高分子化合物でも、如何なる官能基及び/又は芳香環を置換基として有しているものでもよい。
【0049】
水素添加反応により水素化(還元)される基としては、通常の水素添加反応操作により水素化(還元)される基であれば如何なるものでもよく、このような基としては、例えばハロゲン原子、カルボニル基、ニトロ基、ニトリル基等が挙げられる。
【0050】
加水素分解(接触還元)によって切断(除去)される基としては、通常の接触還元操作によって切断(除去)される基であれば如何なるものでもよく、このような基としては、例えばハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等。)、アルコール類又はアミン類と結合して加水素分解(接触還元)により切断(除去)される基等が挙げられる。
【0051】
当該アルコール類又はアミン類と結合して加水素分解(接触還元)により切断(除去)される基の好ましい具体例としては、例えばアリル基、ベンジルオキシカルボニル基(Z)、tert−ブチルオキシカルボニル基(Boc)、p−ニトロベンジルオキシカルボニル基(Z(NO))、p−メトキシベンジルオキシカルボニル基(Z(OMe))、p−ビフェニルイソプロピルオキシカルボニル基(Bpoc)、9−フルオレニルメチルオキシカルボニル基(Fmoc)、イソニコチニルオキシカルボニル基(iNoc)、ジフェニルメチルオキシカルボニル基(Dpmoc)、C−N=N−CCHOCO−(Pz)、C(4OCH)−N=N−CCHOCO−(Mz)、C(4Cl)−CHOCO−(Z(Cl))、C(2,4Cl)−CHOCO−(Z(2,4Cl))、ベンジル基(Bn)、C(4NO)−CH−(Bn(NO))、C(4OCH)−CH−(Bn(OMe))、
Figure 2004250387
(OPic)、(CCH−(Bzh)、CCHOCH−(Bom)、これらの誘導体等が挙げられる。
【0052】
水素添加反応により水素化(還元)される基を有する化合物及び加水素分解(接触還元)によって切断(除去)される基を有する化合物としては、上記の如き基を有するものであれば如何なるものでもよく、例えば高分子化合物でも、如何なる官能基及び/又は芳香環を置換基として有しているものでもよい。
【0053】
当該炭素−炭素二重結合を有する化合物の代表的なものとしては、例えばエチレン、プロピレン、ブチレン、ペンチレン、ヘキセン、5,5−ジメチル−1−ヘキセン、4−メチル−メチレンシクロヘキサン、シクロヘキセン、1,2−シクロノナジニン等のアルケン類、例えばスチレン、p−エチルスチレン、スチルベン、ジメチルスチルベン等のフェニル置換アルケン類、例えばアリルアルコール、2−エチル−2−ブテン−1−オール、2−シクロヘキセン−1−オール等のヒドロキシ置換アルケン類、例えばイソプレン、1,4−ヘキサジエン、1,3−シクロヘキサジエン等のジエン類、例えばベンゼン、トルエン、キシレン、クメン、メシチレン等の芳香族炭化水素類、例えばアクリル酸、プロピオル酸、メタクリル酸、クロトン酸、イソクロトン酸、オレイン酸、マレイン酸、マレイン酸ジメチル、フマル酸等の不飽和脂肪族酸類、例えばケイ皮酸、ケイ皮酸エチル等の不飽和炭素環カルボン酸類、例えばクロトンアルデヒド、2−メチレンモルホリン等が挙げられる。
【0054】
当該炭素−炭素三重結合を有する化合物の代表的な化合物としては、例えば2−ペンチン、2−ヘキシン等のアルキン類、例えば2−ブチン−1−オール、2−ブチン−1,1−ジオール等のヒドロキシ置換アルキン類、例えば2−オクチン−1,8−ジカルボン酸ジメチルエステル等が挙げられる。
【0055】
水素添加反応により水素化(還元)される基を有する化合物の代表的なものとしては、例えばアセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、イソバレルアルデヒド、ヘキサナール、シクロヘキサンカルバルデヒド等のアルキルアルデヒド類、例えばアクリルアルデヒド等の不飽和脂肪族アルデヒド類、例えばベンズアルデヒド、シンナムアルデヒド、アニスアルデヒド、サリチルアルデヒド等の芳香族アルデヒド類、例えば2−フルアルデヒド(2−フランカルバルデヒド)、ニコチンアルデヒド等の複素環アルデヒド類、グルコース等のアルデヒド類、例えばアセトン、エチルメチルケトン、ジエチルケトン、ジプロピルケトン、4−ペンテン−2−オン、シクロヘキシルアセトン、アセトフェノン、プロピオフェノン、ベンゾフェノン、ピナコロン、アセト酢酸エチル、シクロヘキサノン等のケトン類、例えば酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、ラウリン酸、アセト酢酸、ウンデカンジカルボン酸、安息香酸等のカルボン酸類、例えば酢酸エチル、酪酸メチル、ラウリン酸エチル、アセト酢酸エチル、テトラヒドロイソキノリン−3−カルボン酸エチル、安息香酸メチル、ウンデカンジカルボン酸ジエチル等のカルボン酸エステル類、例えばニトロメタン、ニトロエタン、ニトロプロパン等のニトロアルカン類、例えばニトロベンゼン、p−ニトロトルエン、o−ニトロ安息香酸、ニトロベンザルアセトフェノン、ニトロフェノール等のニトロ置換芳香族炭化水素類等のニトロ化合物、例えばアセトニトリル、シアノエタン、シアノプロパン、シアノブタン、シアノヘキサン、ステアロニトリル、シクロヘキサンカルボニトリル等のニトリル置換脂肪族炭化水素類、例えばフェニルアセトニトリル、ベンゾニトリル、マンデルニトリル等のニトリル置換芳香族炭化水素類等のニトリル化合物等が挙げられる。
【0056】
加水素分解(接触還元)によって切断(除去)される基を有する化合物の代表的なものとしては、例えばアリルオキシエタン、アリルオキシシクロヘキサン、アリルオキシベンゼン、4−アリルオキシトルエン、N−アリルブチルアミン、N−アリルシクロヘキシルアミン、N−アリルアニリン、N−アリル−4−トルイジン、N−アリルジフェニルアミン等のアリルアミン類、N−ベンジルアミン、N−ベンジルアニリン、N−tert−ブチルオキシカルボニルアニリン等のアリル化合物、例えばベンジルオキシメタン、ベンジルオキシプロパン、ベンジルオキシベンゼン等のベンジルエーテル類等が挙げられる。
【0057】
本発明の水素添加反応に於ける反応基質の一例として、炭素−炭素二重結合を有する化合物として挙げられるオレフィンとしては、例えば一般式[2]
【0058】
【化2】
Figure 2004250387
【0059】
(式中、R〜Rは、夫々独立して水素原子、アルキル基、アリール基、アラルキル基、アルケニル基、アルキニル基、ヒドロキシアルキル基、アシル基、複素環基、ニトロ基、ニトリル基、カルボキシル基、カルバモイル基、アミノ基、スルホニル基又はスルホンアミド基を表す。また、RとRとが互いに結合し、隣接する炭素原子と一緒になって脂肪族環を形成していてもよい。更に、RとRとが互いに結合し、隣接する−C=C−と一緒になって脂肪族環を形成していてもよい。)
【0060】
一般式[2]に於いて、R〜Rで示されるアルキル基としては、直鎖状、分枝状或いは環状の何れでもよく、通常炭素数1以上、好ましくは炭素数1〜20、より好ましくは炭素数1〜10、更に好ましくは炭素数1〜6のものが挙げられ、具体的には、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、ネオヘキシル基、n−ヘプチル基、イソヘプチル基、sec−ヘプチル基、tert−ヘプチル基、ネオヘプチル基、n−オクチル基、sec−オクチル基、tert−オクチル基、ネオオクチル基、n−ノニル基、イソノニル基、sec−ノニル基、tert−ノニル基、ネオノニル基、n−デシル基、イソデシル基、sec−デシル基、tert−デシル基、ネオデシル基、n−ウンデシル基、イソウンデシル基、sec−ウンデシル基、tert−ウンデシル基、ネオウンデシル基、n−ドデシル基、イソドデシル基、sec−ドデシル基、tert−ドデシル基、ネオドデシル基、n−トリデシル基、イソトリデシル基、sec−トリデシル基、tert−トリデシル基、ネオトリデシル基、n−テトラデシル基、イソテトラデシル基、sec−テトラデシル基、tert−テトラデシル基、ネオテトラデシル基、n−ペンタデシル基、イソペンタデシル基、sec−ペンタデシル基、tert−ペンタデシル基、ネオペンタデシル基、n−ヘキサデシル基、イソへキサデシル基、sec−へキサデシル基、tert−へキサデシル基、ネオへキサデシル基、n−ヘプタデシル基、イソヘプタデシル基、sec−ヘプタデシル基、tert−ヘプタデシル基、ネオヘプタデシル基、n−オクタデシル基、イソオクタデシル基、sec−オクタデシル基、tert−オクタデシル基、ネオオクタデシル基、n−ノナデシル基、イソノナデシル基、sec−ノナデシル基、tert−ノナデシル基、ネオノナデシル基、n−イコシル基、イソイコシル基、sec−イコシル基、tert−イコシル基、ネオイコシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリデシル基、シクロテトラデシル基、シクロペンタデシル基、シクロヘキサデシル基、シクロヘプタデシル基、シクロオクタデシル基、シクロノナデシル基、シクロイコシル基等が挙げられる。
【0061】
アリール基としては、通常炭素数6〜14のものが挙げられ、具体的には、例えばフェニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられる。
【0062】
アラルキル基としては、通常炭素数7〜10のものが挙げられ、具体的には、例えばベンジル基、フェネチル基、フェニルプロピル基、フェニルブチル基等が挙げられる。
【0063】
アルケニル基としては、直鎖状、分枝状或いは環状の何れでもよく、通常炭素数2〜10、好ましくは2〜6のものが挙げられ、具体的には、例えばビニル基、アリル基、1−プロペニル基、イソプロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、2−メチルアリル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、2−メチル−2−ブテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、2−メチル−2−ペンテニル基、1−ヘプテニル基、2−ヘプテニル基、3−ヘプテニル基、1−オクテニル基、2−オクテニル基、3−オクテニル基、4−オクテニル基、1−ノネニル基、2−ノネニル基、3−ノネニル基、4−ノネニル基、1−デセニル基、2−デセニル基、3−デセニル基、4−デセニル基、1−シクロブテニル基、1−シクロペンテニル基、1−シクロヘキセニル基、1−シクロヘプテニル基、1−シクロオクテニル基等が挙げられる。
【0064】
アルキニル基としては、直鎖状、分枝状或いは環状の何れでもよく、通常2〜10、好ましくは2〜6のものが挙げられ、具体的には、例えばエチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、2−ブチニル基、3−ブチニル基、1−ペンチニル基、2−ペンチニル基、3−ペンチニル基、4−ペンチニル基、1−ヘキしニル基、2−ヘキシニル基、3−ヘキシニル基、4−ヘキシニル基、1−へプチニル基、2−へプチニル基、3−へプチニル基、1−オクチニル基、2−オクチニル基、3−オクチニル基、1−ノニニル基、2−ノニニル基、3−ノニニル基、1−デシニル基、2−デシニル基、3−デシニル基等が挙げられる。
【0065】
ヒドロキシアルキル基としては、上記した如きR〜Rで示されるアルキル基の水素原子の一部がヒドロキシル基で置換されたものが挙げられる。
【0066】
アシル基としては、炭素数1〜12のカルボン酸由来のものが挙げられ、具体的には、例えばホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ヘキサノイル基、オクタノイル基、デカノイル基、ピバロイル基、ラウロイル基等の脂肪族飽和カルボン酸由来のもの、例えばアクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基等の不飽和カルボン酸由来のもの、例えばベンゾイル基、トルイル基、ナフトイル基等の芳香族カルボン酸由来のもの、例えばヒドロアトロポイル基、シンナモイル基等のアラルキルカルボン酸由来のもの等が挙げられる。
【0067】
複素環基としては、例えば窒素原子、硫黄原子、酸素原子等のヘテロ原子を1つ以上、好ましくは1〜3個有するものが挙げられ、単環でも二環でもよく、具体的には、例えばチエニル基、ピリジル基、フリル基等が挙げられる。
【0068】
とRが互いに結合し、隣接する炭素原子と一緒になって脂肪族環を形成している場合としては、単環でも多環でもよく、通常炭素数4〜10、好ましくは炭素数5〜7、より好ましくは炭素数6の飽和又は不飽和脂肪族環を形成している場合が挙げられる。これらの環の具体例としては、例えばシクロブタン環、シクロペンタン環、シクロヘキサン環、シクロオクタン環、シクロデカン環等の飽和脂肪族環、例えばシクロブテン環、シクロペンテン環、シクロヘキセン環、シクロオクテン環、シクロデセン環等の不飽和脂肪族環等が挙げられる。
【0069】
とRが互いに結合し、隣接する−C=C−と一緒になって脂肪族環を形成している場合としては、単環でも多環でもよく、通常炭素数4〜10、好ましくは炭素数5〜7、より好ましくは炭素数6の不飽和脂肪族環を形成している場合が挙げられる。これらの環の具体例としては、例えばシクロブテン環、シクロペンテン環、シクロヘキセン環、シクロオクテン環、シクロデセン環等が挙げられる。
【0070】
尚、R〜Rで示されるアルキル基、アリール基、アラルキル基、アルケニル基、アルキニル基、ヒドロキシアルキル基、アシル基及び複素環基は、更に当該水素添加反応に影響を与えない置換基を有していてもよく、そのような置換基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等の炭素数1〜4のアルキル基、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の炭素数1〜4のアルコキシ基、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。
【0071】
上記水素添加反応及び水素化分解(加水素分解)反応に使用する本発明の二元細孔シリカゲル担持パラジウムの使用量は、反応基質に対して、通常0.05〜20wt%、好ましくは0.01〜10wt%、より好ましくは0.5〜5wt%となる量である。
【0072】
上記水素添加反応及び水素化分解(加水素分解)反応に於いては、適当な溶媒を用いても或いは無溶媒で反応を行ってもよい。
【0073】
溶媒を用いる場合の溶媒としては、反応温度で液体であれば如何なるものでよく、その具体例としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、シクロペンタン、シクロヘキサン、シクロヘプタン等の炭素数5〜11の脂肪族炭化水素類、例えばベンゼン、ナフタレン等の芳香族炭化水素類、例えばトルエン、キシレン、メシチレン、エチルベンゼン、プロピルベンゼン、クメン、ブチルベンゼン、イソブチルベンゼン、tert−ブチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン等のアルキル置換芳香族炭化水素類、例えばビフェニル、ターフェニル等のビフェニル類、例えばフルオロベンゼン、ジフルオロベンゼン、トリフルオロベンゼン、テトラフルオロベンゼン、ペンタフルオロベンゼン、ヘキサフルオロベンゼン、クロロベンゼン、ジクロロベンゼン、ブロモベンゼン、ジブロモベンゼン、トリブロモベンゼン、ヨードブロモベンゼン、ジヨードベンゼン、トリヨードベンゼン、テトラヨードベンゼン、ペンタヨードベンゼン、ヘキサヨードベンゼン、クロロナフタレン、ジクロロナフタレン、フルオロトルエン、クロロトルエン、ブロモトルエン、ヨードトルエン等のハロゲン置換芳香族炭化水素類、例えばアニソール、エトキシベンゼン、プロピルオキシベンゼン等のアルコキシ置換芳香族炭化水素類等、例えばメタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ベンジルアルコール等のアルコール類、例えば蟻酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、ブロピオン酸エチル、プロピオン酸ブチル、ラク酸エチル等の脂肪族カルボン酸エステル類、例えば安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル等の芳香族カルボン酸エステル類、例えばジメチルエーテル、メチルエチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、tert−ブチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサン、シクロペンチルフェニルエーテル等のエーテル類等の有機溶媒、水等が挙げられる。これら溶媒は、反応基質の種類、反応温度或いは目的とする反応時間等によって適宜選択され、単独で用いても二種以上適宜組み合わせて用いてもよい。
【0074】
尚、反応基質の水素添加反応及び水素化分解(加水素分解)反応が優先されるように、水素添加反応及び水素化分解(加水素分解)反応を起こすような構造を有する化合物からなる溶媒でないものを用いることが好ましい。
【0075】
また、上記溶媒に反応基質が完全に溶解しなくとも、懸濁状態で反応を行うことができる。
溶媒を用いない場合には、反応基質を溶融して反応を行ってもよく、また気相中で基質を反応させてもよい。
【0076】
反応温度は、通常−20〜150℃、好ましくは0〜100℃、より好ましくは20〜80℃である。
反応時間は、通常0.1〜48時間、好ましくは0.5〜12時間、より好ましくは1〜6時間である。
反応圧力は、通常常圧〜30MPa、好ましくは常圧〜5MPa、より好ましく常圧〜1MPaである。
【0077】
尚、上記以外の反応条件や後処理方法は、自体公知の水素添加反応及び水素化分解(加水素分解)反応に準じて行えばよい。
【0078】
本発明の二元細孔シリカゲル担持パラジウムを用いた接触水素添加反応方法は、当該接触水素添加反応に使用されるパラジウム触媒担体である二元細孔シリカゲルとして0.5〜25μmの孔径を有するマクロ細孔と5〜25nmの孔径を有するメソ細孔からなるものを使用しており、このような二元細孔シリカゲル担持パラジウムを使用したことにより、従来使用していたパラジウム−炭素触媒が有していた例えば発火等の危険性を伴う、取扱が困難である等の問題点を有することなく、また当該パラジウム−炭素触媒以上の活性効率を持って接触水素添加反応を行うことができる。
【0079】
以下に、実施例、比較例及び参考例を挙げて本発明を更に詳細に説明するが、本発明はこれらによって何等限定されるものではない。
【0080】
【実施例】
以下の合成例に於いて、マクロ細孔径は電子顕微鏡測定により、メソ細孔径は窒素吸着法により測定を行った。
【0081】
合成例1.二元細孔シリカゲル担持パラジウム(本発明に係るパラジウム触媒)Aの作製
水 11.5g及び濃硝酸 1.15g中に、ポリエチレンオキサイド 1.30gを撹拌しながら添加した後、テトラエトキシシラン10mlを加え、発熱が終わり室温になるまで撹拌し均一溶液とした。得られた透明ゾルを密閉容器に入れ、50℃恒温槽で24時間静置した。次いで、得られた白色ゲルを蒸留水で5回洗浄した後、容器の中に0.01Nアンモニア水 100mlを加え、50℃恒温槽で3日間静置後、アンモニア水を捨て、50℃恒温槽で1週間乾燥した。乾燥後、これを600℃で2時間焼成し、シリカゲルを得た。
【0082】
得られたシリカゲルを乳鉢を用いて潰した後、ふるいにかけ粒子径を揃えた(平均粒子径:68μm)。これに、酢酸パラジウム 0.053gをアセトン 20mlに溶かした溶液を含浸させ、パラジウム担持量 5wt%となるように調製した。含浸後、500℃で2時間焼成し、本発明のパラジウム触媒Aを得た(マクロ細孔:1μm、メソ細孔:6nm)。得られた本発明のパラジウム触媒Aのメソ細孔径分布を図1に−○−として示す。
【0083】
合成例2.本発明に係るパラジウム触媒Bの作成
合成例1で用いた0.01Nアンモニア水を0.1Nアンモニア水に代えた以外は、合成例1と同様の操作を行い、本発明のパラジウム触媒Bを得た(マクロ細孔:1μm、メソ細孔:10nm)。得られた本発明のパラジウム触媒Bのメソ細孔径分布を図1に−△−として示す。
【0084】
合成例3.本発明に係るパラジウム触媒Cの作成
合成例1で用いた0.01Nアンモニア水を1Nアンモニア水に代えた以外は、合成例1と同様の操作を行い、本発明のパラジウム触媒Cを得た(マクロ細孔:1μm、メソ細孔:18nm)。得られた本発明のパラジウム触媒Cのメソ細孔径分布を図1に−□−として示す。
【0085】
合成例4.本発明に係るパラジウム触媒Dの作成
合成例1で用いた0.01Nアンモニア水を1Nアンモニア水に、静置させる恒温槽の温度を50℃から80℃に代えた以外は、合成例1と同様の操作を行い、本発明のパラジウム触媒Dを得た(マクロ細孔:1μm、メソ細孔:22nm)。得られた本発明のパラジウム触媒Dのメソ細孔径分布を図1に−◇−として示す。
【0086】
比較例1 二元細孔シリカゲル担持パラジウム触媒X
合成例1で行った0.01Nアンモニア水に試料を浸漬させる操作を行わず、そのまま乾燥させた以外は、合成例1と同様の操作を行い、二元細孔シリカゲル担持パラジウム触媒Xを得た(マクロ細孔:1μm、メソ細孔:2nm)。得られた二元細孔シリカゲル担持パラジウム触媒Xのメソ細孔径分布を図1に−◆−として示す。
【0087】
実施例1.シクロヘキセンの水素添加反応
合成例1で得られた本発明に係るパラジウム触媒A 0.005gを反応容器に添加し、室温で水素ガス(流速:30cm/min)を流通させ1時間還元させた後、110℃で12時間乾燥させた。次いで、ヘキサン 8.94mlに還元処理後の本発明に係るパラジウム触媒A 0.005g及びシクロヘキセン 1.05ml(9.6mmol)を添加し、水素雰囲気下(水素圧:1.1MPa)、0℃で15分間反応させた。反応終了後、得られた反応液から本発明に係るパラジウム触媒Aを濾過した。得られた濾液をガスクロマトグラフにより分析し、シクロヘキサン0.93mmolを得た(収率:9.7%)。
得られた生成物は、ガスクロマトグラフ測定により、シクロヘキサンであることが確認された。得られた転化率を1次反応の速度式に適応させて反応速度定数を求めた(81h−1−1)。その結果を表1及び図2(●)に示す。
【0088】
実施例2〜4.シクロヘキセンの水素添加反応
合成例1で得られた本発明に係るパラジウム触媒Aを使用する代わりに合成例2〜4で得られた本発明に係るパラジウム触媒B〜Dを用いた以外は実施例1と同様の操作を行った。その反応速度定数の測定結果を表1及び図2(●)に示す。
【0089】
比較例2.シクロヘキセンの水素添加反応
合成例1で得られた本発明に係るパラジウム触媒Aを使用する代わりに比較例1の二元細孔シリカゲル担持パラジウム触媒を用いた以外は実施例1と同様の操作を行った。その反応速度定数の測定結果を表1及び図2(□)に示す。
【0090】
参考例1.シクロヘキセンの水素添加反応
合成例1で得られた本発明に係るパラジウム触媒Aを使用する代わりに市販のパラジウム−炭素触媒〔商品名:パラジウムカーボン(和光純薬工業(株)社製、Pd担持量:5wt%〕を用いた以外は実施例1と同様の操作を行った。その反応速度定数の測定結果を表1及び図2(−−−−)に示す。
【0091】
【表1】
Figure 2004250387
【0092】
表1及び図2の結果から明らかなように、マクロ孔及びメソ孔を有する二元細孔シリカゲル担持パラジウムの中でも、本発明に係るパラジウム触媒A〜D(実施例1〜4)が従来のパラジウム−炭素触媒(参考例2)よりも反応速度定数が高く、即ち反応活性が高いのに対して、本発明に係るパラジウム触媒ではない二元細孔シリカゲル担持パラジウム触媒(比較例1)、即ち、当該シリカゲルのメソ細孔径が5〜25nm以外のものは、従来のパラジウム−炭素触媒の反応活性よりも低い。言い換えれば、二元細孔シリカゲル担持パラジウムの中でもメソ細孔の孔径によっては、従来のパラジウム−炭素触媒よりも高い活性を示すものと低い活性を示すものがあり、本発明のメソ細孔の孔径を有する二元細孔シリカゲル担持パラジウムは、従来のパラジウム−炭素触媒よりも反応速度定数が高く、つまり反応活性が高いことが分かった。
【0093】
実施例5.本発明に係るパラジウム触媒を用いたクロトンアルデヒドの水素添加反応
合成例1のポリエチレンオキサイドの使用量を 0.85gに、使用するアンモニア水の濃度を0.1Nにする以外は合成例1と同様の操作を行い二元細孔シリカゲルを得た。
得られた二元細孔シリカゲルを乳鉢を用いて潰した後、ふるいにかけ粒子径を揃えた(粒子径:35、68、135、215、450μm)。得られた二元細孔シリカゲルに、以下、合成例1と同様の操作を行うことにより二元細孔シリカゲル担持パラジウム触媒を得た(マクロ細孔:25μm、メソ細孔:10nm)。
【0094】
次いで、得られた本発明に係るパラジウム触媒を、前処理として実施例1と同様の還元処理を行った。次いで、ヘキサン 9.13mlに還元処理後の本発明に係るパラジウム触媒 0.005g及びクロトンアルデヒド(CHCH=CHCHO) 0.855ml(9.6mmol)を添加し、水素雰囲気下(水素圧:1.1MPa)、0℃で15〜30分間反応させた。反応終了後、得られた反応液から本発明に係るパラジウム触媒を濾過した。得られた濾液をガスクロマトグラフにより分析し、n−ブチルアルデヒド3.90mmolを得た(収率:40.6%)。
得られた生成物は、ガスクロマトグラフ測定により、n−ブチルアルデヒドであることが確認された。得られた転化率を1次反応の速度式に適応させて反応速度定数を求めた。その結果を表2及び図3に−○−として示す。
【0095】
比較例3.マクロ孔を持たないシリカゲルを用いたクロトンアルデヒドの水素添加反応
合成例1のポリエチレンオキサイドを使用せず、使用するアンモニア水の濃度を0.1Nにする以外は合成例1と同様の操作を行い、マクロ孔を持たないシリカゲルを得た(メソ細孔:10nm)。このシリカゲルを各々の粒子径に揃えた(粒子径:35、68、135、215、450μm)後、実施例5と同様にクロトンアルデヒドの水素添加反応を行った。その結果を表2及び図3に−□−として示す。
【0096】
参考例3.パラジウム−炭素触媒を用いたクロトンアルデヒドの水素添加反応
パラジウム−炭素触媒〔商品名:パラジウムカーボン(和光純薬工業(株)社製、Pd担持量:5wt%〕の各粒子径を90μm以下、90μm以上とした以外、実施例5と同様の操作を行い、クロトンアルデヒドの水素添加反応を行った。その結果を表2及び図3に−●−として示す。
【0097】
【表2】
Figure 2004250387
【0098】
表2及び図3から明らかなように、実施例5と参考例3を比較すると、本発明に係るマクロ細孔を有するシリカゲルに担持されたパラジウム触媒(二元細孔シリカゲル担持パラジウム)を使用した場合、従来のパラジウム−炭素触媒を使用した場合よりも2倍以上の活性を示すことが分かった。また、実施例5と比較例3を比較すると、当該二元細孔シリカゲル担持パラジウムを使用した場合、マクロ細孔を有さないシリカゲル担持パラジウムよりも2倍以上の高い活性を示すことが分かった。また、本発明に係る二元細孔シリカゲル担持パラジウムは、粒子径が小さい方が、触媒活性が高いことが分かった。
【0099】
【発明の効果】
以上述べた如く、0.5〜25μmの孔径を有するマクロ細孔と5〜25nmの孔径を有するメソ細孔からなる二元細孔シリカゲルに担持されたパラジウムの存在下、水素化される部位を有する化合物に水素ガスを接触させることにより、従来使用していたパラジウム−炭素触媒が有していた、例えば発火等の危険性を伴う、取扱が困難である等の問題点を有することなく、当該水素化される部位の接触水素添加反応を効率的に行うことができる。
【図面の簡単な説明】
【図1】合成例1〜4及び比較例1に関する二元細孔シリカゲル担持パラジウムのメソ細孔径分布データを示す。
尚、−○−線は合成例1の結果を、−△−線は合成例2の結果を、−□−線は合成例3の結果を、−◇−線は合成例4の結果を、−◆−線は比較例1の結果を夫々示す。
【図2】実施例1〜4及び比較例2に関する二元細孔シリカゲル担持パラジウムの平均メソ細孔径に対する反応速度定数データを、また参考例1に関する反応速度データを夫々示す。
尚、●は実施例1〜4の結果を、□は比較例2の結果を、−−−−線は参考例1の結果を夫々示す。
【図3】実施例5、比較例3及び参考例3の粒子径と反応速度定数の関係を示すデータである。
尚、−○−線は実施例5の結果を、−□−線は比較例3の結果を、−●−線は参考例3の結果を夫々示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a binary pore having a macropore having a specific pore size and a mesopore having a specific pore size, in the presence of palladium supported on silica gel, and contacting hydrogen gas with a compound having a site to be hydrogenated. And a catalytic hydrogenation reaction method for the site to be hydrogenated.
[0002]
[Prior art]
Palladium catalysts are used industrially because they exhibit good activity and selectivity in, for example, hydrogenation reactions, hydrogenolysis reactions, etc., but palladium as the active component is relatively expensive, Generally used as a supported catalyst supported on a carrier.
[0003]
Known carriers for the palladium-supported catalyst include, for example, silica gel, alumina, activated carbon, carbonates and sulfates of alkaline earth metals, and the like.
[0004]
Palladium-carbon catalysts are used, for example, as catalysts for the hydrogenation of compounds having a carbon-carbon double bond. Had disadvantages.
[0005]
On the other hand, silica gel is known as a filler for, for example, chromatography and gas chromatography, a catalyst carrier, and the like, and those having micropores of 2 nm or less have conventionally been used. However, when these silica gels are used, for example, as a packing material for chromatography, the pressure loss is large because the flow velocity resistance of the fluid is large, and therefore, the flow rate per unit time is small. A long time is required.
[0006]
Therefore, in order to reduce the pressure loss, research on silica gel having a pore size larger than the pore size of a conventional product has been promoted.
[0007]
Patent Document 1 discloses a column made of silica gel having through-holes (macropores) having a pore size of 500 nm or more and pores (mesopores) having a pore size of 5 to 100 nm. Further, it is described that when a catalyst such as palladium is supported on this column, the fluid efficiently reacts with palladium in the process of passing through the column. However, Patent Document 1 relates to a column, and specifically describes a case where palladium is supported on the column, further describes a preferable mesopore diameter of silica gel when supporting palladium, and uses this. There is no suggestion of a favorable reaction.
[0008]
Under such circumstances, the palladium-catalyst activity of palladium without the problems that the conventionally used palladium-carbon catalyst had, such as the danger of ignition, etc. It is desired to develop a method for efficiently performing a catalytic hydrogenation reaction by using, as a catalyst, palladium supported on silica gel having an increased amount of siloxane.
[0009]
[Patent Document 1]
JP-A-6-293574
[Patent Document 2]
International Publication No. WO02 / 085785
[Non-patent document 1]
The Chemical Society of Japan, “New Experimental Chemistry Lecture 15 Oxidation and Reduction (II)”, Maruzen Co., Ltd., February 20, 1977, p. 420-p. 447
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the circumstances as described above, and in the presence of palladium supported on dual-pore silica gel consisting of macropores having a specific pore size and mesopores having a specific pore size, hydrogenation An object of the present invention is to provide a method for efficiently performing a catalytic hydrogenation reaction of a site to be hydrogenated by bringing a compound having a site to be hydrogenated into contact with a hydrogen gas.
[0011]
[Means for Solving the Problems]
The present invention has been made for the purpose of solving the above problems, and is supported on binary pore silica gel composed of macropores having a pore diameter of 0.5 to 25 μm and mesopores having a pore diameter of 5 to 25 nm. A method for catalytically hydrogenating a site to be hydrogenated, comprising contacting a compound having a site to be hydrogenated with hydrogen gas in the presence of palladium.
[0012]
That is, the present inventors have made intensive studies to achieve the above-mentioned object, and as a result, are composed of macropores having a specific pore size of 0.5 to 25 μm and mesopores having a specific pore size of 5 to 25 nm. Using palladium supported on dual-pore silica gel as a catalyst and contacting hydrogen gas with a compound having a site to be hydrogenated, the conventionally used palladium-carbon catalyst had, for example, ignition. The present inventors have found that the hydrogenated site can be efficiently hydrogenated without problems such as dangers and difficulty in handling due to powders, and have completed the present invention.
[0013]
Dual pore silica gel according to the present invention comprising macropores having a pore diameter of 0.5 to 25 μm and mesopores having a pore diameter of 5 to 25 nm (hereinafter abbreviated as the dual pore silica gel according to the present invention). ) May have any pore size as long as macropores can be present in the binary pore silica gel particles, and usually 0.5 to 25 μm, preferably 0.5 to 25 μm. It is 10 μm, more preferably 2 to 5 μm.
[0014]
The pore diameter of the mesopores of the dual-pore silica gel according to the present invention is usually 5 to 25 nm, preferably 5 to 18 nm, and more preferably 7 to 15 nm.
[0015]
The particle size of the dual-pore silica gel according to the present invention may be any size as long as macropores can be present in the particles, but if it is too small, it is difficult to handle, and if it is too large, mass transfer resistance is large. Since the catalytic activity is lowered, for example, in consideration of simplicity of handling, convenience of separation and recovery from the reaction solution, and the like, the thickness is usually 10 to 500 μm, preferably 20 to 200 μm, and more preferably 25 to 100 μm.
[0016]
The amount of palladium supported on the dual-pore silica gel according to the present invention is usually 0.5 to 15 wt%, preferably 3 to 10 wt%.
[0017]
The dual-pore silica gel according to the present invention may be prepared, for example, according to the methods described in Patent Documents 1 and 2 and the like.
[0018]
More specifically, for example, after adding and dissolving a water-soluble polymer in a 0.1 to 5N acidic aqueous solution while stirring, an alkoxysilane or water glass (water glass is dissolved in an acidic aqueous solution in advance to make it acidic) ), And stirred at room temperature until uniform. The obtained transparent sol is allowed to stand in a closed container at 0 to 80 ° C. for 0.5 to 100 hours. Next, the obtained gel is washed with distilled water, then, if necessary, ammonia water is added thereto for the purpose of controlling the mesopores, and the gel is allowed to stand in a thermostat at 0 to 100 ° C. for 5 to 200 hours. Next, the ammonia water is removed, and the resultant is dried in a 0-100 ° C. constant temperature bath for 1-5 hours. After drying, baking is performed at 500 to 800 ° C. for 1 to 5 hours. The obtained silica gel is pulverized and sieved to make the particle diameter uniform, whereby the dual-pore silica gel according to the present invention is obtained.
[0019]
Examples of the acidic aqueous solution include those having a small amount of residual impurities after firing, and specifically include, for example, aqueous solutions of hydrochloric acid, nitric acid, sulfuric acid, and acetic acid. A nitric acid aqueous solution is more preferable.
[0020]
As the water-soluble polymer, any substance may be used as long as the reaction product with the silica component of the alkoxysilane or water glass shows water solubility.Specifically, for example, polyalkylene oxides such as polyethylene oxide and polypropylene oxide, For example, polyacrylic acid, polymethacrylic acid, polycrotonic acid, polyisocrotonic acid, polystyrene sulfonic acid, polyvinyl pyrrolidone, etc., among them, polyethylene oxide when the silica component is alkoxysilane, and polystyrene when the silica component is water glass Acrylic acid is preferred.
[0021]
Examples of the alkoxysilane as a silica component include, for example, a general formula [1]
[0022]
Embedded image
Figure 2004250387
[0023]
(Where R 1 Represents an alkoxy group; 2 Represents a hydrogen atom, an alkyl group, an aryl group or a vinyl group, and n represents an integer of 1 to 4. ).
[0024]
In the general formula [1], R 1 The alkoxy group represented by may be linear, branched or cyclic, and usually has 1 to 8 carbon atoms, preferably has 1 to 4 carbon atoms, and more preferably has 1 to 2 carbon atoms. Specifically, for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, sec -Pentyloxy group, tert-pentyloxy group, neopentyloxy group, n-hexyloxy group, isohexyloxy group, sec-hexyloxy group, tert-hexyloxy group, neohexyloxy group, n-heptyloxy group, Isoheptyloxy group, sec-heptyloxy group, tert-heptyloxy group, neoheptyloxy group, -Octyloxy group, isooctyloxy group, sec-octyloxy group, tert-octyloxy group, neooctyloxy group, cyclopropoxy group, cyclobutoxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyl Oxy groups and the like.
[0025]
R 2 The alkyl group represented by may be linear, branched or cyclic, and usually has 1 to 20 carbon atoms, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3. Specific examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl, tert-pentyl, neopentyl, 2-methylbutyl, 1-ethylpropyl, n-hexyl, isohexyl, sec-hexyl, tert-hexyl, neohexyl, 2-methylpentyl , 3-methylpentyl, 1,2-dimethylbutyl, 2,2-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, n Heptyl group, isoheptyl group, sec-heptyl group, tert-heptyl group, neoheptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 3-ethylpentyl group, 2,4-dimethyl Pentyl group, 1-ethyl-1-methylbutyl group, 1,2,3-trimethylbutyl group, n-octyl group, isooctyl group, sec-octyl group, tert-octyl group, neooctyl group, n-nonyl group, isononyl group , Sec-nonyl group, tert-nonyl group, neononyl group, n-decyl group, isodecyl group, sec-decyl group, tert-decyl group, neodecyl group, n-undecyl group, isoundecyl group, sec-undecyl group, tert- Undecyl group, neoundecyl group, n-dodecyl group, isododecyl group, sec-do Syl group, tert-dodecyl group, neododecyl group, n-tridecyl group, isotridecyl group, sec-tridecyl group, tert-tridecyl group, neotridecyl group, n-tetradecyl group, isotetradecyl group, sec-tetradecyl group, tert-tetradecyl Group, neotetradecyl group, n-pentadecyl group, isopentadecyl group, sec-pentadecyl group, tert-pentadecyl group, neopentadecyl group, n-hexadecyl group, isohexadecyl group, sec-hexadecyl group, tert- Hexadecyl group, neohexadecyl group, n-heptadecyl group, isoheptadecyl group, sec-heptadecyl group, tert-heptadecyl group, neoheptadecyl group, n-octadecyl group, isooctadecyl group, sec-octadecyl group, tert-octa Decyl group, neooctadecyl group, n-nonadecyl group, isononadecyl group, sec-nonadecyl group, tert-nonadecyl group, neodecyl group, n-icosyl group, isoicosyl group, sec-icosyl group, tert-icosyl group, neoicosyl group, cyclo Propyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, cyclopentadecyl, Examples include a cyclohexadecyl group, a cycloheptadecyl group, a cyclooctadecyl group, a cyclononadecyl group, and a cycloicosyl group.
[0026]
R 2 The aryl group represented by is usually one having 6 to 10 carbon atoms, and specific examples include a phenyl group and a naphthyl group.
[0027]
n is usually an integer of 1 to 4, preferably 3 to 4 integers, and more preferably 4.
[0028]
Preferred specific examples of the alkoxysilane represented by the general formula [1] include, for example, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, dimethoxydiethoxysilane, and the like. Trialkoxyalkylsilanes such as methoxysilane and ethyltrimethoxysilane; trialkoxyvinylsilanes such as vinyltrimethoxysilane and vinyltriethoxysilane; trialkoxysilanes such as trimethoxysilane and triethoxysilane; Trialkoxyphenylsilanes such as methoxysilane and phenyltriethoxysilane, for example, dialkyldialkoxysilanes such as dimethoxydimethylsilane and diethoxymethylsilane, for example Examples include dialkoxyalkylphenylsilanes such as dimethoxydiphenylsilane and dimethoxydimethylphenylsilane, for example, monoalkoxytrialkylsilanes such as trimethylmethoxysilane and trimethylethoxysilane, among which tetraalkoxysilanes are preferred, for example. Among them, for example, tetraethoxysilane is more preferable.
[0029]
As the water glass mentioned as the silica component, a commercially available water glass may be used, or a water glass appropriately prepared by a conventional method may be used. Since the water glass is strongly basic, an aqueous solution obtained by dissolving it in a strong acid such as concentrated nitric acid in advance is used.
[0030]
The concentration of the acidic aqueous solution used is usually 0.1 to 5N, preferably 0.2 to 3N, more preferably 0.5 to 3N.
[0031]
The amount of the alkoxysilane or water glass used varies depending on the type of the water-soluble polymer or acidic aqueous solution used, but is usually 1 to 90 wt%, preferably 5 to 80 wt%, more preferably 10 to 70 wt%.
[0032]
The amount of the water-soluble polymer used is appropriately selected depending on the pore size of the macropores of the dual-pore silica gel according to the present invention, but is usually 0.01 to 5 times the amount of alkoxysilane or water glass. Weight, preferably 0.03 to 1 times weight, more preferably 0.05 to 0.5 times weight.
[0033]
The concentration of the aqueous ammonia used is usually 0.01 to 10 N, preferably 0.01 to 5 N, and more preferably 0.01 to 1 N.
[0034]
The amount of the ammonia water used is appropriately selected depending on the size of the pore diameter of the mesopores of the dual-pore silica gel according to the present invention, and is usually 0.5 to 20 times the volume of the silica gel, preferably. Is an amount to be 1 to 15 times, more preferably 3 to 10 times.
[0035]
The temperature of the thermostat in which the obtained gel is allowed to stand by adding the ammonia water is appropriately selected depending on the size of the mesopores of the dual-pore silica gel according to the present invention. To 100 ° C, preferably 20 to 80 ° C, more preferably 30 to 50 ° C.
[0036]
The dual-pore silica gel-supported palladium according to the present invention may be prepared, for example, as follows.
That is, by impregnating the binary pore silica gel obtained by the above method with a solution in which a palladium compound is dissolved in a reaction solvent, and baking it at 400 to 700 ° C. for 1 to 5 hours, the present invention is concerned. A dual pore silica gel supported palladium is obtained.
[0037]
Examples of the palladium compound include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, etc., among which palladium chloride, palladium acetate and the like are preferable, and palladium acetate is more preferable.
[0038]
The reaction solvent is not particularly limited as long as it can dissolve the palladium compound.Specifically, for example, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, cyclohexane, cycloheptane, etc. Aliphatic hydrocarbons having 5 to 11 carbon atoms, for example, aromatic hydrocarbons such as benzene, for example, toluene, xylene, mesitylene, ethylbenzene, propylbenzene, cumene, butylbenzene, isobutylbenzene, tert-butylbenzene, pentylbenzene, Alkyl-substituted aromatic hydrocarbons such as hexylbenzene, for example, fluorobenzene, difluorobenzene, chlorobenzene, dichlorobenzene, bromobenzene, dibromobenzene, iodobenzene, diiodobenzene, triiodobenzene, Halogen-substituted aromatic hydrocarbons such as triiodobenzene, pentaiodobenzene, hexaiodobenzene, fluorotoluene, chlorotoluene, bromotoluene, iodotoluene, for example, methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol , Nonanol, decanol, alcohols such as benzyl alcohol, for example, acetone, methyl ethyl ketone, diethyl ketone, hexanone, cyclohexyl acetone, acetophenone, propiophenone, ketones such as acetoin, for example, diethyl ether, diisopropyl ether, tert-butyl methyl ether, Ethers such as tetrahydrofuran, tetrahydropyran, 1,4-dioxane, and cyclopentylphenyl ether Organic solvents, water and the like, among others, for example acetone, ethanol, water and the like are preferable, especially, acetone is more preferable. These solvents are appropriately selected depending on the type of the palladium compound and the like, and may be used alone or in combination of two or more.
[0039]
The concentration of the palladium compound in the solution is appropriately selected so that a 0.5 to 15 wt%, preferably 3 to 10 wt%, palladium-supported catalyst is obtained with respect to the dual-pore silica gel.
[0040]
The obtained dual-pore silica gel-supported palladium according to the present invention may be subjected to a treatment such as drying and reduction, if necessary, as a pretreatment before subjecting it to each reaction.
[0041]
The dual-pore silica gel-supported palladium according to the present invention can be used as a catalyst similar to the palladium-carbon catalyst in any catalytic reaction performed in a conventional palladium-carbon catalyst. A typical example of the catalytic reaction is a catalytic hydrogenation reaction, and specific examples include (1) a hydrogenation reaction method and (2) a hydrogenolysis (hydrogenolysis) reaction method. .
[0042]
Examples of the hydrogenation reaction include those described in Non-Patent Document 1 (see p. 420 to 435 and p. 440 to 445). Specifically, for example, non-conjugated double Bond, conjugated double bond, enones, enol ethers, hydrogenation reaction of carbon-carbon double bond such as enol esters, for example, hydrogenation reaction of carbon-carbon triple bond such as acetylene compound, for example, aromatic carbonyl compound (For example, quinones, 1,2-diketones, α-ketoesters, trifluoromethyl ketone, etc.), for example, aliphatic aldehydes, aliphatic carbonyl compounds such as aliphatic ketones, and carbonyl compounds such as unsaturated carbonyl compounds Hydrogenation reaction, for example, compounds having a carboxyl group, esters, lactones, organic acids such as acid anhydrides or derivatives thereof Hydrogenation reaction, for example, a compound having a nitro group, a nitroso group, an azo group, an azoxy group or the like, a hydrogenation reaction of a compound containing a nitrogen-containing functional group such as an azide, a nitrile, an oxime, an imine, or a hydrazone. Can be
[0043]
Examples of the hydrogenolysis (hydrogenolysis) reaction include those described in Non-Patent Document 1 (see p. 436 to 439 and p. 447). Hydrogen of compounds having a carbon-carbon bond, a carbon-halogen bond, a carbon-oxygen bond, a carbon-sulfur bond, a carbon-nitrogen bond, an oxygen-oxygen bond, a sulfur-sulfur bond, a nitrogen-oxygen bond, a nitrogen-nitrogen bond, etc. Chemical decomposition reaction and the like.
[0044]
Preferable specific examples of these catalytic hydrogenation reaction methods include, for example, (1) hydrogenation by carbon-carbon double bond, carbon-carbon triple bond or / and hydrogenation reaction in the presence of the palladium supported on the dual-pore silica gel. By bringing a compound having a group to be converted (reduced) into contact with hydrogen gas, the group to be hydrogenated (reduced) by the carbon-carbon double bond, carbon-carbon triple bond or / and hydrogenation reaction is hydrogenated. (2) contacting hydrogen gas with a compound having a group that is cleaved (removed) by a hydrogenolysis (hydrogenolysis) reaction in the presence of the binary pore silica gel-supported palladium, A method in which a group that is cleaved (removed) by a hydrolytic decomposition (hydrogenolysis) reaction is subjected to a hydrocracking reaction may be used.
[0045]
In the hydrogenation reaction of the present invention, the compound having a carbon-carbon double bond, a carbon-carbon triple bond or / and a group which is hydrogenated (reduced) by the hydrogenation reaction is defined by each compound. Any compound having any kind of group or bond may be used.
[0046]
In the hydrogenolysis reaction of the present invention, any compound having a group cleaved (removed) by hydrogenolysis may be used as long as it has a group of the type defined by the compound.
[0047]
As the compound having a carbon-carbon double bond, any compound having a reactive double bond may be used.For example, olefins, diene compounds, unsaturated cyclic hydrocarbon compounds, etc. As long as it has at least one reactive double bond, it may be a polymer compound or a compound having any functional group and / or aromatic ring as a substituent.
[0048]
As the compound having a carbon-carbon triple bond, any compound having a reactive triple bond may be used.For example, not only acetylene but also a compound having one or more reactive triple bonds in a molecule may be used. A polymer compound may have any functional group and / or aromatic ring as a substituent.
[0049]
The group to be hydrogenated (reduced) by the hydrogenation reaction may be any group as long as it is a group to be hydrogenated (reduced) by a usual hydrogenation reaction operation. Examples of such a group include a halogen atom and a carbonyl group. Group, nitro group, nitrile group and the like.
[0050]
The group that is cleaved (removed) by hydrogenolysis (catalytic reduction) may be any group as long as it is a group that is cleaved (removed) by ordinary catalytic reduction operation. Examples of such a group include a halogen atom ( For example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a group bonded to an alcohol or an amine, and cleaved (removed) by hydrogenolysis (catalytic reduction) are exemplified.
[0051]
Preferred specific examples of the group which is bonded to the alcohol or amine and cleaved (removed) by hydrogenolysis (catalytic reduction) include, for example, an allyl group, a benzyloxycarbonyl group (Z), and a tert-butyloxycarbonyl group. (Boc), p-nitrobenzyloxycarbonyl group (Z (NO 2 )), P-methoxybenzyloxycarbonyl group (Z (OMe)), p-biphenylisopropyloxycarbonyl group (Bpoc), 9-fluorenylmethyloxycarbonyl group (Fmoc), isonicotinyloxycarbonyl group (iNoc) , A diphenylmethyloxycarbonyl group (Dpmoc), C 6 H 5 -N = NC 6 H 4 CH 2 OCO- (Pz), C 6 H 4 (4OCH 3 ) -N = NC 6 H 4 CH 2 OCO- (Mz), C 6 H 4 (4Cl) -CH 2 OCO- (Z (Cl)), C 6 H 3 (2,4Cl 2 ) -CH 2 OCO- (Z (2,4Cl 2 )), Benzyl group (Bn), C 6 H 4 (4NO 2 ) -CH 2 − (Bn (NO 2 )), C 6 H 4 (4OCH 3 ) -CH 2 -(Bn (OMe)),
Figure 2004250387
(OPic), (C 6 H 5 ) 2 CH- (Bzh), C 6 H 5 CH 2 OCH 2 -(Bom) and derivatives thereof.
[0052]
As the compound having a group that is hydrogenated (reduced) by the hydrogenation reaction and the compound having a group that is cleaved (removed) by hydrogenolysis (catalytic reduction), any compound having a group as described above can be used. For example, a polymer compound or a compound having any functional group and / or aromatic ring as a substituent may be used.
[0053]
Representative compounds having the carbon-carbon double bond include, for example, ethylene, propylene, butylene, pentylene, hexene, 5,5-dimethyl-1-hexene, 4-methyl-methylenecyclohexane, cyclohexene, Alkenes such as 2-cyclononazinine, for example, phenyl-substituted alkenes such as styrene, p-ethylstyrene, stilbene, and dimethylstilbene, for example, allyl alcohol, 2-ethyl-2-buten-1-ol, 2-cyclohexen-1-ol Hydroxy-substituted alkenes such as isoprene, 1,4-hexadiene and 1,3-cyclohexadiene; aromatic hydrocarbons such as benzene, toluene, xylene, cumene and mesitylene; acrylic acid and propiol Acid, methacrylic acid, clot Unsaturated aliphatic acids such as acid, isocrotonic acid, oleic acid, maleic acid, dimethyl maleate and fumaric acid, for example, unsaturated carbocyclic carboxylic acids such as cinnamic acid and ethyl cinnamate, for example, crotonaldehyde, 2-methylene Morpholine and the like.
[0054]
Representative compounds of the compound having a carbon-carbon triple bond include, for example, alkynes such as 2-pentyne and 2-hexyne, such as 2-butyn-1-ol and 2-butyne-1,1-diol. Hydroxy-substituted alkynes, for example, 2-octyne-1,8-dicarboxylic acid dimethyl ester and the like can be mentioned.
[0055]
Representative compounds having a group that is hydrogenated (reduced) by a hydrogenation reaction include, for example, alkyl such as acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde, isovaleraldehyde, hexanal, and cyclohexane carbaldehyde. Aldehydes, for example, unsaturated aliphatic aldehydes such as acrylaldehyde, for example, aromatic aldehydes such as benzaldehyde, cinnamaldehyde, anisaldehyde, salicylaldehyde, for example, 2-furaldehyde (2-furancarbaldehyde), nicotinaldehyde, etc. Heterocyclic aldehydes, aldehydes such as glucose, for example, acetone, ethyl methyl ketone, diethyl ketone, dipropyl ketone, 4-penten-2-one, cyclohexyl ace , Acetophenone, propiophenone, benzophenone, pinacolone, ethyl acetoacetate, ketones such as cyclohexanone, such as acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, lauric acid, acetoacetic acid, undecanedicarboxylic acid, benzoic acid, etc. Carboxylic acids, for example, carboxylic acid esters such as ethyl acetate, methyl butyrate, ethyl laurate, ethyl acetoacetate, ethyl tetrahydroisoquinoline-3-carboxylate, methyl benzoate, diethyl undecanedicarboxylate, for example, nitromethane, nitroethane, nitropropane, etc. Nitro compounds such as nitrobenzene, p-nitrotoluene, o-nitrobenzoic acid, nitrobenzal acetophenone, nitrophenol and other nitro-substituted aromatic hydrocarbons such as acetonitrile Nitrile-substituted aliphatic hydrocarbons such as ril, cyanoethane, cyanopropane, cyanobutane, cyanohexane, stearonitrile, cyclohexanecarbonitrile, etc., such as nitriles such as phenylacetonitrile, benzonitrile, and nitrile-substituted aromatic hydrocarbons such as mandelnitrile And the like.
[0056]
Representative compounds having a group that is cleaved (removed) by hydrogenolysis (catalytic reduction) include, for example, allyloxyethane, allyloxycyclohexane, allyloxybenzene, 4-allyloxytoluene, N-allylbutylamine, Allylamines such as N-allylcyclohexylamine, N-allylaniline, N-allyl-4-toluidine and N-allyldiphenylamine; allyl compounds such as N-benzylamine, N-benzylaniline and N-tert-butyloxycarbonylaniline And benzyl ethers such as benzyloxymethane, benzyloxypropane and benzyloxybenzene.
[0057]
As an example of a reaction substrate in the hydrogenation reaction of the present invention, an olefin exemplified as a compound having a carbon-carbon double bond includes, for example, a compound represented by the general formula [2]
[0058]
Embedded image
Figure 2004250387
[0059]
(Where R 3 ~ R 6 Is independently a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, a hydroxyalkyl group, an acyl group, a heterocyclic group, a nitro group, a nitrile group, a carboxyl group, a carbamoyl group, an amino group, Represents a sulfonyl group or a sulfonamide group. Also, R 3 And R 4 And may be bonded to each other to form an aliphatic ring together with adjacent carbon atoms. Further, R 3 And R 5 May be bonded to each other and form an aliphatic ring together with the adjacent -C = C-. )
[0060]
In the general formula [2], R 3 ~ R 6 The alkyl group represented by may be linear, branched or cyclic, and usually has 1 or more carbon atoms, preferably has 1 to 20 carbon atoms, more preferably has 1 to 10 carbon atoms, and still more preferably has 1 to 10 carbon atoms. 1 to 6, specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl Group, isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, n-hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, neohexyl group, n-heptyl group, isoheptyl group, sec-heptyl Group, tert-heptyl group, neoheptyl group, n-octyl group, sec-octyl group, tert-octyl group, neooctyl group n-nonyl group, isononyl group, sec-nonyl group, tert-nonyl group, neononyl group, n-decyl group, isodecyl group, sec-decyl group, tert-decyl group, neodecyl group, n-undecyl group, isoundecyl group, sec-undecyl group, tert-undecyl group, neoundecyl group, n-dodecyl group, isododecyl group, sec-dodecyl group, tert-dodecyl group, neododecyl group, n-tridecyl group, isotridecyl group, sec-tridecyl group, tert-tridecyl Group, neotridecyl group, n-tetradecyl group, isotetradecyl group, sec-tetradecyl group, tert-tetradecyl group, neotetradecyl group, n-pentadecyl group, isopentadecyl group, sec-pentadecyl group, tert-pentadecyl group, Neopentadeci Group, n-hexadecyl group, isohexadecyl group, sec-hexadecyl group, tert-hexadecyl group, neohexadecyl group, n-heptadecyl group, isoheptadecyl group, sec-heptadecyl group, tert-heptadecyl group, neoheptadecyl group, n-octadecyl group, isooctadecyl group, sec-octadecyl group, tert-octadecyl group, neooctadecyl group, n-nonadecyl group, isononadecyl group, sec-nonadecyl group, tert-nonadecyl group, neononadecyl group, n-icosyl group, isoicosyl Group, sec-icosyl group, tert-icosyl group, neoicosyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, Cyclododecyl, cyclotridecyl, cyclotetradecyl, cyclopentadecyl, cyclohexadecyl, cycloheptadecyl, cyclooctadecyl, cyclononadecyl, cycloicosyl and the like.
[0061]
The aryl group usually has 6 to 14 carbon atoms, and specific examples include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
[0062]
The aralkyl group usually has 7 to 10 carbon atoms, and specific examples include a benzyl group, a phenethyl group, a phenylpropyl group, and a phenylbutyl group.
[0063]
The alkenyl group may be linear, branched or cyclic, and usually has 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms. Specifically, for example, a vinyl group, an allyl group, -Propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 2-methylallyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 2-pentenyl group Methyl-2-butenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 5-hexenyl group, 2-methyl-2-pentenyl group, 1-heptenyl group, 2-heptenyl group, 3-heptenyl group A 1-octenyl group, a 2-octenyl group, a 3-octenyl group, a 4-octenyl group, a 1-nonenyl group, a 2-nonenyl group, a 3-nonenyl group, a 4-nonenyl group, a 1-decenyl group, - decenyl, 3-decenyl, 4-decenyl, 1-cyclobutenyl group, 1-cyclopentenyl group, 1-cyclohexenyl group, 1-cycloheptenyl, 1-cyclooctenyl group and the like.
[0064]
The alkynyl group may be linear, branched or cyclic, and usually has 2 to 10, preferably 2 to 6, and specifically includes, for example, an ethynyl group, a 1-propynyl group, -Propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 1-pentynyl group, 2-pentynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group, 2-hexynyl group , 3-hexynyl, 4-hexynyl, 1-heptynyl, 2-heptynyl, 3-heptynyl, 1-octynyl, 2-octynyl, 3-octynyl, 1-noninyl, 2 -Noninyl group, 3-noninyl group, 1-decynyl group, 2-decynyl group, 3-decynyl group and the like.
[0065]
Examples of the hydroxyalkyl group include R as described above. 3 ~ R 6 And those in which some of the hydrogen atoms of the alkyl group represented by are substituted with hydroxyl groups.
[0066]
Examples of the acyl group include those derived from a carboxylic acid having 1 to 12 carbon atoms.Specifically, for example, formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, hexanoyl group, Those derived from aliphatic saturated carboxylic acids such as octanoyl group, decanoyl group, pivaloyl group and lauroyl group, for example, those derived from unsaturated carboxylic acids such as acryloyl group, propioloyl group, methacryloyl group, crotonoyl group, isocrotonoyl group, for example, benzoyl group And those derived from an aromatic carboxylic acid such as a toluyl group and a naphthoyl group, such as those derived from an aralkylcarboxylic acid such as a hydroatropoyl group and a cinnamoyl group.
[0067]
Examples of the heterocyclic group include those having one or more, preferably 1 to 3 heteroatoms such as a nitrogen atom, a sulfur atom, and an oxygen atom, and may be a monocyclic or bicyclic ring. Examples thereof include a thienyl group, a pyridyl group and a furyl group.
[0068]
R 3 And R 4 Are bonded to each other to form an aliphatic ring together with adjacent carbon atoms, and may be a monocyclic or polycyclic ring, usually having 4 to 10 carbon atoms, preferably 5 to 7 carbon atoms, Preferred is a case where a saturated or unsaturated aliphatic ring having 6 carbon atoms is formed. Specific examples of these rings include, for example, a cycloaliphatic ring such as a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, and a cyclodecane ring, such as a cyclobutene ring, a cyclopentene ring, a cyclohexene ring, a cyclooctene ring, and a cyclodecene ring. And the like.
[0069]
R 3 And R 5 Are bonded to each other and form an aliphatic ring together with the adjacent -C = C-, may be a monocyclic or polycyclic ring, and usually have 4 to 10 carbon atoms, preferably 5 to 5 carbon atoms. 7, more preferably a case where an unsaturated aliphatic ring having 6 carbon atoms is formed. Specific examples of these rings include, for example, cyclobutene ring, cyclopentene ring, cyclohexene ring, cyclooctene ring, cyclodecene ring and the like.
[0070]
Note that R 3 ~ R 6 Alkyl group, aryl group, aralkyl group, alkenyl group, alkynyl group, hydroxyalkyl group, acyl group and heterocyclic group represented by may further have a substituent that does not affect the hydrogenation reaction, Examples of such a substituent include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group. An alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group and a tert-butoxy group, for example, a fluorine atom, chlorine And halogen atoms such as an atom, a bromine atom and an iodine atom.
[0071]
The amount of the dual-pore silica gel-supported palladium of the present invention used in the above hydrogenation reaction and hydrogenolysis (hydrogenolysis) reaction is usually 0.05 to 20% by weight, preferably 0.1 to 20% by weight, based on the reaction substrate. The amount is from 0.01 to 10% by weight, more preferably from 0.5 to 5% by weight.
[0072]
In the above hydrogenation reaction and hydrogenolysis (hydrogenolysis) reaction, the reaction may be carried out using a suitable solvent or without a solvent.
[0073]
When a solvent is used, any solvent may be used as long as it is liquid at the reaction temperature, and specific examples thereof include, for example, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, and cyclopentane. Aliphatic hydrocarbons having 5 to 11 carbon atoms such as cyclohexane, cycloheptane, etc., for example, aromatic hydrocarbons such as benzene, naphthalene, etc., for example, toluene, xylene, mesitylene, ethylbenzene, propylbenzene, cumene, butylbenzene, isobutylbenzene Alkyl-substituted aromatic hydrocarbons such as tert-butylbenzene, pentylbenzene and hexylbenzene, for example, biphenyls such as biphenyl and terphenyl, for example, fluorobenzene, difluorobenzene, trifluorobenzene, tetra Fluorobenzene, pentafluorobenzene, hexafluorobenzene, chlorobenzene, dichlorobenzene, bromobenzene, dibromobenzene, tribromobenzene, iodobromobenzene, diiodobenzene, triiodobenzene, tetraiodobenzene, pentaiodobenzene, hexaiodobenzene, chloro Halogen-substituted aromatic hydrocarbons such as naphthalene, dichloronaphthalene, fluorotoluene, chlorotoluene, bromotoluene and iodotoluene, for example, alkoxy-substituted aromatic hydrocarbons such as anisole, ethoxybenzene and propyloxybenzene, and the like, for example, methanol, ethanol , Propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, benzyl alcohol Alcohols such as methyl formate, ethyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, ethyl lactate, etc., such as methyl benzoate, benzoate Aromatic carboxylic esters such as ethyl acrylate, propyl benzoate and butyl benzoate, for example, dimethyl ether, methyl ethyl ether, diethyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, cyclopentyl Organic solvents such as ethers such as phenyl ether; water; and the like. These solvents are appropriately selected depending on the type of the reaction substrate, the reaction temperature or the intended reaction time, and may be used alone or in combination of two or more.
[0074]
Note that the solvent is not a solvent composed of a compound having a structure that causes a hydrogenation reaction and a hydrogenolysis (hydrogenolysis) reaction so that the hydrogenation reaction and the hydrogenolysis (hydrogenolysis) reaction of the reaction substrate are prioritized. It is preferable to use one.
[0075]
In addition, the reaction can be performed in a suspended state even if the reaction substrate is not completely dissolved in the solvent.
When a solvent is not used, the reaction may be performed by melting the reaction substrate, or the substrate may be reacted in a gas phase.
[0076]
The reaction temperature is generally -20 to 150C, preferably 0 to 100C, more preferably 20 to 80C.
The reaction time is generally 0.1 to 48 hours, preferably 0.5 to 12 hours, more preferably 1 to 6 hours.
The reaction pressure is usually from normal pressure to 30 MPa, preferably from normal pressure to 5 MPa, and more preferably from normal pressure to 1 MPa.
[0077]
In addition, reaction conditions and post-treatment methods other than those described above may be performed according to a hydrogenation reaction and a hydrogenolysis (hydrogenolysis) reaction known per se.
[0078]
The catalytic hydrogenation reaction method using the dual pore silica gel-supported palladium of the present invention comprises a macropore having a pore diameter of 0.5 to 25 μm as a binary pore silica gel which is a palladium catalyst carrier used in the catalytic hydrogenation reaction. Using a pore and a mesopore having a pore diameter of 5 to 25 nm, by using such a dual-pore silica gel-supported palladium, the conventionally used palladium-carbon catalyst has For example, the catalytic hydrogenation reaction can be carried out without problems such as the risk of ignition and the difficulty in handling, and with an activity efficiency higher than that of the palladium-carbon catalyst.
[0079]
Hereinafter, the present invention will be described in more detail with reference to Examples, Comparative Examples, and Reference Examples, but the present invention is not limited thereto.
[0080]
【Example】
In the following synthesis examples, the macropore diameter was measured by an electron microscope, and the mesopore diameter was measured by a nitrogen adsorption method.
[0081]
Synthesis Example 1 Preparation of palladium supported on dual pore silica gel (palladium catalyst according to the present invention) A
1.30 g of polyethylene oxide was added to 11.5 g of water and 1.15 g of concentrated nitric acid with stirring, and then 10 ml of tetraethoxysilane was added. The obtained transparent sol was put in a closed container, and left still in a 50 ° C constant temperature bath for 24 hours. Next, the obtained white gel is washed 5 times with distilled water, then 100 ml of 0.01N ammonia water is added to the container, and the resulting solution is left standing in a 50 ° C constant temperature bath for 3 days. For one week. After drying, it was calcined at 600 ° C. for 2 hours to obtain silica gel.
[0082]
After the obtained silica gel was crushed using a mortar, it was sieved to make the particle diameter uniform (average particle diameter: 68 μm). This was impregnated with a solution obtained by dissolving 0.053 g of palladium acetate in 20 ml of acetone to prepare a palladium carrying amount of 5 wt%. After impregnation, it was calcined at 500 ° C. for 2 hours to obtain a palladium catalyst A of the present invention (macropore: 1 μm, mesopore: 6 nm). The resulting mesopore diameter distribution of the palladium catalyst A of the present invention is shown in FIG. 1 as -O-.
[0083]
Synthesis Example 2. Preparation of palladium catalyst B according to the present invention
A palladium catalyst B of the present invention was obtained by performing the same operation as in Synthesis Example 1 except that the 0.01 N ammonia water used in Synthesis Example 1 was replaced with 0.1 N ammonia water (macropore: 1 μm, Pore: 10 nm). The mesopore diameter distribution of the obtained palladium catalyst B of the present invention is shown as-△-in FIG.
[0084]
Synthesis Example 3. Preparation of palladium catalyst C according to the present invention
A palladium catalyst C of the present invention was obtained by performing the same operation as in Synthesis Example 1 except that 1N ammonia water was used instead of 0.01 N ammonia water used in Synthesis Example 1 (macropore: 1 μm, mesopore). : 18 nm). The mesopore diameter distribution of the obtained palladium catalyst C of the present invention is shown as-□-in FIG.
[0085]
Synthesis Example 4 Preparation of palladium catalyst D according to the present invention
The same operation as in Synthesis Example 1 was carried out, except that the temperature of the thermostatic bath in which the 0.01 N ammonia water used in Synthesis Example 1 was replaced with 1N ammonia water was changed from 50 ° C. to 80 ° C. Catalyst D was obtained (macropore: 1 μm, mesopore: 22 nm). The resulting mesopore diameter distribution of the palladium catalyst D of the present invention is shown in FIG. 1 as-◇-.
[0086]
Comparative Example 1 Dual-Pore Silica Gel-Supported Palladium Catalyst X
The same operation as in Synthesis Example 1 was performed, except that the sample was dried as it was without immersing the sample in 0.01 N ammonia water performed in Synthesis Example 1, to obtain a palladium catalyst X supported on dual-pore silica gel. (Macropore: 1 μm, mesopore: 2 nm). The mesopore diameter distribution of the obtained dual pore silica gel-supported palladium catalyst X is shown as-◆-in FIG.
[0087]
Embodiment 1 FIG. Hydrogenation of cyclohexene
0.005 g of the palladium catalyst A according to the present invention obtained in Synthesis Example 1 was added to the reaction vessel, and hydrogen gas (flow rate: 30 cm) was added at room temperature. 2 / Min) and reduced for 1 hour, followed by drying at 110 ° C for 12 hours. Next, 0.005 g of the palladium catalyst A according to the present invention after reduction treatment and 1.05 ml (9.6 mmol) of cyclohexene according to the present invention were added to 8.94 ml of hexane, and the mixture was heated at 0 ° C. under a hydrogen atmosphere (hydrogen pressure: 1.1 MPa). The reaction was performed for 15 minutes. After the completion of the reaction, the palladium catalyst A according to the present invention was filtered from the obtained reaction solution. The obtained filtrate was analyzed by gas chromatography to obtain 0.93 mmol of cyclohexane (yield: 9.7%).
The obtained product was confirmed to be cyclohexane by gas chromatography. The conversion rate obtained was adapted to the rate equation of the first-order reaction to determine the reaction rate constant (81h). -1 g -1 ). The results are shown in Table 1 and FIG.
[0088]
Embodiments 2-4. Hydrogenation of cyclohexene
The same operation as in Example 1 was performed, except that the palladium catalysts B to D according to the present invention obtained in Synthesis Examples 2 to 4 were used instead of using the palladium catalyst A according to the present invention obtained in Synthesis Example 1. went. The measurement results of the reaction rate constant are shown in Table 1 and FIG.
[0089]
Comparative Example 2. Hydrogenation of cyclohexene
The same operation as in Example 1 was performed except that the palladium catalyst supported on dual pore silica gel of Comparative Example 1 was used instead of using the palladium catalyst A according to the present invention obtained in Synthesis Example 1. The measurement results of the reaction rate constant are shown in Table 1 and FIG.
[0090]
Reference Example 1. Hydrogenation of cyclohexene
Instead of using the palladium catalyst A according to the present invention obtained in Synthesis Example 1, a commercially available palladium-carbon catalyst [trade name: palladium carbon (manufactured by Wako Pure Chemical Industries, Ltd., Pd carrying amount: 5 wt%)] The same operation as in Example 1 was performed except that the reaction rate was used, and the measurement results of the reaction rate constants are shown in Table 1 and FIG.
[0091]
[Table 1]
Figure 2004250387
[0092]
As is clear from the results of Table 1 and FIG. 2, among the palladium-supported silica gel having dual pores having macropores and mesopores, the palladium catalysts A to D according to the present invention (Examples 1 to 4) were the same as those of conventional palladium A palladium catalyst supported on a dual-pore silica gel (Comparative Example 1) which is not a palladium catalyst according to the present invention, but has a higher reaction rate constant than a carbon catalyst (Reference Example 2), ie, a higher reaction activity, When the mesopore diameter of the silica gel is other than 5 to 25 nm, the reaction activity of the conventional palladium-carbon catalyst is lower. In other words, among the two-pore silica gel-supported palladium, depending on the pore size of the mesopores, there are those showing higher activity and those showing lower activity than the conventional palladium-carbon catalyst, and the pore size of the mesopores of the present invention. It has been found that palladium supported on dual-pore silica gel having a higher reaction rate constant than a conventional palladium-carbon catalyst, that is, a higher reaction activity.
[0093]
Embodiment 5 FIG. Hydrogenation reaction of crotonaldehyde using palladium catalyst according to the present invention
The same operation as in Synthesis Example 1 was carried out except that the amount of the polyethylene oxide used in Synthesis Example 1 was changed to 0.85 g and the concentration of the aqueous ammonia used was changed to 0.1 N, to obtain dual-pore silica gel.
The obtained dual-pore silica gel was crushed using a mortar and then sieved to make the particle diameter uniform (particle diameter: 35, 68, 135, 215, 450 μm). The same operation as in Synthesis Example 1 was performed on the obtained dual-pore silica gel to obtain a dual-pore silica gel-supported palladium catalyst (macropore: 25 μm, mesopore: 10 nm).
[0094]
Next, the obtained palladium catalyst according to the present invention was subjected to the same reduction treatment as in Example 1 as a pretreatment. Subsequently, 0.005 g of the palladium catalyst according to the present invention after reduction treatment in 9.13 ml of hexane and crotonaldehyde (CH 3 (CH = CHOCHO) 0.855 ml (9.6 mmol) was added, and the mixture was reacted at 0 ° C for 15 to 30 minutes under a hydrogen atmosphere (hydrogen pressure: 1.1 MPa). After the completion of the reaction, the palladium catalyst according to the present invention was filtered from the obtained reaction solution. The obtained filtrate was analyzed by gas chromatography to obtain 3.90 mmol of n-butyraldehyde (yield: 40.6%).
The obtained product was confirmed to be n-butyraldehyde by gas chromatography measurement. The conversion rate obtained was adapted to the rate equation of the first-order reaction to determine a reaction rate constant. The results are shown in Table 2 and FIG.
[0095]
Comparative Example 3 Hydrogenation reaction of crotonaldehyde using silica gel without macropores
The same operation as in Synthesis Example 1 was performed except that the concentration of the aqueous ammonia used was changed to 0.1 N without using the polyethylene oxide of Synthesis Example 1 to obtain silica gel having no macropores (mesopore: 10 nm). ). After the silica gel was adjusted to each particle diameter (particle diameter: 35, 68, 135, 215, 450 μm), a hydrogenation reaction of crotonaldehyde was performed in the same manner as in Example 5. The results are shown in Table 2 and FIG.
[0096]
Reference example 3. Hydrogenation reaction of crotonaldehyde using palladium-carbon catalyst
A palladium-carbon catalyst [trade name: palladium carbon (manufactured by Wako Pure Chemical Industries, Ltd., Pd carrying amount: 5 wt%)] was operated in the same manner as in Example 5 except that the particle diameter was 90 μm or less and 90 μm or more. Then, the crotonaldehyde was subjected to a hydrogenation reaction, and the results are shown in Table 2 and FIG.
[0097]
[Table 2]
Figure 2004250387
[0098]
As is clear from Table 2 and FIG. 3, when Example 5 and Reference Example 3 were compared, the palladium catalyst supported on silica gel having macropores (palladium supported on dual pore silica gel) according to the present invention was used. In this case, it was found that the activity was twice or more as compared with the case where the conventional palladium-carbon catalyst was used. Moreover, when Example 5 and Comparative Example 3 were compared, it was found that when the palladium supported on dual pore silica gel was used, the activity was twice or more higher than that of palladium supported on silica gel having no macropore. . In addition, it was found that the smaller the particle diameter, the higher the catalytic activity of the dual-pore silica gel-supported palladium according to the present invention.
[0099]
【The invention's effect】
As described above, a site to be hydrogenated in the presence of palladium supported on a binary pore silica gel composed of macropores having a pore size of 0.5 to 25 μm and mesopores having a pore size of 5 to 25 nm By contacting the compound with hydrogen gas, the palladium-carbon catalyst conventionally used had, for example, with the danger of ignition, etc., without having problems such as difficult handling, The catalytic hydrogenation reaction at the site to be hydrogenated can be performed efficiently.
[Brief description of the drawings]
FIG. 1 shows the mesopore diameter distribution data of binary pore silica gel-supported palladium for Synthesis Examples 1-4 and Comparative Example 1.
The -−- line shows the result of Synthesis Example 1, the-△-line shows the result of Synthesis Example 2, the-□-line shows the result of Synthesis Example 3, the-◇-line shows the result of Synthesis Example 4, The-◆-lines show the results of Comparative Example 1, respectively.
2 shows the reaction rate constant data with respect to the average mesopore diameter of binary pore silica gel-supported palladium for Examples 1 to 4 and Comparative Example 2, and the reaction rate data for Reference Example 1, respectively.
In addition, ● indicates the results of Examples 1 to 4, □ indicates the results of Comparative Example 2, and the dashed line indicates the results of Reference Example 1.
FIG. 3 is data showing the relationship between the particle diameter and the reaction rate constant in Example 5, Comparative Example 3, and Reference Example 3.
The-尚-line shows the results of Example 5, the-□-line shows the results of Comparative Example 3, and the-●-line shows the results of Reference Example 3.

Claims (8)

0.5〜25μmの孔径を有するマクロ細孔と5〜25nmの孔径を有するメソ細孔からなる二元細孔シリカゲルに担持されたパラジウムの存在下、水素化される部位を有する化合物に水素ガスを接触させることを特徴とする、当該水素化される部位の接触水素添加反応方法。A compound having a site to be hydrogenated in the presence of palladium supported on silica gel, which is a binary pore composed of macropores having a pore size of 0.5 to 25 μm and mesopores having a pore size of 5 to 25 nm. A method for contacting hydrogenation at a site to be hydrogenated. 当該水素化される部位を有する化合物が、炭素−炭素二重結合、炭素−炭素三重結合又は/及び水素添加反応により水素化(還元)される基を有するものである、請求項1に記載の接触水素添加反応方法。The compound according to claim 1, wherein the compound having a site to be hydrogenated has a group that is hydrogenated (reduced) by a carbon-carbon double bond, a carbon-carbon triple bond, and / or a hydrogenation reaction. Catalytic hydrogenation reaction method. 当該接触水素添加反応が、水素添加反応に基づくものである、請求項2に記載の接触水素添加反応方法。The catalytic hydrogenation reaction method according to claim 2, wherein the catalytic hydrogenation reaction is based on a hydrogenation reaction. 当該水素化される部位を有する化合物が、水素化分解(加水素分解)により切断(除去)される基を有するものである、請求項1に記載の接触水素添加反応方法。The catalytic hydrogenation reaction method according to claim 1, wherein the compound having a site to be hydrogenated has a group that is cleaved (removed) by hydrogenolysis (hydrogenolysis). 当該接触水素添加反応が、水素化分解(加水素分解)反応に基づくものである、請求項4に記載の接触水素添加反応方法。The catalytic hydrogenation reaction method according to claim 4, wherein the catalytic hydrogenation reaction is based on a hydrocracking (hydrocracking) reaction. メソ細孔の孔径が5〜18nmである、請求項1に記載の接触水素添加反応方法。The catalytic hydrogenation reaction method according to claim 1, wherein the mesopores have a pore size of 5 to 18 nm. メソ細孔の孔径が7〜15nmである、請求項1に記載の接触水素添加反応方法。The catalytic hydrogenation reaction method according to claim 1, wherein the pore diameter of the mesopores is 7 to 15 nm. 二元細孔シリカゲルの粒径が10〜500μmである、請求項1に記載の接触水素添加反応方法。The catalytic hydrogenation reaction method according to claim 1, wherein the particle diameter of the binary pore silica gel is 10 to 500 µm.
JP2003043400A 2003-02-20 2003-02-20 Method for catalytic hydrogenation reaction using palladium carried by silica gel with dual pore system Pending JP2004250387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043400A JP2004250387A (en) 2003-02-20 2003-02-20 Method for catalytic hydrogenation reaction using palladium carried by silica gel with dual pore system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043400A JP2004250387A (en) 2003-02-20 2003-02-20 Method for catalytic hydrogenation reaction using palladium carried by silica gel with dual pore system

Publications (1)

Publication Number Publication Date
JP2004250387A true JP2004250387A (en) 2004-09-09

Family

ID=33026385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043400A Pending JP2004250387A (en) 2003-02-20 2003-02-20 Method for catalytic hydrogenation reaction using palladium carried by silica gel with dual pore system

Country Status (1)

Country Link
JP (1) JP2004250387A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213558A (en) * 2005-02-02 2006-08-17 Chiba Univ Binary pore silica and method for producing the same
RU2292952C1 (en) * 2006-01-27 2007-02-10 Общество с ограниченной ответственностью "Катализ" Catalyst for selective hydrogenation of diene hydrocarbons
JP2010059024A (en) * 2008-09-05 2010-03-18 Agc Si-Tech Co Ltd Large pore diameter silica gel having double pore structure and method for manufacturing the same
JP2020097541A (en) * 2018-12-18 2020-06-25 Jnc株式会社 Highly efficient method for producing saturated homoether from unsaturated carbonyl compound
CN118022701A (en) * 2024-04-11 2024-05-14 齐鲁工业大学(山东省科学院) Small-pore silica gel clarifying agent and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213558A (en) * 2005-02-02 2006-08-17 Chiba Univ Binary pore silica and method for producing the same
RU2292952C1 (en) * 2006-01-27 2007-02-10 Общество с ограниченной ответственностью "Катализ" Catalyst for selective hydrogenation of diene hydrocarbons
JP2010059024A (en) * 2008-09-05 2010-03-18 Agc Si-Tech Co Ltd Large pore diameter silica gel having double pore structure and method for manufacturing the same
JP2020097541A (en) * 2018-12-18 2020-06-25 Jnc株式会社 Highly efficient method for producing saturated homoether from unsaturated carbonyl compound
JP7192475B2 (en) 2018-12-18 2022-12-20 Jnc株式会社 Highly efficient method for producing saturated homoethers from unsaturated carbonyl compounds
CN118022701A (en) * 2024-04-11 2024-05-14 齐鲁工业大学(山东省科学院) Small-pore silica gel clarifying agent and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Zhang et al. Support morphology effect on the selective oxidation of glycerol over AuPt/CeO2 catalysts
Robinson et al. Epoxide ring-opening and Meinwald rearrangement reactions of epoxides catalyzed by mesoporous aluminosilicates
Hou et al. Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide
Yang et al. Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol
Spinace et al. Liquid-phase hydrogenation of benzene to cyclohexene catalyzed by Ru/SiO2 in the presence of water–organic mixtures
JP6386909B2 (en) Method for producing copper-based catalyst precursor for isomerization
CN106414419B (en) Chelate-controlled diastereoselective hydrogenation using heterogeneous catalysis
Coman et al. Catalytic Performance of Nanoscopic, Aluminium Trifluoride‐Based Catalysts in the Synthesis of (all‐rac)‐α‐Tocopherol
He et al. A novel gold-catalyzed chemoselective reduction of α, β-unsaturated aldehydes using CO and H 2 O as the hydrogen source
Cao et al. CuCl catalyst heterogenized on diamide immobilized SBA-15 for efficient oxidative carbonylation of methanol to dimethylcarbonate
Li et al. Mo2N nanobelts for dehydrogenation of aromatic alcohols
JP2004250387A (en) Method for catalytic hydrogenation reaction using palladium carried by silica gel with dual pore system
CN110652983A (en) Catalyst for hydrogenolysis of polyol, and method for producing 1,3-propanediol using the same
Wang et al. Epoxidation of α, β-unsaturated carbonyl compounds in ionic liquid/water biphasic system under mild conditions
Müller et al. Titania–silica epoxidation catalysts modified by polar organic functional groups
Astier et al. Preparation and catalytic properties of supported metal or metal-oxide on inorganic oxide aerogels
EP3374335B1 (en) Photocatalytic process for the isomerisation of an unsaturated compound
TW201010791A (en) Catalyst and process for preparing saturates ethers by hydrogenating unsaturated ethers
Pulido-Díaz et al. RhNPs supported on N-functionalized mesoporous silica: effect on catalyst stabilization and catalytic activity
Tveritinova et al. Catalytic conversion of C2-C3 alcohols on detonation nanodiamond and its modifications
da Silva et al. Covalently immobilized indium (III) composite (In/SiO2) as highly efficient reusable catalyst for A3-coupling of aldehydes, alkynes and amines under solvent-free conditions
Okhlopkova et al. Capillary microreactor with a catalytic coating based on mesoporous titanium dioxide for the selective hydrogenation of 2-methyl-3-butyn-2-ol
Baowei et al. Preparation and characterization of Cu/SiO2 catalyst and its catalytic activity for hydrogenation of diethyl oxalate to ethylene glycol
Müller et al. Hydrophobic titania–silica aerogels: epoxidation of cyclic compounds
Hiyoshi et al. Supermicroporous niobium oxide as an acid catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Effective date: 20081222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707