JP2004247370A - MnZn FERRITE - Google Patents
MnZn FERRITE Download PDFInfo
- Publication number
- JP2004247370A JP2004247370A JP2003033146A JP2003033146A JP2004247370A JP 2004247370 A JP2004247370 A JP 2004247370A JP 2003033146 A JP2003033146 A JP 2003033146A JP 2003033146 A JP2003033146 A JP 2003033146A JP 2004247370 A JP2004247370 A JP 2004247370A
- Authority
- JP
- Japan
- Prior art keywords
- mol
- mass
- ferrite
- mnzn ferrite
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 34
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 230000005389 magnetism Effects 0.000 abstract description 19
- 230000035699 permeability Effects 0.000 abstract description 10
- 230000002159 abnormal effect Effects 0.000 abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 41
- 239000011572 manganese Substances 0.000 description 29
- 238000010304 firing Methods 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 239000011812 mixed powder Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000011162 core material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000001354 calcination Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2658—Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3239—Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3256—Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6584—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/83—Ferrites containing Fe2+
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Magnetic Ceramics (AREA)
- Hard Magnetic Materials (AREA)
- Fertilizers (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、軟磁性を有する代表的な酸化物磁性材料に係り、より詳しくはスイッチング電源トランス等に使用される低損失材、各種インダクタンス素子、EMI対策用インピーダンス素子、電波吸収材などに向けて好適なMnZnフェライトに関する。
【0002】
【従来の技術】
軟磁性を有する代表的な酸化物磁性材料としては、MnZnフェライトがある。このMnZnフェライトは、従来一般には化学量論組成である50 mol%よりも多いFe2O3 、平均的には52〜55 mol%のFe2O3 と、10〜24 mol%のZnO と、残部MnOとを含有する基本成分組成となっている。そして、通常は、Fe2O3 、ZnO 、MnO の各原料粉末を所定の割合で混合した後、仮焼、粉砕、成分調整、造粒、成形の各工程を経て所定の形状とし、しかる後、窒素を流すことにより、下記(1)式に従って酸素分圧を制御した還元性雰囲気中で、1200〜1400℃に2〜4時間保持する焼成並びに焼成後の冷却を行って製造される。
log Po2=−14540 /(T+273 )+b … (1)
この(1)式中、Tは温度(℃)、Po2 は酸素分圧、bは定数であり、通常、この定数として7〜8が採用されている。
【0003】
ここで、MnZnフェライトにおけるマンガン成分に関しては、Mn3+またはMn2+ として存在可能であること、Mn3+とMn2+との存在比は焼成時の雰囲気酸素分圧に依存すること、Mn3+はMnZnフェライトの軟磁性を著しく損なうことなどが一般的に知られている。また、Mn3+とMn2+との間で電子の授受があり、このことが電気抵抗を低下させる原因になることも知られている。つまり、良好な軟磁性を確保しかつ高い電気抵抗を確保するには、Mn3+の生成を極力抑えるような焼成時の雰囲気(酸素分圧)制御が必要であり、上記した(1)式中の定数b=7〜8は、この点並びに工業的な実現可能性を考慮して定められている。なお、この定数bが7〜8ということは、焼成中の酸素分圧を狭い範囲に制御しなければならないことを意味し、焼成処理が極めて面倒になって、製造コストも嵩むことになる。
一方、50 mol%よりも多いFe2O3 を含む一般的なMnZnフェライトにおいては、鉄成分がFe3+またはFe2+として存在可能であり、上記した還元性雰囲気で焼成を行うと、Fe3+の一部が還元されてFe2+が生成する。このFe2+は、正の結晶磁気異方性を有し、Fe3+の負の結晶磁気異方性を打ち消して軟磁性を高める効果がある反面、電気抵抗を著しく低下させる。また、マンガンの場合と同じく、Fe3+とFe2+との間で電子の授受があり、このことが電気抵抗を著しく低下させる原因になる。
【0004】
ところで、近年、電子機器の小型高性能化に伴い、処理信号が高周波数化される傾向にあり、高周波数帯域においても優れた磁気特性を有する磁性材料が必要になってきている。
MnZnフェライトを磁心材料として用いる場合は、使用する周波数帯域が高くなるに従って渦電流が流れ、これによる損失が大きくなる。したがって、磁心材料として使用できる周波数の上限を高めるには、その電気抵抗(比抵抗)をできるだけ大きくする必要がある。しかし、上記した一般的なMnZnフェライトは、Fe2O3 が化学量論組成である50 mol%よりも過剰であるため、Fe2+ が多く存在し、上記したFe3+とFe2+との間(イオン間)での電子の授受が容易なこともあって、その比抵抗はおよそ1Ωmのオーダーより小さい値である。したがって、使用できる周波数も数百kHz 程度が限界で、これを超える周波数帯域では初透磁率が著しく低下し、軟磁性材料としての特性を全く失ってしまう、という問題があった。
【0005】
そこで、例えば、特許文献1または特許文献2には、Fe2O3 を50 mol%未満とするとともに、CaO、SiO2 を副成分として加えて高抵抗化を図ったMnZnフェライトが開示され、また、特許文献3には、Fe2O3 を50 mol%未満とするとともに、TiO2 またはSnO2 を加え、さらにCaO、SiO2 を副成分として加えて高抵抗化を図ったMnZnフェライトが開示されている。
【0006】
【特許文献1】
特開平7−230909号公報
【特許文献2】
特開平10−208926号公報
【特許文献3】
特許第3108803号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1および特許文献2に記載のMnZnフェライトによれば、用途が偏向ヨーク用コア材であることから、100 kHz以下の周波数帯域での使用に限られており(各特許文献の実施例参照)、1MHzを超えるような高周波数帯域において良好な磁気特性(軟磁性)が得られる保証はない。つまり、1MHzを超えるような高周波数帯域において磁心材料として使用することは不可能である。
なお、特許文献1には、CaO およびSiO2 を最大で0.50 重量%まで添加できる示唆があるが、その実施例で添加しているCaO 量は、0.10重量%未満であり、0.20 mass%よりも多いCaO の添加についての実績はない。また、この特許文献1には、Fe2O3 との和が略50 mol%になるようにMn2O3 を添加することが記載されているが、そこで規定されているFe2O3 45.0 〜48.5 mol%から逆算すると、Mn2O3 つまりMn3+量は1.4〜5.0 mol%となり、このように多くのMn3+を含む場合は、軟磁性と電気抵抗とを両立させることは困難である。
一方、上記特許文献3に記載のMnZnフェライトによれば、CaO が0.005〜0.20 mass%、SiO2 が0.005〜0.05 mass%と低めになっているため、いま一つ、高抵抗化の効果が不足する、という問題があった。なお、さらに抵抗を上げようとして、単にCaO やSiO2 の添加量を高めると、焼成時に異常粒成長が起こって磁気特性(軟磁性)が著しく劣化してしまう。
本発明は、上記従来の問題点に鑑みてなされたもので、その目的とするところは、大きな電気抵抗を有し、1MHz を超える高周波数帯域においても良好な軟磁性が得られるMnZnフェライトを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るMnZnフェライトは、基本成分組成が、Fe2O3 44.0 〜49.8 mol%、 ZnO 4.0 〜26.5 mol%、TiO2およびSnO2のうちの1種または2種 0.1〜4.0 mol%、Mn2O3 0.5 mol%以下、残部MnO からなり、副成分として、CaO 0.20〜1.00 mass%(ただし、0.20 mass%は除く)を含有し、かつ比抵抗が1.5×104Ωm以上、表面抵抗が1.5×107Ω以上であることを特徴とする。
本発明は、FeO 含有量を、0.20 mol%以下に抑えるようにするのが望ましい。
本発明はまた、副成分として、SiO2 0.01〜0.10 mass%を含有する構成としてもよい。
本発明さらに、副成分として、V2O5 0.01〜0.20 mass%、MoO3 0.01〜0.20 mass%、ZrO2 0.01〜0.20 mass%、Ta2O5 0.01〜0.20 mass%、HfO2 0.01〜0.20 mass%、Nb2O5 0.01〜0.20 mass%およびCuO 0.01〜6.00 mass%のうちの1種または2種以上を含有する構成としてもよい。
【0009】
【発明の実施の形態】
上述したように、Fe2O3 が50 mol%を超える一般的なMnZnフェライトを、前記した式(1)における定数bが7〜8という還元性雰囲気にて焼成を行えば、軟磁性を劣化させるMn3+はほとんど生成されないが、電気抵抗を著しく低下させるFe2+が生成されてしまう。これは、50 mol%よりも多い分のFe2O3 つまりFe3+が還元されるためである。これに対し、本発明においては、Fe2O3 を50 mol%未満の44.0〜49.8 mol%としているため、式(1)における定数bが7〜8という還元性雰囲気で焼成を行ってもFe2+はほとんど生成されない。
また、式(1)における定数bが8よりも大きい酸化性雰囲気にて焼成を行うと、Mn2+が酸化されてMn3+が生成してしまう。Mn3+は、結晶格子を歪ませる等の理由で初透磁率を著しく低下させることに加え、抵抗も低下させる。しかしながら、本発明においては、TiO2 および/またはSnO2 を適当量含ませているので、Ti4+ またはSn4+ がスピネル格子中に固溶し、これによりMn3+が還元されてMn2+が生成する。
【0010】
すなわち、本発明によれば、電気抵抗を著しく低下させるFe2+の生成が抑制されることに加え、軟磁性と電気抵抗とを劣化させるMn3+の生成も抑制され、良好な軟磁性と高い電気抵抗とが両立する。この結果、本発明においては、比抵抗が1.5×104Ωm以上、表面抵抗が1.5×107Ω以上という著しく高い電気抵抗が得られるようになる。ただし、TiO2 および/またはSnO2 は、その含有量が0.1 mol%未満では前記した効果が小さく、4.0 mol%よりも多いと初透磁率がかえって低下するので、0.1〜4.0 mol%の範囲とした。
この場合、Mn3+の量は、上記した良好な軟磁性と高い電気抵抗とを両立させる重要な指標となるので、本発明では、このMn3+量つまりMn2O3 量を0.5 mol%以下に抑えるようにしている。
また、MnZnフェライト中の鉄成分は、一般にFeO (Fe2+)を含めてFe2O3として表記されるが、Fe2+は、上記したように電気抵抗を低下させる大きな原因になるので、このFeO 量は0.2 mol%以下に抑えるのが望ましい。
【0011】
主成分としてのZnO は、キュリー温度や飽和磁化に影響を与えるが、少なすぎると初透磁率が低下し、逆に多すぎると飽和磁化やキュリー温度が低下してしまう。電源トランス用フェライトは80〜100 ℃程度の環境で使用される場合が多く、キュリー温度や飽和磁化が高いことが特に重要になるため、上記範囲4.0 〜26.5 mol%とする。
【0012】
本発明は、上記したように副成分としてCaO を0.20 mass%よりも多く含有させることを特徴とする。このCaOは、結晶粒界に偏析して高抵抗化に寄与するが、その含有量が0.20 mass%よりも多いと、異常粒成長が起こって磁気特性の劣化が著しくなる。このため、従来は、このCaO を0.20 mass%以下に抑えるようにしていたが、本発明においては、Fe2O3 を50 mol%未満(49.8 mol%以下)に抑え、かつMn2O3 を微量(0.5 mol%以下)に抑え、所望によりFeO を微量(0.2mol%以下)に抑えているので、CaO を0.20 mass%よりも多く含有させても、異常粒成長が起こらない。さらに、CaO は、好ましくは0.50 mass%よりも多く含有させることにより高抵抗化に寄与するところが大きい。ただし、その含有量が多すぎると軟磁性が低下してしまうため、CaO は上記範囲0.20〜1.00 mass%(ただし、0.20 mass%は除く)とした。なお、高抵抗化には、SiO2 も寄与するので、所望によりこのSiO2 を0.01〜0.10 mass%含有させてもよい。
【0013】
本発明はまた、副成分として、V2O5 、MoO3 、ZrO2 、Ta2O5 、HfO2 、Nb2O5 およびCuO のうちの1種または2種以上を含有することができるが、これらは、何れも焼結を促進する作用や高抵抗化する作用がある。ただし、それらの含有量が少なすぎるとその効果が小さく、逆に多すぎると異常粒成長が起こってしまうため、V2O5 、MoO3 、ZrO2 、Ta2O5 、HfO2 、Nb2O5 およびV2O5 については0.01〜0.20 mass%の範囲で、CuO については0.01〜6.00 mass%の範囲で含有させるのが望ましい。
【0014】
本発明では、上記したように焼成および焼成後の冷却を、前記(1) 式における定数bとして7〜15の範囲内の任意の値を用いて求めた酸素分圧の雰囲気中で行うことができる。このことは、一般的に用いられる定数b=7〜8に比べて、雰囲気制御が容易になることを意味し、その分、製造コストの低減を達成できる。ただし、定数bとして15より大きい値を選択した場合は、フェライト中のMn3+ が0.5 mol%よりも多くなり、初透磁率が急激に低下してしまう。
【0015】
MnZnフェライトの製造に際しては、予め主成分としてのFe2O3、ZnO およびMnO の各原料粉末を所定の比率となるように秤量、混合した後、この混合粉末を仮焼、微粉砕する。前記仮焼温度は、目標組成によって多少異なるが、800 〜1000℃の温度範囲内で適宜の温度を選択する。また、混合粉末の微粉砕には汎用のボールミルをはじめ、アトライターを用いることができる。そして、この微細な混合粉末に、TiO2 、SnO2 、CaO 、SiO2 等の必要な粉末を適量添加混合し、目標成分の混合粉末を得る。その後は、通常のフェライト製造プロセスに従って造粒、成形を行い、さらに、1000〜1300℃で焼成を行う。なお、前記造粒は、ポリビニルアルコール、ポリアクリルアミド、メチルセルロース、ポリエチレンオキシド、グリセリン等のバインダーを添加する方法を、また成形は、例えば、80MPa 以上の圧力を加えて行う方法をそれぞれ採用することができる。
上記した焼成および焼成後の冷却は、焼成炉中に窒素ガス等の不活性ガスを流して酸素分圧を制御する。この場合、前記 (1)式中の定数は7〜15の範囲内で任意の値を選択することができるので、従来一般の、Fe2O3 が50 mol%よりも多いMnZnフェライトを焼成する場合に選択した定数b(7〜8)と比較して、その許容範囲はかなり広く、容易に酸素分圧の制御を行うことができる。また、この場合、上記(1) 式に基づく焼成後の冷却は、500 ℃より低い温度では、酸素濃度によらず酸化または還元の反応を無視できるため、500 ℃までとすれば十分である。
【0016】
【実施例】
所定量のFe2O3 、ZnO およびMnO の各原料粉末をアトライターにて混合した後、空気中、850℃で2時間仮焼し、さらにアトライターにて1時間粉砕して、混合粉末を得た。次に、この混合粉末にTiO2 、SnO2 、CaO 、SiO2 、CuO 、Nb2O5、V2O5 、ZrO2 等の粉末を適当な割合で添加混合して成分調整を行い、さらにアトライターにて1時間混合した。次に、この混合粉末にポリビニルアルコールを加えて造粒し、80MPa の圧力で外径25mm,内径15mm,高さ5mmのトロイダルコア(成形体)を成形した。その後、この成形体を焼成炉に入れ、窒素を流すことにより、前記(1) 式中の定数bを9として求められる酸素分圧となるように雰囲気を調整し、1200℃で2時間焼成および焼成後の冷却を行い、本発明試料1〜7と比較試料1〜4とを得た。
そして、上記のようにして得た各試料について、蛍光X線分析によって最終的な成分組成を確認すると共に、滴定法によりMn2O3 量とFeO 量とを分析した。また、上記各試料について、1MHz における初透磁率、比抵抗および表面抵抗を測定した。それらの結果を一括して表1および表2に示す。
【0017】
【表1】
【0018】
【表2】
【0019】
表1および表2に示す結果より、本発明試料1〜7は、いずれもMn2O3 が0.5 mol%以下、FeO が0.2 mol%以下となっている。本発明試料1〜7はまた、いずれも初透磁率が700以上、比抵抗が1.5×104Ωm以上、表面抵抗が1.5×107Ω以上となっており、良好な軟磁性と高い電気抵抗とが得られることが明らかとなった。
これに対し、比較試料1は、Fe2O3 が50.0 mol%以上の一般的なMnZnフェライトであるため、抵抗が著しく低くなっている。また、比較試料2は、CaO の含有量が多く、異常粒成長が起こり、初透磁率が著しく低下している。また、比較試料3は、TiO2 もSnO2 も含有していないため、Mn2O3 すなわちMn3+が多く存在し、軟磁性が劣化しかつ電気抵抗が低下している。さらに、比較試料4は、逆にSnO2 の含有量が多すぎるため、同様に軟磁性が劣化しかつ電気抵抗が低下している。
【0020】
【発明の効果】
以上、説明したように、本発明に係るMnZnフェライトによれば、Fe2O3 を50 mol%未満に抑え、かつMn2O3 を微量(0.5 mol%以下)に抑えることで、CaOを0.20 mass%よりも多く含有させても、異常粒成長が起こらず、比抵抗が1.5×104Ωm以上、表面抵抗が1.5×107Ω以上となる高い電気抵抗が得られる。また、TiO2 および/またはSnO2 を適当量含ませているので、初透磁率も十分高くなり、1MHz のような高周波数帯域においても良好な軟磁性が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a typical oxide magnetic material having soft magnetism, and more specifically, to a low-loss material, various inductance elements, an EMI countermeasure impedance element, and a radio wave absorbing material used in a switching power supply transformer and the like. It relates to a suitable MnZn ferrite.
[0002]
[Prior art]
A typical oxide magnetic material having soft magnetism is MnZn ferrite. Conventionally, this MnZn ferrite generally contains more than 50 mol% of stoichiometric Fe 2 O 3 , on average 52 to 55 mol% of Fe 2 O 3 , and 10 to 24 mol% of ZnO 2, The basic component composition contains the balance MnO. Usually, each raw material powder of Fe 2 O 3 , ZnO 2 , and MnO 2 is mixed at a predetermined ratio, then calcined, pulverized, component-adjusted, granulated, and molded to form a predetermined shape. Then, by flowing nitrogen, firing is performed in a reducing atmosphere in which the oxygen partial pressure is controlled according to the following formula (1), firing at 1200 to 1400 ° C. for 2 to 4 hours, and cooling after firing is performed.
log Po 2 = −14540 / (T + 273) + b (1)
In the equation (1), T is a temperature (° C.), Po 2 is an oxygen partial pressure, and b is a constant. Usually, 7 to 8 is adopted as this constant.
[0003]
Here, with respect to the manganese component in MnZn ferrite, it can exist as Mn 3+ or Mn 2+, the abundance ratio of Mn 3+ and Mn 2+ is relying on atmospheric oxygen partial pressure during firing, Mn 3+ is MnZn ferrite It is generally known that the soft magnetism is significantly impaired. It is also known that electrons are exchanged between Mn 3+ and Mn 2+, which causes a reduction in electric resistance. That is, in order to secure good soft magnetism and high electric resistance, it is necessary to control the atmosphere (oxygen partial pressure) during firing so as to minimize the generation of Mn 3+. Is determined in consideration of this point and industrial feasibility. When the constant b is 7 to 8, it means that the oxygen partial pressure during firing must be controlled in a narrow range, and the firing process becomes extremely troublesome and the production cost increases.
On the other hand, 50 in a general MnZn ferrite containing more Fe 2 O 3 than mol%, the iron component is can exist as Fe 3+ or Fe 2+, burning is carried out a reducing atmosphere as described above, the Fe 3+ Part is reduced to produce Fe 2+ . This Fe 2+ has a positive crystal magnetic anisotropy, and has an effect of canceling out the negative crystal magnetic anisotropy of Fe 3+ to increase soft magnetism, but significantly lowers electric resistance. Further, as in the case of manganese, electrons are exchanged between Fe 3+ and Fe 2+, which causes a significant decrease in electric resistance.
[0004]
By the way, in recent years, the frequency of processed signals tends to be higher with the miniaturization and higher performance of electronic devices, and a magnetic material having excellent magnetic properties even in a high frequency band is required.
When MnZn ferrite is used as the magnetic core material, an eddy current flows as the frequency band used increases, resulting in a large loss. Therefore, in order to increase the upper limit of the frequency that can be used as the magnetic core material, it is necessary to increase the electric resistance (specific resistance) as much as possible. However, since the above-mentioned general MnZn ferrite contains Fe 2 O 3 in excess of the stoichiometric composition of 50 mol%, a large amount of Fe 2+ is present, and between the above-mentioned Fe 3+ and Fe 2+ ( Since the transfer of electrons between ions is easy, the specific resistance is smaller than about 1 Ωm. Therefore, there is a problem that the usable frequency is limited to about several hundred kHz, and in a frequency band exceeding this limit, the initial magnetic permeability is remarkably reduced, and the characteristics as a soft magnetic material are completely lost.
[0005]
Therefore, for example, Patent Document 1 or Patent Document 2 discloses MnZn ferrite in which Fe 2 O 3 is less than 50 mol% and CaO and SiO 2 are added as subcomponents to increase the resistance, and Patent Document 3 discloses a MnZn ferrite in which Fe 2 O 3 is less than 50 mol%, TiO 2 or SnO 2 is added, and CaO and SiO 2 are added as subcomponents to increase resistance. ing.
[0006]
[Patent Document 1]
JP-A-7-230909 [Patent Document 2]
JP-A-10-208926 [Patent Document 3]
Japanese Patent No. 3108803
[Problems to be solved by the invention]
However, according to the MnZn ferrites described in Patent Documents 1 and 2 described above, the use thereof is limited to a frequency band of 100 kHz or less because the application is a core material for a deflection yoke. (See Examples) There is no guarantee that good magnetic properties (soft magnetism) can be obtained in a high frequency band exceeding 1 MHz. That is, it cannot be used as a magnetic core material in a high frequency band exceeding 1 MHz.
Although Patent Document 1 suggests that CaO 2 and SiO 2 can be added up to 0.50% by weight, the amount of CaO added in the examples is less than 0.10% by weight and 0% by weight. There is no record of adding more than 0.20 mass% of CaO 2. Further, Patent Document 1 describes that Mn 2 O 3 is added so that the sum with Fe 2 O 3 becomes approximately 50 mol%, but Fe 2 O 3 45 specified therein is added. When calculated backward from 0.0 to 48.5 mol%, the amount of Mn 2 O 3, that is, Mn 3+ is 1.4 to 5.0 mol%. When such a large amount of Mn 3+ is contained, the soft magnetism and the electric resistance are reduced. It is difficult to achieve both.
On the other hand, according to the MnZn ferrite disclosed in Patent Document 3, CaO is 0.005 to 0.20 mass%, because the SiO 2 is in the low and 0.005 to 0.05 mass%, one more However, there is a problem that the effect of increasing the resistance is insufficient. If the added amount of CaO or SiO 2 is simply increased in order to further increase the resistance, abnormal grain growth occurs during firing and the magnetic characteristics (soft magnetism) are significantly deteriorated.
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a MnZn ferrite having a large electric resistance and capable of obtaining good soft magnetism even in a high frequency band exceeding 1 MHz. Is to do.
[0008]
[Means for Solving the Problems]
To achieve the above object, MnZn ferrite according to the present invention, the basic component composition, Fe 2 O 3 44.0 ~49.8 mol %, ZnO 4.0 ~26.5 mol%, TiO 2 and SnO 2 one or 0.1 to 4.0 mol% of, Mn 2 O 3 0.5 mol% or less, the balance being MnO, as an auxiliary component, CaO 0.20 to 1.00 mass% (provided that , 0.20 mass%), and has a specific resistance of 1.5 × 10 4 Ωm or more and a surface resistance of 1.5 × 10 7 Ω or more.
In the present invention, the FeO content is desirably controlled to 0.20 mol% or less.
The present invention also provides, as an accessory component may be configured to contain SiO 2 0.01~0.10 mass%.
The present invention Further, as subcomponent, V 2 O 5 0.01~0.20 mass% , MoO 3 0.01~0.20 mass%, ZrO 2 0.01~0.20 mass%, Ta 2 O 5 0.01~0.20 mass%, HfO 2 0.01~0.20 mass %, Nb 2 O 5 0.01~0.20 mass% and one of CuO 0.01 to 6.00 mass% It is good also as composition containing a kind or two or more kinds.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, if the general MnZn ferrite in which Fe 2 O 3 exceeds 50 mol% is fired in a reducing atmosphere where the constant b in the above formula (1) is 7 to 8, the soft magnetism is deteriorated. Almost no Mn 3+ is generated, but Fe 2+ that significantly lowers the electric resistance is generated. This is because more than 50 mol% of Fe 2 O 3, that is, Fe 3+ is reduced. On the other hand, in the present invention, since Fe 2 O 3 is set to 44.0 to 49.8 mol%, which is less than 50 mol%, sintering is performed in a reducing atmosphere in which the constant b in the formula (1) is 7 to 8. Almost no Fe 2+ is generated even if the process is performed.
Further, when firing is performed in an oxidizing atmosphere where the constant b in the formula (1) is larger than 8, Mn 2+ is oxidized to generate Mn 3+ . Mn 3+ remarkably lowers the initial magnetic permeability due to, for example, distorting the crystal lattice, and also lowers the resistance. However, in the present invention, since TiO 2 and / or SnO 2 is contained in an appropriate amount, Ti 4+ or Sn 4+ forms a solid solution in the spinel lattice, thereby reducing Mn 3+ to form Mn 2+ . .
[0010]
That is, according to the present invention, in addition to suppressing the generation of Fe 2+ which significantly lowers the electric resistance, the generation of Mn 3+ which deteriorates the soft magnetism and the electric resistance is also suppressed, so that good soft magnetism and high electricity Resistance and compatibility. As a result, in the present invention, a remarkably high electric resistance having a specific resistance of 1.5 × 10 4 Ωm or more and a surface resistance of 1.5 × 10 7 Ω or more can be obtained. However, if the content of TiO 2 and / or SnO 2 is less than 0.1 mol%, the above effect is small, and if the content is more than 4.0 mol%, the initial permeability is rather lowered. The range was 4.0 mol%.
In this case, the amount of Mn 3+ is an important index for achieving both the above-described good soft magnetism and high electric resistance. Therefore, in the present invention, the amount of Mn 3+ , that is, the amount of Mn 2 O 3 is 0.5 mol%. I try to keep it below.
The iron component in the MnZn ferrite is generally expressed as Fe 2 O 3 including FeO 2 (Fe 2+ ). Since Fe 2+ is a major cause of lowering the electric resistance as described above, this FeO It is desirable to keep the amount below 0.2 mol%.
[0011]
ZnO 2 as a main component affects the Curie temperature and the saturation magnetization, but if it is too small, the initial permeability decreases, and if it is too large, the saturation magnetization and the Curie temperature decrease. Ferrites for power transformers are often used in an environment of about 80 to 100 ° C., and it is particularly important that the Curie temperature and the saturation magnetization are high. Therefore, the above range is set to 4.0 to 26.5 mol%.
[0012]
As described above, the present invention is characterized in that CaO 2 is contained in an amount of more than 0.20 mass% as an auxiliary component. This CaO segregates at the crystal grain boundaries and contributes to increasing the resistance. However, if the content is more than 0.20 mass%, abnormal grain growth occurs, and the magnetic properties are significantly deteriorated. For this reason, conventionally, this CaO was suppressed to 0.20 mass% or less, but in the present invention, Fe 2 O 3 is suppressed to less than 50 mol% (49.8 mol% or less) and Mn is reduced. Since 2 O 3 is suppressed to a very small amount (0.5 mol% or less), and if desired, FeO 2 is suppressed to a very small amount (0.2 mol% or less), even if CaO 2 is contained more than 0.20 mass%, it is abnormal. No grain growth occurs. Furthermore, CaO 2 preferably contributes to high resistance by containing more than 0.50 mass%. However, if the content is too large, the soft magnetism is reduced. Therefore, CaO is set in the above range of 0.20 to 1.00 mass% (however, excluding 0.20 mass%). Since SiO 2 also contributes to increasing the resistance, this SiO 2 may be contained at 0.01 to 0.10 mass% as desired.
[0013]
The present invention can also contain one or more of V 2 O 5 , MoO 3 , ZrO 2 , Ta 2 O 5 , HfO 2 , Nb 2 O 5 and CuO as accessory components. All of these have the effect of promoting sintering and the effect of increasing resistance. However, if the content is too small, the effect is small, and if the content is too large, abnormal grain growth occurs. Therefore, V 2 O 5 , MoO 3 , ZrO 2 , Ta 2 O 5 , HfO 2 , Nb 2 in the range of 0.01 to 0.20 mass% for O 5 and V 2 O 5, for CuO it is preferable that its content be within a range of 0.01-6.00 mass%.
[0014]
In the present invention, the calcination and the cooling after the calcination are performed in an atmosphere having an oxygen partial pressure determined by using an arbitrary value within the range of 7 to 15 as the constant b in the formula (1) as described above. it can. This means that the atmosphere control becomes easier as compared with the generally used constant b = 7 to 8, and the manufacturing cost can be reduced accordingly. However, when a value larger than 15 is selected as the constant b, Mn 3+ in the ferrite becomes larger than 0.5 mol%, and the initial magnetic permeability is sharply reduced.
[0015]
In the production of MnZn ferrite, raw material powders of Fe 2 O 3 , ZnO and MnO as main components are weighed and mixed so as to have a predetermined ratio, and then the mixed powder is calcined and pulverized. The calcination temperature varies somewhat depending on the target composition, but an appropriate temperature is selected within a temperature range of 800 to 1000 ° C. For fine pulverization of the mixed powder, an attritor such as a general-purpose ball mill can be used. Then, an appropriate amount of a required powder such as TiO 2 , SnO 2 , CaO 2 or SiO 2 is added to the fine mixed powder and mixed to obtain a mixed powder of a target component. Thereafter, granulation and molding are performed according to a normal ferrite manufacturing process, and further firing is performed at 1000 to 1300 ° C. The granulation can be performed by a method of adding a binder such as polyvinyl alcohol, polyacrylamide, methylcellulose, polyethylene oxide, and glycerin, and the molding can be performed by, for example, a method of applying a pressure of 80 MPa or more. .
In the above-described firing and cooling after the firing, an oxygen partial pressure is controlled by flowing an inert gas such as nitrogen gas into the firing furnace. In this case, since the constant in the above formula (1) can be selected arbitrarily within a range of 7 to 15, the conventional general MnZn ferrite in which Fe 2 O 3 contains more than 50 mol% is fired. Compared with the constant b (7 to 8) selected in that case, the allowable range is considerably wide, and the oxygen partial pressure can be easily controlled. In this case, the cooling after firing based on the above formula (1) is sufficient if the temperature is lower than 500 ° C., because the oxidation or reduction reaction can be ignored regardless of the oxygen concentration.
[0016]
【Example】
After a predetermined amount of each raw material powder of Fe 2 O 3 , ZnO and MnO was mixed by an attritor, the mixture was calcined at 850 ° C. for 2 hours in the air and further pulverized by an attritor for 1 hour. Obtained. Next, powder such as TiO 2 , SnO 2 , CaO, SiO 2 , CuO, Nb 2 O 5 , V 2 O 5 , ZrO 2 and the like are added and mixed at an appropriate ratio to the mixed powder, and the components are adjusted. The mixture was mixed for 1 hour with an attritor. Next, polyvinyl alcohol was added to the mixed powder, and the mixture was granulated to form a toroidal core (molded body) having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm at a pressure of 80 MPa. Thereafter, the molded body is placed in a firing furnace, and the atmosphere is adjusted so that the oxygen partial pressure is obtained by setting the constant b in the above formula (1) to 9 by flowing nitrogen. Cooling after baking was performed to obtain inventive samples 1 to 7 and comparative samples 1 to 4.
For each sample obtained as described above, the final component composition was confirmed by X-ray fluorescence analysis, and the amount of Mn 2 O 3 and the amount of FeO were analyzed by titration. The initial permeability, specific resistance and surface resistance at 1 MHz of each sample were measured. The results are collectively shown in Tables 1 and 2.
[0017]
[Table 1]
[0018]
[Table 2]
[0019]
From the results shown in Tables 1 and 2, all of the present invention samples 1 to 7 have Mn 2 O 3 of 0.5 mol% or less and FeO 2 of 0.2 mol% or less. Samples 1 to 7 of the present invention also have an initial magnetic permeability of 700 or more, a specific resistance of 1.5 × 10 4 Ωm or more, and a surface resistance of 1.5 × 10 7 Ω or more. And high electrical resistance can be obtained.
On the other hand, the comparative sample 1 is a general MnZn ferrite with Fe 2 O 3 of 50.0 mol% or more, so that the resistance is extremely low. In Comparative Sample 2, the content of CaO 2 was large, abnormal grain growth occurred, and the initial magnetic permeability was significantly reduced. Further, since Comparative Sample 3 contains neither TiO 2 nor SnO 2 , Mn 2 O 3, that is, Mn 3+ is present in a large amount, and the soft magnetism is deteriorated and the electric resistance is lowered. Further, in Comparative Sample 4, the content of SnO 2 was too large, so that the soft magnetism was similarly deteriorated and the electric resistance was lowered.
[0020]
【The invention's effect】
As described above, according to the MnZn ferrite according to the present invention, CaO is suppressed by suppressing Fe 2 O 3 to less than 50 mol% and Mn 2 O 3 to a trace amount (0.5 mol% or less). Contains more than 0.20 mass%, abnormal grain growth does not occur, and a high electric resistance with a specific resistance of 1.5 × 10 4 Ωm or more and a surface resistance of 1.5 × 10 7 Ω or more is obtained. can get. In addition, since an appropriate amount of TiO 2 and / or SnO 2 is contained, the initial permeability is sufficiently high, and good soft magnetism can be obtained even in a high frequency band such as 1 MHz.
Claims (4)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003033146A JP2004247370A (en) | 2003-02-12 | 2003-02-12 | MnZn FERRITE |
US10/765,050 US6984337B2 (en) | 2003-02-12 | 2004-01-28 | Mn—Zn ferrite containing less than 50 mol% Fe2O3 |
TW093102203A TW200423159A (en) | 2003-02-12 | 2004-01-30 | Mn-Zn ferrite |
EP04002504A EP1447825A3 (en) | 2003-02-12 | 2004-02-05 | Mn-Zn ferrite containing less than 50 mol% Fe2O3 |
CNA2004100039845A CN1521771A (en) | 2003-02-12 | 2004-02-12 | Mn-zn ferrite containing less than 50 mol% fe2o3 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003033146A JP2004247370A (en) | 2003-02-12 | 2003-02-12 | MnZn FERRITE |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004247370A true JP2004247370A (en) | 2004-09-02 |
Family
ID=32677572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003033146A Pending JP2004247370A (en) | 2003-02-12 | 2003-02-12 | MnZn FERRITE |
Country Status (5)
Country | Link |
---|---|
US (1) | US6984337B2 (en) |
EP (1) | EP1447825A3 (en) |
JP (1) | JP2004247370A (en) |
CN (1) | CN1521771A (en) |
TW (1) | TW200423159A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104261812A (en) * | 2014-09-11 | 2015-01-07 | 麦格磁电科技(珠海)有限公司 | Anti-EMI (electromagnetic interference) ferrite material and preparation method thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7285835B2 (en) * | 2005-02-24 | 2007-10-23 | Freescale Semiconductor, Inc. | Low power magnetoelectronic device structures utilizing enhanced permeability materials |
EP2090555B1 (en) * | 2006-10-19 | 2014-12-31 | Hitachi Metals, Ltd. | Radio wave absorption material and radio wave absorber |
CN101687665B (en) * | 2007-05-31 | 2012-07-04 | 国立大学法人东京大学 | Magnetic iron oxide particle, magnetic material, and radio wave absorber |
CN102875138B (en) * | 2012-09-27 | 2014-07-16 | 无锡宏昌五金制造有限公司 | High-frequency titanium alloy material |
CN102982954B (en) * | 2012-11-23 | 2016-11-02 | 天长市昭田磁电科技有限公司 | A kind of containing HfO2the manufacture method of ferromagnetic core |
CN103693951B (en) * | 2013-09-02 | 2015-05-27 | 横店集团东磁股份有限公司 | Anti-electromagnetic interference manganese zinc ferrite material and preparation method thereof |
WO2016072428A1 (en) * | 2014-11-06 | 2016-05-12 | 株式会社村田製作所 | Laminated coil component |
CN107573049A (en) * | 2017-08-29 | 2018-01-12 | 海宁联丰磁业股份有限公司 | A kind of high Bs soft magnetic ferrites of ultra-low loss and preparation method |
KR102547326B1 (en) * | 2017-09-29 | 2023-06-22 | 파우더테크 컴퍼니 리미티드 | Mn-Zn-based ferrite particles, resin moldings, soft magnetic mixed powders, and magnetic cores |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0720006B2 (en) | 1990-08-09 | 1995-03-06 | 株式会社村田製作所 | Dielectric resonator |
JPH0723090A (en) | 1993-06-30 | 1995-01-24 | Sanyo Electric Co Ltd | Telephone set |
JP3454316B2 (en) | 1994-02-18 | 2003-10-06 | Tdk株式会社 | Manganese zinc based ferrite core and method for producing the same |
JPH10208926A (en) | 1997-01-21 | 1998-08-07 | Fuji Elelctrochem Co Ltd | Ferrite material, method of manufacturing the same, and deflection yoke core using the material |
JP3108803B2 (en) * | 1998-08-19 | 2000-11-13 | ミネベア株式会社 | Mn-Zn ferrite |
JP3418827B2 (en) * | 2000-03-15 | 2003-06-23 | ミネベア株式会社 | Mn-Zn ferrite and method for producing the same |
JP3446082B2 (en) * | 2000-03-22 | 2003-09-16 | ミネベア株式会社 | Mn-Zn ferrite and method for producing the same |
-
2003
- 2003-02-12 JP JP2003033146A patent/JP2004247370A/en active Pending
-
2004
- 2004-01-28 US US10/765,050 patent/US6984337B2/en not_active Expired - Fee Related
- 2004-01-30 TW TW093102203A patent/TW200423159A/en unknown
- 2004-02-05 EP EP04002504A patent/EP1447825A3/en not_active Withdrawn
- 2004-02-12 CN CNA2004100039845A patent/CN1521771A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104261812A (en) * | 2014-09-11 | 2015-01-07 | 麦格磁电科技(珠海)有限公司 | Anti-EMI (electromagnetic interference) ferrite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW200423159A (en) | 2004-11-01 |
US6984337B2 (en) | 2006-01-10 |
US20040183048A1 (en) | 2004-09-23 |
EP1447825A3 (en) | 2006-04-12 |
EP1447825A2 (en) | 2004-08-18 |
CN1521771A (en) | 2004-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3108803B2 (en) | Mn-Zn ferrite | |
JP3584438B2 (en) | Mn-Zn ferrite and method for producing the same | |
JP5181175B2 (en) | Mn-Zn-Co ferrite | |
JP3584439B2 (en) | Mn-Zn ferrite and method for producing the same | |
WO2004028997A1 (en) | Ferrite material | |
JP3588693B2 (en) | Mn-Zn ferrite and method for producing the same | |
JP2007238339A (en) | Mn-Zn-BASED FERRITE MATERIAL | |
EP1083158A2 (en) | Magnetic ferrit material | |
JP3108804B2 (en) | Mn-Zn ferrite | |
JP2004247370A (en) | MnZn FERRITE | |
JP3418827B2 (en) | Mn-Zn ferrite and method for producing the same | |
JP3907642B2 (en) | Ferrite material and method for producing ferrite material | |
JP2007269502A (en) | Mn-Zn ferrite material | |
JP2005330126A (en) | MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME | |
JP2004247371A (en) | MnZn FERRITE | |
JPH113813A (en) | Ferrite material | |
JP2008169072A (en) | Mn-Zn FERRITE | |
JP3446082B2 (en) | Mn-Zn ferrite and method for producing the same | |
JP2004247602A (en) | MnZn-BASED FERRITE WAVE ABSORBER | |
JP4656949B2 (en) | High saturation magnetic flux density Mn-Zn-Ni ferrite | |
JP3584437B2 (en) | Method for producing Mn-Zn ferrite | |
JPH07142222A (en) | Low loss Mn-Zn soft ferrite | |
JP4799808B2 (en) | Ferrite composition, magnetic core and electronic component | |
JPH10270231A (en) | Mn-Ni ferrite material | |
JP2007031210A (en) | Mn-Zn FERRITE |